DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3 097 TU)
 Wednesday 21 January 2004, 14:00-17:00

1. (a) Expand $y(1-h)$ in its Taylor series at $\mathrm{t}=1$. Then, the truncation error (TE) is equal to $\frac{1}{2} h y^{\prime \prime}(\xi)$, with $\xi \in(1,1-h)$.
(b) Uniform acceleration may be assumed so the exact trajectory $y(t)$ is a quadratic function of t. This implies that $y^{\prime \prime}$ is constant and equal to 10 , so $\mathrm{TE}=5 h$. The measuring error in $y^{\prime}(1): \frac{0.2}{h}$. (Note: no measuring error in $y(1)$.)
The total error is $5 h+\frac{0.2}{h}$. Set the first derivative with respect to h equal to 0 $\rightarrow h_{\text {opt }}=0.2$.
(c) $y^{\prime}(1) \approx \frac{y(1)-y(0.8)}{0.2}=\frac{-0.38}{0.2}=-19(\mathrm{~m} / \mathrm{sec})$. Maximal (absolute value of the) total error: $5 h_{\text {opt }}+0.2 / h_{\text {opt }}=5 * 0.2+0.2 / 0.2=2(\mathrm{~m} / \mathrm{sec})$.
(d) Formulas using 3 or more points have third or higher derivatives in the expression for the TE. So, in this problem where the exact trajectory $y(t)$ may be assumed to be quadratic in t, these formulas have zero TE. Although the effect of measurement errors on $y^{\prime}(1)$ will be larger than for the 2-point formula, there is a good chance that such formulas will give more accurate answers.
(e) Use Taylor expansions

$$
\begin{aligned}
3 y(1) & =3 y(1) \\
-4 y(1-h) & =-4\left[y(1)-h y^{\prime}(1)+\frac{1}{2} h^{2} y^{\prime \prime}(1)-\frac{1}{6} h^{3} y^{\prime \prime \prime}\left(\xi_{1}\right)\right] \\
y(1-2 h) & =y(1)-2 h y^{\prime}(1)+\frac{1}{2}(2 h)^{2} y^{\prime \prime}(1)-\frac{1}{6}(2 h)^{3} y^{\prime \prime \prime}\left(\xi_{2}\right) \\
-------- & \left.=--------------------------2 h h^{3}\right),
\end{aligned}
$$

and, dropping the $O\left(h^{3}\right)$-terms, the 3 -point formula follows. Note that the quadratic terms cancel, such that the TE is equal to $\left[\frac{1}{3} y^{\prime \prime \prime}\left(\xi_{1}\right)-\frac{2}{3} y^{\prime \prime \prime}\left(\xi_{2}\right)\right] h^{2}$.
(f) Total error $=$ measuring error $=\frac{5 * 0.2}{2 h}$ because in this application $y^{\prime \prime \prime}(t)=0$. The total error is minimized by choosing h as large as possible, i.e. $h_{\text {opt }}=0.5$. Then,

$$
y^{\prime}(1) \approx \frac{3 y(1.0)-4 y(0.5)+y(0.0)}{2 * 0.5}=3 * 0.0-4 * 8.8+14.9=-20.3 .
$$

Maximal error $=\frac{5 * 0.2}{2 * 0.5}=1(\mathrm{~m} / \mathrm{sec})$; this is 50 percent smaller than the maximal error in (c).
(g) No, since the more points a difference formula uses the larger the (maximal) effect of measurement errors on $y^{\prime}(1)$ (the TE remaining zero of course, as noted in (d)).
2. (a) To compute the eigenvalues one has to solve the following problem: determine λ such that $\operatorname{det}(A-\lambda I)=0$. This leads to

$$
\left|\begin{array}{cc}
-a-\lambda & -1 \\
1 & -a-\lambda
\end{array}\right|=0
$$

so $(-a-\lambda)^{2}+1=0,-a-\lambda= \pm i, \lambda_{1,2}=-a \pm i$.
(b) The amplification factor of Euler Forward is $Q(h \lambda)=1+h \lambda$. The method is stable if $\left|Q\left(h \lambda_{1,2}\right)\right| \leq 1$. Substitution of λ_{1} leads to:

$$
\begin{gathered}
|1+h(-a+i)| \leq 1, \\
\sqrt{(1-h a)^{2}+h^{2}} \leq 1, \\
1-2 h a+h^{2} a^{2}+h^{2} \leq 1, \\
h^{2}\left(a^{2}+1\right) \leq 2 h a, \\
h \leq \frac{2 a}{a^{2}+1} .
\end{gathered}
$$

For λ_{2} the same inequalities hold.
(c) The test equation is $y^{\prime}=\lambda y$. The amplification factor is defined such that $w_{j+1}=Q(h \lambda) w_{j}$. This leads to:

$$
\begin{gathered}
w_{j+1}=w_{j}+\frac{h}{2}\left(\lambda w_{j}+\lambda w_{j+1}\right) \\
\left(1-\frac{h}{2} \lambda\right) w_{j+1}=\left(1+\frac{h}{2} \lambda\right) w_{j} \\
w_{j+1}=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda} w_{j}
\end{gathered}
$$

so $Q(h \lambda)=\frac{1+\frac{h}{2} \lambda}{1-\frac{h}{2} \lambda}$.
(d) We first check that $\left|Q\left(h \lambda_{1}\right)\right| \leq 1$.

$$
\left\lvert\, Q\left(h \lambda_{1} \left\lvert\,=\frac{\left|1+\frac{h}{2} \lambda\right|}{\left|1-\frac{h}{2} \lambda\right|}=\frac{\sqrt{\left(1-\frac{h}{2} a\right)^{2}+\frac{h^{2}}{4}}}{\sqrt{\left(1+\frac{h}{2} a\right)^{2}+\frac{h^{2}}{4}}} \leq 1 .\right.\right.\right.
$$

The last inequality holds because $\left(1-\frac{h}{2} a\right)^{2}<\left(1+\frac{h}{2} a\right)^{2}$.
(e) Note that $\boldsymbol{w}_{0}=\boldsymbol{u}(0)=\binom{1}{1}$. So one step of Euler Forward gives:

$$
\begin{aligned}
\boldsymbol{w}_{1} & =\boldsymbol{w}_{0}+h\left[A \boldsymbol{w}_{0}+\boldsymbol{g}(0)\right] \\
& =\binom{1}{1}+\frac{1}{2}\left(\begin{array}{rr}
-2 & -1 \\
1 & -2
\end{array}\right)\binom{1}{1}+\frac{1}{2}\binom{0}{1} \\
& =\binom{1}{1}+\binom{-\frac{3}{2}}{-\frac{1}{2}}+\binom{0}{\frac{1}{2}}=\binom{-\frac{1}{2}}{1}
\end{aligned}
$$

(f) One step of the trapezoidal rule gives:

$$
\begin{aligned}
& \boldsymbol{w}_{1}=\boldsymbol{w}_{0}+\frac{h}{2}\left[A \boldsymbol{w}_{0}+\boldsymbol{g}(0)+A \boldsymbol{w}_{1}+\boldsymbol{g}(h)\right] \\
& \boldsymbol{w}_{1}=\binom{1}{1}+\frac{1}{4}\left(\begin{array}{rr}
-2 & -1 \\
1 & -2
\end{array}\right)\binom{1}{1}+\frac{1}{4}\binom{0}{1}+\frac{1}{4}\left(\begin{array}{rr}
-2 & -1 \\
1 & -2
\end{array}\right) \boldsymbol{w}_{1}+\frac{1}{4}\binom{\frac{1}{2}}{1+\frac{1}{2}} .
\end{aligned}
$$

Bringing the unknown vector to the left-hand side leads to

$$
\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{rr}
-\frac{1}{2} & -\frac{1}{4} \\
\frac{1}{4} & -\frac{1}{2}
\end{array}\right)\right] \boldsymbol{w}_{1}=\binom{1}{1}+\binom{-\frac{3}{4}}{-\frac{1}{4}}+\binom{0}{\frac{1}{4}}+\binom{\frac{1}{8}}{\frac{3}{8}} .
$$

This can be simplified into

$$
\left(\begin{array}{rr}
\frac{3}{2} & \frac{1}{4} \\
-\frac{1}{4} & \frac{3}{2}
\end{array}\right) \boldsymbol{w}_{1}=\binom{\frac{3}{8}}{1 \frac{3}{8}} .
$$

After Gaussian elimination one obtains:

$$
\boldsymbol{w}_{1}=\binom{0.0946}{0.9324} .
$$

