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1. (a) The amplification factor can be derived as follows. Consider the test equation
y′ = λy. Application of the trapezoidal rule to this equation gives:

wj+1 = wj +
h

2
(λwj + λwj+1) (1)

Rearranging of wj+1 and wj in (1) yields(
1− h

2
λ

)
wj+1 =

(
1 +

h

2
λ

)
wj.

It now follows that

wj+1 =
1 + h

2
λ

1− h
2
λ

wj,

and thus

Q(hλ) =
1 + h

2
λ

1− h
2
λ

.

(b) The definition of the local truncation error is

τj+1 =
yj+1 −Q(hλ)yj

h
.

The exact solution of the test equation is given by

yj+1 = ehλyj.

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(hλ)

τj+1 =
ehλ −Q(hλ)

h
yj. (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of ehλ with known point 0 is:

ehλ = 1 + λh +
(λh)2

2
+O(h3). (3)
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The Taylor series of 1
1−h

2
λ

with known point 0 is:

1

1− h
2
λ

= 1 +
1

2
hλ +

1

4
h2λ2 +O(h3). (4)

With (4) it follows that
1+h

2
λ

1−h
2
λ

is equal to

1 + h
2
λ

1− h
2
λ

= 1 + hλ +
1

2
(hλ)2 +O(h3). (5)

In order to determine ehλ − Q(hλ), we subtract (5) from (3). Now it follows
that

ehλ −Q(hλ) = O(h3). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to

τj+1 = O(h2).

(c) Application of the trapezoidal rule to

y′ = −2y + et, with y(0) = 2,

and step size h = 1 gives:

w1 = w0 +
h

2
[−2w0 + e0 − 2w1 + e].

Using the initial value w0 = y(0) = 2 and step size h = 1 gives:

w1 = 2 +
1

2
[−4− 2w1 + 1 + e].

This leads to

2w1 = 2 +
−3 + e

2
=

1

2
+

e

2
, so w1 =

1

4
+

e

4
.

(d) We use the following definition x1 = y and x2 = y′. This implies that x′1 = y′ =
x2 and x′2 = y′′ = −y′ − 1

2
y = −x2 − 1

2
x1. Writing this in vector notation shows

that [
x′1
x′2

]
=

[
0 1
−1

2
−1

] [
x1

x2

]
,

so A =

[
0 1
−1

2
−1

]
. To compute the eigenvalues we look for values of λ such

that
|A− λI| = 0.

2



This implies that λ is a solution of

λ2 + λ +
1

2
= 0,

which leads to the roots:

λ1 = −1

2
+

1

2
i and λ2 = −1

2
− 1

2
i.

(e) To investigate the stability it is sufficient that

|Q(hλ1)| ≤ 1 and |Q(hλ2)| ≤ 1.

Since λ1 and λ2 are complex valued, it is sufficient to check only the first in-
equality. This leads to ∣∣∣∣∣1 +

h(− 1
2
+ 1

2
i)

2

1− h(− 1
2
+ 1

2
i)

2

∣∣∣∣∣ ≤ 1,

which is equivalent to
|1− h

4
+ hi

4
|

|1 + h
4
− hi

4
|
≤ 1.

Using the definition of the absolute value we arrive at the inequality√
(1− h

4
)2 + (h

4
)2√

(1 + h
4
)2 + (h

4
)2

≤ 1.

This equality is valid for all values of h because√
(1− h

4
)2 + (

h

4
)2 ≤

√
(1 +

h

4
)2 + (

h

4
)2,

for all h > 0.

2. (a) The exact answer is 0.25. The composite Trapezoidal rule is given by

1

2
· {1

2
· 03 + (

1

2
)3 +

1

2
· 13} =

5

16
= 0.3125.

The difference with the exact answer is 1
16

= 0.0625.

(b) The rounding error is less than

h · {1

2
ε + ε . . . + ε +

1

2
ε} ≤ n · h · ε = (b− a) · ε.
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(c) The Taylor polynomial is given by

P1(x) = f(b) + (x− b)f ′(b)

whereas the truncation error is:

f(x)− P1(x) =
(x− b)2

2
f ′′(ξ), with ξ ∈ [a, b].

(d) Integrating this formula gives:

b∫
a

P1(x)dx =

b∫
a

f(b) + (x− b)f ′(b)dx = (b− a)f(b)− (a− b)2

2
f ′(b).

Suppose that M2 = maxξ∈[a,b]|f ′′(ξ)|. This implies that |f(x) − P1(x)| ≤
(x−b)2

2
M2. Integrating this formula gives:

|
b∫

a

f(x)dx−
(

(b− a)f(b)− (a− b)2

2
f ′(b)

)
≤

b∫
a

|f(x)− P1(x)|dx ≤

b∫
a

(x− b)2

2
M2dx =

(b− a)3

6
M2

(e) The composite rule is:

h · {f(a + h)− h

2
f ′(a + h) + f(a + 2h)− h

2
f ′(a + 2h) . . . + f(b)− h

2
f ′(b)}.

The result with the composite rule is:

1

2
· {(1

2
)3 − 3 · 1

2
· 1

2
· (1

2
)2 + (13)− 3 · 1

2
· 1

2
· 12} =

3

32
= 0.0938.

The difference with the exact answer is 5
32

= 0.1562.

(f) For the comparison we note that

• the new method has a worse behavior with respect to rounding errors, be-
cause rounding errors of f ′ also play a role.

• the new method costs n function evaluations (of f ′) more than the Trape-
zoidal rule

• The truncation error of the new method is given by

n · h3

6
maxξ∈[a,b]|f ′′(ξ)| =

(b− a)h2

6
maxξ∈[a,b]|f ′′(ξ)|

which is 2 times as large as the truncation error of the Trapezoidal rule.

Conclusion: the new method is worse than the Trapezoidal rule.
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