DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Friday 27 August 2004, 9:00-12:00

1. (a) The method is explicit, because the value w_{k+1} is only present on the left-hand side.
(b) The local truncation error $\tau_{j+1}(h)$ is given by

$$
\begin{equation*}
\tau_{j+1}(h)=\frac{y_{k+1}-\bar{w}_{k+1}}{h}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{w}_{k+1}=y_{k}+h f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h f\left(t_{k}, y_{k}\right)\right) . \tag{2}
\end{equation*}
$$

We develop y_{k+1} in a Taylor polynomial:

$$
\begin{equation*}
y_{k+1}=y_{k}+h y_{k}^{\prime}+\frac{h^{2}}{2!} y_{k}^{\prime \prime}+O\left(h^{3}\right) \tag{3}
\end{equation*}
$$

Using the Taylor polynomial in two variables one obtains
$f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h f\left(t_{k}, y_{k}\right)\right)=f\left(t_{k}, y_{k}\right)+\frac{1}{2} h \frac{\partial f}{\partial t}\left(t_{k}, y_{k}\right)+\frac{1}{2} h \frac{\partial f}{\partial y}\left(t_{k}, y_{k}\right) f\left(t_{k}, y_{k}\right)+O\left(h^{2}\right)$
Note that y is a solution of the differential equation $y^{\prime}=f(t, y)$. This implies: $f\left(t_{k}, y_{k}\right)=y_{k}^{\prime}$. Differentiation of the differential equation yields

$$
\begin{equation*}
y^{\prime \prime}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} f \tag{5}
\end{equation*}
$$

Combination of (4) and (5) shows:

$$
\begin{equation*}
f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h f\left(t_{k}, y_{k}\right)\right)=y_{k}^{\prime}+\frac{1}{2} h y_{k}^{\prime \prime}+O\left(h^{2}\right) . \tag{6}
\end{equation*}
$$

Substituting (2), (3), and (6) in (1) leads to the required result.
(c) The method has an error of $O\left(h^{2}\right)$, so

$$
\begin{equation*}
y(1)-w_{1}(1) \approx C h_{1}^{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
y(1)-w_{2}(1) \approx C h_{2}^{2}=\frac{1}{4} C h_{1}^{2} \tag{8}
\end{equation*}
$$

Subtract (8) from (7), which yields:

$$
w_{2}(1)-w_{1}(1)=\frac{3}{4} C h_{1}^{2}
$$

Combined with (8) one has:

$$
y(1)-w_{2}(1) \approx \frac{1}{3}\left(w_{2}(1)-w_{1}(1)\right)
$$

which implies that $K=\frac{1}{3}$.
(d) Apply the method to the test equation $y^{\prime}=\lambda y$. This yields:

$$
w_{k+1}=w_{k}+h \lambda\left(w_{k}+\frac{1}{2} h \lambda w_{k}\right)
$$

so

$$
w_{k+1}=\left(1+h \lambda+\frac{(h \lambda)^{2}}{2}\right) w_{k}
$$

(e) We first rewrite the second order differential equation into a system of first order equations. Therefore we define $u_{1}=y$ and $u_{2}=y^{\prime}$. The resulting linear system is:

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-5 & -2
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{0}{\sin t} .
$$

The eigenvalues of the matrix $\left(\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right)$ are given by $\lambda_{1,2}=-1 \pm 2 i$, so $h \lambda=-0.1 \pm 0.2 i$ for $h=0.1$. Substituting this value into the amplification factor gives

$$
Q(-0.1+0.2 i)=1-0.1+0.2 i+\frac{(-0.1+0.2 i)^{2}}{2}
$$

Working this out gives:

$$
Q(-0.1+0.2 i)=0.885+0.18 i
$$

and $|Q(-0.1+0.2 i)|=0.9031<1$. So the integration can be done in a stable way for this step size.
2. (a) After discretization one obtains:

$$
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f_{j} .
$$

The truncation error is defined as:

$$
\begin{equation*}
\epsilon_{j}=\frac{-y_{j-1}+2 y_{j}-y_{j+1}}{h^{2}}-f_{j} . \tag{9}
\end{equation*}
$$

Taylor expansion of y_{j+1} and y_{j-1} gives:

$$
\begin{aligned}
& y_{j+1}=y_{j}+h y_{j}^{\prime}+\frac{h^{2}}{2!} y_{j}^{\prime \prime}+\frac{h^{3}}{3!} y_{j}^{\prime \prime \prime}+O\left(h^{4}\right) \\
& y_{j-1}=y_{j}-h y_{j}^{\prime}+\frac{h^{2}}{2!} y_{j}^{\prime \prime}-\frac{h^{3}}{3!} y_{j}^{\prime \prime \prime}+O\left(h^{4}\right)
\end{aligned}
$$

Substituting this into (9) and using $-y^{\prime \prime}=f$ shows that the truncation error is of order $O\left(h^{2}\right)$.
(b) We replace the left boundary condition by

$$
\frac{u_{1}-u_{-1}}{2 h}=0
$$

The truncation error is defined as:

$$
\begin{equation*}
\epsilon=\frac{y_{1}-y_{-1}}{2 h}-y_{0}^{\prime} \tag{10}
\end{equation*}
$$

Using the Taylor expansion

$$
\begin{aligned}
& y_{1}=y_{0}+h y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+O\left(h^{3}\right) \\
& y_{-1}=y_{0}-h y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+O\left(h^{3}\right)
\end{aligned}
$$

shows that $\epsilon=O\left(h^{2}\right)$.
(c) In this case $h=0.25$. For the indices $j=0,1,2$ and 3 we can write out the equations as given in (a). Using the boundary conditions: $u_{4}=1$ and $u_{-1}=u_{1}$ leads to the resulting system:

$$
\left(\begin{array}{cccc}
32 & -32 & 0 & 0 \\
-16 & 32 & -16 & 0 \\
0 & -16 & 32 & -16 \\
0 & 0 & -16 & 32
\end{array}\right)\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0.25 \\
0.5 \\
16.75
\end{array}\right)
$$

(d) In this case $n=3$ and $h=\frac{1}{3}$. The grid points are $x_{0}=0, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}$ and $x_{3}=1$. With linear interpolation only two grid points can be used. The smallest error occurs when we use the grid points x_{1} and x_{2}. Substituting the data into the formula for linear interpolation yields: $p(0.5)=(0.4444+0.7778) / 2=$ 0.6111. The truncation error is:

$$
\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{2} y^{\prime \prime}(\xi)
$$

Using $x=0.5, x_{1}=\frac{1}{3}, x_{2}=\frac{2}{3}$ and $\mathrm{y}^{\prime \prime}=-1$ (y satisfies the differential equation) shows that the absolute value of the truncation error is less than or equal to: $\frac{1}{72}=0.0139$.
(e) The absolute value of the extra error is now less than or equal to:

$$
\frac{\left|y_{1}-u_{1}\right|+\left|y_{2}-u_{2}\right|}{2} \leq 0.01
$$

This estimate is comparable to the occurrence of a rounding error in the value of y.

