DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday 4 April 2006, 9:00-12:00

1. (a) The local truncation error is given by

$$
\tau=\frac{y_{n+1}-z_{n+1}}{h}
$$

where z_{n+1} is given by

$$
z_{n+1}=y_{n}+h\left[\frac{3}{2} f\left(t_{n}, y_{n}\right)-\frac{1}{2} f\left(t_{n-1}, y_{n-1}\right)\right]
$$

Due to the differential equation, this can also be written as:

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(\frac{3}{2} y_{n}^{\prime}-\frac{1}{2} y_{n-1}^{\prime}\right) . \tag{1}
\end{equation*}
$$

The last term between brackets can also be developed in a Taylor polynomial:

$$
\begin{equation*}
y_{n-1}^{\prime}=y_{n}^{\prime}-h y_{n}^{\prime \prime}+O\left(h^{2}\right) \tag{2}
\end{equation*}
$$

Substitution of this into (1) yields

$$
\begin{equation*}
z_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right) \tag{3}
\end{equation*}
$$

Consider the exact solution at t_{n+1} and make a Taylor polynomial:

$$
\begin{equation*}
y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{1}{2} h^{2} y_{n}^{\prime \prime}+O\left(h^{3}\right) \tag{4}
\end{equation*}
$$

Putting this into the definition of the local truncation error shows that the local truncation error is $O\left(h^{2}\right)$.
(b) Application of the method to the test equation shows that:

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left\{\frac{3}{2} \lambda w_{n}-\frac{1}{2} \lambda w_{n-1}\right\} \tag{5}
\end{equation*}
$$

Since $w_{n}=Q(h \lambda) w_{n-1}$ and $w_{n+1}=Q(h \lambda) w_{n}=Q(h \lambda)^{2} w_{n-1}$ we obtain

$$
\begin{equation*}
\left.\{Q(h \lambda)\}^{2}-\left(1+\frac{3}{2} h \lambda\right) Q(h \lambda)+\frac{1}{2} h \lambda\right\} w_{n-1}=0 \tag{6}
\end{equation*}
$$

for all values of n. From this the equation follows.
(c) This equation has two roots:

$$
\begin{align*}
& Q_{1}(h \lambda)=\frac{1+\frac{3}{2} h \lambda+\sqrt{1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2}}}{2} \tag{7}\\
& Q_{2}(h \lambda)=\frac{1+\frac{3}{2} h \lambda-\sqrt{1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2}}}{2}
\end{align*}
$$

The discriminant is always positive, so both roots are real. It easily follows that $Q_{2}(h \lambda)<Q_{1}(h \lambda)$ and both should satisfy $-1 \leq Q(h \lambda) \leq 1$. This implies that: $-1 \leq Q_{2}(h \lambda)$ and $Q_{1}(h \lambda) \leq 1$. The second inequality yields:

$$
\begin{align*}
\sqrt{1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2}} & \leq 1-\frac{3}{2} h \lambda \tag{8}\\
1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2} & \leq 1-3 h \lambda+\left(\frac{3}{2} h \lambda\right)^{2} \tag{9}\\
0 & \leq-4 h \lambda \tag{10}
\end{align*}
$$

Since $\lambda<0$ this inequality always holds for all values of $h>0$. The first inequality gives:

$$
\begin{align*}
-3-\frac{3}{2} h \lambda & \leq-\sqrt{1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2}} \tag{11}\\
3+\frac{3}{2} h \lambda & \geq \sqrt{1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2}} \tag{12}\\
9+9 h \lambda+\left(\frac{3}{2} h \lambda\right)^{2} & \geq 1+h \lambda+\left(\frac{3}{2} h \lambda\right)^{2} \tag{13}\\
8+8 h \lambda & \geq 0 \tag{14}\\
h & \leq \frac{1}{-\lambda} \tag{15}
\end{align*}
$$

(d) The eigenvalues λ of the matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)
$$

are computed by solving the equation:

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-2 & -3-\lambda
\end{array}\right)=\lambda^{2}+3 \lambda+2=0
$$

Solutions are: $\lambda_{1}=-1$ and $\lambda_{2}=-2$. So the system of differential equations is stable and the method can be used in a stable way if $h \leq \frac{1}{2}$.
(e) The numerical solution on time step t is given by $\binom{w_{1}(t)}{w_{2}(t)}$ From the initial conditions we obtain:

$$
\binom{w_{1}(0)}{w_{2}(0)}=\binom{0}{1}
$$

Doing one step Euler forward we get:

$$
\binom{w_{1}(h)}{w_{2}(h)}=\binom{w_{1}(0)}{w_{2}(0)}+h\left[\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)\binom{w_{1}(0)}{w_{2}(0)}+\binom{0}{0}\right]
$$

Putting the values into the equations one obtains:

$$
\binom{w_{1}(h)}{w_{2}(h)}=\binom{0}{1}+\frac{1}{2}\left[\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)\binom{0}{1}+\binom{0}{0}\right]=\binom{\frac{1}{2}}{-\frac{1}{2}} .
$$

The second step with the new method gives:

$$
\begin{gathered}
\binom{w_{1}(2 h)}{w_{2}(2 h)}=\binom{w_{1}(h)}{w_{2}(h)}+ \\
h\left(\frac{3}{2}\left[\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)\binom{w_{1}(h)}{w_{2}(h)}+\binom{0}{h}\right]-\frac{1}{2}\left[\left(\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right)\binom{w_{1}(0)}{w_{2}(0)}+\binom{0}{0}\right]\right)
\end{gathered}
$$

Substitution of the numbers gives:

$$
\binom{w_{1}(2 h)}{w_{2}(2 h)}=\binom{\frac{1}{2}}{-\frac{1}{2}}+\frac{1}{2}\left(\binom{-\frac{3}{4}}{\frac{3}{2}}+\binom{-\frac{1}{2}}{1 \frac{1}{2}}\right)=\binom{-\frac{1}{8}}{1}
$$

2. a We use $\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}$ to approximate the second derivative and hence the local truncation error is given by

$$
\begin{equation*}
\varepsilon(h):=y^{\prime \prime}\left(x_{i}\right)-\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}} \tag{16}
\end{equation*}
$$

Using Taylor expansions, one obtains with $\xi_{1} \in\left(x_{i-1}, x_{i}\right)$ and $\xi_{2} \in\left(x_{i}, x_{i+1}\right)$

$$
\begin{align*}
& y_{i-1}=y\left(x_{i}-h\right)=y\left(x_{i}\right)-h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)-\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(\xi_{1}\right), \tag{17}\\
& y_{i+1}=y\left(x_{i}+h\right)=y\left(x_{i}\right)+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(\xi_{2}\right) .
\end{align*}
$$

Substitution of these expressions into (16) yields

$$
\begin{equation*}
\varepsilon(h)=\frac{h^{2}}{4!}\left\{y^{\prime \prime \prime \prime}\left(\xi_{1}\right)+y^{\prime \prime \prime \prime}\left(\xi_{2}\right)\right\}=O\left(h^{2}\right) \tag{18}
\end{equation*}
$$

Further, we have Dirichlet conditions, hence the above equation holds for all $i \in\{1, \ldots, n\}$. Using this approximation for the second order derivative, gives the following discretization of the given boundary value problem

$$
\begin{equation*}
\frac{-w_{i-1}+2 w_{i}-w_{i+1}}{h^{2}}+w_{i}^{2}=\frac{4}{x_{i}}\left(=\frac{4}{i h}=\frac{4(n+1)}{i}\right), \text { for } i \in\{1, \ldots, n\} . \tag{19}
\end{equation*}
$$

b For $n=3$, we have $h=1 / 4$, herewith one obtains

$$
\begin{equation*}
-16 w_{i-1}+32 w_{i}-16 w_{i+1}+w_{i}^{2}=\frac{16}{i}, \text { for } i \in\{1,2,3\} \tag{20}
\end{equation*}
$$

Implementation of the boundary conditions $w_{0}=0$ and $w_{4}=1$, gives

$$
\left\{\begin{array}{l}
32 w_{1}-16 w_{2}+w_{1}^{2}=16 \tag{21}\\
-16 w_{1}+32 w_{2}-16 w_{3}+w_{2}^{2}=8 \\
-16 w_{2}+32 w_{3}+w_{3}^{2}=16 / 3+1 / h^{2}=16 / 3+16=64 / 3
\end{array}\right.
$$

c So we have

$$
\begin{align*}
& f_{1}\left(w_{1}, w_{2}\right)=18 w_{1}-9 w_{2}+w_{1}^{2}-9 \tag{22}\\
& f_{2}\left(w_{1}, w_{2}\right)=-9 w_{1}+18 w_{2}+w_{2}^{2}-9 / 2
\end{align*}
$$

The Jacobian of these functions is given by

$$
J\left(w_{1}, w_{2}\right)=\left(\begin{array}{cc}
18+2 w_{1} & -9 \tag{23}\\
-9 & 18+2 w_{2}
\end{array}\right) \Rightarrow J(3,0)=\left(\begin{array}{cc}
24 & -9 \\
-9 & 18
\end{array}\right)
$$

Using Newton Raphson iterations, we first determine \underline{s}_{1} from

$$
J(3,0) \underline{s}_{1}=-\underline{f}(3,0) \Rightarrow\left(\begin{array}{cc}
24 & -9 \tag{24}\\
-9 & 18
\end{array}\right) \underline{s}_{1}=\binom{-54}{63 / 2} .
$$

From this, one gets $\underline{s}_{1}=\binom{-1.9615}{0.7692}$. Then the updated estimate for the solution \underline{p}_{1} is given by $\underline{p}_{1}=\underline{p}_{0}+\underline{s}_{1}=\binom{1.0385}{0.7692}$.
d i The linear Lagrangian polynomial is given by

$$
\begin{equation*}
p(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} . \tag{25}
\end{equation*}
$$

With $x=1 / 4, x_{0}=0, x_{1}=1 / 3, f\left(x_{0}\right)=0$ and $f\left(x_{1}\right)=5$, this gives

$$
\begin{equation*}
p(1 / 4)=15 / 4 \tag{26}
\end{equation*}
$$

This is the approximation of $f(1 / 4)$ using linear interpolation.
ii The linear Lagrangian polynomial with the exact values of the function is given by

$$
\begin{equation*}
p(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} . \tag{27}
\end{equation*}
$$

For the measured values of the function we have analogously

$$
\begin{equation*}
\tilde{p}(x)=\tilde{f}\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+\tilde{f}\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} \tag{28}
\end{equation*}
$$

Subtraction of equation (28) from (27) gives

$$
\begin{align*}
\mid p(x) & \left.-\tilde{p}(x)\left|\leq\left|f\left(x_{0}\right)-\tilde{f}\left(x_{0}\right)\right|\right| \frac{x-x_{1}}{x_{0}-x_{1}}\left|+\left|f\left(x_{1}\right)-\tilde{f}\left(x_{1}\right)\right|\right| \frac{x-x_{0}}{x_{1}-x_{0}} \right\rvert\,= \\
& =\varepsilon\left\{\left|\frac{x-x_{1}}{x_{0}-x_{1}}\right|+\left|\frac{x-x_{0}}{x_{1}-x_{0}}\right|\right\} . \tag{29}
\end{align*}
$$

With the values of x, x_{0} and x_{1} as defined above, we have

$$
\begin{equation*}
|p(x)-\tilde{p}(x)| \leq \varepsilon . \tag{30}
\end{equation*}
$$

Remark: This could also be derived using a graph.

