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1. a) The local truncation error is defined as

τn+1 =
yn+1 − zn+1

h
, (1)

where yn+1 is the exact solution at tn+1 and zn+1 the value obtained by applying
the given method at the exact solution point (tn, yn):

k1 = hf(tn, yn)

k2 = hf(tn + h, yn + k1)

zn+1 = yn + β k1 + (1− β) k2. (2)

Both yn+1 and zn+1 have to be expanded into a Taylor series at the point (tn, yn).
To start with zn+1, k1 and k2 are substituted into the corrector part (2):

zn+1 = yn + β hf(tn, yn) + (1− β) hf(tn + h, yn + hf(tn, yn)). (3)

Next f(tn + h, yn + hf(tn, yn)) is expanded:

f(tn + h, yn + hf(tn, yn)) = f(tn, yn) + h
∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn) + . . .

= y′n + h[
∂f

∂t
+ f

∂f

∂y
](tn, yn) + O(h2), (4)

using the differential equation y′ = f(t, y).
In this expression [∂f

∂t
+ f ∂f

∂t
](tn, yn) can be replaced by y′′(tn) = y′′n, for

y′′ =
dy′

dt
=

df

dt
=

∂f

∂t
+

∂f

∂y

dy

dt
=

∂f

∂t
+ f

∂f

∂y
,

again using y′ = f(t, y) in the last step.
As a result, (4) becomes:

f(tn + h, yn + hf(tn, yn)) = y′n + hy′′n + O(h2).

Substitution of this expression into (3) gives:

zn+1 = yn + β hy′n + (1− β) h (y′n + hy′′n + O(h2))

= yn + hy′n + (1− β)h2y′′n + O(h3).
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Substitution of this expansion, together with the expansion for yn+1:

yn+1 = yn + hy′n +
1

2
h2y′′n + O(h3),

into (1) yields:

τn+1 =
yn + hy′n + 1

2
h2y′′n + O(h3)− [yn + hy′n + (1− β)h2y′′n + O(h3)]

h

= (β − 1

2
) h y′′n + O(h2)

It turns out that the truncation error is O(h), except for β = 1
2
. Note that the

predictor-corrector method is just Modified Euler for β = 1
2

.

b) The amplification factor is found by applying the method to the homogeneous
test equation y′ = λy:

k1 = hλwn

k2 = hλ(wn + hλwn) = hλ(1 + hλ)wn

wn+1 = wn + β hλwn + (1− β) hλ(1 + hλ)wn

= [1 + hλ + (1− β)(hλ)2]wn.

The amplification factor Q(hλ) is seen to be 1 + hλ + (1− β)(hλ)2.

c) To derive the stability condition we need the eigenvalues of the system

x′ =

(
0 1
−1 0

)
x.

These are purely imaginary: λ1,2 = ±i, as can be seen easily.
For stability we require |Q(±hi)| < 1 or, more conveniently,
|Q(±hi)|2 < 1.
From c):

|1± hi + (1− β)(±hi)2|2 < 1 ↔
|1− (1− β)h2 ± hi|2 < 1 ↔
(1− (1− β)h2)2 + h2 < 1 ↔

1− 2(1− β)h2 + (1− β)2h4 + h2 < 1 ↔
(1− β)2h2 < 2(1− β)− 1 = 1− 2β.

(Note: the squared modulus of a complex number equals the sum of the squares
of it’s real and imaginary part.)
It now follows that

h2 <
1− 2β

(1− β)2

is required for stability.
Clearly, stability is possible only for β < 1

2
.
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d) We have optimal stability if the upper bound for h is as large as possible. So
we have to investigate the behavior of the function g(β) = 1−2β

(1−β)2
for β < 1

2
.

The derivative of g(β) is given: −2β
(1−β)2

. This derivative is positive for β < 0 and

negative for 0 < β < 1
2
. So g(β) assumes its maximum for β = 0, g(0) being 1.

The optimal stability condition for the considered system is therefore h < 1.

e) The stability bound of the optimal predictor-corrector method is h < 1, as found
under d. The stability bound of Runge-Kutta is h < 2

√
2 ≈ 2.8, as can be read

off from the included stability region. Since the optimal predictor-corrector
method uses 2 function evaluations per time step it appears that per function
evaluation a distance of 0.5 can be covered. The Runge-Kutta method uses 4
function evaluations per time step so per function evaluation a distance of 0.7
can be covered. Since accuracy is not an issue it is more efficient to use the
Runge-Kutta method.

2. a After discretization by the use of finite differences one obtains

−wi−1 + 2wi − wi+1

h2
+ xiwi = x2

i . (5)

The truncation error is defined by

ei =
−yi−1 + 2yi − yi+1

h2
+ xiyi − x2

i . (6)

Taylor series of yi−1 and yi+1 around xi, gives

yi+1 = yi + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi) + O(h5),

yi−1 = yi − hy′(xi) +
h2

2!
y′′(xi)−

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi)−O(h5),

(7)

Substitution of the above expressions into the definition of the truncation error
gives

εi = −y′′(xi) + O(h2) + xiy(xi)− x2
i . (8)

Using the differential equation −y′′ + xy = x2 finally gives

εi = O(h2). (9)

b For this case we have h = 0.25, for the points j ∈ {1, 2, 3}, the discretization
with w0 = 1 and w4 = 0:

32w1 − 16w2 +
1

4
w1 =

1

16
+ 16,

−16w1 + 32w2 − 16w3 +
1

2
w2 =

1

4
,

−16w2 + 32w3 +
3

4
w3 =

9

16
.

(10)
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Hence in matrix-vector form:32.25 −16 0
−16 32.5 −16
0 −16 32.75

 w1

w2

w3

 =

16.0625
0.25

0.5625

 (11)

c Since h = 1
3
, we have x0 = 0, x1 = 1

3
, x2 = 2

3
and x3 = 1. Using linear

interpolation, two adjacent gridpoints are taken into account. The minimum
error is attained when the gridpoints x1 and x2 are used. The linear interpolation
formula using points x1 and x2, gives:

p(x) =
x− x2

x1 − x2

f(x1) +
x− x1

x2 − x1

f(x2) .

P (0.4) =
0.4− 2

3
1
3
− 2

3

· 0.4444 +
0.4− 1

3
2
3
− 1

3

· 0.7778 = 0.5111 (12)

The magnitude of the local truncation error is given by∣∣∣∣(x− x1)(x− x2)

2
y′′(ξ)

∣∣∣∣ =

∣∣∣∣(0.4− 1/3)(0.4− 2/3)

2
· 1

∣∣∣∣ = 0.0089. (13)

d The magnitude of the truncation error is given by∣∣∣∣y2 − y1

h
− y′(x2)

∣∣∣∣ =

∣∣∣∣∣y(x2)− y(x2) + hy′(x2)− h2

2
y′′(ξ)

h
− y′(x2)

∣∣∣∣∣ =
h

2
|y′′(ξ)| = h

2
=

1

6
.

(14)

e The additional error is given by∣∣∣∣y2 − y1

h
− w2 − w1

h

∣∣∣∣ ≤ 2ε

h
=

2 · 0.01
1
3

= 0.06. (15)
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