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1. (a) Replace f(t, y) by λy in the RK4 formulas:

k1 = hλwn

k2 = hλ(wn + 1
2
k1) = hλ(1 + 1

2
hλ)wn

k3 = hλ(wn + 1
2
k2) = hλ(1 + 1

2
hλ(1 + 1

2
hλ))wn

k4 = hλ(wn + k3) = hλ(1 + hλ(1 + 1
2
hλ(1 + 1

2
hλ))wn

Substitution of these expressions into:

wn+1 = wn +
1

6
(k1 + 2k2 + 2k3 + k4),

and collecting like powers of hλ yields:

wn+1 = [1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4]wn.

The amplification factor is therefore:

Q(hλ) = 1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4.

(b) The local truncation error is defined as

τn+1 =
y(tn+1) − zn+1

h
, (1)

where zn+1 is the numerical solution at tn+1, obtained by starting from the exact
value y(tn) in stead of wn. Repeating the derivation under (a), with wn replaced
by y(tn), gives:

zn+1 = Q(hλ)y(tn).

Using furthermore y(tn+1) = ehλy(tn) in (1) it follows that

τn+1 =
ehλ − Q(hλ)

h
y(tn).

Canceling the first five terms of the expansion of ehλ against Q(hλ), the required
order of magnitude of τn+1 follows.
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(c) Use the transformation:

y1 = y ,

y2 = y′ ,

This implies that

y′

1 = y′ = y2 ,

y′

2 = y′′ = −qy1 − py2 + sin t ,

So the matrix A and vector g are:

A =

(

0 1
−q −p

)

; g(t) =

(

0
sin t

)

.

Characteristic equation: λ2 + pλ + q = 0. λ1,2 =
−p±

√
p2−4q

2
.

(d) Substitution of the values of p and q into the matrix A yields the eigenvalues
λ1,2 = −500 ± i. From the given drawing of the stability region the following
can be inferred. Because the imaginary part is much smaller than the real part,
an approximate stability condition can be obtained by simply neglecting the
imaginary part. Then h ≤ 2.8/500 = 0.0056 follows as the stability condition.

(e)
y′′ + py′ + qy = sin t, y(0) = y0, y′(0) = y′

0. (2)

After a short time the solution is close to a linear combination of sin t and cos t,
which is called a smooth solution.

The smooth solution can be integrated accurately by RK4 with a ’large’ step
size: a step size of 0.1, let us say, would give an error of order 10−4 which is
sufficient for most engineering purposes. However stability, governed by the
eigenvalues, requires that the step size be restricted (see part (d)) to 0.0056. So
the stability requirement forces us to choose a step size yielding an unnecessarily
accurate solution, which is inefficient.

The Trapezoidal rule, on the other hand, is stable for all step sizes. So the
step size is restricted by accuracy requirements only. The Trapezoidal rule has
a global error of order h2 such that a good accuracy may be expected for step
sizes of about 0.01, which is much larger than the step size for RK4: 0.0056.
An efficiency gain may be obtained in spite of the extra work connected with
the implicitness of the method.
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2. a Consider y(x) = x2, then y′(x) = 2x and y′′(x) = 2, substitution into the
differential equation yields

−y′′(x) + xy = −2 + xx2 = x3 − 2, (3)

hence y(x) = x2 satisfies the differential equation. Next, we check the boundary
conditions: y′(0) = 2 · 0 = 0 and y(1) = 12 = 1 and hence also the boundary
conditions are also satisfied. Hence, y(x) = x2 is a solution of the boundary
value problem.

b Using central differences for the second order derivative at a node xj = jh, gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

h2
=: Q(h). (4)

Here yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj) − Q(h)| = O(h2). Using Taylor’s Theorem around
x = xj , gives

yj+1 = y(xj + h) = y(xj) + hy′(xj) + h2

2
y′′(xj) + h3

3!
y′′′(xj) + h4

4!
y′′′′(η+),

yj−1 = y(xj − h) = y(xj) − hy′(xj) + h2

2
y′′(xj) − h3

3!
y′′′(xj) + h4

4!
y′′′′(η−).

(5)

Here, η+ and η− are numbers within the intervals (xj , xj+1) and (xj−1, xj), re-
spectively. Substitution of these expressions into Q(h) gives |y′′(xj) − Q(h)| =
O(h2). Therewith, we obtain the following discretization formula for the internal
grid nodes:

−wj−1 + 2wj − wj+1

h2
+ xjwj = x3

j − 2. (6)

Here wj represents the numerical approximation of the solution yj. To deal
with the boundary x = 0, we use a virtual node at x = −h, and we define
y−1 := y(−h). Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2h
=: Qb(h). (7)

Using Taylor’s Theorem, gives

Qb(h) =

y(0) + hy′(0) + h2

2
y′′(0) + h3

3!
y′′′(η+) − (y(0)− hy′(0) + h2

2
y′′(0) − h3

3!
y′′′(η−))

2h
=

y′(0) + O(h2).
(8)

Again, we get an error of O(h2).
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c With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2h
= 0 ⇔ w−1 = w1. (9)

The discretization at x = 0 is given by

−w−1 + 2w0 − w1

h2
= −2. (10)

Substitution of equation (9) into the above equation, yields

2w0 − 2w1

h2
= −2. (11)

Subsequently, we consider the boundary x = 1. To this extent, we consider
its neighboring point xn−1, here substitution of the boundary condition wn =
y(1) = yn = 1 into equation (6), gives

−wn−2 + 2wn−1

h2
+ xn−1wn−1 = x3

n−1 − 2 +
1

h2
= (1 − h)3 − 2 +

1

h2
. (12)

This concludes our discretization of the boundary conditions. In order to get a
symmetric discretization matrix, one divides equation (11) by 2.

Next, we use h = 1/3, then, from equations (6, 11, 12), one obtains the following
system

9w0 − 9w1 = −1

−9w0 + 181
3
w1 − 9w2 = −53

27

−9w1 + 182
3
w2 = 197

27
.

(13)

d The truncation errors from the virtual grid point and internal points contain
a third- and fourth order derivative, respectively (see part b). Since the exact
solution is given by y(x) = x2, the third and fourth order derivatives are zero.
Hence, the error is zero. Therefore, the numerical solution is given by w0 =
y0 = 0, w1 = y1 = 1/9 and w2 = y2 = 4/9.

Remark: This numerical solution can also be obtained from the solution of
system (13).

e i Consider an interval of integration [xj−1, xj ], then the Rectangle Rule is
given by

IR
j = hf(xj−1), h = xj − xj−1, (14)

the Trapezoidal Rule is

IT
j =

h

2
(f(xj−1) + f(xj)). (15)
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The composed integration Rules are derived by

IR,T = h(IR,T
1 +IR,T

2 +. . .+IR,T
n ) =







h(f(x0) + . . . + f(xn−1)),

h(f(x0)
2

+ f(x1) + . . . + f(xn−1) + f(xn)
2

),
(16)

for the Rectangle -and Trapezoidal Rule, respectively.

ii Using the Rectangle Rule, one obtains

IR =
1

3
· (0 + (

1

3
)2 + (

2

3
)2) =

5

27
. (17)

From the Trapezoidal Rule, one gets

IT =
1

3
· (0 + (

1

3
)2 + (

2

3
)2 +

1

2
) =

19

54
. (18)

f For a general number of subintervals, say n, the magnitude of the composed
Rectangle- and Trapezoidal Rules, is bounded from above by

εR ≤ h

2
max
x∈[0,1]

|y′(x)| ≤ h =
1

n
,

εT ≤ h2

12
max
x∈[0,1]

|y′′(x)| ≤ h2

6
=

1

6n2
.

(19)

Here the exact solution y(x) = x2 was used. Hence, the error from the Trape-
zoidal Rule is much smaller. Further, from the composed Rules, it is easy to
see that the number of function evaluations for the composed Rectangle- and

Trapezoidal Rules is, respectively, given by n and n + 1. Since lim
n→∞

n + 1

n
= 1,

it follows that the amount of work for the Trapezoidal Rule is not significantly
higher than it is for the Rectangle Rule. Hence, it is more attractive to use the
Trapezoidal Rule.
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