
DELFT UNIVERSITY OF TECHNOLOGY September 2007
Faculty of Electrical Engineering, Mathematics and Computer Science

 Matlab Manual

 2

 3

Contents

0 Matlab version .. 5

1 Matlab session... 6

1.1 Getting started with Matlab ... 6

1.2 Matlab and matrices, a general remark... 7

1.3 The Matlab Editor/Debugger ... 7

1.4 The Workspace Browser... 7

1.5 The property editor... 8

2 Lay-out .. 9

3 Common Commands.. 10

4 Numbers and strings .. 11

5 Variables ... 12

6 Complex variables .. 13

7 Matrices and Vectors ... 14

8 Matrix and array operations... 17

9 Elementary mathematical functions and constants .. 18

10 Conditional statements .. 19

11 Loop Statements ... 21

12 Output ... 23

13 Input .. 25

13.1 The import wizard .. 25

14 Graphical Output ... 26

15 Script files, function files ... 29

15.1 Script files... 29

15.2 Function files.. 29

15.3 Collecting multiple Matlab files... 30

15.4 Parameters and Functions ... 30

16 Solving a system of equations.. 32

 4

17 Tracking down errors .. 33

18 Symbolic Computing.. 34

19 Functions, some advanced issues .. 36

19.1 Passing a function as an argument .. 36

19.2 Communicating parameters ... 36

20 Example program, time integration ... 39

21 Example program, filling a penta-diagonal matrix .. 41

22 Reference and index ... 42

 5

0 Matlab version

This manual describes (some) elements of Matlab Version 7.0 (or higher).

 6

1 Matlab session

The way to start Matlab differs from computer to computer. You may type the command
‘matlab’ in a command window of the operating system. Often, though, you will have to click
on a specific icon in order to run the program.

1.1 Getting started with Matlab
Once you have started Matlab a Matlab command window will appear, showing the command
prompt:

» % The Matlab command prompt.

The line after the prompt is called the command line. On this line you can give Matlab
commands. After you have pressed <return>, Matlab will execute the command.

 » pause(5) % Wait 5 seconds before showing the plot.

» plot (x,y) % Plot vector y versus vector x.

Besides the command window Matlab has graphical windows. Output of plot commands is
directed to the graphical window.

The quit command enables you to leave Matlab. To terminate a running Matlab command
you may use [Ctrl]+[c] (Press both the Ctrl button and the c button simultaneously).

By using the ! symbol you can use the original operating system

» ! printer command % Execute the printer command belonging to the
 % original operating system.

Only for short computations it is useful to execute Matlab straightaway from the command
line. In general the next procedure is much more practical:

1. Make a script file (see section 15) by means of your favorite text editor or the Matlab

Editor/Debugger (see Section 1.3). A script file consists of a sequence of Matlab
commands. In general script files will contain the main program and subprograms.

2. If necessary make the additional function files, using the same editor. Through these files
we are able to define the functions which play a role in script files.

3. Matlab executes the commands in the script file after you have typed the name of the
script file on the command line. Note, however, that the script file should be in the current
(working) directory, indicated in the box above the command window.

From the command line background information can be obtained using

1. help

 » help plot % gives information on the Matlab command plot.

 7

2. demo

 » demo % presents multiple examples of the usage of Matlab.

1.2 Matlab and matrices, a general remark
Suppose that we define vectors x, y and a matrix z by

 x(i) = i , i = 1, …, 10,
 y(i) = i2 , i = 1, …, 10,
 z(i, j) = sin(x(i) * y(j)) , i, j = 1, …, 10.

In most programming languages a computer implementation will use nested loops:

 » for i = 1:10
 x(i) = i; y(i) = i^2;
 end
 for i = 1:10
 for j = 1:10
 z(i, j) = sin (x(i) * y(j));
 end
 end

In Matlab this can be done quite differently, because matrices are basic objects:

 » x=1:10; y=x.^2; z=sin(x.*y);
 % using a dot preceding the basic operation is vital
 % here because all operations have to be taken elementwise,
 % see also chapter 8

Both programming styles are possible in Matlab. However, the latter is far more efficient.
Therefore we prefer the latter and all examples will be given in this style.

1.3 The Matlab Editor/Debugger

It is advantageous to use the Matlab Editor/Debugger when creating or editing script files.
You invoke this editor by typing edit at the command prompt or from the File-New or File-
Open menu. The Matlab editor has various features to aid in editing script files so that most
typing errors can be recognized. For example, text strings, reserved words (if, else, for, end,
…) and expressions are all shown in different colours. Saving and running the script is easily
done using the Debug menu.

1.4 The Workspace Browser

The Workspace browser is invoked by the View-Workspace menu, giving a list of current
variables (scalars, vectors, matrices), just as whos (Section 3) does. By double clicking on a

 8

variable in the Workspace window the values of this variable are shown, in a separate
window (the array editor), enabling inspection and interactive adaptations.

1.5 The property editor

Matlab directs graphical output to the graphical window. In this window the so-called
property editor is available. Access is possible via the Edit or View button. Each graphical
window contains several graphical objects such as axes and lines. One can select the different
objects by clicking on them. Next, using the property editor one may inspect, make changes
or add objects. This is in particular handsome in the final stage when it is needed to prepare
the plot for inclusion in a report. It is the easy to add a title, label, etc.

 9

2 Lay-out

When you use Matlab’s default configuration, the program distinguishes upper case and lower
case characters. One says that Matlab is case sensitive.

If the default configuration is used, Matlab will also print the result after every command.
Typing ; (a semicolon) after the command will suppress this.

» x = 2 % Matlab prints the result

x =
 2

» x = 2; % Matlab does not print the result

The symbol % (comment) is used to give comments.

» x = 2 % gives the value 2 to x and prints the result
% printing the result can be suppressed with ;

The symbol … (continuation) denotes that the command continues on the next line

» x = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 . . .
 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20;

% this command does not fit on one line

 10

3 Common Commands

 quit : exit from Matlab

 help command name : gives information about a command

 arrow up / down : retrieves preceding and following commands

 pause : pauses execution, Matlab will proceed after <return>

 whos : gives a list of Matlab variables stored in the memory

 clear : clears the memory

 clc : clears the command window

 clf : clears the graphical window

 shg : brings the graphical window to the foreground

 close : closes the graphical window

 cputime : determines the elapsed cpu time

 tic, toc : stopwatch timers for the elapsed real time

 demo : activates Matlab demonstrations

 11

4 Numbers and strings

Numbers can be entered in Matlab in the usual way; however, spaces inside a number should
be avoided.

» (52/4 -0 .01) * 1 e - 3

ans =
 1.2990 e - 02

Matlab automatically assigns a type for every number you enter. Depending on the type,
Matlab chooses an internal representation for these numbers and the corresponding
computations. The external representation of a number (e.g. on the screen) can be altered with
the format command.

 format long e : 16 digits, (exponential) floating point
 3.141592653589793e-02

format short e : 5 digits, (exponential) floating point 3.1416e-02
format short : 5 digits, fixed point 0.0314
format long : 15 digits, fixed point 0.03141592653590
format : returns to the default configuration

The default configuration is ‘format short’. It might be possible that the local system manager
has changed this into short e.

Remark: The format command influences only the external representation of
real numbers. This command has no influence on the internal
representation used by Matlab to process the program and its
computations.

Remark: The format command is not able to alter the external representation of

integer numbers.This can result for example in jumps in tables.

The command vpa from the Symbolic Toolbox is helpful for displaying numbers and
variables:

 » x = pi/10000; d=8; disp(vpa(x,d))
 .31415927e-3

In the above the variable d in the call of vpa refers to the number of digits to be displayed.

To manipulate text, Matlab uses strings.

» disp (’give the spring constant a’)
give the spring constant a

 12

5 Variables

A variable’s name has to start with a letter, but may not contain more than 31 letters, digits,
or underscores. Matlab is case sensitive in its default settings. This means that j and J do not
have the same meaning. Matlab automatically reserves space in the computer’s memory to
store the variable. Variables do not need to be declared before use; Matlab derives the type of
the variables by looking at the stored data. So it is possible that the type of a variable changes
while a session is in progress.

The basic element of Matlab is the matrix. Depending on the size of the matrix we
distinguish scalars (1 x 1 - matrix), vectors (1 x m -, or m x 1 – matrix), etc. Depending on the
context Matlab also assigns the type of the variables in the matrix, e.g. real or complex.

The operators +, -, *, /, ^ can be used for all Matlab variables (x ^ y = x to the power of y).
In the scalar case these operations will reduce to the usual computations. At every operation
step Matlab checks if the dimensions of the matrices involved are correct.

» a = 1; c = 1 + i; v(1) = 1; v(2) = 2; word =’text’;

The command whos (see section 3) gives:

Name Size Class
 a 1 x 1 double array
 c 1 x 1 double array (complex)
 v 1 x 2 double array
word 1 x 4 char array

Multiplying a vector v with itself is not possible. If we try this anyhow we get:

» w = v * v;

??? Error using ==» *
Inner matrix dimensions must agree.

 13

6 Complex variables

A complex number can be defined using the imaginary number i.

» c = 1 + i

 c =
 1.0000 + 1.0000 i

The operators +, -, *, /, ^ also work for complex numbers. With the symbol ’ we conjugate
a complex variable:

» cgec = c’

 cgec =
 1.0000 - 1.0000 i

The (square of the) modulus of c can be computed in the following way:

» modc2 = c’ * c

 modc2 =

 2.0000

An alternative method is:

» modc2 = abs(c) ^2

 modc2 =

 2.0000

Imaginary and real parts of a variable can be obtained with the functions real and imag:

» a = real (c)

a =
 1.0000
» b = imag (c)

b =
 1.0000

 14

7 Matrices and Vectors

Matlab stores its variables in matrices of size n x m. If m = 1, we are dealing with a column
vector, and if n = 1, with a row vector. When n = m = 1 the matrix represents a scalar. The
size of a matrix does not have to be given; Matlab determines the size from the data given by
the user. Matlab does not recognize a more general array structure, for example v (-10:100);
the lower bound in Matlab is always equal to 1.

We can define matrices in different ways, e.g. by giving values to every element separately.
We separate row entries by a space or comma and column entries by a semicolon or a
<return>.

» A = [1 2 3;4,5,6;7 8 9] % generating matrix A

 A =
 1 2 3
 4 5 6
 7 8 9

» A = [1 2 . . .
 3 4;
 5 6 7 8] % generating matrix A; . . . means continuation

 A =
 1 2 3 4
 5 6 7 8

Vectors can also be made using the colon symbol : . Here the first value stands for the initial
value, the second for the step size.

» x = 0 : 0.2 : 1 % generating row vector x

x =
 0 0.2000 0.4000 0.6000 0.8000 1.0000

The default vector in Matlab is a row vector as can be seen here. If a column vector is needed,
extra measures are needed (see later on).

Sometimes it is good to use one of the following Matlab functions:

zeros(n,m) : gives an n x m matrix with zeros
ones(n,m) : gives an n x m matrix with ones
eye(n) : gives the n x n identity matrix

» A = ones(3,3) + 2*eye(3) % generating matrix A

 A =
 3 1 1

 15

 1 3 1
 1 1 3

Matrices can also be built from smaller variables

» v = ones(3,1); A = [-v 2*v -v] % generating matrix A

 A =
 -1 2 -1
 -1 2 -1
 -1 2 -1

Sometimes it is useful to contruct matrices by concatenation.

» v1= [1 2]; v2= [3 4];
» v = [v1 v2] % or v = cat (v1, v2)
v =
 1 2 3 4

 » E = eye(3); C = zeros(3,2); D = [E C]

D =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0

Large diagonal band matrices can be made by using the function

 diag(v,k) : returns a square matrix with on the k-th upper diagonal the entries
of the vector v.

» v = 1 : 2 : 9 % generating vector v

v =
 1 3 5 7 9

» A = diag(v,-1) + eye(6) + 2*diag(v,1)

A =
 1 2 0 0 0 0

 1 1 6 0 0 0
 0 3 1 10 0 0
 0 0 5 1 14 0

 0 0 0 7 1 18
 0 0 0 0 9 1

Matrix elements can be used separately or in groups:

 16

A(i , j) = Aij
A(: , j) = jth column of A
A(i , :) = ith row of A
A(i , j1:j2) = vector existing of the entries, from column j1 to j2, of row i

 A(i1:i2 , j1:j2) = matrix existing of the entries, from column j1 to j2, of the
rows i1 to i2.

 » x = A(2,3)
 x =
 6

» plot (x(75 : 125) , y(325 : 375));

In case one of the dimensions equals one we are dealing with a vector. We can refer to this
vector with just one index. This index is either a row index or a column index, depending on
the type of the vector.

Note:

Matrix elements can also be addressed using one index only. This might sometimes be handy.
One-dimensional references are taken column wise by Matlab:

 » A = [1 2 3; 4 5 6; 7 8 9];
 » x = A(6)
 x =
 8

However, in many cases such a reference is the result of a programming error, and then one
must be aware of the fact no error message will be given.

 17

8 Matrix and array operations

Arithmetic operations on matrices and vectors come in two distinct forms. Matrix sense
operations are based on the normal rules of linear algebra and are obtained with the usual
symbols +, -, *, /, ^. Array sense operations are defined to act elementwise and are
obtained by preceding the symbol with a dot.

» v = v1.*v2; % multiply v1 and v2 element by element
 % v(1)=v1(1)*v2(1),….,v(n)=v1(n)*v2(n).

» y = v.^2; % y(1)=v(1)^2,…,y(n)=v(n)^2.

A very useful extra matrix operation is presented by taking the transpose

» B=A’; % transpose A
» B=transpose(A); % alternatively

In the case of matrix operations linear algebra introduces restriction with respect to the
dimensions of the matrices involved. Of course, Matlab checks for this.

» v(1) = 1; v(2) = 2; v(3) = 3; A = eye(3); % A is the 3x3 identity matrix.
» w = A * v;

??? Error using ==» *
Inner matrix dimensions must agree.

Matlab assumes that the index of every new vector is a column index, i.e. unless explicitly
specified otherwise (see example below), the new vector is a row vector. Hence in the
example above v is a row vector, which results in an error message.

 » v = zeros(3,1); % v is forced to be a column vector

» v(1) = 1; v(2) = 2; v(3) = 3; A = eye (3);
» w = A * v;

» v(1) = 1; v(2) = 2; v(3) = 3; A = eye(3);
» v = v’; % change v into a column vector
» w = A * v;
» inprod = v’ * v % inner product if v is a column vector.

 18

9 Elementary mathematical functions and constants

Some of the predefined constants in Matlab are:

pi : the constant pi
i : the imaginary unit
inf : infinity

The following mathematical functions operate in array sense, i.e. on each element of the
variable separately:

abs : absolute value or modulus (complex case)
sqrt : square root
exp : exponential function
log : natural logarithm
log10 : logarithm with base 10

sin : sine
cos : cosine
tan : tangent
atan : arctangent

round : round off to the nearest integer
rem : remainder after division

For vectors are available:

max(v) : maximal element of the vector v
min(v) : minimal element of the vector v
sum(v) : sum of the elements of the vector v
length(v) : returns the size of the v
norm (v) : returns the Euclidean norm of the vector v,
 i.e. norm(v)=sqrt(sum(v.^2)).
norm(v,inf) : returns the infinity norm of the vector v,
 i.e. norm(v)=max(ads(v)).

» max(abs(v)) % computing the largest element of v, irrespective of its sign

For matrices we mention

’ : returns the transpose of a matrix
size(A) : returns the size of a matrix
det(A) : returns the determinat of a matrix
transpose(A) : returns the transpose of a matrix
eig(A) : determines the eigenvalues (and eigenvectors) of the matrix A

 lu(A) : determines the LU-factorization of the matrix A (using
 permutations if necessary).

chol(A) : determines the Cholesky factorization of a symmetric matrix A

 19

10 Conditional statements

A conditional statement is a command that allows Matlab to take a decision of whether to
execute a group of commands that follow the conditional statement, or to skip these
commands. In a conditional statement a conditional expression or condition is stated. If the
condition is true, a group of commands that follow the statement is executed.

The if-end structure

 if condition
 commands
 end

The if-else-end structure

 if condition
 commands [1]
 else
 commands [2]
 end

The if-elseif-else-end structure

 if condition
 commands [1]
 elseif condition
 commands [2]
 else
 commands [3]
 end

The condition needs to be a relational or logical expression taking the value true or false, in
Matlab 1 (true) or 0 (false).

In Matlab six relational operators can be used to compare variables or evaluate expressions

< : smaller than
<= : smaller than, or equal to
> : greater than
>= : greater than, or equal to
== : equal to
~= : not equal to

» x=5; y=10; x<y
 1 % thus true

Furthermore there are three basic logical operators:

 20

& : and
 | : or
~ : not

» x=5; y=10; x>1 & y<=5
 0 % thus false

Combining all of this one may see:

An example:

» if (x >= 1 & y >= 1)
 a = 1;
 elseif ~(x >= 1) & ~(y >= 1)
 a = -1; % both x and y less than 1
 else
 a = 0; % either x or y less than 1
 end

 21

11 Loop Statements

FOR - loop

Syntax:
 for variable = start value : increment : end value
 commands
 end

The increment can be positive as well as negative. If not defined, Matlab will use increment 1
as a default.

» for j = 0 : 10
 v(j + 1) = j * 0.1; % the row vector v needs to start at index one!
 end

WHILE - loop

Syntax:
 while condition
 commands
 end

The condition needs to be a relational or logical expression.

» x = 1;
» while (x >10^-6)
 x = x /2;
 end

Forced exit from loops

A loop can be terminated with the break statement, which passes control to the first statement after the
corresponding end. This is in particular handsome to avoid infinite while-loops, because sometimes it
is not certain that the condition will be met at a certain moment.

tol = 10^-6; % specify tolerance
criterium = inf; % initialize to a large number
m = 0; % initialize counter to zero
while criterium > tol
 compute a new approximation x
 compute an updated value of criterium for this x
 m = m+1; % count
 if m > 1000, break, end % jump out if too many
end

This example presents a typical implementation of a numerical iterative procedure to obtain a
numerical approximation within a specified tolerance taking into account that the numerical procedure
might not converge.
Influence of round-off

 22

» x = 0;
» while (x <1)
 x = x+0.1;
 end
» x

x =
 1.1000

Note that this is not a proper method when we want to execute the loop statement exactly ten
times. In Matlab 10 times 0.1 is just a bit less then 1, because Matlab makes round-off errors.
This means that the loop will be executed 11 times in stead of 10 times, and therefore the final
value of x will be too big. In such a case it is better to rely upon integer computation.

» x = 0;
» for j = 1:10
 x = x+0.1;
 end

In order to force integer computation the command round (section 9) is often useful.

 23

12 Output

Output can be directed to the screen with the command disp.

disp (x) : print the value of the variable x
disp (’text’) : print the string ‘text’
disp (A(:,5)) : print the 5-th column of matrix A

With the command format or vpa we can define how a number is displayed (see section 4).

Remark: Advanced control mechanisms for printing are available with the
command fprintf. (see the example program in section 19 or use help
fprintf)

We can write data to a file.

 save data varlist : the variables in varlist are written to the file
data.mat in binary format. This file can be used in
a subsequent session.

 save output varlist - ascii : the variables in varlist are written legible (8
digits, floating point) to the file output. If
necessary this file can be printed.

 diary output : makes a diary of everything which happens
during the session and writes this to the file
output. If necessary this file can be printed.

diary off : stops monitoring the session.

» x = 0:0.1:1; y=exp(x); table=[x’ y’]
» format compact % suppress empty lines in output
» diary output % open the file output as output file
» disp (’x y’) % display the header of the table
» disp (table); % display a table containing x and y
» diary off

The fifth line uses Matlab matrix features. Alternativily, one may use the more classical:

» for j = 1 : 10
 disp ([x(j) , y(j)]) % display the values
 end

Remark: The diary command easily gives an unnecessary amount of output.

Therefore: Use the diary command in a selective way and only at
places where output is needed.

Remark: Files can be printed using the printer command of the original operating

system, see section 1.

 24

Remark: Depending on the operating system other printer commands might be
available. Be careful in using these commands, because they can cause
an unnecessarily long waiting time for other people who want to use the
printer. Using the printer command (in the file menu) you can print the
whole Matlab session.

 25

13 Input

Variables can be entered in Matlab in different ways. The first method is using the command
line. We already explained how to do this. Another way to enter it is:

» x = input (’x-coordinate =’);

This command writes the text from the string to the screen, waits for input (until a <return> is
given) and assigns the value given by the user to the variable x. The following command:

» load data

fetches the binary file data.mat. The file data.mat needs to be produced beforehand in Matlab
and besides a list of variables it also contains the values of these variables.

The command

» load data.txt

fetches an ASCII file with the name data.txt. The content is stored in a double precision array
with the name data. The file data.txt is only allowed to contain numbers, separated by blanks.
Each line of the file corresponds with a row in the array data. Each number on a line
corresponds with a column in the array data. The number of columns must be equal on each
line.

13.1 The import wizard

Data can also be imported using a graphical user interface, called the Import Wizard. Choose
in the File menu the option Import Data to start the Import Wizard. Then choose a file in the
new window from which data should be read, preview the data, and if you are satisfied, use
the next and finish buttons to import the variables in the Matlab workspace. You may check
the imported variables afterwards, using whos (Section 3) or the Workspace Browser (Section
1.4).

 26

14 Graphical Output

General commands affecting the graphical screen are:

clf : clear graphical window
 shg : show graphical screen (bring graphical screen to the

foreground)
 close : close the graphical window

 hold on : keep the contents of the graphical screen during new plot
 commands

 hold off : erase the contents of the graphical screen before executing
new plot commands

print : direct the graph to the printer
print filename : store the graph in the file ‘filename’

Commands affecting the layout of the graph are:

linspace(x1,x2,n) : generates a grid of n points on [x1,x2]
axis ([xmin xmax ymin ymax]) : sets the axes according to the given values
grid : adds a grid to the graph
title(’text ’) : writes text above the plot
xlabel(’text ’) : writes text underneath de x-axis
ylabel(’text ’) : writes text next to the y-axis
text(x, y, ’text ’) : writes text at the point (x,y) of the graphical

 screen
 t = num2str(var) : makes text of the value of var, which can

for example be written to the screen with
text(x,y,t).

Some basic graphical commands are:

linspace(x1,x2,n) : generate a grid of n points on [x1,x2]
plot (y) : plots the vector y versus the indices 1, ..., n.

 plot (x,y) : plots the vector y versus the vector x; x and
y must be of the same size.

 plot (x,y, ’symbol’) : plots the vector y versus the vector x by
using a symbol or color, e.g. ’:’ (dotted), ’--
’ (dashed), ’o’ (circles), ’x ’ (crosses), ’y ’
(yellow line), ’r’ (red line), ’g’ (green line)

 fplot (@f,[xbegin xend]) : plots the function f on the interval [xbegin,
xend].

 plot ([xbegin xend],[ybegin yend]) : draws a line from (xbegin, ybegin) to (xend,
yend).

 zoom : makes it possible to zoom in at a specific
point in the graph by clicking at that point.

 ginput(n) : gets the coordinates of n points in the
graph, which are located by positioning the

 27

cursor and thereupon clicking the mouse.

Remark: help plot shows all the possible arguments with plot.

 » x = [0:20]/10; y = sin (pi * x);
 » plot (x,y); % plot sin πx on [0,2], plot
 % automatically assigns the right limits
 % to the axes in the graphical screen.
 » axis ([0 2 -1 1]); % adjust the x-axis and the y-axis; it is

% preferable to call axis after plot
» xlabel (’x’); ylabel (’sin x’);
» print % send the graph to the printer.

» clf
» hold on
» type = [’- ’ ; ’: ’ ; ’- .’ ; ’- -’] % spaces to equalize the length of the
 % character strings
» xgraph = [0:100]/100;
» for j = 1 : 4
 omega = j * pi ; % plot sin(ωx) on [0,1]

 ygraph = sin (omega * xgraph); % for ω = π, 2π, 3π, 4π,
 plot (xgraph,ygraph,type(j,:)); % distinguish the curves visually
 end
» print figure % store the graph in a file named figure;

 % use help print to see a list of
 % available formats.

Some commands for 3 dimensional graphs are:

 plot3(x,y,z) : plots a line through the coordinates of vectors x, y, z.

 surf(x,y,Z) : plots the matrix Z versus the vectors y and x, creating a
surface.

 surfc(x,y,Z) : same as surf, but adds a contour plot beneath the surface.
 mesh(x,y,Z) : plots the matrix Z versus the vectors y and x, creating
 a surface together with a mesh on it.
 meshgrid(x,y) : creates matrices for a 2D product grid from two 1D vectors.
 rotate3d : enables the user to rotate the plot by mouse.

 » t = [0:500] * pi / 50;
 » x = sin(t); y = cos(t);
 » plot3(x,y,t) % plots a spiral on the cylinder
 % x2 + y2 = 1.
 » x = [0:10] / 10;
 » y = [0:20] / 10;
 » [X,Y]=meshgrid(x,y) % build a 2D product grid by
 % forming x ⊗ y

 » Z=sin(X+Y); % compute function values on the grid
 » mesh(X,Y,Z); % or surf(X,Y,Z) % plot sin(x+y) for x = 0 : 0.1 : 1

 28

 » % and y = 0 : 0.1 : 2

Moreover, Matlab has some easy to use plotting routines with names starting with ez. Examples are:

 ezplot : plots a function f(x) on an interval

 ezsurf : presents a surface of a function f(x,y)

As has been mentioned in section 1.5, the property editor can be used conveniently to
manipulate the graphical window.

 29

15 Script files, function files
15.1 Script files

A script file is a file that consists of a sequence of Matlab commands: a Matlab program. We
make such a file with the help of the Editor. The standard extension for these files is .m, e.g.
program.m. The commands in the script file are executed after the filename is typed on the
command line (without extension .m, i.e. in the example above you need to type ‘program’).
It is also possible to run a script file from another Matlab program (see section 20).

 % plotsin.m : The script file creates a plot of
 % the function sin(x) on the interval [0, π]

 clear; clc; clf; % clear

 x = linspace(0, pi, 41); % create a grid with spacing π/40 on [0, π].
 y = sin(x);
 plot(x,y);
 axis([0 pi -1 1]); % set limits along axes
 title(‘sin(x)’); % put text above the plot

15.2 Function files

By means of function files we can add new functions to Matlab. A function file contains a
sequence of commands, like a script file, but by means of input and output variables it is
possible to communicate with other files. The filename of a function file is used to execute
the function.

A function file has the following form:

 function output_variable = function_name(input_variable)
 commands

The word function on the first line implies that it is a function file and not a script file.

Remark: At the position of function_name you need to fill in your chosen name
for the function. The filename of the file containing this function must
be the same as this name with the standard extention .m. Similar to
names of variables, the function name is not allowed to start with a
number.

Both the input variable as well as the output variable may be matrices or vectors.

 function y = average(v);
 % This function computes the average of the elements of vector v.
 % The function is stored in the file average.m

 30

 n = length(v);

 y = sum(v)/n;

Having defined the function average, stored in the file average.m, this function is available for scripts
and other functions.

% examplescript.m : script file to compute average temperature

T = [17.0 18.5 17.8 17.9 18.3];
averT = average(T);
disp(averT);

15.3 Collecting multiple Matlab files

Matlab does not allow for a mixture of scripts and functions in a single file. However,
functions and subfunctions can be collected in a single file. As an example we present a single
file, called examplescript.m, containing both files from subsection 15.2.

function examplescript
% EXAMPLESCRIPT This function executes the commands as contained in the
% script examplescript.m (previous subsection). No input
% and output arguments are used.

 T = [17.0 18.5 17.8 17.9 18.3];
averT = average(T);
disp(averT);

 function y = average(v);
 % This function computes the average of the elements of vector v.

 n = length(v);

 y = sum(v)/n;

Typing examplescript on the command line, excutes the script. However, it is a disadvantage
that the workspace can not be accessed easily using the Workspace Browser because
functions have local workspaces.

15.4 Parameters and Functions

Functions and subfunctions have local memories and, as a consequence, variables used in the
function file are local (i.e. only accessible inside the function), and therefore they are not
stored in and/or taken from the central Matlab memory.

function y = comp(x);
y = a * x; % the variable a is defined locally and does not

 31

 % have a value irrespective of the outside world,
 % i.e. an error message follows

function y = comp(x);
a = 2; % the variable a has the value 2, only within this
y = a * x; % function and this value is not know elsewhere.

Often it is neccessary to use a parameter in a function that gets its value outside the function.
You can show Matlab you want to use such a parameter by adding it to the list of that
function. In the following example we add the variable a to the list of the function comp:

function y = comp(x,a);
 y = a * x; % the variable a gets its value outside the function

 % and is passed to the function

This is not always possible. It may sometimes be necessary to define a variable globally, by
using global. If you do so the variable is defined in all program parts that contain the same
global declaration.

function y = comp (x);
global a;
y = a * x; % the variable a must also be defined globally
 % at other locations, i.e. specifically
 % where a gets its value.

Remark: The declaration with global should only be used when there is no other

possibility. If you use it, it is wise to add some comments.
Remark: In the context of the courses for which this manual is written a convenient way

to communicate parameters, avoiding the global command, is to use nested
functions, see subsection 19.2.

For an example of the use of global see subsection 19.1.

 32

16 Solving a system of equations

To solve systems of equations Ax = b we can use several methods:

i) If a small system with a full matrix needs to be solved only once, we may use the black

box option:

 » x = A\b;

Often it is necessary to be more specific to obtain an efficient program. As an example we
mention:

ii) If more than one system needs to be solved with the same matrix A, but different right-

hand sides:

» [L,U] = lu(A); % Make an LU-decomposition of A
» y = L\b; % Solve lower triangular system
» x = U\y; % Solve upper triangular system
» y2 = L\b2; x2 = U\y2; % Solution for other right-hand side

iii) If the matrix is symmetric and positive definite, we may use the Cholesky decomposition:

» R = chol(A); % Make a Cholesky decomposition of A: R’ R = A
» y = R’\b; % Solve lower triangular system
» x = R\y; % Solve upper triangular system

In all cases the command A = sparse(A) can save a lot of runtime and memory space when A
is a band matrix. As an example we give the number of floating-point operations for the case
where A is a symmetric tridiagonal matrix of size 100 x 100.

 without sparse(A) with sparse(A)
method i
method ii
method iii

378350
 35250
358750

2149
1889
1393

 33

17 Tracking down errors

Matlab does not give specific directions for debugging programs. In any way it is useful to
generate (intermediate) output, and if necessary to recalculate it manually. Some useful
commands are:

whos : gives a table of the variables that are stored in memory. With
this command you can check the size.

 size(A) : gives the size of a matrix A.

 disp(’labelj’) : directs the labeled text to the screen; can be used to find out

at which line the program does not work properly.

 disp(var) : prints the actual value of the variable var on the screen. Can

be used to check values of intermediate results.

The Workspace Browser (Section 1.4) provides a very simple, but often effective, way to
check names, types and sizes of variables. Moreover, variables can be opened in the array
editor and then it is easy to check the values of the variables in use.

A more advanced feature can be found in the Matlab editor. After opening a Matlab file one
can use the Debug menu, and, among others, set breakpoints.

 34

18 Symbolic Computing

Matlab offers the Symbolic Math Toolbox, which is based upon the Maple kernel from
Waterloo Maple, inc. This Toolbox allows symbolic manipulation of variables in a way very
much similar to Maple, so it might be helpful to consult your Maple Manual. To obtain an
overview of functions in the toolbox type help symbolic in the Matlab window. A short
survey is given below.

 sym x : declare x to be a symbolic variable
 syms x y : declare x and y to be symbolic
 subs(y,x,value) : substitute the ‘value’ for x into the symbolic expression y

As an example, observe the effect of following commands

 » syms x y % declare x, y to be symbolic
 »y=sqrt(x)
 »y1=subs(y,x,2) % substitute x=2 into y= x
 »y2=subs(y,x,sym(2)) % y2 will be symbolic
 »yv=subs(y,x,1:10) % yv will be a vector

Expressions may contain several symbolic objects which can be substituted by a call to subs
with lists (so-called cell arrays in Matlab) as second and third argument. Symbolic integration
and differentiation is performed through the int and diff functions, as in Maple. The resulting
expression sometimes appears to be quite complicated; then simplify, factor or conversion to
numeric form, using double might help.

 diff(f,x) : differentiate f with respect to x
 int(f,x,a,b) : integrate f with respect to x from a to b
 simplify(y) : simplify the symbolic expression y
 factor(y) : factorize the symbolic expression y
 double(y) : convert the symbolic expression into a
 floating point number
 »syms x y
 »f=sqrt(1+x^2+y^2)
 »f12=subs(f,{x,y},{1,2}) % substitute x=1 and y=2 into f
 »f12num=double(f12) % convert f12 to floating point
 »fx=diff(f,x) % differentiate w.r.t. x
 »fxsim=simplify(fx) % simplify

Expressions can be solved for a variable using solve, whereas dsolve tries to solve differential
equations symbolically. The derivatives are denoted by D, D2, etc., and initial conditions can
be passed as additional arguments.

 solve (f,x) : solve f=0 for x

 dsolve(deq,init) : solve the differential equation given by deq
 for the initial value init

 35

 »syms x a c
 »f = a*x^2+c
 »x0=solve(f,x) % find the zeros of f
 »x0=solve(‘a*x+c=0’) % solve ax+c=0
 »y=dsolve(‘D2x+x=0’) % solve the differential equation x”+x=0
 »y=dsolve(‘D2x+x=0’,’x(0)=1’) % solve the differential equation with initial
 % value x(0) = 1

 36

19 Functions, some advanced issues

Function files, often userdefined, form the heart of Matlab applications. In this section we pay
attention to some advanced features related to communication.

19.1 Passing a function as an argument

A function can be passed as an argument by using a function handle or an anonymous/inline
object or a string. We recommend the usage of function handles and/or anonymous objects
(the two are closely related).

% program.m : script file to plot the function f(x) =x^m;
% uses the function file f.m

global m;
m = 2;
fplot(@f,[0,1]); % @ is the function handle

The function f is given in the following function file:

% f.m : Function file presenting the function x^m:

 function fvalues = f (x);
 global m;
 fvalues = x. ^ m; % note the usage of array operations
 % the function f is called with an
 % array as input variable. This
 % array contains multiple x-values.

Remark : The usage of global is not really necessary, as the routine fplot could be called

differently, see subsection 19.2.

19.2 Communicating parameters

In the context of the courses for which this manual is written it is often needed to vary
parameters which are present in low-level routines. We can communicate parameters using
the global command. However, this is not recommended. There are several alternatives of
which we mention the two we like most:

 use nested functions
 use command line functions in the form of anonymous functions

The first method is advocated in some text books. The second method is frequently mentioned
in the Matlab help.

In order to focus, we consider the initial value problem

 37

⎪⎩

⎪
⎨
⎧

=

+−=

.1)0(y

.tsinay
dt
dy

The parameter a needs to get its value outside the function file presenting the right-hand side
of the differential equation. In the examples below we use the Matlab routine ode45 for the
numerical integration of the differential equation. If needed, it is easy to substitute your own
solver, either as a stand-alone routine or as a nested function.

Nested functions

The underlying mechanism for communication of parameters is that nested functions share
the same workspace. This enables easy communication of parameters. If functions are nested,
then it is obligatory to use end on the last line of the function

function solvede % level 0
% SOLVEDE solves a simple DE % top level

a = 2; % give a its value at the top level
y0 = 1 ; tspan = [0 1];
[t,y] = ode45(@ownrhs,tspan,y0); % function handle
plot(t,y);

 function fvalue = ownrhs(t,y) % level 1
 % OWNRHS contains the user-supplied rhs of the DE
 % ownrhs shares the workspace of solvede and thus
 % it is possible to use the parameter a freely

 fvalue = -a*y+sin(t);

 end % end of ownrhs

end % end of solvede

Anonymous functions

The above example can be done on basis of a script file solvede and a separate function file
ownrhs.

% solvede.m : script file to solve a simple DE

a = 2;
y0 = 1 ; tspan = [0 1];
fhandle = @(t,y) ownrhs(t,y,a); % function handle, presenting both the
 % basic variables as well as the

% parameter
 [t, y] = ode45(fhandle, tspan, y0);
 plot(t,y)
The anonymous command line function defined through its handle can access the content of

 38

variables that exist in the workspace where the anonymous function was created, i.e. it has
access to the parameter a. The function file accompanying the script file reads:

 function fvalue = ownrhs(t,y,a)
 % the parameter a needs to be in the input list and now the full input list must be
 % repeated in the definition of the anonymous function

 fvalue = -a*y+sin(t);

 39

20 Example program, time integration

% This program computes the numerical solution of dy/dt=f(t,y) with Heun’s method (the modified Euler method) .

% Filename : exprog.m
% Function-file : exf.m
% Script-files : exheun.m, extabel.m ex stands for example

% Screen management:
 clear; % Clear work memory
 clc; % Clear text window
 clf; % Clear graphical screen

y0=[1; 0]; % Initial condition
t0=0; % Start time
tend=5; % End time
nrsteps=input('Give the number of steps:');
h=(tend-t0)/nrsteps; % Time step

exheun % Call for the script file containing Heun’s method (the modified Euler method)
extabel % Call for the script file designed to print the results
 % The commands from a script file are substituted directly into this program.

pause(5); % The program pauses a while before it shows the graph
hold on;
plot(tgraph,ygraph(1,:),'-',tgraph,ygraph(2,:),'--'); % components of y are distinguished by
 % plotting the 2nd component with a broken line
axis([t0 tend -5 5]); % it is preferable to call axis after plot
title('Initial value problem: Name compulsory!');
xlabel(['Solution using Heun for h=' num2str(h)]);
hold off;

% Heun’s method. Script file with filename exheun.m.

% Assuming (t0, y0) "nrsteps" steps are being executed
% The derivative of the diff. eq. is given in the function file exf.m.
% The results are put in tgraph and ygraph

tgraph=zeros(1,nrsteps+1);
ygraph=zeros(length(y0),nrsteps+1);; % create matrix to save results
tgraph(1)=t0;
ygraph(:,1)=y0; % start saving results

y=y0; t=t0;
for j=1:nrsteps

 k1=h*exf(t,y);
 k2=h*exf(t+h,y+k1);
 ynew =y+(k1+k2)/2;
 tnew =t+h;

 tgraph(j+1)=tnew;
 ygraph(:,j+1)=ynew; % store the new results

 t=tnew;
 y=ynew;

end;

 40

% Print result. Script file with file name extabel.m.

% The results which are stored in tgraph and ygraph are
% printed in an 8-digit floating-point format in a table.

% In order to make a hardcopy of the tables you need to remove
% the first and the last two comment symbols (%).

% fprintf is actually a C-command
% In the format string of fprintf (the part between quotation marks),
% text which needs to be printed is given, and for every number
% which has to be printed the format is given.

% %5.1f means: fixed-point format with 1 decimal and 5 positions.
% %15.7e means: floating point (exponential) format with 7 decimals and 15 positions.
% \n means: continue printing on the next line

% After the format string the variables which (possibly) need to be printed follow.

% the actual file starts now:
% diary output

fprintf('Heun’s method, h=%5.3f \n',h);
fprintf('step t y(1) y(2)\n');
for k=0 : 5 : nrsteps % print every 5th result
 fprintf(' %4.0f %5.1f %15.7e %15.7e\n',k,tgraph(k+1),ygraph(1:2,k+1)); % the solution y has 2 components:
end; % they are both printed using the
 % floating point format %15.7e
% diary off

% Vectorfunction f. Function file with filename exf.m

function yacc = exf(t,y);

 yacc = [-2*y(1)- y(2)+t;
 -y(1)-2*y(2)-t];

% Results of the example program

Heun’s method, h=0.100
step t y(1) y(2)
 0 0.0 1.0000000e+00 0.0000000e+00
 5 0.5 5.2536330e-01 -2.9586400e-01
 10 1.0 5.7914644e-01 -5.2647651e-01
 15 1.5 8.4164231e-01 -8.2955459e-01
 20 2.0 1.2051207e+00 -1.2023466e+00
 25 2.5 1.6240001e+00 -1.6233635e+00
 30 3.0 2.0751573e+00 -2.0750112e+00
 35 3.5 2.5455986e+00 -2.5455650e+00
 40 4.0 3.0276755e+00 -3.0276678e+00
 45 4.5 3.5167996e+00 -3.5167979e+00
 50 5.0 4.0101983e+00 -4.0101979e+00

 41

21 Example program, filling a penta-diagonal matrix

% We will give two methods in this example in order to construct the N x N dimensional pentadiagonal matrix A:
%
% [5 -4-b 1 0 0 0]
% [-4+b 6 -4-b 1 0 0]
% [1 -4+b 6 -4-b 1 0]
% [0 1 -4+b 6 -4-b 1]
% [. ]
% A = c [. ] ,
% [0 1 -4+b 6 -4-b 1 0]
% [0 0 1 -4+b 6 -4-b 1]
% [0 0 0 1 -4+b 6 -4-b]
% [0 0 0 0 1 -4+b 5]
%
% where c and b are given constants. Note that the matrix A is symmetric for b = 0.
%Note that it is advisable to use sparse and spdiags for the construction of very large matrices (N>10000), see help sparse

% Method 1: Construction using a loop.
% In order to make the commands in the loop also valid for the first and the last column we first add extra columns.

 B=zeros(N,N+4); % Creates a N x (N+4) matrix, consisting of zeros

 for j=1:N
 B(j,j:j+4)=c*[1 -4+b 6 -4-b 1];
 end; % Assigns values to the coefficients B(j,j), B(j,j+1), B(j,j+2), B(j,j+3) and B(j,j+4)

 A=B(:,3:N+2); % Copies B, without the first two and last two columns
 clear B; % Removes temporary matrix B

 A(1,1)=5*c;
 A(N,N)=5*c; % Changes the upper-left and the lower-right coefficient of A

 A=sparse(A); % Only the non-zero elements of A are stored into the memory.
 % When N is large it is better to use the non-zero elements of A only.
 % For an LU-decomposition this saves computing time as well as memory
 % space.

% Method 2: Construction on the basis of the diagonals of A
% Firstly we make 5 vectors, all containing the elements of a diagonal.

 vm2 = c * ones(N-2,1); % This diagonal contains (N-2) elements, all equal to c
 vp2 = c * ones(N-2,1);
 vm1 = c*(b-4)*ones(N-1,1);
 vp1 = c*(-b-4)*ones(N-1,1);

 v =c*[5; 6*ones(N-2,1); 5]; % The first and last element of the main diagonal have different values.
 % We construct a column vector consisting of sixes, by 6 * ones(N-2,1),
 % and add the fives at the beginning and the end. Note that we use
 % the semicolons because we are making a column vector.

 A=diag(vm2,-2)+diag(vm1,-1)+diag(v,0)+diag(vp1,1)+diag(vp2,2);
 clear vm2 vm1 v vp1 vp2

 A=sparse(A); % See above

 42

22 Reference and index

In this section the following notation holds:

 n,m - scalar
 A - matrix
 v,w,b - vector
 x,y - arbitrary
 f - user supplied function file

Command Explanation Page

[] are used for creating matrices and vectors
() are used to :

- indicate the order of operations
- embrace arguments of functions
- embrace indices of matrices and vectors

… Three or more dots at the end of a line indicate that the line
continues on the next line

9

, symbol that separates between row elements in a matrix. 14
; symbol that separates between distinct rows in a matrix. We can

also use the semicolon to suppress the display of computations on
the screen and to separate different commands on a line

9,14

% All text on a line after the symbol % will be regarded as comment 9
! used to insert operating system commands 9
: used for the generation of variables in for-loops and used to select

matrix elements: A(:,n) is the nth column of A, A(m,:) the mth row

’ transposes matrices and vectors 17
.* v .* w : multiplication of two vectors by multiplying element by

element (operation in array sense) 7,17

\ A\b gives the solution of Ax = b 32
^ x ^ y = x to the power y 12
& logical and 20
| logical or 20
~ logical not 20
abs abs(x) is the absolute value of (the elements of) x 13,18
atan atan(x) is the arctangent of (the elements of) x 18
axis axis(v), with v = [xmin xmax ymin ymax] replaces the automatical

scaling of a graph’s axes by the configuration given by the vector v.
axis ('square') switches over from a rectangular graphical screen to a
square-shaped graphical screen, axis ('normal') switches back to the
rectangular screen.

26

chol chol(A) yields the Cholesky decomposition of the matrix A. 18,32
clc clc clears the command window and moves the cursor to the upper

left corner
10

 43

clear clear clears the variables from the Matlab memory. clear x {y}
removes the variable x {and y}

10

clf clf clears the graphical window 10,26
close close closes the graphical window 10,26
cos cos(x) is the cosine of (the elements of) x 18
cputime cputime determines the cpu time 10
demo demo starts a demonstration 7,10
det det(A) determinant of A 18
diag diag (v,k) returns a square matrix with the elements of the vector v

on the kth upper diagonal
15

diary diary filename puts all following commands and results in a file
with the name filename. This stops after diary off is entered

23

diff diff(f,x) differentiates f w.r.t. x 34
disp disp('text') writes text on the screen. disp(x) displays the value of

the variable x, without variable name
11,23,

33
double double(expr) converts the symbolic expression to a number 34
dsolve dsolve(deq) solves the differential equation deq 34,35
eig eig(A) computes the eigenvalues and eigenvectors of A 18
else, elseif see if 19
end end is the command that ends loop statements, conditional

statements and nested functions
19,21,

37
exp exp(x) is the exponent of (the elements of) x with base e 18
eye eye(n) is the nxn identity matrix. eye(m,n) is an mxn matrix with

ones on the diagonal and zeros elsewhere
14

factor factor(expr) factors the symbolic expression expr 34
for loop statement:

 for variable = start value : increment : end value,
 commands
 end

7

format formats the output:
 format short - 5 digits, fixed point
 format short e - 5 digits, floating point
 format long - 15 digits, fixed point
 format long e - 15 digits, floating point
standard configuration is short.
 format compact suppresses extra empty lines in the output
 format loose adds empty lines

11

fplot fplot(@f,[a,b]) plots the function f on [a,b] 26,36
fprintf C-command for advanced formatting of output 23
function user defined function:

 function outputvar = functionname (inputvars)
 commands
Function files have to have the name functionname.m.

29

ginput(n) gets the coordinates of n points in the graph, which are located by
positioning the cursor and thereupon clicking the mouse

26

global global x changes x into a global variable 31

 44

grid adds a grid (a lattice of horizontal and vertical lines) to a graph 26
help help shows the functions you can get information about.

help functionname shows this information on the screen. helpwin
generates an extra window with helptopics

6,10

hold hold on keeps the last plot in the graphical screen. A new graph will
be plotted on top of the existing one. hold off restores the default
settings. In that case, when a plot command has been given, the
graphical screen will be cleared before the new graph is be plotted

26

i the imaginary unit 18
if conditional statement:

 if statement if statement
 commands commands
 else elseif statement
 commands commands
 end else
 commands
 end

19

imag imag(c) returns the imaginary part of the complex number c 13
inf infinity 18
input input('text') displays text on the screen and waits for input by the

user. Can be assigned to a variable
25

int int(f,x,a,b) integrates f w.r.t. x from a to b 34
length length(v) returns the number of elements of the vector v 18
linspace linspace(x1,x2,n) generates a n-point grid on [x1,x2]; i.e. grid with

spacing (x2-x1)/(n-1)
26

load load filename loads the variables of the file filename into the
memory. The file is of type .mat or of type .txt.

25

log log(x) is the natural logarithm of (the elements of) x 18
log10 log10(x) is the logarithm with base 10 of (the elements of) x 18
lu lu(A) computes the lu factorization of the matrix A 18,32
max max(v) returns the largest element of the vector v 18
mesh mesh(x,y,Z) plots the matrix Z versus the vectors y and x, creating a

mesh
27

meshgrid meshgrid(x,y) creates a 2D grid from the vectors x,y 27
min min(v) returns the smallest element of the vector v 18
norm norm(v) computes the Euclidean norm of v and norm(v, inf)

computes the infinity norm
18

num2str num2str(var) converts the number var to a text string 26
ones ones(n) is an nxn matrix filled with ones, ones(m,n) is an mxn

matrix
14

pause pause pauses the running programme and waits until the user
presses any key. pause(n) pauses during n seconds

6,10

pi pi is the machine’s representation of π 18

 45

plot Drawing a graph:
 plot(v) - plot the vector v versus its indices
 plot(v,w) - plot the vector w versus the vector v
 plot(m,n,'symbol') - put a symbol at position (m,n) in the

 graph. The following symbols can be
 used: +, *, o and x

6,26

plot3 plot3(x,y,z) plots a line through the coordinates of vectors x, y, z 27
print direct the graph to the printer. print filename stores the graph in the

file filename
26

quad library routine: quad(f,0,1) computes the integral of the function f
on [0,1].

quit logout from Matlab 6,10
real real (c) returns the real part of the complex vector c 13
rem rem(m,n) returns the remainder after division of m by n 18
rotate3d enables the user to rotate the plot by mouse 27
round round(x) rounds the elements of x to the nearest integer 18
save save filename x {y} saves the variable x {and y} into the file

filename.mat
23

script file a script file is a file consisting of a sequence of Matlab commands.
After you have typed the file name at the command prompt these
commands will be executed.

29

shg shg shows the most recent graphical screen 10,26
simplify simplify(expr) simplifies the symbolic expression expr 34
sin sin(x) is the sine of (the elements of) x 18
size [m,n] = size(A) returns the size of the matrix A 18,33
solve solve(expr,x) solve expr=0 for x 34,35
sparse sparse(A) saves computations as well as memory space. It can be

used when A is a band matrix, and the computations only involve
non-zero elements.

32

sqrt sqrt(x) is the square root of (the elements of) x 18
subs subs(y,x,value) substitutes x=value into y 34
sum sum(v) is the sum of the elements of the vector of v 18
surf surf(x,y,Z) plots the matrix Z versus the vectors y and x, creating a

surface
27

surfc same as surf, but adds a contour plot beneath the surface 27
sym sym x declares x to be symolic 34
syms syms x y declares x and y to be symolic 34,35
tan tan(x) is the tangent of (the elements of) x 18
text text(m,n,'text') writes text at position (m,n) of the graphical screen 26
tic,toc tic and toc are stopwatch timer for the elapsed time 10
title title('text') writes text as a title above the graph in the graphical

screen
26

vpa vpa(x,d) takes x using d digits 11

 46

while conditional loop statement:
 while statement
 commands
 end

21

whos whos shows the name, size and type of the variables in the Matlab
memory

10,12,
33

xlabel xlabel('text') places text underneath the x-axis of the graphical
screen

26

ylabel ylabel('text') places text next to the y-axis of the graphical screen 26
zeros zeros(n) returns an nxn matrix with zeros; zeros(m,n) returns an

mxn matrix
14

zoom zoom makes it possible to zoom in at a specific point in the graph
by clicking the mouse at that point

26

