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1.

a) In the general formulation,

wn+1 = wn + hf(tn+1, wn+1),

f(tn+1, wn+1) is replaced by λwn+1:

wn+1 = wn + hλwn+1.

Solving for wn+1, we find

wn+1 =
1

1 − hλ
wn.

It follows, by definition, that the amplification factor equals

Q(hλ) =
1

1 − hλ
.

b) For a λ with a negative real part, we have

|Q(hλ)| = |
1

1 − hRe(λ) − ihIm(λ)
|

=
1

√

(1 − hRe(λ))2 + (hIm(λ))2

Since Re(λ)) ≤ 0 it appears that 1 − hRe(λ) ≥ 1, so

|Q(hλ)| =
1

√

(1 − hRe(λ))2 + (hIm(λ))2
≤ 1

independent of h. Hence, the BE method is unconditionally stable.

c) The local truncation error is defined as

τn+1 =
yn+1 − w̄n+1

h
. (1)

The exact solution of the test equation y′ = λy can be written as yne
λ(t−tn); hence at

t = tn + h we have yn+1 = ehλyn.
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The quantity w̄n+1 is defined as the numerical solution on the interval (tn, tn+1),
starting from the exact value yn. So, for the test equation :

w̄n+1 = yn + hλw̄n+1,

such that (compare (a)) w̄n+1 = 1
1−hλ

yn. Now insert both expressions into the defi-
nition (1):

τn+1 =
ehλ − 1

1−hλ

h
yn,

and replace ehλ and 1
1−hλ

by their expansions 1 + hλ + 1
2
h2λ2 + . . ., respectively

1+hλ+h2λ2 + . . .. The first two terms of the expansions cancel and we are left with

τn+1 =
1
2
h2λ2 + . . . − (h2λ2 + . . .)

h
= O(h),

which proves that BE is O(h).

d) Calling x1 = y and x2 = y′, the first differential equation follows directly: x′

1 = x2.
Note that x′

2 = y′′, substituting y′′ = −1000.5y′ − 500y = −1000.5x2 − 500x1 yields
the second equation: x′

2 = −500x1 − 1000.5x2. Using matrix-vector notation, the
two equations are compiled as x′ = Ax, where

A =

[

0 1
−500 −1000.5

]

.

To find the eigenvalues, the determinant of

[

−λ 1
−500 −1000.5 − λ

]

,

is put equal to 0. This leads to the quadratic equation λ2 + 1000.5λ + 500 = 0 with
roots λ1 = −1000 and λ2 = −0.5.
Note that both eigenvalues are negative and that |λ1| is much larger than |λ2|.

e) For an O(hp)- method the error at time t is estimated by the general formula ((6.54)
of the lecture notes)

y(t) − w(t,
h

2
) ≈

w(t, h
2
) − w(t, h)

2p − 1
.

Using p = 1 and h = 0.06, application of this formula to the given table values yields

y2 − w2(3.6, 0.03) ≈ w2(3.6, 0.03) − w2(3.6, 0.06)

= −0.167694 + 0.169903 ≈ 0.002209

as the BE-error for the second component (the derivative of the solution) at t = 3.6.
This is well within the given tolerance of 0.0025.
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f) The stability condition of Forward Euler, applied to y′ = λy, reads

h <
2

| λ |
.

To apply this condition to the system derived in (d), we have to substitute its (in
absolute value largest) eigenvalue -1000 for λ. It follows that h has to satisfy the
condition h < 0.002.

g) For a step size which is close to its maximal value 0.002, Forward Euler produces a
result with a given error of 0.000112, far less than the required accuracy of 0.0025.
From the point of view of efficiency we would like to increase the step size but that
is impossible because of stability requirements. Because both Euler methods are
O(h) their accuracy is comparable, but Backward Euler is unconditionally stable
and hence, the step size can be increased at will. The error estimate in (e) has shown
that a step size of 0.03, at least 15 times larger than the maximal stable step size of
Euler Forward, is sufficient to meet the required accuracy. So, Euler Backward is the
most suitable method.

2. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = p + 1
2
−

1
2
p2. Rewriting this expression gives:

0 =
1

2
−

1

2
p2

1

2
p2 =

1

2
p2 = 1

p = ±1.

On the other hand f(p) = 0 gives

p2

1 + p2
−

1

2
= 0

p2

1 + p2
=

1

2

2p2 = 1 + p2

p2 = 1

p = ±1.

So both expressions leads to the same solutions.
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The fixed point iteration is defined by: pi+1 = g(pi). Starting with p0 = 1
2

one
obtains:

p1 = 0.875,

p2 = 0.9922,

p3 = 1.

(b) For the convergence two conditions should be satisfied:

• g(p) ∈ [1
2
, 1] for all p ∈ [1

2
, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [1
2
, 1].

Since g(p) = p + 1
2
− 1

2
p2, the derivative is g′(p) = 1− p. Note that g′(p) ≥ 0 for

all p ∈ [1
2
, 1]. This implies that

0.875 = g(
1

2
) ≤ g(p) ≤ g(1) = 1,

so the first condition holds. For the second condition we note that |g′(p)| =
|1 − p| ≤ 1

2
= k < 1 for all p ∈ [1

2
, 1], so the second conditions is also satisfied,

which implies that the fixed point iteration is convergent for all p0 ∈ [1
2
, 1].

(c) Since g′(p) = 1 − p it follows that

|g′(−1)| = |2| = 2 > 1,

so the method is divergent.

(d) Graphically the Newton-Raphson method is given in Figure 1. The tangent in
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0
)
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tangent

Figure 1: The Newton-Raphson method

(p0, f(p0)) is given by:

l(x) = f(p0) + (x − p0)f
′(p0).
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Taking l(p1) = 0 leads to

f(p0) + (p1 − p0)f
′(p0) = 0.

Rewriting gives p1 = p0 −
f(p0)
f ′(p0)

.

(e) Starting with p0 = 1
2

we note that

f(p) =
p2

1 + p2
−

1

2
,

f ′(p) =
2p

(1 + p2)2
.

Substituting this into the formula gives

p1 =
1

2
−

(
1

4

1+ 1

4

− 1
2
)

1
(1+ 1

4
)2

= 0.96875

(f) Note that

|p̂i+1 − pi+1| = |p̂i −
f̂(p̂i)

f̂ ′(p̂i)
− (pi −

f(pi)

f ′(pi)
)|.

From the assumptions p̂i = pi and f̂ ′(pi) = f ′(pi) it follows that

|p̂i+1 − pi+1| ≤
|f̂(pi) − f(pi)|

|f ′(pi)|
≤

ǫ

|f ′(pi)|
≤ 4ǫ,

since

|f ′(p)| =
2p

(1 + p2)2
≥

2 · 1
2

(1 + 1)2
=

1

4
.
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