DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday January 27 2009, 9:00-12:00

1. a) The local truncation error is defined as

$$
\begin{equation*}
\tau_{n+1}=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where y_{n+1} is the exact solution at t_{n+1} and z_{n+1} the value obtained by applying the given method at the exact solution point $\left(t_{n}, y_{n}\right)$:

$$
\begin{align*}
k_{1} & =h f\left(t_{n}, y_{n}\right) \\
k_{2} & =h f\left(t_{n}+h, y_{n}+k_{1}\right) \\
z_{n+1} & =y_{n}+\beta k_{1}+(1-\beta) k_{2} . \tag{2}
\end{align*}
$$

Both y_{n+1} and z_{n+1} have to be expanded into a Taylor series at the point $\left(t_{n}, y_{n}\right)$. To start with z_{n+1}, k_{1} and k_{2} are substituted into the corrector part (2):

$$
\begin{equation*}
z_{n+1}=y_{n}+\beta h f\left(t_{n}, y_{n}\right)+(1-\beta) h f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right) \tag{3}
\end{equation*}
$$

Next $f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)$ is expanded:

$$
\begin{align*}
f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right) & =f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)+\ldots \\
& =y_{n}^{\prime}+h\left[\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y}\right]\left(t_{n}, y_{n}\right)+O\left(h^{2}\right) \tag{4}
\end{align*}
$$

using the differential equation $y^{\prime}=f(t, y)$.
In this expression $\left[\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial t}\right]\left(t_{n}, y_{n}\right)$ can be replaced by $y^{\prime \prime}\left(t_{n}\right)=y_{n}^{\prime \prime}$, for

$$
y^{\prime \prime}=\frac{d y^{\prime}}{d t}=\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y},
$$

again using $y^{\prime}=f(t, y)$ in the last step.
As a result, (4) becomes:

$$
f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)=y_{n}^{\prime}+h y_{n}^{\prime \prime}+O\left(h^{2}\right)
$$

Substitution of this expression into (3) gives:

$$
\begin{aligned}
z_{n+1} & =y_{n}+\beta h y_{n}^{\prime}+(1-\beta) h\left(y_{n}^{\prime}+h y_{n}^{\prime \prime}+O\left(h^{2}\right)\right) \\
& =y_{n}+h y_{n}^{\prime}+(1-\beta) h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right) .
\end{aligned}
$$

Substitution of this expansion, together with the expansion for y_{n+1} :

$$
y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right)
$$

into (1) yields:

$$
\begin{aligned}
\tau_{n+1} & =\frac{y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right)-\left[y_{n}+h y_{n}^{\prime}+(1-\beta) h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right)\right]}{h} \\
& =\left(\beta-\frac{1}{2}\right) h y_{n}^{\prime \prime}+O\left(h^{2}\right)
\end{aligned}
$$

It turns out that the truncation error is $\mathrm{O}(h)$, except for $\beta=\frac{1}{2}$. Note that the predictor-corrector method is just Modified Euler for $\beta=\frac{1}{2}$.
b) The amplification factor is found by applying the method to the homogeneous test equation $y^{\prime}=\lambda y$:

$$
\begin{aligned}
k_{1} & =h \lambda w_{n} \\
k_{2} & =h \lambda\left(w_{n}+h \lambda w_{n}\right)=h \lambda(1+h \lambda) w_{n} \\
w_{n+1} & =w_{n}+\beta h \lambda w_{n}+(1-\beta) h \lambda(1+h \lambda) w_{n} \\
& =\left[1+h \lambda+(1-\beta)(h \lambda)^{2}\right] w_{n} .
\end{aligned}
$$

The amplification factor $Q(h \lambda)$ is seen to be $1+h \lambda+(1-\beta)(h \lambda)^{2}$.
c) To derive the stability condition we need the eigenvalues of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{x}
$$

These are purely imaginary: $\lambda_{1,2}= \pm i$, as can be seen easily.
For stability we require $|Q(\pm h i)|<1$ or, more conveniently, $|Q(\pm h i)|^{2}<1$.
From c):

$$
\begin{aligned}
\left|1 \pm h i+(1-\beta)(\pm h i)^{2}\right|^{2} & <1 \leftrightarrow \\
\left|1-(1-\beta) h^{2} \pm h i\right|^{2} & <1 \leftrightarrow \\
\left(1-(1-\beta) h^{2}\right)^{2}+h^{2} & <1 \leftrightarrow \\
1-2(1-\beta) h^{2}+(1-\beta)^{2} h^{4}+h^{2} & <1 \leftrightarrow \\
(1-\beta)^{2} h^{2} & <2(1-\beta)-1=1-2 \beta .
\end{aligned}
$$

(Note: the squared modulus of a complex number equals the sum of the squares of it's real and imaginary part.)
It now follows that

$$
h^{2}<\frac{1-2 \beta}{(1-\beta)^{2}}
$$

is required for stability.
Clearly, stability is possible only for $\beta<\frac{1}{2}$.
d) We have optimal stability if the upper bound for h is as large as possible. So we have to investigate the behavior of the function $g(\beta)=\frac{1-2 \beta}{(1-\beta)^{2}}$ for $\beta<\frac{1}{2}$. The derivative of $g(\beta)$ is given: $\frac{-2 \beta}{(1-\beta)^{2}}$. This derivative is positive for $\beta<0$ and negative for $0<\beta<\frac{1}{2}$. So $g(\beta)$ assumes its maximum for $\beta=0, g(0)$ being 1 . The optimal stability condition for the considered system is therefore $h<1$.
e) The stability bound of the optimal predictor-corrector method is $h<1$, as found under d. The stability bound of Runge-Kutta is $h<2 \sqrt{2} \approx 2.8$, as can be read off from the included stability region. Since the optimal predictor-corrector method uses 2 function evaluations per time step it appears that per function evaluation a distance of 0.5 can be covered. The Runge-Kutta method uses 4 function evaluations per time step so per function evaluation a distance of 0.7 can be covered. Since accuracy is not an issue it is more efficient to use the Runge-Kutta method.
2. a After discretization by the use of finite differences one obtains

$$
\begin{equation*}
\frac{-w_{i-1}+2 w_{i}-w_{i+1}}{h^{2}}+x_{i} w_{i}=x_{i}^{2} . \tag{5}
\end{equation*}
$$

The truncation error is defined by

$$
\begin{equation*}
e_{i}=\frac{-y_{i-1}+2 y_{i}-y_{i+1}}{h^{2}}+x_{i} y_{i}-x_{i}^{2} \tag{6}
\end{equation*}
$$

Taylor series of y_{i-1} and y_{i+1} around x_{i}, gives

$$
\begin{align*}
& y_{i+1}=y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)+O\left(h^{5}\right), \\
& y_{i-1}=y_{i}-h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)-\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)-O\left(h^{5}\right) \tag{7}
\end{align*}
$$

Substitution of the above expressions into the definition of the truncation error gives

$$
\begin{equation*}
\varepsilon_{i}=-y^{\prime \prime}\left(x_{i}\right)+O\left(h^{2}\right)+x_{i} y\left(x_{i}\right)-x_{i}^{2} . \tag{8}
\end{equation*}
$$

Using the differential equation $-y^{\prime \prime}+x y=x^{2}$ finally gives

$$
\begin{equation*}
\varepsilon_{i}=O\left(h^{2}\right) \tag{9}
\end{equation*}
$$

b For this case we have $h=0.25$, for the points $j \in\{1,2,3\}$, the discretization with $w_{0}=1$ and $w_{4}=0$:

$$
\begin{align*}
& 32 w_{1}-16 w_{2}+\frac{1}{4} w_{1}=\frac{1}{16}+16 \\
& -16 w_{1}+32 w_{2}-16 w_{3}+\frac{1}{2} w_{2}=\frac{1}{4} \tag{10}\\
& -16 w_{2}+32 w_{3}+\frac{3}{4} w_{3}=\frac{9}{16}
\end{align*}
$$

Hence in matrix-vector form:

$$
\left(\begin{array}{ccc}
32.25 & -16 & 0 \tag{11}\\
-16 & 32.5 & -16 \\
0 & -16 & 32.75
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{c}
16.0625 \\
0.25 \\
0.5625
\end{array}\right)
$$

c Since $h=\frac{1}{3}$, we have $x_{0}=0, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}$ and $x_{3}=1$. Using linear interpolation, two adjacent gridpoints are taken into account. The minimum error is attained when the gridpoints x_{1} and x_{2} are used. The linear interpolation formula using points x_{1} and x_{2}, gives:

$$
\begin{gather*}
p(x)=\frac{x-x_{2}}{x_{1}-x_{2}} f\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(x_{2}\right) . \\
P(0.4)=\frac{0.4-\frac{2}{3}}{\frac{1}{3}-\frac{2}{3}} \cdot 0.4444+\frac{0.4-\frac{1}{3}}{\frac{2}{3}-\frac{1}{3}} \cdot 0.7778=0.5111 \tag{12}
\end{gather*}
$$

The magnitude of the local truncation error is given by

$$
\begin{equation*}
\left|\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{2} y^{\prime \prime}(\xi)\right|=\left|\frac{(0.4-1 / 3)(0.4-2 / 3)}{2} \cdot 1\right|=0.0089 . \tag{13}
\end{equation*}
$$

d The magnitude of the truncation error is given by

$$
\begin{equation*}
\left|\frac{y_{2}-y_{1}}{h}-y^{\prime}\left(x_{2}\right)\right|=\left|\frac{y\left(x_{2}\right)-y\left(x_{2}\right)+h y^{\prime}\left(x_{2}\right)-\frac{h^{2}}{2} y^{\prime \prime}(\xi)}{h}-y^{\prime}\left(x_{2}\right)\right|=\frac{h}{2}\left|y^{\prime \prime}(\xi)\right|=\frac{h}{2}=\frac{1}{6} \tag{14}
\end{equation*}
$$

e The additional error is given by

$$
\begin{equation*}
\left|\frac{y_{2}-y_{1}}{h}-\frac{w_{2}-w_{1}}{h}\right| \leq \frac{2 \varepsilon}{h}=\frac{2 \cdot 0.01}{\frac{1}{3}}=0.06 \tag{15}
\end{equation*}
$$

