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1. (a) Replace f(t, y) by λy in the RK4 formulas:

k1 = hλwn

k2 = hλ(wn + 1
2
k1) = hλ(1 + 1

2
hλ)wn

k3 = hλ(wn + 1
2
k2) = hλ(1 + 1

2
hλ(1 + 1

2
hλ))wn

k4 = hλ(wn + k3) = hλ(1 + hλ(1 + 1
2
hλ(1 + 1

2
hλ))wn

Substitution of these expressions into:

wn+1 = wn +
1

6
(k1 + 2k2 + 2k3 + k4),

and collecting like powers of hλ yields:

wn+1 = [1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4]wn.

The amplification factor is therefore:

Q(hλ) = 1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4.

(b) The local truncation error is defined as

τn+1 =
y(tn+1)− wn+1

h
, (1)

where wn+1 is the numerical solution at tn+1, obtained by starting from the
exact value y(tn) in stead of wn. Repeating the derivation under (a), with wn

replaced by y(tn), gives:
wn+1 = Q(hλ)y(tn).

Using furthermore y(tn+1) = ehλy(tn) in (1) it follows that

τn+1 =
ehλ −Q(hλ)

h
y(tn).

Canceling the first five terms of the expansion of ehλ against Q(hλ), the required
order of magnitude of τn+1 follows.
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(c) Use the transformation:

y1 = y ,

y2 = y′ ,

This implies that

y′1 = y′ = y2 ,

y′2 = y′′ = −qy1 − py2 + cos t ,

So the matrix A and vector g are:

A =

(
0 1

−q −p

)
; g(t) =

(
0

cos t

)
.

Characteristic equation: λ2 + pλ + q = 0. λ1,2 =
−p±

√
p2−4q

2
.

(d) Substitution of the values of p and q into the matrix A yields the eigenvalues
λ1,2 = −500 ± i. From the given drawing of the stability region the following
can be inferred. Because the imaginary part is much smaller than the real part,
an approximate stability condition can be obtained by simply neglecting the
imaginary part. Then h ≤ 2.8/500 follows as the stability condition.

(e)
y′′ + py′ + qy = cos t, y(0) = y0, y′(0) = y′0. (2)

The general solution of (2) is the sum of a homogeneous part, governed by the
eigenvalues, and the so called particular solution, which is some linear combina-
tion of sin t and cos t. Both exponentials in the homogeneous part are damped
very rapidly because of the (in absolute value) large real part of the eigenvalues
and, after a short time of order 10−3, the solution becomes practically equal to
the ’smooth’ particular solution (time scale of order 1). The smooth solution
can be integrated accurately by RK4 with a ’large’ stepsize: a step size of 0.1,
let us say, would give an error of order 10−4 which is sufficient for most engi-
neering purposes. However stability, governed by the eigenvalues, requires that
the stepsize be restricted (see part (d)) to 0.0056. So the stability requirement
forces us to choose a stepsize yielding an unnecessarily accurate solution, which
is inefficient.
The Trapezoidal rule, on the other hand, is stable for all stepsizes. So the step-
size is restricted by accuracy requirements only. The Trapezoidal rule has a
global error of order h2 such that a good accuracy may be expected for step-
sizes of about 0.01, larger than the restriction 0.0056. An efficiency gain may
be obtained in spite of the extra work connected with the implicitness of the
method.
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2. a Let xk = kh and yk := y(xk), then the first order derivative can be approximated
by

yk+1 − yk−1

2h
=

=
y(xk) + hy′(xk) + h2

2
y′′(xk) + h3

3!
y′′′(ξ1)− (y(xk)− hy′(xk) + h2

2
y′′(xk)− h3

3!
y′′′(ξ2))

2h
,

(3)
for a ξ1 ∈ (xk, xk +h) and ξ2 ∈ (xk−h, xk). The above expression is rearranged
to

yk+1 − yk−1

2h
= y′(xk) + O(h2). (4)

We use
yk−1 − 2yk + yk+1

h2
to approximate the second derivative. Using Taylor

expansions, one obtains with ξ1 ∈ (xk−1, xk) and ξ2 ∈ (xk, xk+1)

yk−1 = y(xk − h) = y(xk)− hy′(xk) +
h2

2!
y′′(xk)−

h3

3!
y′′′(xk) +

h4

4!
y′′′′(ξ1),

yk+1 = y(xk + h) = y(xk) + hy′(xk) +
h2

2!
y′′(xk) +

h3

3!
y′′′(xk) +

h4

4!
y′′′′(ξ2).

(5)
Substitution of these expressions into the approximation for the second deriva-
tive, gives

−yk−1 + 2yk − yk+1

h2
= y′′(xk) + O(h2). (6)

Further, we have Dirichlet conditions, hence the above equation holds for all i ∈
{1, . . . , n}. Using the approximations for the first- and second order derivative,
gives the following discretization of the given boundary value problem

−x2
k

wk+1 − 2wk + wk−1

h2
+ xk

wk+1 − wk−1

2h
+ wk = x2

k, for i ∈ {1, . . . , n}. (7)

The local truncation error is given by

(ε)k = (Ay − f)k = −x2
k

yk−1 − 2yk + yk+1

h2
+ xk

yk+1 − yk−1

2h
+ yk − x2

k =

= −x2
k

yk−1 − 2yk + yk+1

h2
+ xk

yk+1 − yk−1

2h
+ yk −

[
−x2

ky
′′(xk) + xky

′(xk) + y(xk)
]

=

= O(h2).
(8)

In which the differential equation has been substituted to arrive at the second
equality of the above equation.
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b For n = 2, we have h = 1/3. Elaboration of equation (5) for the two internal
grid nodes, gives

−x2
1

w2 − 2w1 + w0

h2
+ x1

w2 − w0

2h
+ w1 = x2

1,

−x2
2

w3 − 2w2 + w1

h2
+ x2

w3 − w1

2h
+ w2 = x2

2.

(9)

Substitution of h = 1/3, x1 = 1/3, x2 = 2/3, y0 = 0 and y3 = 1, gives

−(w2 − 2w1) + 1/2w2 + w1 = 1/9,

−4(1− 2w2 + w1) + 1− w1 + w2 = 4/9.
(10)

Rearrangement of the above equations, gives

3w1 − 1/2w2 = 1/9,

−5w1 + 9w2 = 4/9 + 4− 1 = 31/9.
(11)

c i The Trapezoidal Rule for integration is given by∫ b

a

f(x)dx ≈ b− a

2
(f(a) + f(b)). (12)

Let xk = a + kh and xn = b, then the composite Trapezoidal Rule is given
by ∫ b

a

f(x)dx ≈ h

(
f(a)

2
+ f(x1) + . . . + f(xn−1) +

f(b)

2

)
. (13)

ii The approximation for the integral using the composite Trapezoidal Rule
with h = 1/3 is ∫ 1

0

y(x)dx ≈ 1

3
(1/9 + 4/9 + 1/2) = 19/54. (14)

d i Given two points (x0, y(x0)) and (x1, y(x1)), then the linear interpolation
polynomial, P (x), is given by

P (x) = y(x0)
x− x1

x0 − x1

+ y(x1)
x− x0

x1 − x0

. (15)

Substitution of the points x0 = 2/3, x1 = 1, y(x0) = 4/9 and y(x0) = 4/9
and y(1) = 1, yields

P (x) = 4/9 · x− 1

2/3− 1
+ 1 · x− 2/3

1− 2/3
= 5/3x− 2/3. (16)

ii Next, we find x̃ such that P (x̃) = 1/2, hence, we solve

5/3x̃− 2/3 = 1/2 ⇐⇒ x̃ = 7/10. (17)
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