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1.

a The local truncation error is defined as

τn+1(h) =
yn+1 − zn+1

h
, (1)

where zn+1 is given by

zn+1 = yn + h (a1f(tn, yn) + a2f(tn + h, yn + hf(tn, yn)) . (2)

A Taylor expansion of f around (tn, yn) yields

f(tn+h, yn+hf(tn, yn)) = f(tn, yn)+h
∂f

∂t
(tn, yn)+hf(tn, yn)

∂f

∂y
(tn, yn)+O(h2). (3)

This is substituted into equation (2) to obtain

zn+1 = yn+h

(

a1f(tn, yn) + a2

[

f(tn, yn) + h
∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn)

])

+O(h3).

(4)
A Taylor series for y(x) around tn gives for yn+1

yn+1 = y(tn + h) = yn + hy′(tn) +
h2

2
y′′(tn) + O(h3). (5)

Equations (5) and (4) are substituted into relation (1) to obtain

τn+1(h) = f(tn, yn)(1 − (a1 + a2)) + h

(

∂f

∂t
+ f

∂f

∂y

) (

1

2
− a2

)

+ O(h2) (6)

Hence

(a) a1 + a2 = 1 implies τn+1(h) = O(h);

(b) a1 + a2 = 1 and a2 = 1/2, that is, a1 = a2 = 1/2, gives τn+1(h) = O(h2).
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b The auxiliary equation is given by

y′ = λy. (7)

Application of the predictor step to the auxiliary equation gives

w∗
n+1 = wn + hλwn = (1 + hλ)wn. (8)

The corrector step yields

wn+1 = wn + h (a1λwn + a2λ(1 + hλ)wn) = (1 + (a1 + a2)hλ + a2h
2λ2)wn. (9)

Hence the amplification factor is given by

Q(hλ) = 1 + (a1 + a2)hλ + a2h
2λ2. (10)

c Let λ < 0 (so λ is real), then, for stability, the amplification factor must satisfy

−1 ≤ Q(hλ) ≤ 1, (11)

from the previous assignment, we have

−1 ≤ 1 + (a1 + a2)hλ + a2(hλ)2 ≤ 1 ⇔ −2 ≤ (a1 + a2)hλ + a2(hλ)2 ≤ 0. (12)

First, we consider the left inequality:

a2(hλ)2 + (a1 + a2)hλ + 2 ≥ 0 (13)

For hλ = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + a2)

2 − 8a2 < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (12) is always satisfied. Next we consider the
right hand inequality of relation (12)

a2(hλ)2 + (a1 + a2)hλ ≤ 0. (14)

This relation is rearranged into

a2(hλ)2 ≤ −(a1 + a2)hλ, (15)

hence

a2|hλ|2 ≤ (a1 + a2)|hλ| ⇔ |hλ| ≤ a1 + a2

a2
, a2 6= 0. (16)

This results into the following condition for stability

h ≤ a1 + a2

a2|λ|
, a2 6= 0. (17)
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d The Jacobian, J , is given by

J =











∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2











. (18)

Since f1(y1, y2) = −y1y2 and f2(y1, y2) = y1y2 − y2, we obtain

J =

(

−y2 −y1

y2 y1 − 1

)

. (19)

Substitution of the initial values y1(0) = y2(0) = 1, gives

J =

(

−1 −1
1 0

)

. (20)

e The eigenvalues of the Jacobian at y1(0) = y2(0) = 1 are given by λ1,2 = −1/2(1 ±
i
√

3). For our case, we have

Q(hλ) = 1 + hλ + 1/2(hλ)2. (21)

Since our eigenvalues are not real valued, it is required for stability that

|Q(hλ)| ≤ 1. (22)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say λ = −1/2(1 + i

√
3) with λ2 = 1/2(−1 + i

√
3), to obtain

Q(hλ) = 1 + h(−1/2 − 1/2i
√

3) + 1/2h2(−1/2 + 1/2i
√

3) =

= 1 − 1/2h − 1/4h2 + i
√

3
2

(1/2h2 − h).

(23)

Next, we compute the square of the modulus of the above expression, to obtain

(1 − 1/2h − 1/4h2)2 +
3

4
(1/2h2 − h)2 ≤ 1. (24)

After some elementary algebra, and division by h, we obtain

−1 +
h

2
− h2

2
+

h3

4
≤ 0 ⇔ h3 − 2h2 + 2h ≤ 4. (25)

It can be seen that the derivative of h3 − 2h2 + 2h is positive and never zero, hence
h3 − 2h2 + 2h is monotonically increasing. Further, by direct substitution it can be
seen that h = 2 gives equality in relation (25). Hence, the criterion for stability
becomes h ≤ 2.

Remark: The candidate should be rewarded with all the credits minus 0.5 if he or
she reaches relation (25).

3



2. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = −p3

6
+ 25

48
.

Rewriting this expression gives:

p3

6
+ p − 25

48
= 0

p2 + 6 − 25

8p
= 0

f(p) = 0

The fixed point iteration is defined by: pi+1 = g(pi). Starting with p0 = 1 one
obtains:

p1 = 0.3542

p2 = 0.5134

p3 = 0.4983

(b) The fixed point iteration is illustrated in the next figure.
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(c) For the convergence two conditions should be satisfied:

• g(p) ∈ [0, 1] for all p ∈ [0, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [0, 1].

Since g(p) = −p3

6
+ 25

48
it follows that g′(p) = −p2

2
. Note that g′(p) ≤ 0 for all

p ∈ [0, 1]. This implies that 25
48

= g(0) ≥ g(p) ≥ g(1) = 17
48

for all p ∈ [0, 1], so

the first condition holds. For the second condition we note that |g′(p)| = p2

2
≤

1
2

= k < 1 for all p ∈ [0, 1], so the second conditions is also satisfied, which
implies that the fixed point iteration is convergent for all p0 ∈ [0, 1].
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Figure 1: The Newton-Raphson method

(d) Graphically the Newton-Raphson method is given in Figure 1. The tangent in
(p0, f(p0)) is given by:

l(x) = f(p0) + (x − p0)f
′(p0)

Taking l(p1) = 0 leads to

f(p0) + (p1 − p0)f
′(p0) = 0

Rewriting gives p1 = p0 − f(p0)
f ′(p0)

.

(e) Starting with p0 = 1 we note that

f(p) = p2 + 6 − 25

8p
, f(1) = 1 + 6 − 25

8
= 3

7

8

f ′(p) = 2p +
25

8p2
, f ′(1) = 5

1

8

Substituting this into the formula gives p1 = 1 − 3 7

8

5 1

8

= 1 − 31
41

= 10
41

= 0.2439.

(f) One can prove that the convergence of the Newton-Raphson method is quadrat-
ically as follows:

0 = f(p) = f(pn) + (p − pn)f
′

(pn) +
(p − pn)2

2
f

′′

(ξn) , ξn ∈ (pn, p) .

Due to the definition one has

0 = f(pn) + (pn+1 − pn)f
′

(pn) .

Subtraction yields

pn+1 − p = (pn − p)2 f
′′

(ξ)

2f ′(pn)
.

which implies quadratic convergence.
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