DELFT UNIVERSITY OF TECHNOLOGY<br>Faculty of Electrical Engineering, Mathematics and Computer Science

## ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) <br> Thursday January 21 2010, 18:30-21:30

1. The $\theta$-method, used to integrate the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, is given by

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left[\theta f\left(t_{n}, w_{n}\right)+(1-\theta) f\left(t_{n+1}, w_{n+1}\right)\right] . \tag{1}
\end{equation*}
$$

Here $h$ denotes the timestep and $w_{n}$ represents the numerical solution at time $t_{n}$. Further, let $0 \leq \theta \leq 1$.
(a) For this purpose, we use the test equation

$$
\begin{equation*}
y^{\prime}=\lambda y \tag{2}
\end{equation*}
$$

then the $\theta$-method gives

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left(\theta \lambda w_{n}+(1-\theta) \lambda w_{n+1}\right) . \tag{3}
\end{equation*}
$$

From this, we get

$$
\begin{equation*}
w_{n+1}=w_{n} \frac{1+\theta h \lambda}{1-(1-\theta) h \lambda}, \tag{4}
\end{equation*}
$$

and hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=\frac{1+\theta h \lambda}{1-(1-\theta) h \lambda} . \tag{5}
\end{equation*}
$$

(b) The local truncation error is defined by:

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} . \tag{6}
\end{equation*}
$$

For the test equation, the exact solution at $t=t_{n+1}$ is expressed by

$$
\begin{equation*}
y_{n+1}=y_{n} e^{h \lambda}=y_{n}\left(1+h \lambda+\frac{1}{2} h^{2} \lambda^{2}+O\left(h^{3}\right)\right) \tag{7}
\end{equation*}
$$

Further, the numerical solution of the test equation is expressed by

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(\theta \lambda y_{n}+(1-\theta) \lambda z_{n+1}\right) . \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
z_{n+1}=y_{n} \frac{1+\theta h \lambda}{1-(1-\theta) h \lambda}=Q(h \lambda) y_{n} \tag{9}
\end{equation*}
$$

Substitution into the definition of the local truncation error (6), gives

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n}\left(e^{h \lambda}-Q(h \lambda)\right)}{h} \tag{10}
\end{equation*}
$$

If $|(1-\theta) h \lambda|<1$, then using the power series $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ leads to

$$
\begin{align*}
& Q(h \lambda)=\frac{1+\theta h \lambda}{1-(1-\theta) h \lambda}=(1+\theta h \lambda)\left(1+(1-\theta) h \lambda+((1-\theta) h \lambda)^{2}+O\left(h^{3}\right)\right)= \\
& 1+h \lambda+(1-\theta) h^{2} \lambda^{2}+O\left(h^{3}\right) \tag{11}
\end{align*}
$$

Substitution into (10) together with the power series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$, gives

$$
\begin{align*}
& \tau_{n+1}(h)=\frac{y_{n}\left(1+h \lambda+\frac{1}{2} h^{2} \lambda^{2}+O\left(h^{3}\right)-\left[1+h \lambda+(1-\theta) h^{2} \lambda^{2}+O\left(h^{3}\right)\right]\right)}{h}= \\
& \left(\theta-\frac{1}{2}\right) h+O\left(h^{2}\right) \tag{12}
\end{align*}
$$

From this expression, it is clear that the local truncation error is $O\left(h^{2}\right)$ if $\theta=\frac{1}{2}$, and just $O(h)$ if $\theta \neq \frac{1}{2}$.
(c) For a system of ordinary differential equations, the $\theta$-method is given by

$$
\begin{equation*}
\underline{w}_{n+1}=\underline{w}_{n}+h\left(\theta \underline{f}\left(t_{n}, \underline{w}_{n}\right)+(1-\theta) \underline{f}\left(t_{n+1}, \underline{w}_{n+1}\right)\right) . \tag{13}
\end{equation*}
$$

For our system, with $\theta=\frac{1}{2}$ and $w_{0}=\binom{1}{0}$, this gives

$$
\underline{w}_{n+1}=\underline{w}_{n}+\frac{h}{2}\left[\left(\begin{array}{cc}
0 & 1  \tag{14}\\
-1 & 0
\end{array}\right)\binom{1}{0}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \underline{w}_{n+1}+\binom{0}{\sin (0.1)}\right] .
$$

Hence using $h=0.1$

$$
\left(I-0.05\left(\begin{array}{cc}
0 & 1  \tag{15}\\
-1 & 0
\end{array}\right)\right) \underline{w}_{n+1}=\binom{1}{0}+0.05\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{1}{0}+0.05\binom{0}{\sin (0.1)}
$$

Elementary arithmetric operations give the following algebraic system

$$
\left(\begin{array}{cc}
1 & -0.05  \tag{16}\\
0.05 & 1
\end{array}\right) \underline{w}_{n+1}=\binom{1}{0.05(\sin (0.1)-1)}
$$

Hence, we finally obtain

$$
\begin{equation*}
\underline{w}_{n+1}=\binom{1+(0.05)^{2} \frac{\sin (0.1)-2}{1+0.05^{2}}}{0.05 \frac{\sin (0.1)-2}{1+(0.05)^{2}}}=\binom{0.9953}{-0.9477 \cdot 10^{-1}} \tag{17}
\end{equation*}
$$

up to four decimals.
(d) The amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=\frac{1+\theta h \lambda}{1-(1-\theta) h \lambda} . \tag{18}
\end{equation*}
$$

For stability, we require for (the modulus of) the amplification factor

$$
\begin{equation*}
|Q(h \lambda)| \leq 1 \text { for all eigenvalues of the matrix. } \tag{19}
\end{equation*}
$$

Here $\lambda$ is an eigenvalue of the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and is given by $\lambda= \pm i$, where $i$ is the imaginairy unit number. This gives for the amplification factor:

$$
\begin{equation*}
Q(h \lambda)=\frac{1+i \theta h}{1-i(1-\theta) h} \rightarrow|Q(h \lambda)|^{2}=\frac{|1+i h \theta|^{2}}{|1-i(1-\theta) h|^{2}}=\frac{1+(h \theta)^{2}}{1+((1-\theta) h)^{2}} \leq 1 \tag{20}
\end{equation*}
$$

From this expression, we get

$$
\begin{align*}
1+(h \theta)^{2} & \leq 1+((1-\theta) h)^{2}  \tag{21}\\
(h \theta)^{2} & \leq((1-\theta) h)^{2} \\
\theta^{2} & \leq(1-\theta)^{2} \\
\theta & \leq 1-\theta \\
2 \theta & \leq 1 \\
\theta & \leq \frac{1}{2}
\end{align*}
$$

for stability. Hence, if $\theta \leq \frac{1}{2}$, then the method is stable for any $h>0$, otherwise the method is unstable for any $h>0$.
(e) If $\theta \leq \frac{1}{2}$, then the method is stable. Further, the method is consistent since the local truncation error tends to zero as $h \rightarrow 0$. Then Lax' Equivalence Theorem (Theorem 6.6.1 of the textbook by Vuik et al.) implies that the method is converging, i.e. the global error tends to zero as $h \rightarrow 0$. For $\theta>\frac{1}{2}$, the method is unstable and hence the numerical solution does not converge to the exact solution as $h \rightarrow 0$.
2. (a) Taylor polynomials are:

$$
\begin{aligned}
f(0) & =f(0) \\
f(h) & =f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(0)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right) \\
f(2 h) & =f(0)+2 h f^{\prime}(0)+2 h^{2} f^{\prime \prime}(0)+\frac{(2 h)^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

After substitution in

$$
Q(h)=\frac{\alpha_{0}}{h} f(0)+\frac{\alpha_{1}}{h} f(h)+\frac{\alpha_{2}}{h} f(2 h),
$$

we obtain:

$$
Q(h)=\left(\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h}\right) f(0)+\left(\alpha_{1}+2 \alpha_{2}\right) f^{\prime}(0)+\left(\frac{h}{2} \alpha_{1}+2 h \alpha_{2}\right) f^{\prime \prime}(0)+O\left(h^{2}\right) .
$$

Since $\alpha_{0}, \alpha_{1}$, and $\alpha_{2}$ should be such that $f^{\prime}(0)-Q(h)=O\left(h^{2}\right)$ we obtain the following system of equations:

$$
\begin{array}{rlrl}
f(0): & \frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
f^{\prime}(0): & \alpha_{1} & +2 \alpha_{2} & =1, \\
f^{\prime \prime}(0): & \frac{h}{2} \alpha_{1} & +2 h \alpha_{2} & =0
\end{array}
$$

If we multiply the third equation with $\frac{2}{h}$ and subtract it from the second equation we obtain

$$
-2 \alpha_{2}=1
$$

This implies that $\alpha_{2}=-\frac{1}{2}$. Put this in the second equation and it follows that $\alpha_{1}=2$. Finally the first equation gives: $\alpha_{0}=-\frac{3}{2}$. So the final formula is

$$
Q(h)=\frac{-\frac{3}{2} f(0)+2 f(h)-\frac{1}{2} f(2 h)}{h}
$$

(b) It easily follows that

$$
\begin{aligned}
\mid Q(h) & -\hat{Q}(h)\left|=\left|\frac{-\frac{3}{2}(f(0)-\hat{f}(0))+2(f(h)-\hat{f}(h))-\frac{1}{2}(f(2 h)-\hat{f}(2 h))}{h}\right|\right. \\
& \leq \frac{\frac{3}{2}|f(0)-\hat{f}(0)|+2|f(h)-\hat{f}(h)|+\frac{1}{2}|f(2 h)-\hat{f}(2 h)|}{h}=\frac{4 \epsilon}{h} .
\end{aligned}
$$

(c) The total error is given by

$$
\left|f^{\prime}(0)-\hat{Q}(h)\right|=\left|f^{\prime}(0)-Q(h)+Q(h)-\hat{Q}(h)\right| .
$$

From the triangle inequality it appears that

$$
\left|f^{\prime}(0)-\hat{Q}(h)\right| \leq\left|f^{\prime}(0)-Q(h)\right|+|Q(h)-\hat{Q}(h)|=4 h^{2}+\frac{1}{h} .
$$

To minimize this upperbound we compute the first derivative and put it equal to zero:

$$
8 h-\frac{1}{h^{2}}=0
$$

This can be written as $8 h=\frac{1}{h^{2}}$ and thus $h^{3}=\frac{1}{8}$. So the optimal value of $h$ is $h=\frac{1}{2}$.
(d) The iteration process is a fixed point method. If the process converges we have: $\lim _{n \rightarrow \infty} x_{n}=p$. Using this in the iteration process yields:

$$
\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left[x_{n}+h\left(x_{n}\right)\left(x_{n}^{3}-3\right)\right]
$$

Since $h$ is a continuous function one obtains:

$$
p=p+h(p)\left(p^{3}-3\right)
$$

so

$$
h(p)\left(p^{3}-3\right)=0 .
$$

Since $h(x) \neq 0$ for each $x \neq 0$ it follows that $p^{3}-3=0$ and thus $p=3^{\frac{1}{3}}$.
(e) The convergence of a fixed point method $x_{n+1}=g\left(x_{n}\right)$ is determined by $g^{\prime}(p)$. If $\left|g^{\prime}(p)\right|<1$ the method converges, whereas if $\left|g^{\prime}(p)\right|>1$ the method diverges. For all choices we compute the first derivative in $p$. For the first method we elaborate all steps. For the other methods we only give the final result. For $h_{1}$ we have $g_{1}(x)=x-\frac{x^{3}-3}{x^{4}}$. The first derivative is:

$$
g_{1}^{\prime}(x)=1-\frac{3 x^{2} \cdot x^{4}-\left(x^{3}-3\right) \cdot 4 x^{3}}{\left(x^{4}\right)^{2}}
$$

Substitution of $p$ yields:

$$
g_{1}^{\prime}(p)=1-\frac{3 p^{6}-\left(p^{3}-3\right) \cdot 4 p^{3}}{p^{8}}
$$

Since $p=3^{\frac{1}{3}}$ the final term cancels:

$$
g_{1}^{\prime}(p)=1-\frac{3 p^{6}}{p^{8}}=1-3^{\frac{1}{3}}=-0.4422 .
$$

This implies that the method is convergent with convergence factor 0.4422 .
For the second method we have:

$$
g_{2}^{\prime}(p)=1-\frac{3 p^{4}-\left(p^{3}-3\right) \cdot 2 p}{p^{4}}=1-\frac{3 p^{4}}{p^{4}}=-2
$$

Thus the method diverges.
For the third method we have:

$$
g_{3}^{\prime}(p)=1-\frac{9 p^{4}-\left(p^{3}-3\right) \cdot 6 p}{9 p^{4}}=1-\frac{9 p^{4}}{9 p^{4}}=0
$$

Thus the method is convergent with convergence factor 0 .
Concluding we note that the third method is the fastest.
(f) To estimate the error in $p$ we first approximate the function $f$ in the neighboorhood of $p$ by the first order Taylor polynomial:

$$
P_{1}(x)=f(p)+(x-p) f^{\prime}(p)=(x-p) f^{\prime}(p)
$$

Due to the measurement errors we know that

$$
(x-p) f^{\prime}(p)-\epsilon_{\max } \leq \hat{P}_{1}(x) \leq(x-p) f^{\prime}(p)+\epsilon_{\max }
$$

This implies that the perturbed root $\hat{p}$ is bounded by the roots of $(x-p) f^{\prime}(p)-$ $\epsilon_{\max }$ and $(x-p) f^{\prime}(p)+\epsilon_{\max }$, which leads to

$$
p-\frac{\epsilon_{\max }}{\left|f^{\prime}(p)\right|} \leq \hat{p} \leq p+\frac{\epsilon_{\max }}{\left|f^{\prime}(p)\right|}
$$

