DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Friday August 29 2008, 14:00-17:00

1. (a) The amplification factor can be derived as follows. Consider the test equation $y^{\prime}=\lambda y$. Application of the trapezoidal rule to this equation gives:

$$
\begin{equation*}
w_{j+1}=w_{j}+\frac{h}{2}\left(\lambda w_{j}+\lambda w_{j+1}\right) \tag{1}
\end{equation*}
$$

Rearranging of w_{j+1} and w_{j} in (1) yields

$$
\left(1-\frac{h}{2} \lambda\right) w_{j+1}=\left(1+\frac{h}{2} \lambda\right) w_{j} .
$$

It now follows that

$$
w_{j+1}=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda} w_{j}
$$

and thus

$$
Q(h \lambda)=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda} .
$$

(b) The definition of the local truncation error is

$$
\tau_{j+1}=\frac{y_{j+1}-Q(h \lambda) y_{j}}{h}
$$

The exact solution of the test equation is given by

$$
y_{j+1}=e^{h \lambda} y_{j} .
$$

Combination of these results shows that the local truncation error of the test equation is determined by the difference between the exponential function and the amplification factor $Q(h \lambda)$

$$
\begin{equation*}
\tau_{j+1}=\frac{e^{h \lambda}-Q(h \lambda)}{h} y_{j} \tag{2}
\end{equation*}
$$

The difference between the exponential function and amplification factor can be computed as follows. The Taylor series of $e^{h \lambda}$ with known point 0 is:

$$
\begin{equation*}
e^{h \lambda}=1+\lambda h+\frac{(\lambda h)^{2}}{2}+\mathcal{O}\left(h^{3}\right) \tag{3}
\end{equation*}
$$

The Taylor series of $\frac{1}{1-\frac{h}{2} \lambda}$ with known point 0 is:

$$
\begin{equation*}
\frac{1}{1-\frac{h}{2} \lambda}=1+\frac{1}{2} h \lambda+\frac{1}{4} h^{2} \lambda^{2}+\mathcal{O}\left(h^{3}\right) \tag{4}
\end{equation*}
$$

With (4) it follows that $\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}$ is equal to

$$
\begin{equation*}
\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}=1+h \lambda+\frac{1}{2}(h \lambda)^{2}+\mathcal{O}\left(h^{3}\right) \tag{5}
\end{equation*}
$$

In order to determine $e^{h \lambda}-Q(h \lambda)$, we subtract (5) from (3). Now it follows that

$$
\begin{equation*}
e^{h \lambda}-Q(h \lambda)=\mathcal{O}\left(h^{3}\right) \tag{6}
\end{equation*}
$$

The local truncation error can be found by substituting (6) into (2), which leads to

$$
\tau_{j+1}=\mathcal{O}\left(h^{2}\right)
$$

(c) Application of the trapezoidal rule to

$$
y^{\prime}=-2 y+e^{t}, \text { with } y(0)=2
$$

and step size $h=1$ gives:

$$
w_{1}=w_{0}+\frac{h}{2}\left[-2 w_{0}+e^{0}-2 w_{1}+e\right]
$$

Using the initial value $w_{0}=y(0)=2$ and step size $h=1$ gives:

$$
w_{1}=2+\frac{1}{2}\left[-4-2 w_{1}+1+e\right] .
$$

This leads to

$$
2 w_{1}=2+\frac{-3+e}{2}=\frac{1}{2}+\frac{e}{2}, \text { so } w_{1}=\frac{1}{4}+\frac{e}{4} .
$$

(d) We use the following definition $x_{1}=y$ and $x_{2}=y^{\prime}$. This implies that $x_{1}^{\prime}=y^{\prime}=$ x_{2} and $x_{2}^{\prime}=y^{\prime \prime}=-y^{\prime}-\frac{1}{2} y=-x_{2}-\frac{1}{2} x_{1}$. Writing this in vector notation shows that

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

so $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -\frac{1}{2} & -1\end{array}\right]$. To compute the eigenvalues we look for values of λ such that

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

This implies that λ is a solution of

$$
\lambda^{2}+\lambda+\frac{1}{2}=0,
$$

which leads to the roots:

$$
\lambda_{1}=-\frac{1}{2}+\frac{1}{2} i \text { and } \lambda_{2}=-\frac{1}{2}-\frac{1}{2} i .
$$

(e) To investigate the stability it is sufficient that

$$
\left|Q\left(h \lambda_{1}\right)\right| \leq 1 \text { and }\left|Q\left(h \lambda_{2}\right)\right| \leq 1
$$

Since λ_{1} and λ_{2} are complex valued, it is sufficient to check only the first inequality. This leads to

$$
\left|\frac{1+\frac{h\left(-\frac{1}{2}+\frac{1}{2} i\right)}{2}}{1-\frac{h\left(-\frac{1}{2}+\frac{1}{2} i\right)}{2}}\right| \leq 1
$$

which is equivalent to

$$
\frac{\left|1-\frac{h}{4}+\frac{h i}{4}\right|}{\left|1+\frac{h}{4}-\frac{h i}{4}\right|} \leq 1 .
$$

Using the definition of the absolute value we arrive at the inequality

$$
\frac{\sqrt{\left(1-\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}}}{\sqrt{\left(1+\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}}} \leq 1
$$

This equality is valid for all values of h because

$$
\sqrt{\left(1-\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}} \leq \sqrt{\left(1+\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}},
$$

for all $h>0$.
2. (a) The exact answer is 0.25 . The composite Trapezoidal rule is given by

$$
\frac{1}{2} \cdot\left\{\frac{1}{2} \cdot 0^{3}+\left(\frac{1}{2}\right)^{3}+\frac{1}{2} \cdot 1^{3}\right\}=\frac{5}{16}=0.3125 .
$$

The difference with the exact answer is $\frac{1}{16}=0.0625$.
(b) The rounding error is less than

$$
h \cdot\left\{\frac{1}{2} \epsilon+\epsilon \ldots+\epsilon+\frac{1}{2} \epsilon\right\} \leq n \cdot h \cdot \epsilon=(b-a) \cdot \epsilon .
$$

(c) The Taylor polynomial is given by

$$
P_{1}(x)=f(b)+(x-b) f^{\prime}(b)
$$

whereas the truncation error is:

$$
f(x)-P_{1}(x)=\frac{(x-b)^{2}}{2} f^{\prime \prime}(\xi), \text { with } \xi \in[a, b]
$$

(d) Integrating this formula gives:

$$
\int_{a}^{b} P_{1}(x) d x=\int_{a}^{b} f(b)+(x-b) f^{\prime}(b) d x=(b-a) f(b)-\frac{(a-b)^{2}}{2} f^{\prime}(b) .
$$

Suppose that $M_{2}=\max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|$. This implies that $\left|f(x)-P_{1}(x)\right| \leq$ $\frac{(x-b)^{2}}{2} M_{2}$. Integrating this formula gives:

$$
\begin{gathered}
\left.\left|\int_{a}^{b} f(x) d x-\left((b-a) f(b)-\frac{(a-b)^{2}}{2} f^{\prime}(b)\right) \leq \int_{a}^{b}\right| f(x)-P_{1}(x) \right\rvert\, d x \leq \\
\int_{a}^{b} \frac{(x-b)^{2}}{2} M_{2} d x=\frac{(b-a)^{3}}{6} M_{2}
\end{gathered}
$$

(e) The composite rule is:

$$
h \cdot\left\{f(a+h)-\frac{h}{2} f^{\prime}(a+h)+f(a+2 h)-\frac{h}{2} f^{\prime}(a+2 h) \ldots+f(b)-\frac{h}{2} f^{\prime}(b)\right\} .
$$

The result with the composite rule is:

$$
\frac{1}{2} \cdot\left\{\left(\frac{1}{2}\right)^{3}-3 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}+\left(1^{3}\right)-3 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1^{2}\right\}=\frac{3}{32}=0.0938
$$

The difference with the exact answer is $\frac{5}{32}=0.1562$.
(f) For the comparison we note that

- the new method has a worse behavior with respect to rounding errors, because rounding errors of f^{\prime} also play a role.
- the new method costs n function evaluations (of f^{\prime}) more than the Trapezoidal rule
- The truncation error of the new method is given by

$$
\frac{n \cdot h^{3}}{6} \max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|=\frac{(b-a) h^{2}}{6} \max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|
$$

which is 2 times as large as the truncation error of the Trapezoidal rule.
Conclusion: the new method is worse than the Trapezoidal rule.

