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The amplification factor can be derived as follows. Consider the test equation
y' = A\y. Application of the trapezoidal rule to this equation gives:

h
Wil = W+ 5 (Awj + Awj41) (1)
Rearranging of w;; and w; in (1) yields

h h
<1 — 5)\) ij = <1 + 5)\) "LUj.

It now follows that

1+ 24X
w]+1 _%ija
and thus .
142X
h\) = 2"
QN = 3

The definition of the local truncation error is

Y1 — Q(hN)y;
Tj+1 = h .

The exact solution of the test equation is given by
Yj+1 = ehkyj-

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(h\)

hA
= 0N, )

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of e" with known point 0 is:

e =1+ \h+ (A—;)Q +O(h?). (3)



The Taylor series of ﬁ with known point 0 is:
2

1 1 1
=14 =hA+ —h*)\*> + O(R?). 4
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With (4) it follows that =2 is equal to
2
1+ 5 1, s 5
s~ =1+ hA+ - (RA)" + O(R%). (5)
1— 2 2

In order to determine e" — Q(h)\), we subtract (5) from (3). Now it follows
that
e —Q(h)\) = O(R?). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to
Tj+1 = O(hZ)

Application of the trapezoidal rule to
y' = —4y + 2t, with y(0) = 2,

and step size h = 1 gives:

h
w1 = Wy + 5[—4100 —I— 0 — 411)1 —f- 2]

Using the initial value wy = y(0) = 2 and step size h = 1 gives:
1
w1 = 2 + 5[—8 —4w1 +2]

This leads to 1
3wy =2 — 3, sowlz?.

We use the following definition x; = y and x = y'. This implies that ] =y’ =

xo and xf, = vy’ = =2y — 2y = —2x5 — 2xy. Writing this in vector notation
shows that
0 I VR T
.%'/2 a -2 =2 ) ’
so A = _02 _12 } . To compute the eigenvalues we look for values of A such
that
|A — M| =0.



This implies that A is a solution of
N F2XA+2=0,
which leads to the roots:
AM=—-14+7and \y =—1—1.

(e) To investigate the stability it is sufficient that
|Q(hA1] < 1 and |Q(hA2] < 1.

Since A; and Ay are complex valued, it is sufficient to check only the first in-

equality. This leads to
1+ h(—21+z)
1— h(721+i)

<1

— Y

which is equivalent to
h hi
|1 -5 + n

2
h o hi| =
11+ 35+ %
Using the definition of the absolute value we arrive at the inequality
V=2
Va+ 2+ @2

This equality is valid for all values of h because

<1

Ja-terede < Jas e by
for all h > 0.

a) For the Dirichlet problem (1) we use a grid coinciding with the end points x = 0

and x = 1. For h = %, we have the two internal points z; = % and zy = 2.

3 3
At each of these two points the second derivative in the differential equation is
replaced by a second order (divided) difference:
Wi—1 — 2W; + Wiy 2 ~
- hzl . +w; =1, 1=1,2.
After substitution of the boundary values wy = 0 and w3 = 0, multiplication by
h? and substitution of h = % we find

1 1
2w1—w2+§wf—§:(), (7)
2w+ sk — =0 (8)
—w w —Wy, — = = U.
1 2 9 2 9



b) Substitution of w; = wy = w into (7) yields

4, 1
f(w):w+§w—§—0. 9)

Substitution into (8) yields the same equation, showing that the system (7) and
(8) admits a symmetric solution. The roots of the quadratic equation (9) are

—9+ /85
—

The positive root corresponds to the positive solution of the boundary value
problem.

c¢) Using second order interpolation, we have, as an approximation for y(%):

Wmazr = Ezzokak(%> - w[L1<%) + LQ(%)]: (10)

using wy = 0, wy = we = w.
The two Lagrangian polynomials used in this expression are given by:

(x — x0) (v — 72) _(x_())(x_%)——xx—g
(x — x0) (2 — 1) _(1’_0>(9‘3_%)_9x$_1
Lalw) = (w2 —@o)(w2 —21)  (G-00(3-3) 2 ey

Substituting Li(3) = 2 and Ly(3) = 2 into (10) gives 3w = %(—9 + V/85) ~
0.123493.

d) The truncation error (T'E); for point i is defined by

v Yie1 = 2Yi + Vi
Y, = h2

+ (TE);. (11)

The expression for the truncation error (T'E); follows by expanding the second
order difference into Taylor series,

2 3 4 2 3 4
[y — bl + Syl — By By )] = 2y s+ B+ Sy 4 Iy 4 By (o)

(12)
2

= L (E) + " () (1)

Because of the intermediate value theorem, y"”(&;1) + y"”(&i2) can be replaced
by 2y""(n;), and so
(TE); = ch®y"" (), (14)

; — _ 1
with ¢ = i3



e) Replacing 3/ by (11), two equations for the exact solutions y; and y, result:

Yol = 2Yi Ty

3 (TE); +y? =1, i=1,2.

Use of the boundary conditions and multiplication by h? = % yields:

1 1

1
21 — 9 — = = (TE
Y1 — Y2+ 991 7 g 9( h
1 1 1
- 2 —ys —~==(TE
Y1+ 2y2 + 9%2 7 g 9( )2
Using (14), these equations become:
1 1 1.1 2
2 _ _2__:___4//// 0_
1 1 11 1
_ 2 - 2 _ - ___ (= 4 1 - 1

(15)

(16)

(17)

(18)

Because the exact solution is symmetric, the solution of this system must satisfy

y1 = Y. The substitution of y; = y» yields identical left hand sides of (17)

and

(18). For consistency, it is required that ¢y (1) = y"”(n2) which, in view of the
shape of the solution curve, demands that 7, and 7, are located symmetrically
with respect to the point x = % The conclusion is that y satisfies the equation

(19)

where 7 is some point of the interval (0,1). This equation is the exact counter-

part of the equation (9) for the numerical value w.
f) Subtract (9) from (19):

f(y)_f(w)zﬁ,
Use the Taylor expansion f(y) = f(w) + (y — w)g—g(w) + ..., to linearize:
o) = F(w) = (0= w) g (w) =«
Differentiating the function f,
of 2
Ty =142
By (y) =1+3v,
we can estimate: ¥
€
_ < <
y—ul < % <1



because w > 0.
Use of the upper bound |y"| < %, as given by property (C), yields

11
< 14 1 '
el = 5 (3)" max y™ (&) < 57 < 0.0008,
from which
ly — w| < 0.0008 (20)

follows as an upper bound for the errors in the interpolation data.
g) Subtracting (10) from Wynee = Si_oyeLi(3),

Binas — Wma = S-o0r = ) Lu(5) = (4 = w)[La(5) + La(3)L,

the estimate 3

3
_ _ <l — Q0 9

follows by using the values for the Lagrangian polynomials as computed under

c)

Inserting (20), the upper bound
9
[@nas = Wanao| < 3 *0.0008 = 0.0009 (21)

for the (absolute value of the) inherent error follows.

h) The interpolation error at « = 3 is given by

(:U - 370)(56 ;!371)(30 — x2)y///(£) _ (5 B O>(§ ;‘ §>(§ B E)y///<5) _ L

Use of the given upper bound |y"”| < g (see (C)) gives

1 11
=) = Wnae| < —= < = 0.00028... < 0.0003 22
1(5) = Wmae| < 555 (22)

as an upper bound for the interpolation error.

i) The total error y(%) — Wiy 18 estimated by

1 1, _ _
\y(§) — Winaz| < |y(§) — Winaz| + [Wimaz — Wmaz| < 0.0009 + 0.0003 = 0.0012,

using the results (21) and (22). The actual error is

1
y(ﬁ) — Wpae = 0.123598625 — 0.12349375 ~ 0.0001,

well within the estimated upper bound 0.0012.



