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1. (a) The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
. (1)

Here we obtain yn+1 by a Taylor expansion around tn:

yn+1 = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (2)

From the Chain Rule of Differentiation, we know

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=

∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
y′(tn) =

=
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn).

(3)

Hence, one obtains

yn+1 = yn + hy′(tn) +
h2

2

(
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn)

)
+ O(h3). (4)

For zn+1, we obtain, after substitution of the predictor step for z̄n+1 into the
corrector step and after a Taylor expansion around (tn, yn)

zn+1 = yn + h
(

1
2
f(tn, yn) + 1

2
f(tn + h, yn + hf(tn, yn))

)
=

yn + h

(
1

2
f(tn, yn) +

1

2
(f(tn, yn) + h(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
)) + O(h2)

)
.

(5)
Subsequently, it follows that

yn+1 − zn+1 = O(h3), and, hence τn+1(h) =
O(h3)

h
= O(h2). (6)
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(b) To compute the amplification factor one uses the test equation y′ = λy. Apply-
ing the Modified Euler method gives:

predictor: wn+1 = wn + hf(tn, wn), (7)

corrector: wn+1 = wn +
h

2
[f(tn, wn) + f(tn+1, wn+1)]. (8)

so

predictor: wn+1 = wn + hλwn, (9)

corrector: wn+1 = wn +
h

2
[λwn + λ(wn + hλwn)]. (10)

Summarizing wn+1 = (1 + hλ + 1
2
(hλ)2)wn, which leads to the answer Q(hλ) =

1 + hλ + 1
2
(hλ)2.

(c) Use the transformation:

y1 = Φ ,

y2 = Φ′ ,

This implies that

y′1 = Φ′ = y2 ,

y′2 = Φ′′ = −Φ′ − 1

2
Φ = −y2 −

1

2
y1 = −1

2
y1 − y2; ,

So the matrix A is given by

(
0 1
−1

2
−1

)
.

(d) The eigenvalues of the matrix A are λ1 = −1
2

+ i
2

and λ2 = −1
2
− i

2
. For

stability it is needed that |Q(hλ1)| ≤ 1 and |Q(hλ2)| ≤ 1. Since λ2 = λ̄1

it is sufficient to check the inequality |Q(hλ1)| ≤ 1. Using h = 1 we obtain

Q(hλ1) = 1 + λ1 + 1
2
λ2

1 = 1
2

+ i
4
. Note that |Q(hλ1)| =

√
1
4

+ 1
16

= 0.5590 ≤ 1,

so the method is stable for h = 1.

(e) The Jacobian is defined by: (
∂f1

∂y1

∂f1

∂y2
∂f2

∂y1

∂f2

∂y2

)
Using the definition it follows that(

0 1
− cos(y1) 0

)
=

(
0 1

− cos π
4

0

)
=

(
0 1

−
√

2
2

0

)
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(f) The eigenvalues of the Jacobian matrix are λ1 = i
√

cos(y1) and λ2 = −i
√

cos(y1)
where we use that cos(y1) ≥ 0 if −π

2
≤ Φ ≤ π

2
. Using the stability region of

Modified Euler, it follows that the method is instable for all choices of h (so
also for h = 1) because hλ1 and hλ2 are both on the imaginary axis, which lies
outside the stability region of Modified Euler.

Another way to show this is to compute |Q(hλ1)|. For h = 1 this is equal to
|Q(λ1)| = |1 + i

√
cos(y1)− 1

2
cos(y1)|. Using the definition of the modulus of a

complex number it follows that

|Q(λ1)| =
√

(1− 1

2
cos(y1))2 + cos(y1) =

√
1 +

1

4
(cos(y1))2 > 1

so the method is instable for h = 1.

2. [a] We compute
x + y = 2/3 + 1999/3000 = 1.333,

and
x− y = 2/3− 1999/3000 = 1/3000 = 0.3333 . . . · 10−3

.

Further, we have fl(x) = 0.6667, fl(y) = 0.6663, and

fl(x) + fl(y) = 0.1333 · 101,

hence fl(fl(x) + fl(y)) = 0.1333 · 101.

For the subtraction, one obtains

fl(x)− fl(y) = 0.4 · 10−3,

and hence
fl(fl(x)− fl(y)) = fl(0.4 · 10−3) = 0.4000 · 10−3.

[b] After the addition, the relative error is given by

|0.1333 · 101 − 1.333

0.1333 · 101
| = 0,

and after the subtraction, one gets

|0.4000 · 10−3 − 0.3333 . . . · 10−3

0.3333 . . . · 10−3
| = 0.2.

[c] The relative error due to subtraction of two positive numbers is divided by the
difference between these numbers. If this difference gets arbitrarily small, then the
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relative error gets arbitrarily large for a given absolute error.

[d] The central differences formula, Q(h), gives

Q(h) =
x(0.5)− x(0)

0.5− 0
=

20− 4

0.5
= 32m/s = 115.2km/h. (11)

[e] After application of Taylor’s Theorem around x, one obtains for the truncation
error

Q(h)− f ′(x) =
f(x + h)− f(x− h)

2h
− f ′(x) =

=
f(x) + hf ′(x) + h2

2
f ′′(x) + h3

3!
f ′′′(x) + O(h4)

2h
+

−
f(x)− hf ′(x) + h2

2
f ′′(x)− h3

3!
f ′′′(x) + O(h4)

2h
− f ′(x) =

=
h2

3!
f ′′′(x) + O(h3) = O(h2).

(12)

Hence, the truncation error has O(h2).

[f] Let Q̂(h) and Q(h) be the central differences with the exact and measured data
respectively, then the magnitude of the error from the measurements is bounded from
above by

|Q̂(h)−Q(h)| = |20± ε− (4± ε)

0.5
− 20− 4

0.5
| ≤ 2ε

0.5
= 4ε m/s. (13)

[g] The correction is 3 km/h = 0.8333 m/s. Further, the maximum error from the
measurements equals the correction. Note that we should be consistent with the
units. Hence, one gets

4ε = 0.8333 m/s ⇔ ε =
0.8333

4
= 0.2083 m. (14)

The error from the measurements, corresponding to this correction, almost equals 21
cm.

4


