DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday 30 January 2007, 9:00-12:00

1. (a) The amplification factor can be derived as follows. Consider the test equation $y^{\prime}=\lambda y$. Application of the trapezoidal rule to this equation gives:

$$
\begin{equation*}
w_{j+1}=w_{j}+\frac{h}{2}\left(\lambda w_{j}+\lambda w_{j+1}\right) \tag{1}
\end{equation*}
$$

Rearranging of w_{j+1} and w_{j} in (1) yields

$$
\left(1-\frac{h}{2} \lambda\right) w_{j+1}=\left(1+\frac{h}{2} \lambda\right) w_{j} .
$$

It now follows that

$$
w_{j+1}=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda} w_{j}
$$

and thus

$$
Q(h \lambda)=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda} .
$$

(b) The definition of the local truncation error is

$$
\tau_{j+1}=\frac{y_{j+1}-Q(h \lambda) y_{j}}{h}
$$

The exact solution of the test equation is given by

$$
y_{j+1}=e^{h \lambda} y_{j} .
$$

Combination of these results shows that the local truncation error of the test equation is determined by the difference between the exponential function and the amplification factor $Q(h \lambda)$

$$
\begin{equation*}
\tau_{j+1}=\frac{e^{h \lambda}-Q(h \lambda)}{h} y_{j} \tag{2}
\end{equation*}
$$

The difference between the exponential function and amplification factor can be computed as follows. The Taylor series of $e^{h \lambda}$ with known point 0 is:

$$
\begin{equation*}
e^{h \lambda}=1+\lambda h+\frac{(\lambda h)^{2}}{2}+\mathcal{O}\left(h^{3}\right) \tag{3}
\end{equation*}
$$

The Taylor series of $\frac{1}{1-\frac{h}{2} \lambda}$ with known point 0 is:

$$
\begin{equation*}
\frac{1}{1-\frac{h}{2} \lambda}=1+\frac{1}{2} h \lambda+\frac{1}{4} h^{2} \lambda^{2}+\mathcal{O}\left(h^{3}\right) \tag{4}
\end{equation*}
$$

With (4) it follows that $\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}$ is equal to

$$
\begin{equation*}
\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}=1+h \lambda+\frac{1}{2}(h \lambda)^{2}+\mathcal{O}\left(h^{3}\right) \tag{5}
\end{equation*}
$$

In order to determine $e^{h \lambda}-Q(h \lambda)$, we subtract (5) from (3). Now it follows that

$$
\begin{equation*}
e^{h \lambda}-Q(h \lambda)=\mathcal{O}\left(h^{3}\right) \tag{6}
\end{equation*}
$$

The local truncation error can be found by substituting (6) into (2), which leads to

$$
\tau_{j+1}=\mathcal{O}\left(h^{2}\right)
$$

(c) Application of the trapezoidal rule to

$$
y^{\prime}=-4 y+2 t, \text { with } y(0)=2
$$

and step size $h=1$ gives:

$$
w_{1}=w_{0}+\frac{h}{2}\left[-4 w_{0}+0-4 w_{1}+2\right] .
$$

Using the initial value $w_{0}=y(0)=2$ and step size $h=1$ gives:

$$
w_{1}=2+\frac{1}{2}\left[-8-4 w_{1}+2\right] .
$$

This leads to

$$
3 w_{1}=2-3, \text { so } w_{1}=\frac{-1}{3}
$$

(d) We use the following definition $x_{1}=y$ and $x_{2}=y^{\prime}$. This implies that $x_{1}^{\prime}=y^{\prime}=$ x_{2} and $x_{2}^{\prime}=y^{\prime \prime}=-2 y^{\prime}-2 y=-2 x_{2}-2 x_{1}$. Writing this in vector notation shows that

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

so $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right]$. To compute the eigenvalues we look for values of λ such that

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

This implies that λ is a solution of

$$
\lambda^{2}+2 \lambda+2=0
$$

which leads to the roots:

$$
\lambda_{1}=-1+i \text { and } \lambda_{2}=-1-i
$$

(e) To investigate the stability it is sufficient that

$$
\mid Q\left(h \lambda_{1} \mid \leq 1 \text { and } \mid Q\left(h \lambda_{2} \mid \leq 1\right.\right.
$$

Since λ_{1} and λ_{2} are complex valued, it is sufficient to check only the first inequality. This leads to

$$
\left|\frac{1+\frac{h(-1+i)}{2}}{1-\frac{h(-1+i)}{2}}\right| \leq 1
$$

which is equivalent to

$$
\frac{\left|1-\frac{h}{2}+\frac{h i}{2}\right|}{\left|1+\frac{h}{2}+\frac{h i}{2}\right|} \leq 1
$$

Using the definition of the absolute value we arrive at the inequality

$$
\frac{\sqrt{\left(1-\frac{h}{2}\right)^{2}+\left(\frac{h}{2}\right)^{2}}}{\sqrt{\left(1+\frac{h}{2}\right)^{2}+\left(\frac{h}{2}\right)^{2}}} \leq 1
$$

This equality is valid for all values of h because

$$
\sqrt{\left(1-\frac{h}{2}\right)^{2}+\left(\frac{h}{2}\right)^{2}} \leq \sqrt{\left(1+\frac{h}{2}\right)^{2}+\left(\frac{h}{2}\right)^{2}}
$$

for all $h>0$.
2.
a) For the Dirichlet problem (1) we use a grid coinciding with the end points $x=0$ and $x=1$. For $h=\frac{1}{3}$, we have the two internal points $x_{1}=\frac{1}{3}$ and $x_{2}=\frac{2}{3}$. At each of these two points the second derivative in the differential equation is replaced by a second order (divided) difference:

$$
-\frac{w_{i-1}-2 w_{i}+w_{i+1}}{h^{2}}+w_{i}^{2}=1, i=1,2
$$

After substitution of the boundary values $w_{0}=0$ and $w_{3}=0$, multiplication by h^{2} and substitution of $h=\frac{1}{3}$ we find

$$
\begin{align*}
& 2 w_{1}-w_{2}+\frac{1}{9} w_{1}^{2}-\frac{1}{9}=0 \tag{7}\\
& -w_{1}+2 w_{2}+\frac{1}{9} w_{2}^{2}-\frac{1}{9}=0 \tag{8}
\end{align*}
$$

b) Substitution of $w_{1}=w_{2}=w$ into (7) yields

$$
\begin{equation*}
f(w)=w+\frac{1}{9} w^{2}-\frac{1}{9}=0 . \tag{9}
\end{equation*}
$$

Substitution into (8) yields the same equation, showing that the system (7) and (8) admits a symmetric solution. The roots of the quadratic equation (9) are

$$
\frac{-9 \pm \sqrt{85}}{2}
$$

The positive root corresponds to the positive solution of the boundary value problem.
c) Using second order interpolation, we have, as an approximation for $y\left(\frac{1}{2}\right)$:

$$
\begin{equation*}
w_{\max }=\Sigma_{k=0}^{2} w_{k} L_{k}\left(\frac{1}{2}\right)=w\left[L_{1}\left(\frac{1}{2}\right)+L_{2}\left(\frac{1}{2}\right)\right] \tag{10}
\end{equation*}
$$

using $w_{0}=0, w_{1}=w_{2}=w$.
The two Lagrangian polynomials used in this expression are given by:

$$
\begin{aligned}
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-0)\left(x-\frac{2}{3}\right)}{\left(\frac{1}{3}-0\right)\left(\frac{1}{3}-\frac{2}{3}\right)}=-9 x\left(x-\frac{2}{3}\right) \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-0)\left(x-\frac{1}{3}\right)}{\left(\frac{2}{3}-0\right)\left(\frac{2}{3}-\frac{1}{3}\right)}=\frac{9}{2} x\left(x-\frac{1}{3}\right)
\end{aligned}
$$

Substituting $L_{1}\left(\frac{1}{2}\right)=\frac{3}{4}$ and $L_{2}\left(\frac{1}{2}\right)=\frac{3}{8}$ into (10) gives $\frac{9}{8} w=\frac{9}{16}(-9+\sqrt{85}) \approx$ 0.123493 .
d) The truncation error $(T E)_{i}$ for point i is defined by

$$
\begin{equation*}
y_{i}^{\prime \prime}=\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}+(T E)_{i} . \tag{11}
\end{equation*}
$$

The expression for the truncation error $(T E)_{i}$ follows by expanding the second order difference into Taylor series,

$$
\begin{gather*}
(T E)_{i}=y_{i}^{\prime \prime}-\frac{\left[y_{i}-h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}-\frac{h^{3}}{6} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} y^{\prime \prime \prime \prime}\left(\xi_{i 1}\right)\right]-2 y_{i}+\left[y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}+\frac{h^{3}}{6} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} y^{\prime \prime \prime \prime}\left(\xi_{i 2}\right)\right]}{h^{2}} \tag{13}\\
=-\frac{h^{2}}{24}\left[y^{\prime \prime \prime \prime}\left(\xi_{i 1}\right)+y^{\prime \prime \prime \prime}\left(\xi_{i 2}\right)\right] . \tag{12}
\end{gather*}
$$

Because of the intermediate value theorem, $y^{\prime \prime \prime \prime}\left(\xi_{i 1}\right)+y^{\prime \prime \prime \prime}\left(\xi_{i 2}\right)$ can be replaced by $2 y^{\prime \prime \prime \prime}\left(\eta_{i}\right)$, and so

$$
\begin{equation*}
(T E)_{i}=c h^{2} y^{\prime \prime \prime \prime}\left(\eta_{i}\right) \tag{14}
\end{equation*}
$$

with $c=-\frac{1}{12}$.
e) Replacing $y_{i}^{\prime \prime}$ by (11), two equations for the exact solutions y_{1} and y_{2} result:

$$
-\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}-(T E)_{i}+y_{i}^{2}=1, i=1,2 .
$$

Use of the boundary conditions and multiplication by $h^{2}=\frac{1}{9}$ yields:

$$
\begin{align*}
& 2 y_{1}-y_{2}+\frac{1}{9} y_{1}^{2}-\frac{1}{9}=\frac{1}{9}(T E)_{1} \tag{15}\\
& -y_{1}+2 y_{2}+\frac{1}{9} y_{2}^{2}-\frac{1}{9}=\frac{1}{9}(T E)_{2} \tag{16}
\end{align*}
$$

Using (14), these equations become:

$$
\begin{align*}
& 2 y_{1}-y_{2}+\frac{1}{9} y_{1}^{2}-\frac{1}{9}=-\frac{1}{12}\left(\frac{1}{3}\right)^{4} y^{\prime \prime \prime \prime}\left(\eta_{1}\right), \quad \eta_{1} \in\left(0, \frac{2}{3}\right) \tag{17}\\
& -y_{1}+2 y_{2}+\frac{1}{9} y_{2}^{2}-\frac{1}{9}=-\frac{1}{12}\left(\frac{1}{3}\right)^{4} y^{\prime \prime \prime \prime}\left(\eta_{2}\right), \quad \eta_{2} \in\left(\frac{1}{3}, 1\right) \tag{18}
\end{align*}
$$

Because the exact solution is symmetric, the solution of this system must satisfy $y_{1}=y_{2}$. The substitution of $y_{1}=y_{2}$ yields identical left hand sides of (17) and (18). For consistency, it is required that $y^{\prime \prime \prime \prime}\left(\eta_{1}\right)=y^{\prime \prime \prime \prime}\left(\eta_{2}\right)$ which, in view of the shape of the solution curve, demands that η_{1} and η_{2} are located symmetrically with respect to the point $x=\frac{1}{2}$. The conclusion is that y satisfies the equation

$$
\begin{equation*}
f(y)=y+\frac{1}{9} y^{2}-\frac{1}{9}=\epsilon=-\frac{1}{12}\left(\frac{1}{3}\right)^{4} y^{\prime \prime \prime \prime}(\eta) \tag{19}
\end{equation*}
$$

where η is some point of the interval $(0,1)$. This equation is the exact counterpart of the equation (9) for the numerical value w.
f) Subtract (9) from (19):

$$
f(y)-f(w)=\epsilon
$$

Use the Taylor expansion $f(y)=f(w)+(y-w) \frac{\partial f}{\partial y}(w)+\ldots$, to linearize:

$$
f(y)-f(w)=(y-w) \frac{\partial f}{\partial y}(w)=\epsilon
$$

Differentiating the function f,

$$
\frac{\partial f}{\partial y}(y)=1+\frac{2}{9} y
$$

we can estimate:

$$
|y-w| \leq \frac{|\epsilon|}{1+\frac{2}{9} w}<|\epsilon|
$$

because $w>0$.
Use of the upper bound $\left|y^{\prime \prime \prime \prime}\right|<\frac{3}{4}$, as given by property (C), yields

$$
|\epsilon| \leq \frac{1}{12}\left(\frac{1}{3}\right)^{4} \max _{0<\xi<1}\left|y^{\prime \prime \prime \prime}(\xi)\right|<\frac{1}{16 * 81}<0.0008
$$

from which

$$
\begin{equation*}
|y-w|<0.0008 \tag{20}
\end{equation*}
$$

follows as an upper bound for the errors in the interpolation data.
g) Subtracting (10) from $\bar{w}_{\max }=\Sigma_{k=0}^{2} y_{k} L_{k}\left(\frac{1}{2}\right)$,

$$
\bar{w}_{\max }-w_{\max }=\Sigma_{k=0}^{2}\left(y_{k}-w_{k}\right) L_{k}\left(\frac{1}{2}\right)=(y-w)\left[L_{1}\left(\frac{1}{2}\right)+L_{2}\left(\frac{1}{2}\right)\right]
$$

the estimate

$$
\left|\bar{w}_{\max }-w_{\max }\right| \leq|y-w|\left(\frac{3}{4}+\frac{3}{8}\right),
$$

follows by using the values for the Lagrangian polynomials as computed under c).

Inserting (20), the upper bound

$$
\begin{equation*}
\left|\bar{w}_{\max }-w_{\max }\right|<\frac{9}{8} * 0.0008=0.0009 \tag{21}
\end{equation*}
$$

for the (absolute value of the) inherent error follows.
h) The interpolation error at $x=\frac{1}{2}$ is given by

$$
\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{3!} y^{\prime \prime \prime}(\xi)=\frac{\left(\frac{1}{2}-0\right)\left(\frac{1}{2}-\frac{1}{3}\right)\left(\frac{1}{2}-\frac{2}{3}\right)}{3!} y^{\prime \prime \prime}(\xi)=\frac{1}{432} y^{\prime \prime \prime}(\xi)
$$

Use of the given upper bound $\left|y^{\prime \prime \prime}\right|<\frac{1}{8}$ (see (C)) gives

$$
\begin{equation*}
\left|y\left(\frac{1}{2}\right)-\bar{w}_{\max }\right|<\frac{1}{432} \frac{1}{8}=0.00028 \ldots<0.0003 \tag{22}
\end{equation*}
$$

as an upper bound for the interpolation error.
i) The total error $y\left(\frac{1}{2}\right)-w_{\max }$ is estimated by

$$
\left|y\left(\frac{1}{2}\right)-w_{\max }\right| \leq\left|y\left(\frac{1}{2}\right)-\bar{w}_{\max }\right|+\left|\bar{w}_{\max }-w_{\max }\right|<0.0009+0.0003=0.0012
$$

using the results (21) and (22). The actual error is

$$
y\left(\frac{1}{2}\right)-w_{\max }=0.123598625-0.12349375 \approx 0.0001
$$

well within the estimated upper bound 0.0012 .

