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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
. (1)

Here we obtain yn+1 by a Taylor expansion around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (2)

For zn+1, we obtain, after substitution of the predictor step for z∗n+1 into the
corrector step

zn+1 = yn + h ((1− θ)f(tn, yn) + θf(tn + h, yn + hf(tn, yn))) (3)

After a Taylor expansion of f(tn+h, yn+hf(tn, yn)) around (tn, yn) one obtains:

zn+1 = yn+h

(
(1− θ)f(tn, yn) + θ(f(tn, yn) + h(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
)) + O(h2)

)
.

(4)
From the differential equation we know that:

y′(tn) = f(tn, yn) (5)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) (6)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn) (7)

This implies that zn+1 = yn + hy′(tn) + θh2y′′(tn). Subsequently, it follows that

yn+1 − zn+1 = O(h2), and, hence τn+1(h) =
O(h2)

h
= O(h) for 0 ≤ θ ≤ 1, (8)

yn+1 − zn+1 = O(h3), and, hence τn+1(h) =
O(h3)

h
= O(h2) for θ =

1

2
. (9)
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(b) Consider the test equation y′ = λy, then, herewith, one obtains

w∗n+1 = wn + hλwn = (1 + hλ)wn,
wn+1 = wn + h((1− θ)λwn + θλw∗n+1) =
= wn + h((1− θ)λwn + θλ(wn + hλwn)) = (1 + hλ + θ(hλ)2)wn.

(10)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ + θ(hλ)2. (11)

(c) We start this exercise by using the following vector:

x1 = y

x2 = y′

From this it follows that
x′1 = y′ = x2

x′2 = y′′ = −2y′ − 2y + t = −2x2 − 2x1 + t

where we have used the second order differential equation. We can write this as
follows in matrix-vector notation:(

x′1
x′2

)
=

(
0 1
−2 −2

) (
x1

x2

)
+

(
0
t

)

So it follows that A =

(
0 1
−2 −2

)
and f(t) = 0 and g(t) = t.

(d) In order to do one step we first note that(
x1(0)
x2(0)

)
=

(
y(0)
y′(0)

)
=

(
0
1

)
The predictor step with h = 1 now gives:

w∗1 =

(
0
1

)
+ 1

((
0 1
−2 −2

) (
0
1

)
+

(
0
0

))
=

(
0
1

)
+

(
1
−2

)
=

(
1
−1

)
Finally the correction step with θ = 1

2
leads to

w1 =

(
0
1

)
+

1

2

(
1
−2

)
+

1

2

((
0 1
−2 −2

) (
1
−1

)
+

(
0
1

))
=

(
0
1
2

)
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(e) Compute the eigenvalues of matrix

(
0 1
−2 −2

)
. To do this we compute the

determinant of

(
−λ 1
−2 −2− λ

)
, which is equal to λ2 + 2λ + 2. The roots of

this polynomial are equal to λ1 = −1 + i and λ2 = −1 − i. Since λ2 = λ̄1 it is
sufficient to consider λ1 only. For h = 2 we obtain hλ1 = −2 + 2i. This implies
that

Q(hλ1) = 1 + hλ1 + θ(hλ1)
2

Q(hλ1) = 1 + (−2 + 2i) + θ(−2 + 2i)2

Q(hλ1) = 1− 2 + 2i + θ(4− 8i− 4) = −1 + i(2− 8θ)

In order to check that |Q(hλ1)| ≤ 1, we compute the modulus of Q(hλ1), which
is equal to √

12 + (2− 8θ)2

It is easy to see that this is only less than or equal to 1 if θ = 1
4
.

2. (a) First, we do one fixed point iteration:

p1 = g1(p0) =
π
√

2

8 sin(π
2
)

=
π
√

2

8
,

q1 = g2(q0) =
π

2
− (

π

2
sin(

π

2
)− π

√
2

8
) =

π
√

2

8
.

Let x̃ be a fixed point of g1(x), then

x̃ =
π
√

2

8 sin(x̃)
.

Multiplication by sin(x̃), gives

x̃ sin(x̃) =
π
√

2

8
,

hence x̃ is a solution of the original problem. Subsequently, we assume x̃ to be
a fixed point of g2(x), then

x̃ = x̃− (x̃ sin(x̃)− π
√

2

8
).

Subtraction of x̃ in the above equation, gives

x̃ sin(x̃)− π
√

2

8
= 0,

hence x̃ is a solution of the original problem. �

3



(b) From convergence follows that lim
k→∞

pk = p =
π

4
. Since ξk has a value between p

and pk, we obtain using continuity of g′(x) (and from the Squeeze Theorem that

ξk → p = π
4

as k → ∞), that lim
k→∞

g′(ξk) = g′(p) = g′(
π

4
). Herewith, we obtain

after differentiation

lim
k→∞

|g′1(ξ)| = |g′1(
π

4
)| =

∣∣∣∣∣−π
√

2

8

cos(π
4
)

sin2(π
4
)

∣∣∣∣∣ =
π

4
≈ 0.7854,

lim
k→∞

|g′2(ξ)| = |g′2(
π

4
)| = |1− sin(

π

4
)− π

4
cos(

π

4
)| = |1− 4 + π

4
√

2
| ≈ 0.2627.

Hence, |g′2(p)| < |g′1(p)|, Using |p − pk+1| = |g′(ξk)||p − pk| gives |p − pk+1| =
|g′(p)||p − pk| as k → ∞. Hence, using the function g2(x) for the fixed point
method, gives a faster convergence. �

(c) We search a zero of the function

f(x) = x sin(x)− π
√

2

8
.

The derivative is given by

f ′(x) = sin(x) + x cos(x).

Herewith, we get

z1 =
π

2
−

π
2

sin(π
2
)− π

√
2

8

sin(π
2
) + π

2
cos(π

2
)

=
π
√

2

8
≈ 0.554.

�

(d) The Newton-Raphson iteration method can be derived using a graph of a func-
tion, in which the zero of the tangent at zk on f(x) defines zk+1. We consider a
linearization of f(x) around zk:

L(x) := f(zk) + (x− zk)f
′(zk),

and determine its zero, that is L(zk+1) = 0, this gives

zk+1 = zk −
f(zk)

f ′(zk)
, provided that f ′(zk) 6= 0,

�

(e) We consider a Taylor polynomial around zk, to express z

0 = f(z) = f(zk) + (z − zk)f
′(zk) +

(z − zk)
2

2
f ′′(ξk), (12)
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for some ξk between z and zk. Note that this form gives the exact representation.
Subsequently, we consider the Newton-Raphson approximation

0 = L(zk+1) = f(zk) + (zk+1 − zk)f
′(zk). (13)

Subtraction of these two above equations gives

zk+1 − z =
(zk − z)2

2

f ′′(ξk)

f ′(zk)
, provided that f ′(zk) 6= 0, (14)

and hence

|zk+1 − z| = (zk − z)2

2
|f
′′(ξk)

f ′(zk)
|, provided that f ′(zk) 6= 0, (15)

Using zk → z, ξk → z as k →∞ and continuity of f(x) up to at least the second

derivative, we arrive at K = |f
′′(z)

f ′(z)
| = 8−π

4+π
≈ 0.6803. �
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