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a) The local truncation error is defined as

Tn+l = nit = Fnid ; ZnH, (1)

where 1,11 is the exact solution at ¢,,.1 and 2,1 the value obtained by applying
the given method at the exact solution point (¢,,y,):

kl - hf(tnayn)
Zng1 = Yo+ B k4 (1= 5) k. (2)

Both y,4+1 and z,1 have to be expanded into a Taylor series at the point (¢, ¥, )
To start with z,.1, ki and ko are substituted into the corrector part (2):

Znt1 = Yo+ 0 D (b, yn) + (1= B) hf (o + by + 2 (s pn))- - (3)
Next f(tn + h,yn + hf(tn,yn)) is expanded:

0 0
fn+hyn +hf(tn,yn) = f(tn,yn) + h—f(tm Yn) + I f(tn, yn)—f(tm Yn) + - -

ot dy
0 0
— o Gy 4 PG )+ O, ()

using the differential equation y' = f(t,y).
In this expression [% + f%](tn, yn) can be replaced by y”(t,) =y, for

s dy _df _Of af@_aijfﬁ
oy’

VS Ta ot Toagar T ot

again using ¢y’ = f(t,y) in the last step.
As a result, (4) becomes:

fltn + 0y yn + Bf(ta,yn)) = 4 + Ryl + O(R?).

Substitution of this expression into (3) gives:

Znt1 = Yo+ B Ry, + (1= B) b (Y, + hy + O(h?))
= Yo+ hyl, + (1= B)I*yY) + O(h®).
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Substitution of this expansion, together with the expansion for y,,1:
1
Ynt1 = Yn + hy, + §h2%/1, + O(h3)=

into (1) yields:

Yn + hyl, + 202y + O(R®) — [y, + hyl, + (1 — B)h%y + O(h?)]
7—nJrl -
h

= (5 3) hyfl +O()

It turns out that the truncation error is O(h), except for 5 = % Note that the
predictor-corrector method is just Modified Euler for g = % .
The amplification factor is found by applying the method to the homogeneous
test equation ¢y = \y:

ki = h\w,

ke = hXw, + hiw,) = hA(1 + h\)w,

Wpy1 = wy+ G hAw, + (1 = 5) hA(1 + hN)w,
= [1+hA+ (1= B) (N Hw,.

The amplification factor Q(hA) is seen to be 1+ hX + (1 — 3)(hA)%

To derive the stability condition we need the eigenvalues of the system

x = le
o -1 0 '

These are purely imaginary: A; o = %1, as can be seen easily.
For stability we require |Q(£hi)| < 1 or, more conveniently,

|Q(£hi)|? < 1.
From c):
1+ hi+ (1—0)(£hi)*)? < 1
1— (1 =B L£hi]> < 1
1—-(1-3hr)+h* < 1
1-21-3)Rr+ (1-08)2h'+h* < 1

(1-p8)%* < 21-8)—-1=1-23.

(Note: the squared modulus of a complex number equals the sum of the squares
of it’s real and imaginary part.)

It now follows that
1-23

(1—-p)?

h? <

is required for stability.
Clearly, stability is possible only for 3 < %

2



d)

We have optimal stability if the upper bound for h is as large as possible. So
we have to investigate the behavior of the function ¢(5) = % for f < 1.
The derivative of g(3) is given: (1__% This derivative is positive for 5 < 0 and
negative for 0 < § < 3. So g(f8) assumes its maximum for § = 0, g(0) being 1.

The optimal stability condition for the considered system is therefore h < 1.

The stability bound of the optimal predictor-corrector method is h < 1, as found
under d. The stability bound of Runge-Kutta is h < 2V/2 =~ 2.8, as can be read
off from the included stability region. Since the optimal predictor-corrector
method uses 2 function evaluations per time step it appears that per function
evaluation a distance of 0.5 can be covered. The Runge-Kutta method uses 4
function evaluations per time step so per function evaluation a distance of 0.7
can be covered. Since accuracy is not an issue it is more efficient to use the
Runge-Kutta method.

After discretization by the use of finite differences one obtains

—w;_1 + 2w; — Wi
2

The truncation error is defined by

Y1 T2y — Yin
= =

Taylor series of y; 1 and y;,; around x;, gives

€; + Ty — 33@2 (6)

2 h3 h4
err = o by () + 57y () + gpy" () + " (@) + O(),
/ h2 " h3 " h4 mn 5 <7)
Vi1 = i — hy'(@;) + oY (z;) — gy (z:) + Y (zi) — O(R?),

Substitution of the above expressions into the definition of the truncation error
gives

e = —y"(;) + O(h?) + zy(x;) — a7, (8)
Using the differential equation —y” + zy = 22 finally gives
g; = O(h?). (9)

For this case we have h = 0.25, for the points j € {1,2,3}, the discretization
with wg =1 and wy = 0:
1 1
32’LU1 — 1611)2 +-w = — + 16,
4 16 1
—16w1 -+ 32102 — 16UJ3 + —wy = Z_l’ (10)
16wy + 32w +§w —é
? VR T



Hence in matrix-vector form:

3225 —16 0 wq 16.0625
—-16 32,5 —16 wy | = 0.25 (11)
0 —16 32.75 w3 0.5625
¢ Since h = %, we have g = 0, 1 = %, Ty = % and x3 = 1. Using linear

interpolation, two adjacent gridpoints are taken into account. The minimum
error is attained when the gridpoints x; and x5 are used. The linear interpolation
formula using points x; and x9, gives:

. Tr — Ty r — T
pa) = o= o)+ f ).
04-2 04—
P(0.4) = T3 -0.4444 + 71 -0.7778 = 0.5111 (12)
373 373

The magnitude of the local truncation error is given by

— — 0.4—1/3)(0.4—2/3
d The magnitude of the truncation error is given by
2
Yo — Y y(w2) — y(ra) + hy'(x2) — Ty" (&) h
- - - Y (x2)| = 2 —y(x2)| =5 ¥ ()] =
h h 2
(14)
e The additional error is given by
Y2—Y1 w2 —wp 2 2-0.01
_ <= = = 0.06. (15)
h h h %




