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1.

a The local truncation error is defined as

T () = P ®

where 2,1 is given by

Zni1 =Ynt+h (alf(tm yn) + a2f(tn +h, Y + hf(tm yn)) . (2)

A Taylor expansion of f around (t,,y,) yields

0 0
b st (i 2)) = )+ G b )15 o 1) G0 10) +O). (3)
This is substituted into equation (2) to obtain
_ of of 3
Znp1 = Ynth | arf(tn, Yn) + ao | f(tn, yn) + ha(tna Yn) + I f (tn, yn)a_y(tm Yn)| | FO(R?).
(4)
A Taylor series for y(x) around t,, gives for y, 1
h2
Ynir = Yt + h) = yn+ hy/ (tn) + 59 (tn) + O(K°). (5)
Equations (5) and (4) are substituted into relation (1) to obtain
of af\ (1
) = Flas )1~ (an + ) 40 (54 150) (G- ) +002) 0

Hence

(a) a; + ay = 1 implies 7,41(h) = O(h);
(b) a1 +ay =1 and ay = 1/2, that is, a; = ay = 1/2, gives 7,,41(h) = O(h?).



b The auxiliary equation is given by
y' =y (7)
Application of the predictor step to the auxiliary equation gives
wy = Wy + hAw, = (1 + hA)w,. (8)
The corrector step yields
W1 = Wy + k(@ Awy, + aos\ (1 + AN w,) = (1 + (a1 + a2)hA + ash®* w,.  (9)
Hence the amplification factor is given by

Q(hN) = 1+ (a1 + ag)h\ + ash®)°. (10)

¢ Let A <0 (so A is real), then, for stability, the amplification factor must satisfy
—1<Q(hN) <1, (11)
from the previous assignment, we have
—1 <1+ (ag + ag)hA + ag(hA)? <1 =2 < (ay + ag)hA + az(hA)? < 0. (12)
First, we consider the left inequality:
az(hA)? + (ay + ag)hA +2 >0 (13)

For hA = 0, the above inequality is satisfied, further the discriminant is given by
(a1 + az)? — 8as < 0. Here the last inequality follows from the given hypothesis.
Hence the left inequality in relation (12) is always satisfied. Next we consider the
right hand inequality of relation (12)

az(hA)? + (a; + az)hA < 0. (14)

This relation is rearranged into

CLQ(h/\)Q S —(a1 + ag)h/\, (15)
hence o +a
ashA? < (a1 + a2)|hA| & |hA| < 1@ 2 ay #£0. (16)
2

This results into the following condition for stability

aq +CL2
h< ,
T agfAl




d The Jacobian, J, is given by

of o
Oy1 Oy

J= (18)
of: 0f:
Oy1 Oy

Since f1(y1,y2) = —y1y2 and fa(y1,y2) = y1y2 — Y2, we obtain

—Y2  —U
J = . 19
( Y2 Y1 — 1) (19)
Substitution of the initial values y;(0) = y2(0) = 1, gives
-1 -1
() o
e The eigenvalues of the Jacobian at y1(0) = y2(0) = 1 are given by A\, = —1/2(1 £
iv/3). For our case, we have
Q(hA) = 14+ hA + 1/2(h)\)%. (21)
Since our eigenvalues are not real valued, it is required for stability that
@A) < 1. (22)

Since the eigenvalues are complex conjugates, we can proceed with one of the eigen-
values, say A = —1/2(1 +iv/3) with A\> = 1/2(—1 +i1/3), to obtain

Q(hN) =14 h(=1/2 —1/2iv/3) + 1/2h*(—1/2 + 1/2i/3) =
(23)
=1—1/2h — 1/4h2 + “3(1/2h2 — h).

Next, we compute the square of the modulus of the above expression, to obtain

3
(1—1/2h —1/4h%)? + 1(1/2112 —h)? <1 (24)
After some elementary algebra, and division by h, we obtain
h  h? R
—1+§—5+Z§0®h3—2h2+2h§4. (25)

It can be seen that the derivative of h? — 2h? + 2h is positive and never zero, hence
h3 — 2h% + 2h is monotonically increasing. Further, by direct substitution it can be
seen that h = 2 gives equality in relation (25). Hence, the criterion for stability
becomes h < 2.

Remark: The candidate should be rewarded with all the credits minus 0.5 if he or
she reaches relation (25).



2. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = 2 %.

6
Rewriting this expression gives:

3
P 25
P _=2
¢ TP Is
25
pPP+6—=— =0
8p
flp) = 0

The fixed point iteration is defined by: p;y1 = g(p;). Starting with py = 1 one

obtains:
p1 = 0.3542
py = 0.5134
p3 = 0.4983

(b) The fixed point iteration is illustrated in the next figure.
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(c) For the convergence two conditions should be satisfied:
e g(p) €[0,1] for all p € [0, 1].
e |¢'(p)| <k<1forall pel0,1].

Since g(p) = —% + 2 it follows that ¢'(p) = —%. Note that ¢'(p) < 0 for all

p € [0,1]. This implies that 22 = g(0) > g(p) > g(1) = i for all p € [0,1], so
the first condition holds. For the second condition we note that |¢'(p)| = % <
% =k < 1 for all p € [0,1], so the second conditions is also satisfied, which

implies that the fixed point iteration is convergent for all py € [0, 1].



(d)

— f(x)
- tangent

Figure 1: The Newton-Raphson method

Graphically the Newton-Raphson method is given in Figure 1. The tangent in
(po, f(po)) is given by:

l(z) = f(po) + (x — po) f'(po)
Taking [(p;) = 0 leads to

f(po) + (p1 — po) f'(po) =0

Rewriting gives p; = py — ff(é?)-

Starting with py = 1 we note that

25 25 7
= p? - = N=1 - = =3-
f(p) p 46 3 f)=1+6-"7 =3¢
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Substituting this into the formula gives p; = 1 — -4

00—

One can prove that the convergence of the Newton-Raphson method is quadrat-
ically as follows:

0= 1) = 1) + (0= ) ) + L2V (6) 6 € ().

Due to the definition one has

0= f(pn) + (Pns1 — u) S (Pn) -
Subtraction yields

Pnt1 — P = (Pn — D)

which implies quadratic convergence.



