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Use the transformation:

1 = o P
Y2 = (I)/ ;
This implies that
yi = ®/ =Y,
1 1 1
/ — q)//:_¢l__¢):_ - _ _ = . .
Yo 5 Y2 2?91 291 Y23,

So the matrix A is given by ( _01 _11 )

2

To compute the amplification factor one uses the test equation 3y’ = \y. Apply-
ing the Modified Euler method gives:

predictor: W,y = wyp + hf(ty, w,), (1)
corrector: Wy = Wy, + g[f(tn, wy) + f (a1, Wnat)]- (2)
SO
predictor: W,y = w, + hiw,, (3)
corrector:  Wpy1 = W, + g[)\wn + AMwy, + hdwy,)]. (4)

Summarizing wy,1 = (1 + kA + 3(hA)?*)w,, which leads to the answer Q(h\) =
14+ hA+ 5 (hA)%

The eigenvalues of the matrix A are \; = —5 + % and Ay = —5 — L. For
stability it is needed that |Q(hA;1)| < 1 and |[Q(hA2)] < 1. Since Ay = A\

it is sufficient to check the inequality |Q(hA1)| < 1. Using h = 1 we obtain
|

Q(hA) =1+ A + 2122 =14 1 Note that |Q(hA)] = (/1 4+ & =0.5590 < 1,
so the method is stable for h = 1.



()

The local truncation error is defined by

= Yi+1 — Zj+1
= .
J h

Using the testequation and the definition of z;;, it appears that

zjr1 = Q(hA)y;.

For the exact solution we have:

kA
Yj+1 = €7Y;.

This implies that
e — Q(hN)
Tj+1 = Tyj

Note that

Ah)?
e = 1+/\h+% + O(h?).

Furthermore by using the hint we can conclude that

h
1422

h
1— k)

1
=1+h\+ §(h>\)2 + O(h3).

Combining (5), (6), and (7) we obtain that ;41 = O(h?).

(7)

Again it is sufficient to check if [Q(hA1)| < 1. Using Ay = —1 + £ it appears

that

Q(hA)| = \/ S LR V)

The last inequality easily follows, because h > 0.

The Jacobian is defined by:
onh  Oh
1 D
oh of
Oy1 Oy2

Using the definition it follows that

(—002(@/1) é)_(—cgsg (1))_(_

sl <

S =



2.

a After discretization by the use of finite differences one obtains
—Wi—1 + 2w; — Wi

2

The truncation error is defined by
Vi + 2y — Vi

e = =
Taylor series of y; 1 and ;.1 around x;, gives

12 B3 h
yirr = yi + by (23) + Sy (@) + Sy (@) + 9" (@) + O(R°),

+ 2y — ;. 9)

h2 h3 h4 (10)
Yi—1 = Yi — h?/(xz') + gy”(ﬂfi) - yym(%’) + Ey””(%) - O(h5)7

Substitution of the above expressions into the definition of the truncation error
gives

er = —y'(w;) + O(W*) + xiy(w;) — @i, (11)
Using the differential equation —y” + x?y = z finally gives
e = O(h?). (12)

b For this case we have h = 0.25, for the points j € {1,2,3}, the discretization

with wg = 0 and wy = 1:

1 1
2w, — 1 —w; = —
32wy 6wy + 16w1 1
1 1
—16w; + 32wy — 16ws + —wy = 2 (13)
9
—16QU2 + 32’[1)3 + 1—6UJ3 = Z + 16.
Hence in matrix-vector form:
32.0625 —16 0 w1 0.25
—16 3225 —16 wy | = 0.5 (14)
0 —16 32.5625 W3 16.75
¢ Since h = %, we have g = 0, 1 = %, Ty = % and x3 = 1. Using linear

interpolation, two adjacent gridpoints are taken into account. The minimum
error is attained when the gridpoints x; and x5 are used. The linear interpolation
formula using points x; and x,, gives:

0.4444 + 0.7778
P(0.5) = '5 — 0.6111. (15)

The magnitude of the local truncation error is given by

(@ — x1)2(1: ) ) B [ 1/3)2(0-5 —2/3) 4| = % ~0.0139. (16)




d (i) The magnitude of the truncation error is given by

. + hy + R, 0 .
Y2—4% ' (11)] = y(z1) y' (1) + 5y (€) — y(z1) —y/(x1)
h h
(ii) The additional error is given by
Y2 — Y1 W9 — W1 2e 2-0.01
- <= = = 0.06.
- - <5 I 0.06



