DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday March 31 2009, 14:00-17:00

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} . \tag{1}
\end{equation*}
$$

Here we obtain y_{n+1} by a Taylor expansion around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{2}
\end{equation*}
$$

For z_{n+1}, we obtain, after substitution of the predictor step for z_{n+1}^{*} into the corrector step

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left((1-\theta) f\left(t_{n}, y_{n}\right)+\theta f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right) \tag{3}
\end{equation*}
$$

After a Taylor expansion of $f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)$ around $\left(t_{n}, y_{n}\right)$ one obtains:

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left((1-\theta) f\left(t_{n}, y_{n}\right)+\theta\left(f\left(t_{n}, y_{n}\right)+h\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)\right)+O\left(h^{2}\right)\right) . \tag{4}
\end{equation*}
$$

From the differential equation we know that:

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right) \tag{5}
\end{equation*}
$$

From the Chain Rule of Differentiation, we derive

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \tag{6}
\end{equation*}
$$

after substitution of the differential equation one obtains:

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) \tag{7}
\end{equation*}
$$

This implies that $z_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\theta h^{2} y^{\prime \prime}\left(t_{n}\right)$. Subsequently, it follows that

$$
\begin{gather*}
y_{n+1}-z_{n+1}=O\left(h^{2}\right), \text { and, hence } \tau_{n+1}(h)=\frac{O\left(h^{2}\right)}{h}=O(h) \text { for } 0 \leq \theta \leq 1, \tag{8}\\
y_{n+1}-z_{n+1}=O\left(h^{3}\right), \text { and, hence } \tau_{n+1}(h)=\frac{O\left(h^{3}\right)}{h}=O\left(h^{2}\right) \text { for } \theta=\frac{1}{2} . \tag{9}
\end{gather*}
$$

(b) Consider the test equation $y^{\prime}=\lambda y$, then, herewith, one obtains

$$
\begin{align*}
& w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} \\
& w_{n+1}=w_{n}+h\left((1-\theta) \lambda w_{n}+\theta \lambda w_{n+1}^{*}\right)= \tag{10}\\
& =w_{n}+h\left((1-\theta) \lambda w_{n}+\theta \lambda\left(w_{n}+h \lambda w_{n}\right)\right)=\left(1+h \lambda+\theta(h \lambda)^{2}\right) w_{n} .
\end{align*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\theta(h \lambda)^{2} . \tag{11}
\end{equation*}
$$

(c) We start this exercise by using the following vector:

$$
\begin{aligned}
& x_{1}=y \\
& x_{2}=y^{\prime}
\end{aligned}
$$

From this it follows that

$$
\begin{gathered}
x_{1}^{\prime}=y^{\prime}=x_{2} \\
x_{2}^{\prime}=y^{\prime \prime}=-2 y^{\prime}-2 y+t=-2 x_{2}-2 x_{1}+t
\end{gathered}
$$

where we have used the second order differential equation. We can write this as follows in matrix-vector notation:

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{t}
$$

So it follows that $A=\left(\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right)$ and $f(t)=0$ and $g(t)=t$.
(d) In order to do one step we first note that

$$
\binom{x_{1}(0)}{x_{2}(0)}=\binom{y(0)}{y^{\prime}(0)}=\binom{0}{1}
$$

The predictor step with $h=1$ now gives:

$$
w_{1}^{*}=\binom{0}{1}+1\left(\left(\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right)\binom{0}{1}+\binom{0}{0}\right)=\binom{0}{1}+\binom{1}{-2}=\binom{1}{-1}
$$

Finally the correction step with $\theta=\frac{1}{2}$ leads to

$$
w_{1}=\binom{0}{1}+\frac{1}{2}\binom{1}{-2}+\frac{1}{2}\left(\left(\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right)\binom{1}{-1}+\binom{0}{1}\right)=\binom{0}{\frac{1}{2}}
$$

(e) Compute the eigenvalues of matrix $\left(\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right)$. To do this we compute the determinant of $\left(\begin{array}{cc}-\lambda & 1 \\ -2 & -2-\lambda\end{array}\right)$, which is equal to $\lambda^{2}+2 \lambda+2$. The roots of this polynomial are equal to $\lambda_{1}=-1+i$ and $\lambda_{2}=-1-i$. Since $\lambda_{2}=\overline{\lambda_{1}}$ it is sufficient to consider λ_{1} only. For $h=2$ we obtain $h \lambda_{1}=-2+2 i$. This implies that

$$
\begin{gathered}
Q\left(h \lambda_{1}\right)=1+h \lambda_{1}+\theta\left(h \lambda_{1}\right)^{2} \\
Q\left(h \lambda_{1}\right)=1+(-2+2 i)+\theta(-2+2 i)^{2} \\
Q\left(h \lambda_{1}\right)=1-2+2 i+\theta(4-8 i-4)=-1+i(2-8 \theta)
\end{gathered}
$$

In order to check that $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$, we compute the modulus of $Q\left(h \lambda_{1}\right)$, which is equal to

$$
\sqrt{1^{2}+(2-8 \theta)^{2}}
$$

It is easy to see that this is only less than or equal to 1 if $\theta=\frac{1}{4}$.
2. (a) First, we do one fixed point iteration:

$$
\begin{aligned}
& p_{1}=g_{1}\left(p_{0}\right)=\frac{\pi \sqrt{2}}{8 \sin \left(\frac{\pi}{2}\right)}=\frac{\pi \sqrt{2}}{8} \\
& q_{1}=g_{2}\left(q_{0}\right)=\frac{\pi}{2}-\left(\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)-\frac{\pi \sqrt{2}}{8}\right)=\frac{\pi \sqrt{2}}{8}
\end{aligned}
$$

Let \tilde{x} be a fixed point of $g_{1}(x)$, then

$$
\tilde{x}=\frac{\pi \sqrt{2}}{8 \sin (\tilde{x})} .
$$

Multiplication by $\sin (\tilde{x})$, gives

$$
\tilde{x} \sin (\tilde{x})=\frac{\pi \sqrt{2}}{8}
$$

hence \tilde{x} is a solution of the original problem. Subsequently, we assume \tilde{x} to be a fixed point of $g_{2}(x)$, then

$$
\tilde{x}=\tilde{x}-\left(\tilde{x} \sin (\tilde{x})-\frac{\pi \sqrt{2}}{8}\right) .
$$

Subtraction of \tilde{x} in the above equation, gives

$$
\tilde{x} \sin (\tilde{x})-\frac{\pi \sqrt{2}}{8}=0
$$

hence \tilde{x} is a solution of the original problem.
(b) From convergence follows that $\lim _{k \rightarrow \infty} p_{k}=p=\frac{\pi}{4}$. Since ξ_{k} has a value between p and p_{k}, we obtain using continuity of $g^{\prime}(x)$ (and from the Squeeze Theorem that $\xi_{k} \rightarrow p=\frac{\pi}{4}$ as $\left.k \rightarrow \infty\right)$, that $\lim _{k \rightarrow \infty} g^{\prime}\left(\xi_{k}\right)=g^{\prime}(p)=g^{\prime}\left(\frac{\pi}{4}\right)$. Herewith, we obtain after differentiation

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left|g_{1}^{\prime}(\xi)\right|=\left|g_{1}^{\prime}\left(\frac{\pi}{4}\right)\right|=\left|-\frac{\pi \sqrt{2}}{8} \frac{\cos \left(\frac{\pi}{4}\right)}{\sin ^{2}\left(\frac{\pi}{4}\right)}\right|=\frac{\pi}{4} \approx 0.7854 \\
& \lim _{k \rightarrow \infty}\left|g_{2}^{\prime}(\xi)\right|=\left|g_{2}^{\prime}\left(\frac{\pi}{4}\right)\right|=\left|1-\sin \left(\frac{\pi}{4}\right)-\frac{\pi}{4} \cos \left(\frac{\pi}{4}\right)\right|=\left|1-\frac{4+\pi}{4 \sqrt{2}}\right| \approx 0.2627 .
\end{aligned}
$$

Hence, $\left|g_{2}^{\prime}(p)\right|<\left|g_{1}^{\prime}(p)\right|$, Using $\left|p-p_{k+1}\right|=\left|g^{\prime}\left(\xi_{k}\right)\right|\left|p-p_{k}\right|$ gives $\left|p-p_{k+1}\right|=$ $\left|g^{\prime}(p) \| p-p_{k}\right|$ as $k \rightarrow \infty$. Hence, using the function $g_{2}(x)$ for the fixed point method, gives a faster convergence.
(c) We search a zero of the function

$$
f(x)=x \sin (x)-\frac{\pi \sqrt{2}}{8}
$$

The derivative is given by

$$
f^{\prime}(x)=\sin (x)+x \cos (x) .
$$

Herewith, we get

$$
z_{1}=\frac{\pi}{2}-\frac{\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)-\frac{\pi \sqrt{2}}{8}}{\sin \left(\frac{\pi}{2}\right)+\frac{\pi}{2} \cos \left(\frac{\pi}{2}\right)}=\frac{\pi \sqrt{2}}{8} \approx 0.554
$$

(d) The Newton-Raphson iteration method can be derived using a graph of a function, in which the zero of the tangent at z_{k} on $f(x)$ defines z_{k+1}. We consider a linearization of $f(x)$ around z_{k} :

$$
L(x):=f\left(z_{k}\right)+\left(x-z_{k}\right) f^{\prime}\left(z_{k}\right)
$$

and determine its zero, that is $L\left(z_{k+1}\right)=0$, this gives

$$
z_{k+1}=z_{k}-\frac{f\left(z_{k}\right)}{f^{\prime}\left(z_{k}\right)}, \text { provided that } f^{\prime}\left(z_{k}\right) \neq 0
$$

(e) We consider a Taylor polynomial around z_{k}, to express z

$$
\begin{equation*}
0=f(z)=f\left(z_{k}\right)+\left(z-z_{k}\right) f^{\prime}\left(z_{k}\right)+\frac{\left(z-z_{k}\right)^{2}}{2} f^{\prime \prime}\left(\xi_{k}\right) \tag{12}
\end{equation*}
$$

for some ξ_{k} between z and z_{k}. Note that this form gives the exact representation. Subsequently, we consider the Newton-Raphson approximation

$$
\begin{equation*}
0=L\left(z_{k+1}\right)=f\left(z_{k}\right)+\left(z_{k+1}-z_{k}\right) f^{\prime}\left(z_{k}\right) \tag{13}
\end{equation*}
$$

Subtraction of these two above equations gives

$$
\begin{equation*}
z_{k+1}-z=\frac{\left(z_{k}-z\right)^{2}}{2} \frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(z_{k}\right)}, \text { provided that } f^{\prime}\left(z_{k}\right) \neq 0 \tag{14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|z_{k+1}-z\right|=\frac{\left(z_{k}-z\right)^{2}}{2}\left|\frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(z_{k}\right)}\right|, \text { provided that } f^{\prime}\left(z_{k}\right) \neq 0 \tag{15}
\end{equation*}
$$

Using $z_{k} \rightarrow z, \xi_{k} \rightarrow z$ as $k \rightarrow \infty$ and continuity of $f(x)$ up to at least the second derivative, we arrive at $K=\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\frac{8-\pi}{4+\pi} \approx 0.6803$.

