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1. (a) Use the transformation:

y1 = y ,

y2 = y′ ,

This implies that

y′

1 = y′ = y2 ,

y′

2 = y′′ = −qy1 − py2 + cos t ,

So the matrix A and vector g are:

A =

(

0 1
−q −p

)

; g(t) =

(

0
cos t

)

.

Characteristic equation: λ2 + pλ + q = 0. λ1,2 =
−p±

√
p2−4q

2
.

(b) Replace f(t, y) by λy in the RK4 formulas:

k1 = hλwn

k2 = hλ(wn + 1
2
k1) = hλ(1 + 1

2
hλ)wn

k3 = hλ(wn + 1
2
k2) = hλ(1 + 1

2
hλ(1 + 1

2
hλ))wn

k4 = hλ(wn + k3) = hλ(1 + hλ(1 + 1
2
hλ(1 + 1

2
hλ))wn

Substitution of these expressions into:

wn+1 = wn +
1

6
(k1 + 2k2 + 2k3 + k4),

and collecting like powers of hλ yields:

wn+1 = [1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4]wn.

The amplification factor is therefore:

Q(hλ) = 1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3 +

1

24
(hλ)4.
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(c) The local truncation error is defined as

τn+1 =
y(tn+1) − wn+1

h
, (1)

where wn+1 is the numerical solution at tn+1, obtained by starting from the
exact value y(tn) in stead of wn. Repeating the derivation under (b), with wn

replaced by y(tn), gives:
wn+1 = Q(hλ)y(tn).

Using furthermore y(tn+1) = ehλy(tn) in (1) it follows that

τn+1 =
ehλ − Q(hλ)

h
y(tn).

Canceling the first five terms of the expansion of ehλ against Q(hλ), the required
order of magnitude of τn+1 follows.

(d) Substitution of the values of p and q into the matrix A yields the eigenvalues
λ1,2 = −1000± 3i. From the given drawing of the stability region the following
can be inferred. Because the imaginary part is much smaller than the real part,
an approximate stability condition can be obtained by simply neglecting the
imaginary part. Then h ≤ 2.8/1000 follows as the stability condition.

(e)
y′′ + py′ + qy = cos t, y(0) = y0, y′(0) = y′

0. (2)

The general solution of (2) is the sum of a homogeneous part, governed by the
eigenvalues, and the so called particular solution, which is some linear combina-
tion of sin t and cos t. Both exponentials in the homogeneous part are damped
very rapidly because of the (in absolute value) large real part of the eigenvalues
and, after a short time of order 10−3, the solution becomes practically equal to
the ’smooth’ particular solution (time scale of order 1). The smooth solution
can be integrated accurately by RK4 with a ’large’ stepsize: a step size of 0.1,
let us say, would give an error of order 10−4 which is sufficient for most engi-
neering purposes. However stability, governed by the eigenvalues, requires that
the stepsize be restricted (see part (d)) to 0.0028. So the stability requirement
forces us to choose a stepsize yielding an unnecessarily accurate solution, which
is inefficient.
The Crank-Nicolson method, on the other hand, is stable for all stepsizes. So
the stepsize is restricted by accuracy requirements only. Crank-Nicolson has a
global error of order h2 such that a good accuracy may be expected for step-
sizes of about 0.01, larger than the restriction 0.0028. An efficiency gain may
be obtained in spite of the extra work connected with the implicitness of the
method.
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(f) For the parameter values of part (d) and a right hand side cos(1000t) in (2)
the homogeneous and the particular part of the solution have the same time
scales (viz. order 10−3). Now much smaller stepsizes than 0.1 are required for
RK4 to compute the short scaled solution accurately and accuracy will most
probably restrict the stepsize more severely than stability. There will be no
need for better stability properties in this case and RK4 is preferred because it
is explicit.

2. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = p3

6
+ 23

48
.

Rewriting this expression gives:

−p3

6
+ p − 23

48
= 0

−p3 + 6p − 23

8
= 0

−p3 + 6p − 2
7

8
= 0

f(p) = 0

The fixed point iteration is defined by: pi+1 = g(pi). Starting with p0 = 1 one
obtains:

p1 = 0.6458

p2 = 0.5241

p3 = 0.5032

(b) The fixed point iteration is illustrated in the next figure.
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(c) For the convergence two conditions should be satisfied:

• g(p) ∈ [0, 1] for all p ∈ [0, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [0, 1].

Since g(p) = p3

6
+ 23

48
it follows that g′(p) = p2

2
. Note that g′(p) ≥ 0 for all

p ∈ [0, 1]. This implies that 23
48

= g(0) ≤ g(p) ≤ g(1) = 31
48

for all p ∈ [0, 1], so

the first condition holds. For the second condition we note that |g′(p)| = p2

2
≤

1
2

= k < 1 for all p ∈ [0, 1], so the second conditions is also satisfied, which
implies that the fixed point iteration is convergent for all p0 ∈ [0, 1].

(d) Graphically the Newton-Raphson method is given in Figure 1. The tangent in
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Figure 1: The Newton-Raphson method

(p0, f(p0)) is given by:

l(x) = f(p0) + (x − p0)f
′(p0)

Taking l(p1) = 0 leads to

f(p0) + (p1 − p0)f
′(p0) = 0

Rewriting gives p1 = p0 − f(p0)
f ′(p0)

.

(e) Starting with p0 = 1 we note that

f(p) = −p3 + 6p − 2
7

8
, f(1) = −1 + 6 − 2

7

8
= 2

1

8
f ′(p) = −3p2 + 6, f ′(1) = 3

Substituting this into the formula gives p1 = 1 − 2 1

8

3
= 0.2917.
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(f) There are two answers possible:

• Note that the Newton-Raphson method can be written as a fixed point
iteration gNR(p) = p − f(p)

f ′(p)
. The convergence speed is determined by g′ in

the fixed point. Note that g′(0.5) = 1
8

and g′

NR(0.5) = 0, so the Newton-
Raphson method converges faster than the fixed point method given in (a).

• One can also prove that the convergence of the Newton-Raphson method is
quadratically, whereas the convergence of a fixed point method is linearly.
The proof for Newton-Raphson runs as follows:

0 = f(p) = f(pn) + (p − pn)f
′

(pn) +
(p − pn)2

2
f

′′

(ξn) , ξn ∈ (pn, p) .

Due to the definition one has

0 = f(pn) + (pn+1 − pn)f
′

(pn) .

Subtraction yields

pn+1 − p = (pn − p)2 f
′′

(ξ)

2f ′(pn)
.

which implies quadratic convergence.
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