DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday 31 January 2006, 14:00-17:00

1. a) In (1), substitute u^{\star} into the second equation, replace u_{n} by the exact solution y_{n}, and expand

$$
\overline{u_{n+1}}=y_{n}+\beta h f\left(t_{n}+\alpha h, y_{n}+\alpha h f\left(t_{n}, y_{n}\right)\right)
$$

into a Taylorseries:

$$
\begin{aligned}
\overline{u_{n+1}} & =y\left(t_{n}\right)+\beta h\left[f+\alpha h f_{t}+\alpha h f f_{y}+O\left(h^{2}\right)\right]\left(t_{n}, y_{n}\right) \\
& =y\left(t_{n}\right)+\beta h f\left(t_{n}, y_{n}\right)+\alpha \beta h^{2}\left[f_{t}+f f_{y}\right]\left(t_{n}, y_{n}\right)+O\left(h^{3}\right) \\
& =y\left(t_{n}\right)+\beta h y^{\prime}\left(t_{n}\right)+\alpha \beta h^{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right),
\end{aligned}
$$

where $y^{\prime \prime}=f_{t}+f f_{y}$ (an identity which follows by differentiation of the differential equation $\left.y^{\prime}=f(t, y)\right)$ has been used to obtain the last line. Now subtracting the expansion $y\left(t_{n+1}\right)=y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)$ and dividing by h gives the expansion of the local truncation error τ_{n+1} :

$$
\tau_{n+1}=\frac{y\left(t_{n+1}\right)-\overline{u_{n+1}}}{h}=(1-\beta) y\left(t_{n}\right)+\left(\frac{1}{2}-\alpha \beta\right) h y^{\prime \prime}\left(t_{n}\right)+O\left(h^{2}\right) .
$$

It follows that τ_{n+1} is $\mathrm{O}(1)$ unless $\beta=1$ and, furthermore, that α has to be chosen $\frac{1}{2}$ in order to achieve $\tau_{n+1}=\mathrm{O}\left(h^{2}\right)$.
b) Substitute the test equation $y^{\prime}=\lambda y$ into (1) with $\beta=1$:

$$
\begin{aligned}
u^{\star} & =u_{n}+\alpha h \lambda u_{n}=(1+\alpha h \lambda) u_{n} \\
u_{n+1} & =u_{n}+h \lambda(1+\alpha h \lambda) u_{n}=\left(1+h \lambda+\alpha(h \lambda)^{2}\right) u_{n} .
\end{aligned}
$$

It follows that the amplification factor is $C(h \lambda)=1+h \lambda+\alpha(h \lambda)^{2}$.
c) The eigenvalues of the system follow by putting the characteristic polynomial

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right)=\lambda^{2}+1
$$

equal to zero. This yields the two purely imaginary eigenvalues $\pm i$. Substitution of these eigenvalues into the amplification factor of b) gives $C(h \lambda)=1 \pm i h-\alpha h^{2}$. For stability, the modulus of $C(h \lambda)$ should be smaller than 1:

$$
\left(1-\alpha h^{2}\right)^{2}+h^{2}<1,
$$

and thus

$$
1-2 \alpha h^{2}+\alpha^{2} h^{4}+h^{2}<1
$$

This can be reduced to

$$
-2 \alpha+\alpha^{2} h^{2}+1<0,
$$

and rewritten as the stabiltity condition

$$
h^{2}<\frac{2 \alpha-1}{\alpha^{2}}
$$

It follows that no stable stepsizes exist for $\alpha<\frac{1}{2}$.
d) Putting $x_{1}=y$ en $x_{2}=y^{\prime}$, we have $x_{1}^{\prime}=x_{2}$, while substitution of the new names into $y^{\prime \prime}+6 y^{\prime}+5 y=\sin t$ gives $x_{2}^{\prime}+6 x_{2}+36 x_{1}=\sin t$. In vector form:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
-36 & -6
\end{array}\right) \mathbf{x}+\binom{0}{\sin t} .
$$

Now put

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-36 & -6-\lambda
\end{array}\right)=\lambda^{2}+6 \lambda+36=(\lambda+3)^{2}+27
$$

equal to zero and it follows that $-3 \pm 3 i \sqrt{3}$ are the eigenvalues of the system (1).
e) Putting $\beta=1$ and $\alpha=0$ in (1) we recover the forward Euler method with the stability region as given in the hint of part e) of the assignment. Now mark the eigenvalues in the complex $h \lambda$-domain. A rough estimate then shows that a stepsize of $\frac{1}{10}$ is sufficiently small to bring $h \lambda$ into the Euler stability region. The precise upperbound for $\mathrm{h}\left(\frac{1}{6}\right)$ is somewhat larger than 0.1.
2. (a) The exact answer is 0.75 . The composite Trapezoidal rule is given by

$$
\frac{1}{2} \cdot\left\{\frac{1}{2} \cdot\left(1-0^{3}\right)+1-\left(\frac{1}{2}\right)^{3}+\frac{1}{2} \cdot\left(1-1^{3}\right)\right\}=\frac{11}{16}=0.6875
$$

The difference with the exact answer is 0.0625 .
(b) The rounding error is less than

$$
h \cdot\left\{\frac{1}{2} \epsilon+\epsilon \ldots+\epsilon+\frac{1}{2} \epsilon\right\} \leq n \cdot h \cdot \epsilon=(b-a) \cdot \epsilon .
$$

(c) The Taylor polynomial is given by

$$
P_{1}(x)=f(a)+(x-a) f^{\prime}(a)
$$

whereas the truncation error is:

$$
f(x)-P_{1}(x)=\frac{(x-a)^{2}}{2} f^{\prime \prime}(\xi), \text { with } \xi \in[a, b]
$$

(d) Integrating this formula gives:

$$
\int_{a}^{b} P_{1}(x) d x=\int_{a}^{b} f(a)+(x-a) f^{\prime}(a) d x=(b-a) f(a)+\frac{(b-a)^{2}}{2} f^{\prime}(a)
$$

Suppose that $M_{2}=\max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|$. This implies that $\left|f(x)-P_{1}(x)\right| \leq$ $\frac{(x-a)^{2}}{2} M_{2}$. Integrating this formula gives:

$$
\begin{gathered}
\left.\left|\int_{a}^{b} f(x) d x-\left((b-a) f(a)+\frac{(b-a)^{2}}{2} f^{\prime}(a)\right) \leq \int_{a}^{b}\right| f(x)-P_{1}(x) \right\rvert\, d x \leq \\
\int_{a}^{b} \frac{(x-a)^{2}}{2} M_{2} d x=\frac{(b-a)^{3}}{6} M_{2}
\end{gathered}
$$

(e) The composite rule is:

$$
h \cdot\left\{f(a)+\frac{h}{2} f^{\prime}(a)+f(a+h)+\frac{h}{2} f^{\prime}(a+h) \ldots+f(b-h)+\frac{h}{2} f^{\prime}(b-h)\right\} .
$$

The result with the composite rule is:

$$
\frac{1}{2} \cdot\left\{\left(1-0^{3}\right)-3 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 0^{2}+\left(1-\left(\frac{1}{2}\right)^{3}\right)-3 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}\right\}=\frac{27}{32}=0.8438
$$

The difference with the exact answer is 0.0938 .
(f) For the comparison we note that

- the new method has a worse behavior with respect to rounding errors, because rounding errors of f^{\prime} also play a role.
- the new method costs n function evaluations (of f^{\prime}) more than the Trapezoidal rule
- The truncation error of the new method is given by

$$
\frac{n \cdot h^{3}}{6} \max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|=\frac{(b-a) h^{2}}{6} \max _{\xi \in[a, b]}\left|f^{\prime \prime}(\xi)\right|
$$

which is 2 times as large as the truncation error of the Trapezoidal rule.
Conclusion: the new method is worse than the Trapezoidal rule.

