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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) =

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn).

(3)

Hence

yn+1 = yn + hy′(tn) +
h2

2

(
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn)

)
+ O(h3). (4)

After substitution of the predictor z∗
n+1 = yn +hf(tn, yn) into the corrector, and

after using a Taylor expansion around (tn, yn), we obtain for zn+1

zn+1 = yn + h
2
(f(tn, yn) + f(tn + h, yn + hf(tn, yn))) =

yn +
h

2

(
f(tn, yn) + f(tn, yn) + h(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
) + O(h2)

)
.

(5)
Herewith, one obtains

yn+1 − zn+1 = O(h3), and hence τn+1(h) =
O(h3)

h
= O(h2). (6)
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(b) Let x1 = y and x2 = y′, then y′′ = x′
2, and hence

x′
2 + x1 = sin(t),

x2 = x′
1.

(7)

We write this as
x′

1 = x2,
x′

2 = −x1 + sin(t).
(8)

Finally, this is represented in the following matrix-vector form:(
x1

x2

)′

=

(
0 1
−1 0

) (
x1

x2

)
+

(
0

sin(t)

)
. (9)

In which, we have the following matrix A =

(
0 1
−1 0

)
and f =

(
0

sin(t)

)
. The

initial conditions are defined by

(
x1(0)
x2(0)

)
=

(
1
2

)
.

(c) Application of the Modified Euler method to the system x′ = Ax + f , gives

w∗
1 = w0 + h

(
Aw0 + f

0

)
,

w1 = w0 + h
2

(
Aw0 + f0 + Aw∗

1 + f
1

)
.

(10)

With the initial condition w0 =

(
1
2

)
and h = 0.1, this gives the following result

for the predictor

w∗
1 =

(
1
2

)
+

1

10

((
0 1
−1 0

) (
1
2

)
+

(
0
0

))
=

(
6/5

19/10

)
. (11)

The corrector is calculated as follows

w1 =

(
1
2

)
+ 1

20

((
0 1
−1 0

) (
1
2

)
+

(
0
0

)
+

(
0 1
−1 0

) (
6/5

19/10

)
+

(
0

sin( 1
10

)

))
=

=

(
1.19500
1.89492

)
(12)

(d) Consider the test equation y′ = λy, then one gets

w∗
n+1 = wn + hλwn = (1 + hλ)wn,

wn+1 = wn +
h

2
(λwn + λw∗

n+1) =

= wn +
h

2
(λwn + λ(wn + hλwn)) = (1 + hλ +

(hλ)2

2
)wn.

(13)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ +
(hλ)2

2
. (14)
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(e) To this extent, we determine the eigenvalues of the matrix A. Subsequently, the
eigenvalues are substituted into the amplification factor. The eigenvalues of the
matrix A are given by λ1 = i and λ2 = −i. Since both eigenvalues lead to the
same modulus of the amplification factor we only consider the first eigenvalue.
Substitution of this eigenvalues into the amplification factor gives

Q(hi) = 1 + hi +
1

2
h2i2 = (1 − 1

2
h2) + hi. (15)

Then, the square of the modulus of the amplification factor is given by

|Q(hi)|2 = (1 − 1

2
h2)2 + h2 = 1 +

1

4
h4 > 1, for all h > 0. (16)

From the above observation, we immediately see that the amplification factor
is always larger than one, hence the Modified Euler method applied to our
currently studied system is never stable.

Remark: This could also be concluded immediately from the stability region.
Since the eigenvalues are located on the imaginary axis, and since the Modified
Euler method is always unstable if an eigenvalue is located on the imaginary
axis (not including the origin).

2. (a) The formula for L1(x) and L2(x) are:

L1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
and L2(x) =

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

(b) For the approximation we note that x0 = 0, x1 = 0.1 and x2 = 0.4. After
substitution in the formula one obtains:

L0(0.2) =
(0.1)(−0.2)

(−0.1)(−0.4)
=

−2

4
= −1

2

L1(0.2) =
(0.2)(−0.2)

(0.1)(−0.3)
=

−4

3
= 1

1

3

L2(0.2) =
(0.2)(0.1)

(0.4)(0.3)
=

2

12
=

1

6

The approximation is given by: −1
2
· 0 + 11

3
· 0.0953 + 1

6
· 0.3365 = 0.1832.

(c) From the definition of the second order Lagrange interpolation formula it ap-
pears that |p̂(x)−p(x)| < maxx∈[x0,x2]|L2(x)|ε. If we can prove that maxx∈[x0,x2]|L2(x)| ≤
1 then the inequality is correct. We first substitute the data:

L2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x)(x − 0.1)

(0.4)(0.3)
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To determine maxx∈[0,0.4]|L2(x)| we consider maxx∈[0,0.1]
(x)(0.1−x)

0.12
≤ 0.05·0.05

0.12
=

0.0208 and maxx∈[0.1,0.4]
(x)(x−0.1)

0.12
. This function does not have an internal maxi-

mum, so maxx∈[0.1,0.4]
(x)(x−0.1)

0.12
≤ 0.4·0.3

0.12
= 1, which implies that maxx∈[x0,x2]|L2(x)| ≤

1.

(d) From the Taylor polynomial it follows that f(h) = f(0) + hf ′(0) + O(h2). This

implies f ′(0) − f(h)−f(0)
h

= f ′(0) − f(0)+hf ′(0)+O(h2)−f(0)
h

= O(h).

(e) After the Taylor polynomial and error term is made for f(0), f(h) and f(2h)
we come to the following result:

f(0) = f(0) (17)

f(h) = f(0) + hf ′(0) +
h2

2!
f ′′(0) + O(h3) (18)

f(2h) = f(0) + 2hf ′(0) +
4h2

2!
f ′′(0) + O(h3) (19)

Using formula α0f(0) + α1f(h) + α2f(2h) we try to find the values of α0, α1

and α2 such that f ′(0)− (α0f(0)+α1f(h)+α2f(2h)) = O(h2). Using the above
given Taylor polynomials we obtain the following system:

f(0) : α0 + α1 + α2 = 0

f ′(0) : α1h + α22h = 1

f ′′(0) : α1
h2

2!
+ α22h

2 = 0

After solution the following values are obtained: α0 = −3
2h

, α1 = 4
2h

and α2 = −1
2h

.
The formula is

−3f(0) + 4f(h) − f(2h)

2h
.

(f) The exact derivative is f ′(x) = − sin(x)+1, so f ′(0) = 1. The Forward difference
approximation leads to

f(h) − f(0)

h

1.0950 − 1

0.1
= 0.95,

where the error is 1-0.95 = 0.05. Using the second order formula one obtains:

−3f(0) + 4f(h) − f(2h)

2h
=

−3 · 1 + 4 · 1.0950 − 1.1801

0.2
= 0.9995,

where the error is 1-0.9995 = 0.0005. We prefer the second order formula because
the error is much less than the error for the Forward difference approximation.

(g) The rounding error is h
2!
f ′′(ξ) with ξ ∈ [0, 0.1]. In this example is f ′′(x) =

− cos(x) so the absolute value of the truncation error is less than
0.1
2

cos(0) = 0.5 · 10−1. For the absolute rounding error it appears that this is

less than |f̂(0.1)−f(0.1)|
h

= 0.5 · 10−3. Note that the truncation error is larger than
the rounding error, so it makes sense to reduce the step size.
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