DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday January 29 2008, 9:00-12:00

1.

a) In the general formulation,

$$
w_{n+1}=w_{n}+h f\left(t_{n+1}, w_{n+1}\right)
$$

$f\left(t_{n+1}, w_{n+1}\right)$ is replaced by λw_{n+1} :

$$
w_{n+1}=w_{n}+h \lambda w_{n+1} .
$$

Solving for w_{n+1}, we find

$$
w_{n+1}=\frac{1}{1-h \lambda} w_{n}
$$

It follows, by definition, that the amplification factor equals

$$
Q(h \lambda)=\frac{1}{1-h \lambda} .
$$

b) For a λ with a negative real part, we have

$$
\begin{aligned}
& |Q(h \lambda)|=\left|\frac{1}{1-h \operatorname{Re}(\lambda)-\operatorname{ihIm}(\lambda)}\right| \\
& =\frac{1}{\sqrt{(1-h \operatorname{Re}(\lambda))^{2}+(h \operatorname{Im}(\lambda))^{2}}}
\end{aligned}
$$

Since $\operatorname{Re}(\lambda)) \leq 0$ it appears that $1-h \operatorname{Re}(\lambda) \geq 1$, so

$$
|Q(h \lambda)|=\frac{1}{\sqrt{(1-h \operatorname{Re}(\lambda))^{2}+(h \operatorname{Im}(\lambda))^{2}}} \leq 1
$$

independent of h. Hence, the BE method is unconditionally stable.
c) The local truncation error is defined as

$$
\begin{equation*}
\tau_{n+1}=\frac{y_{n+1}-\bar{w}_{n+1}}{h} \tag{1}
\end{equation*}
$$

The exact solution of the test equation $y^{\prime}=\lambda y$ can be written as $y_{n} e^{\lambda\left(t-t_{n}\right)}$; hence at $t=t_{n}+h$ we have $y_{n+1}=e^{h \lambda} y_{n}$.

The quantity \bar{w}_{n+1} is defined as the numerical solution on the interval $\left(t_{n}, t_{n+1}\right)$, starting from the exact value y_{n}. So, for the test equation :

$$
\bar{w}_{n+1}=y_{n}+h \lambda \bar{w}_{n+1},
$$

such that (compare (a)) $\bar{w}_{n+1}=\frac{1}{1-h \lambda} y_{n}$. Now insert both expressions into the definition (1):

$$
\tau_{n+1}=\frac{e^{h \lambda}-\frac{1}{1-h \lambda}}{h} y_{n}
$$

and replace $e^{h \lambda}$ and $\frac{1}{1-h \lambda}$ by their expansions $1+h \lambda+\frac{1}{2} h^{2} \lambda^{2}+\ldots$, respectively $1+h \lambda+h^{2} \lambda^{2}+\ldots$. The first two terms of the expansions cancel and we are left with

$$
\tau_{n+1}=\frac{\frac{1}{2} h^{2} \lambda^{2}+\ldots-\left(h^{2} \lambda^{2}+\ldots\right)}{h}=O(h),
$$

which proves that BE is $O(h)$.
d) Calling $x_{1}=y$ and $x_{2}=y^{\prime}$, the first differential equation follows directly: $x_{1}^{\prime}=x_{2}$. Note that $x_{2}^{\prime}=y^{\prime \prime}$, substituting $y^{\prime \prime}=-1000.5 y^{\prime}-500 y=-1000.5 x_{2}-500 x_{1}$ yields the second equation: $x_{2}^{\prime}=-500 x_{1}-1000.5 x_{2}$. Using matrix-vector notation, the two equations are compiled as $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-500 & -1000.5
\end{array}\right] .
$$

To find the eigenvalues, the determinant of

$$
\left[\begin{array}{rr}
-\lambda & 1 \\
-500 & -1000.5-\lambda
\end{array}\right]
$$

is put equal to 0 . This leads to the quadratic equation $\lambda^{2}+1000.5 \lambda+500=0$ with roots $\lambda_{1}=-1000$ and $\lambda_{2}=-0.5$.
Note that both eigenvalues are negative and that $\left|\lambda_{1}\right|$ is much larger than $\left|\lambda_{2}\right|$.
e) For an $O\left(h^{p}\right)$ - method the error at time t is estimated by the general formula ((6.54) of the lecture notes)

$$
y(t)-w\left(t, \frac{h}{2}\right) \approx \frac{w\left(t, \frac{h}{2}\right)-w(t, h)}{2^{p}-1}
$$

Using $p=1$ and $h=0.06$, application of this formula to the given table values yields

$$
\begin{aligned}
y_{2}-w_{2}(3.6,0.03) & \approx w_{2}(3.6,0.03)-w_{2}(3.6,0.06) \\
& =-0.167694+0.169903 \approx 0.002209
\end{aligned}
$$

as the BE-error for the second component (the derivative of the solution) at $t=3.6$. This is well within the given tolerance of 0.0025 .
f) The stability condition of Forward Euler, applied to $y^{\prime}=\lambda y$, reads

$$
h<\frac{2}{|\lambda|} .
$$

To apply this condition to the system derived in (d), we have to substitute its (in absolute value largest) eigenvalue -1000 for λ. It follows that h has to satisfy the condition $h<0.002$.
g) For a step size which is close to its maximal value 0.002, Forward Euler produces a result with a given error of 0.000112 , far less than the required accuracy of 0.0025 . From the point of view of efficiency we would like to increase the step size but that is impossible because of stability requirements. Because both Euler methods are $O(h)$ their accuracy is comparable, but Backward Euler is unconditionally stable and hence, the step size can be increased at will. The error estimate in (e) has shown that a step size of 0.03 , at least 15 times larger than the maximal stable step size of Euler Forward, is sufficient to meet the required accuracy. So, Euler Backward is the most suitable method.
2. (a) A fixed point p satisfies the equation $p=g(p)$. Substitution gives: $p=p+\frac{1}{2}-$ $\frac{1}{2} p^{2}$. Rewriting this expression gives:

$$
\begin{aligned}
0 & =\frac{1}{2}-\frac{1}{2} p^{2} \\
\frac{1}{2} p^{2} & =\frac{1}{2} \\
p^{2} & =1 \\
p & = \pm 1 .
\end{aligned}
$$

On the other hand $f(p)=0$ gives

$$
\begin{aligned}
\frac{p^{2}}{1+p^{2}}-\frac{1}{2} & =0 \\
\frac{p^{2}}{1+p^{2}} & =\frac{1}{2} \\
2 p^{2} & =1+p^{2} \\
p^{2} & =1 \\
p & = \pm 1 .
\end{aligned}
$$

So both expressions leads to the same solutions.

The fixed point iteration is defined by: $p_{i+1}=g\left(p_{i}\right)$. Starting with $p_{0}=\frac{1}{2}$ one obtains:

$$
\begin{aligned}
& p_{1}=0.875 \\
& p_{2}=0.9922 \\
& p_{3}=1
\end{aligned}
$$

(b) For the convergence two conditions should be satisfied:

- $g(p) \in\left[\frac{1}{2}, 1\right]$ for all $p \in\left[\frac{1}{2}, 1\right]$.
- $\left|g^{\prime}(p)\right| \leq k<1$ for all $p \in\left[\frac{1}{2}, 1\right]$.

Since $g(p)=p+\frac{1}{2}-\frac{1}{2} p^{2}$, the derivative is $g^{\prime}(p)=1-p$. Note that $g^{\prime}(p) \geq 0$ for all $p \in\left[\frac{1}{2}, 1\right]$. This implies that

$$
0.875=g\left(\frac{1}{2}\right) \leq g(p) \leq g(1)=1
$$

so the first condition holds. For the second condition we note that $\left|g^{\prime}(p)\right|=$ $|1-p| \leq \frac{1}{2}=k<1$ for all $p \in\left[\frac{1}{2}, 1\right]$, so the second conditions is also satisfied, which implies that the fixed point iteration is convergent for all $p_{0} \in\left[\frac{1}{2}, 1\right]$.
(c) Since $g^{\prime}(p)=1-p$ it follows that

$$
\left|g^{\prime}(-1)\right|=|2|=2>1,
$$

so the method is divergent.
(d) Graphically the Newton-Raphson method is given in Figure 1. The tangent in

Figure 1: The Newton-Raphson method
$\left(p_{0}, f\left(p_{0}\right)\right)$ is given by:

$$
l(x)=f\left(p_{0}\right)+\left(x-p_{0}\right) f^{\prime}\left(p_{0}\right)
$$

Taking $l\left(p_{1}\right)=0$ leads to

$$
f\left(p_{0}\right)+\left(p_{1}-p_{0}\right) f^{\prime}\left(p_{0}\right)=0
$$

Rewriting gives $p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}$.
(e) Starting with $p_{0}=\frac{1}{2}$ we note that

$$
\begin{aligned}
f(p) & =\frac{p^{2}}{1+p^{2}}-\frac{1}{2} \\
f^{\prime}(p) & =\frac{2 p}{\left(1+p^{2}\right)^{2}}
\end{aligned}
$$

Substituting this into the formula gives

$$
p_{1}=\frac{1}{2}-\frac{\left(\frac{\frac{1}{4}}{1+\frac{1}{4}}-\frac{1}{2}\right)}{\frac{1}{\left(1+\frac{1}{4}\right)^{2}}}=0.96875
$$

(f) Note that

$$
\left|\hat{p}_{i+1}-p_{i+1}\right|=\left|\hat{p}_{i}-\frac{\hat{f}\left(\hat{p}_{i}\right)}{\hat{f}^{\prime}\left(\hat{p}_{i}\right)}-\left(p_{i}-\frac{f\left(p_{i}\right)}{f^{\prime}\left(p_{i}\right)}\right)\right|
$$

From the assumptions $\hat{p}_{i}=p_{i}$ and $\hat{f}^{\prime}\left(p_{i}\right)=f^{\prime}\left(p_{i}\right)$ it follows that

$$
\left|\hat{p}_{i+1}-p_{i+1}\right| \leq \frac{\left|\hat{f}\left(p_{i}\right)-f\left(p_{i}\right)\right|}{\left|f^{\prime}\left(p_{i}\right)\right|} \leq \frac{\epsilon}{\left|f^{\prime}\left(p_{i}\right)\right|} \leq 4 \epsilon
$$

since

$$
\left|f^{\prime}(p)\right|=\frac{2 p}{\left(1+p^{2}\right)^{2}} \geq \frac{2 \cdot \frac{1}{2}}{(1+1)^{2}}=\frac{1}{4}
$$

