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1. We consider the following method:

Ynt+1 = Yn + h (Ckf(tn, yn) + ﬂf(tn—lv yn—l)) . (1)
(a) The local truncation error is given by

o Yn+1 — Zn+1
T’n+1 - h 3

where ¥, is the exact solution at time ¢, 11 and 2,1 is the numerical method
(1) applied to y,_1 and y,,. We will need the following Taylor expansions:

2

h
Ynt1 = Yn + Y, + ?yx + O<h3)7

Yoo = f(tae1,Yn—1) =y, — hyl + O(B?).

We then have for 2,1 :
Zn41 = Yo + ha + By, — h*By, + O(h°).

Subtracting this from ¥, and dividing by h we have the local truncation error
is:

o = (L= (ot O+ (549 o+ O

Since

we obtain 7,1 = O(h?).

(b) Substituting the relation y; = [Q(hA)]y;—1 and the test equation y' = Ay =
f(t,y) in (1) gives the following:

QU P11 = QU + 1 (S3QN 1 = ).
This can be rewritten as
[Q(AN)]? — Q(hA) (1 + ghA) + %hA = 0.
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We therefore have that

2
1+ h/\+ 3h)\) +h)\+1) @)

2
1+ hA 3h/\) +hA+1 (3)

Since the discriminant of h/\ “LhA+1is negative the value of ( h/\)2 +hA+1

is always positive, so both Ql(h)\) and @3(h\) are real numbers. This implies
that we must have —1 < @Qy(hA) < Q1(hA) < 1. Note that Q;(h\) < 1 is
satisfied for all h because it simplifies to

1 3 3\
1142 2 1| <1
: +2h)\+\/(2h)\) +hA+1] <

3 \? 3
ChRA) A +1<2-1—2h\
2 9
3 \? 3
ShA ) +hA+1 <1 —2hA

Squaring both sides gives

3.\ 3.\
(ﬁh)\> +h>\+1§1—3h)\+<§h/\) ,

which implies
0 < —4h\

which is always true for negative real values of .

For —1 < Q2(h\), we can write this as

3 3 \?
—2< 14 ShA =y [(5hA) +hA+1
3

2
(3+ Ehw > (ghA) +hX+1

3 \? 3 \?
(éh)\) 1 9RN 9 > (§m> T hA+1



which simplifies to

1
h<——.
A

N Y I A

(d) The eigenvalues of the matrix in (5) are given by

Consider the system

det(A—=X)=(=4—XN)?—=1=XN+8\+15=0.

This gives the values Ay = —3 and \y = —5. Therefore, in order to apply our
method to the system (5), we have the stability criteria

1 1
h<-andh< .
3 5

Since the strongest condition should be satisfied the method is stable for

1

h < —.
)

(e) Method (1) converges as long as h < m because a stable and consistent

scheme converges (Lax equivalence theorem).

(a) The linear Lagrangian interpolatory polynomial, with nodes zq and 1, is given
by

r — T

pi(z) = f(xo) +

To — I1 Iy — X

T — Ig

f@). (6)
This is evident from application of the given formula.
(b) The quadratic Lagrangian interpolatory polynomial with nodes zo, x; and x5 is

given by

(x —z1)(x — 29) (x — zp)(x — 22) (x —zo)(x — 21)

To — I1)($0 - xz) x0)+($1 - Io)(iﬁ - xz) (x1>+($2 - Io)(ifz - xl)
(7)

pg(l') = (

This is also evident from application of the given formula.

(c¢) To this extent, we compute p;(0.5) and p(0.5) for both linear and quadratic
Lagrangian interpolation as approximations at x = 0.5. For linear interpolation,

we have ) 3
5) =0. —2==
p1(0.5) 05+2 5 (8)
and for quadratic interpolation, one obtains
H5H—=1)(05-2 b — bH—=2 b — bH—1 11
p2(0.5) = (0.5 (0.5 ).1+(O5 0)(0.5 ).2+(05 0)(0.5 ).4:_:1.375'

1-(=2) 1-(=1) 2.1 <89)

f(x2).



o
(XO. (X)) .
uncertainty rg¢gion

- uncertainty region

XO Xl

Figure 1: The measured values and the error using linear interpolation.

(d) Consider Figure 1. For interpolation, the error is bounded and for extrapola-
tion, the error may become arbitrarily large as we move more and more outside
the interval of the measured values. Of course, also a more algebraic motiva-
tion is allowed. We note that this effect may become worse if a higher order
interpolatory formula is used.

(e) 1 We integrate f(z), in which we approximate f(z) by pi(z), then it follows:

[ e n Mmoo = [ T2 ) T2 e -

:[ﬂil@fﬂmﬂ“+[”ilﬂfﬂmﬁmzéwrﬂmwww+ﬂm»

2 Tr1 — X zo 5 o — I zo
(10)

This is the Trapezoidal Rule.

ii The magnitude of the error of the numerical integration over interval [z, x1]



is given by

/ flada— [ )] = | / )) da| =

1
|/ 1x—x0 Y —x1)f" (x(x ))d:z:|<— max | f"( |/ T —xo)(x — x1)d

2 z€lzo,z1]

1!
12(5171 x0)° xeffglgﬁl]ﬁ (z)].
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