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1. (a) The method is explicit, because the value wy is only present on the left-hand
side.
(b) The local truncation error 7,41 (h) is given by
— W,
Tiv1(h) = Yot — ki) n kHa (1)
where ) )
W1 = Yi + hf(ty + Shuk + éhf(tka Yr))- (2)
We develop yx41 in a Taylor polynomial:
2

h
Yk+1 = Uk + hyl + ayg + O(h?). (3)

Using the Taylor polynomial in two variables one obtains

(b o s 1)) = b 91+ 5% (i 1)+ 5L (i) F 1, 1)+ O
)

Note that y is a solution of the differential equation ¢y’ = f(¢,y). This implies:
f(tx, yx) = y;. Differentiation of the differential equation yields

n_0f Ofdy _0f Of
V=% Toyat ot oy (5)

Combination of (4) and (5) shows:
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STy + S (b y) = Y + 3hyi + O(h?). (6)
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Substituting (2), (3), and (6) in (1) leads to the required result.
(c) The method has an error of O(h?), so

y(1) —wi(1) = Chi (7)

and
y(1) — wy(1) = Chj = ;O3 (8)
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Subtract (8) from (7),which yields:
Combined with (8) one has:

y(1) — wa(1) = g(wa(1) — wi(1))

which implies that K = %
Apply the method to the test equation 3’ = Ay. This yields:

Wrt1 = wy + A\ (wg + %h)\wk)

SO
(hA)?
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We first rewrite the second order differential equation into a system of first order
equations. Therefore we define u; = y and uy = y'. The resulting linear system
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0
-5 =2
hA = —0.1 £ 0.2¢ for h = 0.1. Substituting this value into the amplification
factor gives

Wg4+1 = (1 + hA + )wk

The eigenvalues of the matrix are given by Ao = —1 %+ 24, so

(—0.1 + 0.2:)?

Q(—0.1+40.2i) =1—0.1+0.2i + :

Working this out gives:
Q(—0.1+0.2i) = 0.885 + 0.18i

and |Q(—0.1 4+ 0.27)] = 0.9031 < 1. So the integration can be done in a stable
way for this step size.

After discretization one obtains:

—Ujfl + 2'U,j — Uj+1
h2

= fj-

The truncation error is defined as:

—Yj-1+ 2y — Yjn
€ = ’ h2] I _fj' (9)



Taylor expansion of y;;; and y;_; gives:

/ h2 " h3 " 4

Yjr1 =Yj + hyj + Eyj + gyj + O(h )
h? h?

Y1 =y = hyj + Sy — 5+ O

Substituting this into (9) and using —y” = f shows that the truncation error is
of order O(h?).

We replace the left boundary condition by

Uy —uU_q

o U

The truncation error is defined as:

_yl_y—l /
e=>—"——y

Sy, (10)

Using the Taylor expansion
2

h
—yy + O(h?)

1= Yo+ hyy + 5

h2
Y1 =yo— hyy + ay({ +O(n?)
shows that e = O(h?).

In this case h = 0.25. For the indices 5 = 0,1,2 and 3 we can write out the
equations as given in (a). Using the boundary conditions: uy = 1 and u_; = u4
leads to the resulting system:

32 -32 0 0 ug 0

~16 32 —16 0 w || 025
0 —16 32 —16 uy | | 05
0 0 —16 32 us 16.75

In this case n = 3 and h = % The grid points are xg = 0, x; = %, Ty = % and
x3 = 1. With linear interpolation only two grid points can be used. The smallest
error occurs when we use the grid points z; and x5. Substituting the data into
the formula for linear interpolation yields: p(0.5) = (0.4444 + 0.7778)/2 =
0.6111. The truncation error is:

(13 — $1)2(£E - x2)y//(€)

3 Tg = % and y” = -1 (y satisfies the differential equation)
shows that the absolute value of the truncation error is less than or equal to:
1

= = 0.0139.
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Using z = 0.5, 2, = 1+



(e) The absolute value of the extra error is now less than or equal to:

[y1 — ur] + [yo — uy

< 0.01
5 <

This estimate is comparable to the occurrence of a rounding error in the value
of y.



