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1. (a) The amplification factor can be derived as follows. Consider the test equation
y′ = λy. Application of the trapezoidal rule to this equation gives:

wj+1 = wj +
h

2
(λwj + λwj+1) (1)

Rearranging of wj+1 and wj in (1) yields(
1− h

2
λ

)
wj+1 =

(
1 +

h

2
λ

)
wj.

It now follows that

wj+1 =
1 + h

2
λ

1− h
2
λ

wj,

and thus

Q(hλ) =
1 + h

2
λ

1− h
2
λ

.

(b) The definition of the local truncation error is

τj+1 =
yj+1 −Q(hλ)yj

h
.

The exact solution of the test equation is given by

yj+1 = ehλyj.

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(hλ)

τj+1 =
ehλ −Q(hλ)

h
yj. (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of ehλ with known point 0 is:

ehλ = 1 + λh +
(λh)2

2
+O(h3). (3)
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The Taylor series of 1
1−h

2
λ

with known point 0 is:

1

1− h
2
λ

= 1 +
1

2
hλ +

1

4
h2λ2 +O(h3). (4)

With (4) it follows that
1+h

2
λ

1−h
2
λ

is equal to

1 + h
2
λ

1− h
2
λ

= 1 + hλ +
1

2
(hλ)2 +O(h3). (5)

In order to determine ehλ − Q(hλ), we subtract (5) from (3). Now it follows
that

ehλ −Q(hλ) = O(h3). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to

τj+1 = O(h2).

(c) Application of the trapezoidal rule to

y′ = −4y + 2t, with y(0) = 2,

and step size h = 1 gives:

w1 = w0 +
h

2
[−4w0 + 0− 4w1 + 2].

Using the initial value w0 = y(0) = 2 and step size h = 1 gives:

w1 = 2 +
1

2
[−8− 4w1 + 2].

This leads to

3w1 = 2− 3, so w1 =
−1

3
.

(d) We use the following definition x1 = y and x2 = y′. This implies that x′
1 = y′ =

x2 and x′
2 = y′′ = −2y′ − 2y = −2x2 − 2x1. Writing this in vector notation

shows that [
x′

1

x′
2

]
=

[
0 1
−2 −2

] [
x1

x2

]
,

so A =

[
0 1
−2 −2

]
. To compute the eigenvalues we look for values of λ such

that
|A− λI| = 0.
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This implies that λ is a solution of

λ2 + 2λ + 2 = 0,

which leads to the roots:

λ1 = −1 + i and λ2 = −1− i.

(e) To investigate the stability it is sufficient that

|Q(hλ1| ≤ 1 and |Q(hλ2| ≤ 1.

Since λ1 and λ2 are complex valued, it is sufficient to check only the first in-
equality. This leads to ∣∣∣∣∣1 + h(−1+i)

2

1− h(−1+i)
2

∣∣∣∣∣ ≤ 1,

which is equivalent to
|1− h

2
+ hi

2
|

|1 + h
2

+ hi
2
|
≤ 1.

Using the definition of the absolute value we arrive at the inequality√
(1− h

2
)2 + (h

2
)2√

(1 + h
2
)2 + (h

2
)2

≤ 1.

This equality is valid for all values of h because√
(1− h

2
)2 + (

h

2
)2 ≤

√
(1 +

h

2
)2 + (

h

2
)2,

for all h > 0.

2.

a) For the Dirichlet problem (1) we use a grid coinciding with the end points x = 0
and x = 1. For h = 1

3
, we have the two internal points x1 = 1

3
and x2 = 2

3
.

At each of these two points the second derivative in the differential equation is
replaced by a second order (divided) difference:

−wi−1 − 2wi + wi+1

h2
+ w2

i = 1, i = 1, 2.

After substitution of the boundary values w0 = 0 and w3 = 0, multiplication by
h2 and substitution of h = 1

3
we find

2w1 − w2 +
1

9
w2

1 −
1

9
= 0, (7)

−w1 + 2w2 +
1

9
w2

2 −
1

9
= 0. (8)
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b) Substitution of w1 = w2 = w into (7) yields

f(w) = w +
1

9
w2 − 1

9
= 0. (9)

Substitution into (8) yields the same equation, showing that the system (7) and
(8) admits a symmetric solution. The roots of the quadratic equation (9) are

−9±
√

85

2
.

The positive root corresponds to the positive solution of the boundary value
problem.

c) Using second order interpolation, we have, as an approximation for y(1
2
):

wmax = Σ2
k=0wkLk(

1

2
) = w[L1(

1

2
) + L2(

1

2
)], (10)

using w0 = 0, w1 = w2 = w.
The two Lagrangian polynomials used in this expression are given by:

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 0)(x− 2
3
)

(1
3
− 0)(1

3
− 2

3
)

= −9x(x− 2

3
)

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 1
3
)

(2
3
− 0)(2

3
− 1

3
)

=
9

2
x(x− 1

3
)

Substituting L1(
1
2
) = 3

4
and L2(

1
2
) = 3

8
into (10) gives 9

8
w = 9

16
(−9 +

√
85) ≈

0.123493.

d) The truncation error (TE)i for point i is defined by

y′′i =
yi−1 − 2yi + yi+1

h2
+ (TE)i. (11)

The expression for the truncation error (TE)i follows by expanding the second
order difference into Taylor series,

(TE)i = y′′
i −

[yi − hy′
i + h2

2
y′′

i − h3

6
y′′′

i + h4

24
y′′′′(ξi1)] − 2yi + [yi + hy′

i + h2

2
y′′

i + h3

6
y′′′

i + h4

24
y′′′′(ξi2)]

h2

(12)

= −
h2

24
[y′′′′(ξi1) + y′′′′(ξi2)]. (13)

Because of the intermediate value theorem, y′′′′(ξi1) + y′′′′(ξi2) can be replaced
by 2y′′′′(ηi), and so

(TE)i = ch2y′′′′(ηi), (14)

with c = − 1
12

.
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e) Replacing y′′i by (11), two equations for the exact solutions y1 and y2 result:

−yi−1 − 2yi + yi+1

h2
− (TE)i + y2

i = 1, i = 1, 2.

Use of the boundary conditions and multiplication by h2 = 1
9

yields:

2y1 − y2 +
1

9
y2

1 −
1

9
=

1

9
(TE)1 (15)

−y1 + 2y2 +
1

9
y2

2 −
1

9
=

1

9
(TE)2 (16)

Using (14), these equations become:

2y1 − y2 +
1

9
y2

1 −
1

9
= − 1

12
(
1

3
)4y′′′′(η1), η1 ∈ (0,

2

3
) (17)

−y1 + 2y2 +
1

9
y2

2 −
1

9
= − 1

12
(
1

3
)4y′′′′(η2), η2 ∈ (

1

3
, 1) (18)

Because the exact solution is symmetric, the solution of this system must satisfy
y1 = y2. The substitution of y1 = y2 yields identical left hand sides of (17) and
(18). For consistency, it is required that y′′′′(η1) = y′′′′(η2) which, in view of the
shape of the solution curve, demands that η1 and η2 are located symmetrically
with respect to the point x = 1

2
. The conclusion is that y satisfies the equation

f(y) = y +
1

9
y2 − 1

9
= ε = − 1

12
(
1

3
)4y′′′′(η), (19)

where η is some point of the interval (0, 1). This equation is the exact counter-
part of the equation (9) for the numerical value w.

f) Subtract (9) from (19):
f(y)− f(w) = ε,

Use the Taylor expansion f(y) = f(w) + (y − w)∂f
∂y

(w) + . . ., to linearize:

f(y)− f(w) = (y − w)
∂f

∂y
(w) = ε.

Differentiating the function f ,

∂f

∂y
(y) = 1 +

2

9
y,

we can estimate:

|y − w| ≤ |ε|
1 + 2

9
w

< |ε|,
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because w > 0.
Use of the upper bound |y′′′′| < 3

4
, as given by property (C), yields

|ε| ≤ 1

12
(
1

3
)4 max

0<ξ<1
|y′′′′(ξ)| < 1

16 ∗ 81
< 0.0008,

from which
|y − w| < 0.0008 (20)

follows as an upper bound for the errors in the interpolation data.

g) Subtracting (10) from wmax = Σ2
k=0ykLk(

1
2
),

wmax − wmax = Σ2
k=0(yk − wk)Lk(

1

2
) = (y − w)[L1(

1

2
) + L2(

1

2
)],

the estimate

|wmax − wmax| ≤ |y − w|(3
4

+
3

8
),

follows by using the values for the Lagrangian polynomials as computed under
c).
Inserting (20), the upper bound

|wmax − wmax| <
9

8
∗ 0.0008 = 0.0009 (21)

for the (absolute value of the) inherent error follows.

h) The interpolation error at x = 1
2

is given by

(x− x0)(x− x1)(x− x2)

3!
y′′′(ξ) =

(1
2
− 0)(1

2
− 1

3
)(1

2
− 2

3
)

3!
y′′′(ξ) =

1

432
y′′′(ξ).

Use of the given upper bound |y′′′| < 1
8

(see (C)) gives

|y(
1

2
)− wmax| <

1

432

1

8
= 0.00028... < 0.0003 (22)

as an upper bound for the interpolation error.

i) The total error y(1
2
)− wmax is estimated by

|y(
1

2
)− wmax| ≤ |y(

1

2
)− wmax|+ |wmax − wmax| < 0.0009 + 0.0003 = 0.0012,

using the results (21) and (22). The actual error is

y(
1

2
)− wmax = 0.123598625− 0.12349375 ≈ 0.0001,

well within the estimated upper bound 0.0012.
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