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1. We consider the following method:

yn+1 = yn + h (αf(tn, yn) + βf(tn−1, yn−1)) . (1)

(a) The local truncation error is given by

τn+1 =
yn+1 − zn+1

h
,

where yn+1 is the exact solution at time tn+1 and zn+1 is the numerical method
(1) applied to yn−1 and yn. We will need the following Taylor expansions:

yn+1 = yn + hy′n +
h2

2
y′′n +O(h3),

y′n−1 = f(tn−1, yn−1) = y′n − hy′′n +O(h2).

We then have for zn+1 :

zn+1 = yn + h(α + β)y′n − h2βy′′n +O(h3).

Subtracting this from yn+1 and dividing by h we have the local truncation error
is:

τn+1 = (1− (α + β))y′n + h

(
1

2
+ β

)
y′′n +O(h2).

Since

α =
3

2
, β = −1

2

we obtain τn+1 = O(h2).

(b) Substituting the relation yj = [Q(hλ)]yj−1 and the test equation y′ = λy =
f(t, y) in (1) gives the following:

[Q(hλ)]2yn−1 = Q(hλ)yn−1 + h

(
3

2
λQ(hλ)yn−1 −

1

2
λyn−1

)
.

This can be rewritten as

[Q(hλ)]2 −Q(hλ)

(
1 +

3

2
hλ

)
+

1

2
hλ = 0.
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We therefore have that

Q1(hλ) =
1

2

1 +
3

2
hλ +

√(
3

2
hλ

)2

+ hλ + 1

 (2)

Q2(hλ) =
1

2

1 +
3

2
hλ−

√(
3

2
hλ

)2

+ hλ + 1

 (3)

(c) Since the discriminant of
(

3
2
hλ

)2
+hλ+1 is negative the value of

(
3
2
hλ

)2
+hλ+1

is always positive, so both Q1(hλ) and Q2(hλ) are real numbers. This implies
that we must have −1 ≤ Q2(hλ) < Q1(hλ) ≤ 1. Note that Q1(hλ) ≤ 1 is
satisfied for all h because it simplifies to

1

2

1 +
3

2
hλ +

√(
3

2
hλ

)2

+ hλ + 1

 ≤ 1

√(
3

2
hλ

)2

+ hλ + 1 ≤ 2− 1− 3

2
hλ√(

3

2
hλ

)2

+ hλ + 1 ≤ 1− 3

2
hλ

Squaring both sides gives(
3

2
hλ

)2

+ hλ + 1 ≤ 1− 3hλ +

(
3

2
hλ

)2

,

which implies
0 ≤ −4hλ

which is always true for negative real values of λ.

For −1 ≤ Q2(hλ), we can write this as

−2 ≤ 1 +
3

2
hλ−

√(
3

2
hλ

)2

+ hλ + 1

(3 +
3

2
hλ)2 ≥

(
3

2
hλ

)2

+ hλ + 1(
3

2
hλ

)2

+ 9hλ + 9 ≥
(

3

2
hλ

)2

+ hλ + 1

(4)
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which simplifies to

h ≤ −1

λ
.

Consider the system

y′ =

[
−4 1
1 −4

]
y +

[
0

− cos(t)

]
. (5)

(d) The eigenvalues of the matrix in (5) are given by

det(A− λI) = (−4− λ)2 − 1 = λ2 + 8λ + 15 = 0.

This gives the values λ1 = −3 and λ2 = −5. Therefore, in order to apply our
method to the system (5), we have the stability criteria

h ≤ 1

3
and h ≤ 1

5
.

Since the strongest condition should be satisfied the method is stable for

h ≤ 1

5
.

(e) Method (1) converges as long as h < 1
maxλ |λ| because a stable and consistent

scheme converges (Lax equivalence theorem).

2. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1, is given
by

p1(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1). (6)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1 and x2 is
given by

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)+

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)+

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

(7)
This is also evident from application of the given formula.

(c) To this extent, we compute p1(0.5) and p2(0.5) for both linear and quadratic
Lagrangian interpolation as approximations at x = 0.5. For linear interpolation,
we have

p1(0.5) = 0.5 +
1

2
· 2 =

3

2
, (8)

and for quadratic interpolation, one obtains

p2(0.5) =
(0.5− 1)(0.5− 2)

1 · (−2)
·1+

(0.5− 0)(0.5− 2)

1 · (−1)
·2+

(0.5− 0)(0.5− 1)

2 · 1
·4 =

11

8
= 1.375.

(9)
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Figure 1: The measured values and the error using linear interpolation.

(d) Consider Figure 1. For interpolation, the error is bounded and for extrapola-
tion, the error may become arbitrarily large as we move more and more outside
the interval of the measured values. Of course, also a more algebraic motiva-
tion is allowed. We note that this effect may become worse if a higher order
interpolatory formula is used.

(e) i We integrate f(x), in which we approximate f(x) by p1(x), then it follows:∫ x1

x0

f(x)dx ≈
∫ x1

x0

p1(x)dx =

∫ x1

x0

{
f(x0)

x− x1

x0 − x1

+ f(x1)
x− x0

x1 − x0

}
dx =

=

[
1

2

(x− x0)
2

x1 − x0

f(x1)

]x1

x0

+

[
1

2

(x− x1)
2

x0 − x1

f(x0)

]x1

x0

=
1

2
(x1 − x0)(f(x0) + f(x1)).

(10)
This is the Trapezoidal Rule.

ii The magnitude of the error of the numerical integration over interval [x0, x1]
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is given by

|
∫ x1

x0

f(x)dx−
∫ x1

x0

p1(x)dx| = |
∫ x1

x0

(f(x)− p1(x)) dx| =

|
∫ x1

x0

1

2
(x− x0)(x− x1)f

′′(χ(x))dx| ≤ 1

2
max

x∈[x0,x1]
|f ′′(x)|

∫ x1

x0

(x− x0)(x− x1)dx =

1

12
(x1 − x0)

3 max
x∈[x0,x1]

|f ′′(x)|.

(11)
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