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1. (a) Use the transformation:

y1 = Φ ,

y2 = Φ′ ,

This implies that

y′1 = Φ′ = y2 ,

y′2 = Φ′′ = −Φ′ − 1

2
Φ = −y2 −

1

2
y1 = −1

2
y1 − y2; ,

So the matrix A is given by

(
0 1
−1

2
−1

)
.

(b) To compute the amplification factor one uses the test equation y′ = λy. Apply-
ing the Modified Euler method gives:

predictor: wn+1 = wn + hf(tn, wn), (1)

corrector: wn+1 = wn +
h

2
[f(tn, wn) + f(tn+1, wn+1)]. (2)

so

predictor: wn+1 = wn + hλwn, (3)

corrector: wn+1 = wn +
h

2
[λwn + λ(wn + hλwn)]. (4)

Summarizing wn+1 = (1 + hλ + 1
2
(hλ)2)wn, which leads to the answer Q(hλ) =

1 + hλ + 1
2
(hλ)2.

(c) The eigenvalues of the matrix A are λ1 = −1
2

+ i
2

and λ2 = −1
2
− i

2
. For

stability it is needed that |Q(hλ1)| ≤ 1 and |Q(hλ2)| ≤ 1. Since λ2 = λ̄1

it is sufficient to check the inequality |Q(hλ1)| ≤ 1. Using h = 1 we obtain

Q(hλ1) = 1 + λ1 + 1
2
λ2

1 = 1
2

+ i
4
. Note that |Q(hλ1)| =

√
1
4

+ 1
16

= 0.5590 ≤ 1,

so the method is stable for h = 1.
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(d) The local truncation error is defined by

τj+1 =
yj+1 − zj+1

h
.

Using the testequation and the definition of zj+1 it appears that

zj+1 = Q(hλ)yj.

For the exact solution we have:

yj+1 = ehλyj.

This implies that

τj+1 =
ehλ −Q(hλ)

h
yj. (5)

Note that

ehλ = 1 + λh +
(λh)2

2
+O(h3). (6)

Furthermore by using the hint we can conclude that

1 + h
2
λ

1− h
2
λ

= 1 + hλ +
1

2
(hλ)2 +O(h3). (7)

Combining (5), (6), and (7) we obtain that τj+1 = O(h2).

(e) Again it is sufficient to check if |Q(hλ1)| ≤ 1. Using λ1 = −1
2

+ i
2

it appears
that

Q(hλ1) =
1− h

4
+ hi

4

1 + h
4
− hi

4

So

|Q(hλ1)| =

√
(1− h

4
)2 + (h

4
)2

(1 + h
4
)2 + (h

4
)2

≤ 1.

The last inequality easily follows, because h > 0.

(f) The Jacobian is defined by: (
∂f1

∂y1

∂f1

∂y2
∂f2

∂y1

∂f2

∂y2

)
Using the definition it follows that(

0 1
− cos(y1) 0

)
=

(
0 1

− cos π
4

0

)
=

(
0 1

−
√

2
2

0

)
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2. a After discretization by the use of finite differences one obtains

−wi−1 + 2wi − wi−1

h2
+ x2

i wi = xi. (8)

The truncation error is defined by

ei =
−yi−1 + 2yi − yi+1

h2
+ x2

i yi − xi. (9)

Taylor series of yi−1 and yi+1 around xi, gives

yi+1 = yi + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi) + O(h5),

yi−1 = yi − hy′(xi) +
h2

2!
y′′(xi)−

h3

3!
y′′′(xi) +

h4

4!
y′′′′(xi)−O(h5),

(10)

Substitution of the above expressions into the definition of the truncation error
gives

εi = −y′′(xi) + O(h2) + x2
i y(xi)− xi. (11)

Using the differential equation −y′′ + x2y = x finally gives

εi = O(h2). (12)

b For this case we have h = 0.25, for the points j ∈ {1, 2, 3}, the discretization
with w0 = 0 and w4 = 1:

32w1 − 16w2 +
1

16
w1 =

1

4
,

−16w1 + 32w2 − 16w3 +
1

4
w2 =

1

2
,

−16w2 + 32w3 +
9

16
w3 =

3

4
+ 16.

(13)

Hence in matrix-vector form:32.0625 −16 0
−16 32.25 −16
0 −16 32.5625

w1

w2

w3

 =

 0.25
0.5

16.75

 (14)

c Since h = 1
3
, we have x0 = 0, x1 = 1

3
, x2 = 2

3
and x3 = 1. Using linear

interpolation, two adjacent gridpoints are taken into account. The minimum
error is attained when the gridpoints x1 and x2 are used. The linear interpolation
formula using points x1 and x2, gives:

P (0.5) =
0.4444 + 0.7778

2
= 0.6111. (15)

The magnitude of the local truncation error is given by∣∣∣∣(x− x1)(x− x2)

2
y′′(ξ)

∣∣∣∣ =

∣∣∣∣(0.5− 1/3)(0.5− 2/3)

2
· 1
∣∣∣∣ =

1

72
= 0.0139. (16)
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d (i) The magnitude of the truncation error is given by∣∣∣∣y2 − y1

h
− y′(x1)

∣∣∣∣ =

∣∣∣∣∣y(x1) + hy′(x1) + h2

2
y′′(ξ)− y(x1)

h
− y′(x1)

∣∣∣∣∣ =
h

2
|y′′(ξ)| =

h

2
=

1

6
.

(17)
(ii) The additional error is given by∣∣∣∣y2 − y1

h
− w2 − w1

h

∣∣∣∣ ≤ 2ε

h
=

2 · 0.01
1
3

= 0.06. (18)
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