DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Wednesday 30 August 2006, 9:00-12:00

1.

a The local truncation error is defined as

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where z_{n+1} is given by

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2} f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right) .\right. \tag{2}
\end{equation*}
$$

A Taylor expansion of f around $\left(t_{n}, y_{n}\right)$ yields

$$
\begin{equation*}
f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)=f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)+O\left(h^{2}\right) . \tag{3}
\end{equation*}
$$

This is substituted into equation (2) to obtain

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2}\left[f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)\right]\right)+O\left(h^{3}\right) \tag{4}
\end{equation*}
$$

A Taylor series for $y(x)$ around t_{n} gives for y_{n+1}

$$
\begin{equation*}
y_{n+1}=y\left(t_{n}+h\right)=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{5}
\end{equation*}
$$

Equations (5) and (4) are substituted into relation (1) to obtain

$$
\begin{equation*}
\tau_{n+1}(h)=f\left(t_{n}, y_{n}\right)\left(1-\left(a_{1}+a_{2}\right)\right)+h\left(\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y}\right)\left(\frac{1}{2}-a_{2}\right)+O\left(h^{2}\right) \tag{6}
\end{equation*}
$$

Hence
(a) $a_{1}+a_{2}=1$ implies $\tau_{n+1}(h)=O(h)$;
(b) $a_{1}+a_{2}=1$ and $a_{2}=1 / 2$, that is, $a_{1}=a_{2}=1 / 2$, gives $\tau_{n+1}(h)=O\left(h^{2}\right)$.
b The auxiliary equation is given by

$$
\begin{equation*}
y^{\prime}=\lambda y \tag{7}
\end{equation*}
$$

Application of the predictor step to the auxiliary equation gives

$$
\begin{equation*}
w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} \tag{8}
\end{equation*}
$$

The corrector step yields

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left(a_{1} \lambda w_{n}+a_{2} \lambda(1+h \lambda) w_{n}\right)=\left(1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2}\right) w_{n} \tag{9}
\end{equation*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2} . \tag{10}
\end{equation*}
$$

c Let $\lambda<0$ (so λ is real), then, for stability, the amplification factor must satisfy

$$
\begin{equation*}
-1 \leq Q(h \lambda) \leq 1 \tag{11}
\end{equation*}
$$

from the previous assignment, we have

$$
\begin{equation*}
-1 \leq 1+\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 1 \Leftrightarrow-2 \leq\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 0 \tag{12}
\end{equation*}
$$

First, we consider the left inequality:

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda+2 \geq 0 \tag{13}
\end{equation*}
$$

For $h \lambda=0$, the above inequality is satisfied, further the discriminant is given by $\left(a_{1}+a_{2}\right)^{2}-8 a_{2}<0$. Here the last inequality follows from the given hypothesis. Hence the left inequality in relation (12) is always satisfied. Next we consider the right hand inequality of relation (12)

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda \leq 0 \tag{14}
\end{equation*}
$$

This relation is rearranged into

$$
\begin{equation*}
a_{2}(h \lambda)^{2} \leq-\left(a_{1}+a_{2}\right) h \lambda, \tag{15}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{2}|h \lambda|^{2} \leq\left(a_{1}+a_{2}\right)|h \lambda| \Leftrightarrow|h \lambda| \leq \frac{a_{1}+a_{2}}{a_{2}}, \quad a_{2} \neq 0 \tag{16}
\end{equation*}
$$

This results into the following condition for stability

$$
\begin{equation*}
h \leq \frac{a_{1}+a_{2}}{a_{2}|\lambda|}, \quad a_{2} \neq 0 \tag{17}
\end{equation*}
$$

d The Jacobian, J, is given by

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \tag{18}\\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right) .
$$

Since $f_{1}\left(y_{1}, y_{2}\right)=-y_{1} y_{2}$ and $f_{2}\left(y_{1}, y_{2}\right)=y_{1} y_{2}-y_{2}$, we obtain

$$
J=\left(\begin{array}{cc}
-y_{2} & -y_{1} \tag{19}\\
y_{2} & y_{1}-1
\end{array}\right) .
$$

Substitution of the initial values $y_{1}(0)=y_{2}(0)=1$, gives

$$
J=\left(\begin{array}{cc}
-1 & -1 \tag{20}\\
1 & 0
\end{array}\right)
$$

e The eigenvalues of the Jacobian at $y_{1}(0)=y_{2}(0)=1$ are given by $\lambda_{1,2}=-1 / 2(1 \pm$ $i \sqrt{3})$. For our case, we have

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+1 / 2(h \lambda)^{2} . \tag{21}
\end{equation*}
$$

Since our eigenvalues are not real valued, it is required for stability that

$$
\begin{equation*}
|Q(h \lambda)| \leq 1 \tag{22}
\end{equation*}
$$

Since the eigenvalues are complex conjugates, we can proceed with one of the eigenvalues, say $\lambda=-1 / 2(1+i \sqrt{3})$ with $\lambda^{2}=1 / 2(-1+i \sqrt{3})$, to obtain

$$
\begin{gather*}
Q(h \lambda)=1+h(-1 / 2-1 / 2 i \sqrt{3})+1 / 2 h^{2}(-1 / 2+1 / 2 i \sqrt{3})= \\
=1-1 / 2 h-1 / 4 h^{2}+\frac{i \sqrt{3}}{2}\left(1 / 2 h^{2}-h\right) \tag{23}
\end{gather*}
$$

Next, we compute the square of the modulus of the above expression, to obtain

$$
\begin{equation*}
\left(1-1 / 2 h-1 / 4 h^{2}\right)^{2}+\frac{3}{4}\left(1 / 2 h^{2}-h\right)^{2} \leq 1 . \tag{24}
\end{equation*}
$$

After some elementary algebra, and division by h, we obtain

$$
\begin{equation*}
-1+\frac{h}{2}-\frac{h^{2}}{2}+\frac{h^{3}}{4} \leq 0 \Leftrightarrow h^{3}-2 h^{2}+2 h \leq 4 \tag{25}
\end{equation*}
$$

It can be seen that the derivative of $h^{3}-2 h^{2}+2 h$ is positive and never zero, hence $h^{3}-2 h^{2}+2 h$ is monotonically increasing. Further, by direct substitution it can be seen that $h=2$ gives equality in relation (25). Hence, the criterion for stability becomes $h \leq 2$.

Remark: The candidate should be rewarded with all the credits minus 0.5 if he or she reaches relation (25).
2. (a) A fixed point p satisfies the equation $p=g(p)$. Substitution gives: $p=-\frac{p^{3}}{6}+\frac{25}{48}$. Rewriting this expression gives:

$$
\begin{array}{r}
\frac{p^{3}}{6}+p-\frac{25}{48}=0 \\
p^{2}+6-\frac{25}{8 p}=0 \\
f(p)=0
\end{array}
$$

The fixed point iteration is defined by: $p_{i+1}=g\left(p_{i}\right)$. Starting with $p_{0}=1$ one obtains:

$$
\begin{aligned}
& p_{1}=0.3542 \\
& p_{2}=0.5134 \\
& p_{3}=0.4983
\end{aligned}
$$

(b) The fixed point iteration is illustrated in the next figure.

(c) For the convergence two conditions should be satisfied:

- $g(p) \in[0,1]$ for all $p \in[0,1]$.
- $\left|g^{\prime}(p)\right| \leq k<1$ for all $p \in[0,1]$.

Since $g(p)=-\frac{p^{3}}{6}+\frac{25}{48}$ it follows that $g^{\prime}(p)=-\frac{p^{2}}{2}$. Note that $g^{\prime}(p) \leq 0$ for all $p \in[0,1]$. This implies that $\frac{25}{48}=g(0) \geq g(p) \geq g(1)=\frac{17}{48}$ for all $p \in[0,1]$, so the first condition holds. For the second condition we note that $\left|g^{\prime}(p)\right|=\frac{p^{2}}{2} \leq$ $\frac{1}{2}=k<1$ for all $p \in[0,1]$, so the second conditions is also satisfied, which implies that the fixed point iteration is convergent for all $p_{0} \in[0,1]$.

Figure 1: The Newton-Raphson method
(d) Graphically the Newton-Raphson method is given in Figure 1. The tangent in $\left(p_{0}, f\left(p_{0}\right)\right)$ is given by:

$$
l(x)=f\left(p_{0}\right)+\left(x-p_{0}\right) f^{\prime}\left(p_{0}\right)
$$

Taking $l\left(p_{1}\right)=0$ leads to

$$
f\left(p_{0}\right)+\left(p_{1}-p_{0}\right) f^{\prime}\left(p_{0}\right)=0
$$

Rewriting gives $p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}$.
(e) Starting with $p_{0}=1$ we note that

$$
\begin{aligned}
f(p) & =p^{2}+6-\frac{25}{8 p}, \quad f(1)=1+6-\frac{25}{8}=3 \frac{7}{8} \\
f^{\prime}(p) & =2 p+\frac{25}{8 p^{2}}, \quad f^{\prime}(1)=5 \frac{1}{8}
\end{aligned}
$$

Substituting this into the formula gives $p_{1}=1-\frac{3 \frac{7}{8}}{5 \frac{1}{8}}=1-\frac{31}{41}=\frac{10}{41}=0.2439$.
(f) One can prove that the convergence of the Newton-Raphson method is quadratically as follows:

$$
0=f(p)=f\left(p_{n}\right)+\left(p-p_{n}\right) f^{\prime}\left(p_{n}\right)+\frac{\left(p-p_{n}\right)^{2}}{2} f^{\prime \prime}\left(\xi_{n}\right), \xi_{n} \in\left(p_{n}, p\right)
$$

Due to the definition one has

$$
0=f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right)
$$

Subtraction yields

$$
p_{n+1}-p=\left(p_{n}-p\right)^{2} \frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}
$$

which implies quadratic convergence.

