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The local truncation error is given by

_ Ynt1 — Zntl

h

T

where z,. is given by

3 1
Zn+1 = Yn + h’[§f(tna yn) - Ef(tn—layn—l)]

Due to the differential equation, this can also be written as:

3 1
Zntl = Yn T h(éyil - 5%71» (1)

The last term between brackets can also be developed in a Taylor polynomial:
Yn-1 = Y — hyy + O(h?) (2)

Substitution of this into (1) yields
/ 1 2. 1 3
Consider the exact solution at t,,; and make a Taylor polynomial:

1
Yntl = Yn + hy; + EthZ + O(hg) (4)

Putting this into the definition of the local truncation error shows that the local
truncation error is O(h?).

Application of the method to the test equation shows that:
W1 = Wy + h{%/\wn — %)\wn_l} (5)
Since w, = Q(hA\)w,_1 and w,1 = Q(hA\)w, = Q(h\)*w,_; we obtain
{Q(RN)} — (1 + 2hN)Q(RA) + ShA}w,—1 =0 (6)
for all values of n. From this the equation follows.
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This equation has two roots:

L 3hA+ 14+ hA+ (3hA)2

Qi) = : @
1+ 3\ — \/1 +BA + (3h))?
Qa(h)) = 5

The discriminant is always positive, so both roots are real. It easily follows that
Q2(hA\) < Q1(hA) and both should satisfy —1 < @Q(hA) < 1. This implies that:
—1 < @Q2(hA) and Q1(hX) < 1. The second inequality yields:

1+ R+ (3002 < 1 3hA (8)
1+ hA+ (3hA)? < 1—3hA + (3hN)° (9)
0 < —4h) (10)

Since A < 0 this inequality always holds for all values of h > 0. The first
inequality gives:

~3 300 < — T+ A+ (3hA)2 (11)
34 3hA > /14 hA+ (3hA)? (12)
9+ 9hA + (3hA)* > 1+ hA + (3h))? (13)
8+8hA >0 (14)
1
h<-— 15
< = (15)
The eigenvalues A of the matrix
0 1
-2 -3
are computed by solving the equation:
- 1 2 B
det( 9 _3_ > =AN+32+2=0.
Solutions are: Ay = —1 and Ay = —2. So the system of differential equations is

stable and the method can be used in a stable way if h < %

The numerical solution on time step ¢ is given by ( wi(?) ) From the initial

wy(t)
(i )=(1)

2

conditions we obtain:
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Doing one step Euler forward we get:

(o )= (o)) o2 ) (i) )+ (5)
Putting the values into the equations one obtains:

(o )= (1) a5 ) ()= (o p=(25)
The second step with the new method gives:
(e )= (i) )+

(G ) (o )+ (o a2 ) () = (o )
Substitution of the numbers gives:

(i )= () (4 ) ()= (1)

Yi-1 — 2Yi + Yina
B2
local truncation error is given by

to approximate the second derivative and hence the

a We use

" Yi—1 — 2yi + Yi
e(h) =y (z;) — 2= - L (16)

Using Taylor expansions, one obtains with & € (z;_1, ;) and & € (24, xi41)

2 h3 h4

yimr = ylaa = h) = yla) = hy' (@) + 5" (23) = 5p9" (@) + 709" (&),

(17)
h'2 !l h3 " h4 "
Yier = ylai+ h) = ylai) + hy' () + 579" (20) + 5797 (20) + 757 (&),
Substitution of these expressions into (16) yields

e(h) = 77 1"(&) +y"(&)} = O(R°). (18)
Further, we have Dirichlet conditions, hence the above equation holds for all
i € {1,...,n}. Using this approximation for the second order derivative, gives

the following discretization of the given boundary value problem

—W;_1 + 2'11}1 — Wit 2 4 4 4(7?, + 1) .
72 +wz:$_Z :E:f ,fOI'ZG{l,.‘.,TL}. (19)




b For n = 3, we have h = 1/4, herewith one obtains
16
—16w;_ + 32w; — 16w, +w; = —, fori € {1,2,3}. (20)
i

Implementation of the boundary conditions wy = 0 and w, = 1, gives

32w, — 16wy + w? = 16,
16wy + 32wy — 16ws + w? = 8, (21)

—16ws + 32ws + w? = 16/3 + 1/h2 = 16/3 + 16 = 64/3.

¢ So we have
f1<’w1, U}Q) = 18UJ1 — 9'11)2 —+ w% — 9,

22
f2(w1,w2) = —9w1+18w2+w§—9/2. ( )
The Jacobian of these functions is given by
(184 2wy -9 (24 -9
Using Newton Raphson iterations, we first determine s; from
24 -9 —54
. —1.9615 :
From this, one gets s; = 0.7692 Then the updated estimate for the
solution p_ is given b =p +8 = 1.0385
Py 1S BVERLDY By = Py 751 = | .7692 /-
d i The linear Lagrangian polynomial is given by
r — I r — 2o
= ) 25
pla) = Flan) "5+ far) T (25)
With z =1/4, 2y =0, x1 = 1/3, f(x¢) =0 and f(x1) = 5, this gives
p(1/4) = 15/4. (26)

This is the approximation of f(1/4) using linear interpolation.
ii The linear Lagrangian polynomial with the exact values of the function is

given by
r — T T — 2o
= ) 27
@) = fa0) T+ flan) (21)
For the measured values of the function we have analogously
_ ~ r — T ~ T — 2o
= ) 28
() = Flao) =+ flan) (28)



Subtraction of equation (28) from (27) gives

- ~ r — T ~ r — X
—_ < _ —_— p—
@) = 5(a)| < F(a0) = F@oll = + ) = Flan)] =2
:E{|x—_:1:1 |+|x—_x0 |}
Zo T T ZTo
(29)
With the values of z, ¢ and x; as defined above, we have
p(z) — pa)| <e. (30)

Remark: This could also be derived using a graph.



