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1. a The local truncation error is defined by

τn+1(h) :=
yn+1 − zn+1

h
, (1)

where yn := y(tn) represents the exact solution and

zn+1 = yn + hf(tn+1, zn+1), (2)

represents the approximation of the numerical solution at tn+1 upon using yn

for the previous time step. Since, we use the test equation y′ = λy, we express
yn+1 in terms of yn as follows

yn+1 = yne
λh = yn(1 + hλ +

1

2
h2λ2 + O(h3)). (3)

From (2), we use the test equation and the geometric series

zn+1 =
yn

1 − hλ
= yn(1 + hλ + h2λ2 + O(h3)). (4)

Substitution of equations (3) and (4) into the definition of the local truncation
error, gives

τn+1(h) =
yn

h

[

h2λ2

2
+ O(h3)

]

= O(h). (5)

b Using the test equation, we get

wn+1 = wn + hλwn+1, (6)

where wn denotes the numerical approximation of yn. The above equation im-
plies

wn+1 =
wn

1 − hλ
=: Q(hλ)wn. (7)

Here Q(hλ) represents the amplification factor. For numerical stability, we
require the modulus of the amplification factor to satisfy

Q(hλ) ≤ 1, hence |
1

1 − hλ
| =

1

|1 − hλ|
≤ 1. (8)
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Figure 1: The region of stability of the backward Euler method.

From the above equation, it is clear that

|1 − hλ| ≥ 1, (9)

and with λ = µ + iν, we get

(1 − hµ)2 + (hν)2 ≥ 1. (10)

This area is the whole complex plane except the unit circle with center (1, 0),
see Figure 1.

c Consider the equations that we have to solve

y′

1 = y1(1 − (y1 + 3y2)) =: f1(y1, y2),
y′

2 = y2(1 − (y1 + y2)) =: f2(y1, y2),
(11)

Then, the Jacobi matrix is given by

J(y1, y2) :=





∂f1

∂y1

(y1, y2)
∂f1

∂y2

(y1, y2)

∂f2

∂y1

(y1, y2)
∂f2

∂y2

(y1, y2)



 =





1 − 2y1 − 3y2 −3y1

−y2 1 − (y1 + 2y2)



 .

(12)
For the equilibrium (0, 1), we have

J(y1, y2) :=

(

−2 0
−1 −1

)

. (13)

Hence the eigenvalues are given by λ1 = −2 and λ2 = −1.
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d - We have λ1 = −2 and λ2 = −1, hence with h > 0, this implies that hλ < 0
(thus real-valued), then from Figure 1, it is clear that the backward Euler
is stable for any h > 0.

- Since the eigenvalues are real-valued and negative, we use

h|λ| ≤ 2, (14)

as stability bound for the forward Euler method. With λ1 = −2 and λ2 =
−1, we get h ≤ 1 as the maximum allowable time step to warrant numerical
stability, based on linear stability analysis around (0, 1).

2. (a) The first order backward difference formula for the first derivative is given by

f ′(t) ≈
f(t) − f(t − h)

h
.

Using t = 2, and h = 1 the approximation of the velocity is

f(2) − f(1)

1
= 250 − 215 = 35 (m/s).

(b) Taylor polynomials are:

f(0) = f(2h) − 2hf
′

(2h) + 2h2f
′′

(2h) −
(2h)3

6
f

′′′

(ξ0) ,

f(h) = f(2h) − hf
′

(2h) +
h2

2
f

′′

(2h) −
h3

6
f

′′′

(ξ1) ,

f(2h) = f(2h).

We know that Q(h) = α0

h
f(0) + α1

h
f(h) + α2

h
f(2h), which should be equal to

f ′(2h) + O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,

2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

f ′(2h)−Q(h) = f ′(2h)−
f(0) − 4f(h) + 3f(2h)

2h
=

8h3

6
f

′′′

(ξ0) − 4(h3

6
f

′′′

(ξ1))

2h
=

1

3
h2f ′′′(ξ).

Using the new formula with h = 1 we obtain the estimate:

f(0) − 4f(1) + 3f(2)

2
=

200 − 4 × 215 + 3 × 250

2
= 45 (m/s).

Note that the estimated velocity of the vehicle is larger than the maximum
speed of 40 (m/s).
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(d) To estimate the measuring error we note that

|Q(h) − Q̂(h)| = |
(f(0) − f̂(0)) − 4(f(h) − f̂(h)) + 3(f(2h) − f̂(2h))

2h
|

≤
|f(0) − f̂(0)| + 4|f(h) − f̂(h)| + 3|f(2h) − f̂(2h)|

2h
=

4ǫ

h
,

so C1 = 4.

(e) The measuring error is less than 1.25 (m). This implies that ǫ = 1.25. Putting
this in the estimate for the measuring error leads to

|Q(h) − Q̂(h)| ≤ 4 × 1.25 = 5 (m/s).

Since the difference between the estimate 45 m/s and the maximum speed 40
m/s is less than 5 m/s it is possible that the actual velocity of the vehicle is
equal to the maximum speed, due to the measuring errors.

(f) A first order backward estimate of the second derivative f ′′(2h) is given by

f(0) − 2f(h) + f(2h)

h2
.

To check this one can use the same system as in part (b), where one takes as
coefficients αi

h2 , the right-hand sides of the first and second equations are 0 and
the right-hand side of the third equation is 1. Using h = 1 the estimate is equal
to

200 − 2 × 215 + 250

1
= 20 (m/s2).

To estimate the measuring error we note that

|
(f(0) − f̂(0)) − 2(f(h) − f̂(h)) + (f(2h) − f̂(2h))

h2
|

≤
|f(0) − f̂(0)| + 2|f(h) − f̂(h)| + |f(2h) − f̂(2h)|

h2
=

4ǫ

h2
.

Using ǫ = 1.25 shows that the measuring error in the estimate of second deriva-
tive is less than 5 (m/s2). Assuming that the truncation is less than the mea-
suring error we conclude that the second derivative is positive, which implies
that the vehicle accelerates and thus its velocity will become larger than the
maximum speed for t > 2.
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