DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Tuesday 5 April 2005, 9:00-12:00

1. (a) Use the transformation:

$$
\begin{aligned}
& y_{1}=\Phi \\
& y_{2}=\Phi^{\prime}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
y_{1}^{\prime} & =\Phi^{\prime}=y_{2} \\
y_{2}^{\prime} & =\Phi^{\prime \prime}=-\Phi^{\prime}-\frac{1}{2} \Phi=-y_{2}-\frac{1}{2} y_{1}=-\frac{1}{2} y_{1}-y_{2}
\end{aligned}
$$

So the matrix A is given by $\left(\begin{array}{cc}0 & 1 \\ -\frac{1}{2} & -1\end{array}\right)$.
(b) To compute the amplification factor one uses the test equation $y^{\prime}=\lambda y$. Applying the Modified Euler method gives:

$$
\begin{align*}
\text { predictor: } & \bar{w}_{n+1}=w_{n}+h f\left(t_{n}, w_{n}\right) \tag{1}\\
\text { corrector: } & w_{n+1}=w_{n}+\frac{h}{2}\left[f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, \bar{w}_{n+1}\right)\right] . \tag{2}
\end{align*}
$$

so

$$
\begin{array}{ll}
\text { predictor: } & \bar{w}_{n+1}=w_{n}+h \lambda w_{n} \\
\text { corrector: } & w_{n+1}=w_{n}+\frac{h}{2}\left[\lambda w_{n}+\lambda\left(w_{n}+h \lambda w_{n}\right)\right] . \tag{4}
\end{array}
$$

Summarizing $w_{n+1}=\left(1+h \lambda+\frac{1}{2}(h \lambda)^{2}\right) w_{n}$, which leads to the answer $Q(h \lambda)=$ $1+h \lambda+\frac{1}{2}(h \lambda)^{2}$.
(c) The eigenvalues of the matrix A are $\lambda_{1}=-\frac{1}{2}+\frac{i}{2}$ and $\lambda_{2}=-\frac{1}{2}-\frac{i}{2}$. For stability it is needed that $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$ and $\left|Q\left(h \lambda_{2}\right)\right| \leq 1$. Since $\lambda_{2}=\bar{\lambda}_{1}$ it is sufficient to check the inequality $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$. Using $h=1$ we obtain $Q\left(h \lambda_{1}\right)=1+\lambda_{1}+\frac{1}{2} \lambda_{1}^{2}=\frac{1}{2}+\frac{i}{4}$. Note that $\left|Q\left(h \lambda_{1}\right)\right|=\sqrt{\frac{1}{4}}+\frac{1}{16}=0.5590 \leq 1$, so the method is stable for $h=1$.
(d) The local truncation error is defined by

$$
\tau_{j+1}=\frac{y_{j+1}-z_{j+1}}{h}
$$

Using the testequation and the definition of z_{j+1} it appears that

$$
z_{j+1}=Q(h \lambda) y_{j} .
$$

For the exact solution we have:

$$
y_{j+1}=e^{h \lambda} y_{j}
$$

This implies that

$$
\begin{equation*}
\tau_{j+1}=\frac{e^{h \lambda}-Q(h \lambda)}{h} y_{j} \tag{5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
e^{h \lambda}=1+\lambda h+\frac{(\lambda h)^{2}}{2}+\mathcal{O}\left(h^{3}\right) \tag{6}
\end{equation*}
$$

Furthermore by using the hint we can conclude that

$$
\begin{equation*}
\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}=1+h \lambda+\frac{1}{2}(h \lambda)^{2}+\mathcal{O}\left(h^{3}\right) \tag{7}
\end{equation*}
$$

Combining (5), (6), and (7) we obtain that $\tau_{j+1}=\mathcal{O}\left(h^{2}\right)$.
(e) Again it is sufficient to check if $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$. Using $\lambda_{1}=-\frac{1}{2}+\frac{i}{2}$ it appears that

$$
Q\left(h \lambda_{1}\right)=\frac{1-\frac{h}{4}+\frac{h i}{4}}{1+\frac{h}{4}-\frac{h i}{4}}
$$

So

$$
\left|Q\left(h \lambda_{1}\right)\right|=\sqrt{\frac{\left(1-\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}}{\left(1+\frac{h}{4}\right)^{2}+\left(\frac{h}{4}\right)^{2}}} \leq 1
$$

The last inequality easily follows, because $h>0$.
(f) The Jacobian is defined by:

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)
$$

Using the definition it follows that

$$
\left(\begin{array}{cc}
0 & 1 \\
-\cos \left(y_{1}\right) & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-\cos \frac{\pi}{4} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-\frac{\sqrt{2}}{2} & 0
\end{array}\right)
$$

2. a After discretization by the use of finite differences one obtains

$$
\begin{equation*}
\frac{-w_{i-1}+2 w_{i}-w_{i-1}}{h^{2}}+x_{i}^{2} w_{i}=x_{i} . \tag{8}
\end{equation*}
$$

The truncation error is defined by

$$
\begin{equation*}
e_{i}=\frac{-y_{i-1}+2 y_{i}-y_{i+1}}{h^{2}}+x_{i}^{2} y_{i}-x_{i} . \tag{9}
\end{equation*}
$$

Taylor series of y_{i-1} and y_{i+1} around x_{i}, gives

$$
\begin{align*}
& y_{i+1}=y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)+O\left(h^{5}\right), \\
& y_{i-1}=y_{i}-h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)-\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}\right)+\frac{h^{4}}{4!} y^{\prime \prime \prime \prime}\left(x_{i}\right)-O\left(h^{5}\right) \tag{10}
\end{align*}
$$

Substitution of the above expressions into the definition of the truncation error gives

$$
\begin{equation*}
\varepsilon_{i}=-y^{\prime \prime}\left(x_{i}\right)+O\left(h^{2}\right)+x_{i}^{2} y\left(x_{i}\right)-x_{i} . \tag{11}
\end{equation*}
$$

Using the differential equation $-y^{\prime \prime}+x^{2} y=x$ finally gives

$$
\begin{equation*}
\varepsilon_{i}=O\left(h^{2}\right) \tag{12}
\end{equation*}
$$

b For this case we have $h=0.25$, for the points $j \in\{1,2,3\}$, the discretization with $w_{0}=0$ and $w_{4}=1$:

$$
\begin{align*}
& 32 w_{1}-16 w_{2}+\frac{1}{16} w_{1}=\frac{1}{4} \\
& -16 w_{1}+32 w_{2}-16 w_{3}+\frac{1}{4} w_{2}=\frac{1}{2} \tag{13}\\
& -16 w_{2}+32 w_{3}+\frac{9}{16} w_{3}=\frac{3}{4}+16
\end{align*}
$$

Hence in matrix-vector form:

$$
\left(\begin{array}{ccc}
32.0625 & -16 & 0 \tag{14}\\
-16 & 32.25 & -16 \\
0 & -16 & 32.5625
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{c}
0.25 \\
0.5 \\
16.75
\end{array}\right)
$$

c Since $h=\frac{1}{3}$, we have $x_{0}=0, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}$ and $x_{3}=1$. Using linear interpolation, two adjacent gridpoints are taken into account. The minimum error is attained when the gridpoints x_{1} and x_{2} are used. The linear interpolation formula using points x_{1} and x_{2}, gives:

$$
\begin{equation*}
P(0.5)=\frac{0.4444+0.7778}{2}=0.6111 \tag{15}
\end{equation*}
$$

The magnitude of the local truncation error is given by

$$
\begin{equation*}
\left|\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{2} y^{\prime \prime}(\xi)\right|=\left|\frac{(0.5-1 / 3)(0.5-2 / 3)}{2} \cdot 1\right|=\frac{1}{72}=0.0139 \tag{16}
\end{equation*}
$$

d (i) The magnitude of the truncation error is given by

$$
\begin{equation*}
\left|\frac{y_{2}-y_{1}}{h}-y^{\prime}\left(x_{1}\right)\right|=\left|\frac{y\left(x_{1}\right)+h y^{\prime}\left(x_{1}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)-y\left(x_{1}\right)}{h}-y^{\prime}\left(x_{1}\right)\right|=\frac{h}{2}\left|y^{\prime \prime}(\xi)\right|=\frac{h}{2}=\frac{1}{6} . \tag{17}
\end{equation*}
$$

(ii) The additional error is given by

$$
\begin{equation*}
\left|\frac{y_{2}-y_{1}}{h}-\frac{w_{2}-w_{1}}{h}\right| \leq \frac{2 \varepsilon}{h}=\frac{2 \cdot 0.01}{\frac{1}{3}}=0.06 . \tag{18}
\end{equation*}
$$

