
Problem Solving Guide

1 Introduction

Having trouble with differential equations? Then this problem solving guide can help you out. Follow it,
and you can solve almost all differential equation exam problems.

Yes, almost. This strategy guide doesn’t work for all problems. If you really want a 10, then don’t read
this file, but study the differential equations book for the coming (at least) two weeks. If you’re content
with a 9, then try to follow the steps below.

You don’t have to read everything from this file. First of all, the addendums are optional. Read them if
you have problems with certain parts, or want to go more into detail. Second, only the bold parts are
important. The rest of the text is present to clarify the bold parts. If you understand the bold parts
right away, you won’t have to read anything else.

By the way, you might want to take a look at the examination solutions on the Aerostudents website
as well. They are solved using the plans of approach described below. Sometimes they can help you
understand one of the plans of approach.
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2 Laplace Transform

2.1 When to use?

When it is asked. In the question is a line saying ”Use the Laplace Transform to solve...”

2.2 Plan of Approach

1. Take the Laplace Transform. Do this for both sides of the given differential equation. Use the
table of Laplace Transforms for this. When transforming the left side of the equation, use table
item 18 and the relation L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)}. For the right side of the
equation, you can use table items 2, 3, 4, 6, 7, 9, 10, 14 and 17.

2. Solve for F (s).
3. Split the equation up in parts you can transform back. Sometimes you need to split up

fractions for this. Having trouble with this? See the addendum below.
4. Transform every part back independently. By doing this, you prevent yourself from mixing

up things. And you keep a better overview.
5. Add all the parts up. Simply put all the results from the previous step together to find the

solution to the question.

2.3 Addendum: Dealing with Fractions

Do you have trouble dealing with fractions? If you don’t, then skip this addendum. The above plan of
approach will assist you enough. If you do have problems, this addendum might help you out. It answers
questions you might be having. First we consider when/how to split up fractions.

• In what ways can we split up fractions? There are two ways to do this. If we have a numerator
consisting of parts with a + in between (like a+b

c ) we can split it up quite easily (it becomes a
c + b

c ).
It is always wise to split fractions up in this way as much as possible.

There is, however, another way to split up fractions. This is a bit more difficult. So we could now
ask ourself:

• When should we split up fractions in the difficult way? To answer this, we look at the
denominator of the fraction. The general rule is: Split up the fraction if the denominator consists
of multiple factors. With a denominator of, for example, (s2 + 4)(s + 4) we split the fraction up.
Now comes a following question:

• How do we split a fraction up in the difficult way? We do this by assuming a form of the
split-up fraction. For every factor in the denominator, we create a separate fraction. So in this case
we assume that

Something
(s2 + 4)(s + 4)

=
as + b

s2 + 4
+

c

s + 4
.

We could ask ourselves, why do we use as+b at one fraction and only c at the other? Or in general,
we could ask ourselves the following question:

• When do we use as + b above a fraction (in the assumed form) and when do we use
only a constant c? Once more we need to look at the denominator. More specifically, we need to
look at the highest power of it. If the highest power is 1 (for example, in s + 4), we put a constant
in the numerator. If the highest power is 2 (for example, in s2 + 4), we assume as + b. (This can
be continued for higher order denominators, but that never occurs in the Laplace Transform.)

So we know which form to assume. The next problem arises.
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• How do we solve for the coefficients? For this, we need to make the denominators equal. In
our example we will then get

Something
(s2 + 4)(s + 4)

=
(as + b)(s + 4)
(s2 + 4)(s + 4)

+
c(s2 + 4)

(s2 + 4)(s + 4)
.

We now have equal denominators, so we can remove them. We also need to work out brackets. For
our example, we will find

Something = as2 + bs + 4as + 4b + cs2 + 4c.

Now we need to equate coefficients. First look at all the terms without any s. This gives you one
equation. Then look at all the terms with s1. This gives you another equation. If, in our example,
we have Something = 2, we will find 2 = 4b + 4c and 0 = b + 4a. We will also find a third equation
when looking at all the terms with s2. Can you find which equation it is?

Now we know when to split up the fraction. If the denominator doesn’t consist of factors (like for
example s2 + 2s + 4) we can’t split the fraction up. What do we do then?

• What do we do with fractions we can’t split up? This time we need to write the denominator
differently. To be more precise, we need to set it in the form (s+a)2± b2, for some constants a and
b. In our example with denominator s2 + 2s + 4, we will find a = 1 and b =

√
3. Once you have

the denominator in this form, you can use the Laplace Transform table to find the inverse Laplace
Transform. If b = 0 you need to use either table item 3, 6, 7 or 8. If b 6= 0 you need to combine
this with table item 14.

By now you’re an expert in splitting up fractions. There’s one remaining thing we could discuss. Often
we have F (s) written as

F (s) = . . . + . . . +
Some numerator

Some denominator
e−as.

Students often find this difficult, but it is quite simple, once you know the trick. We first need to define

H(s) =
Some numerator

Some denominator
.

If we use table item 13 (from the given Laplace Transform table) we will get

L−1

{
Some numerator

Some denominator
e−as

}
= L−1{e−asH(s)} = ua(t)h(t− a), where h(t) = L−1{H(s)}.

So the only thing we need to do is find the inverse laplace transform of some fraction H(s). And you
know how to do that!
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3 Systems of First Order Differential Equations

3.1 When to use?

When it is asked. The question will start with ”Find the general solution to the system of differential
equations...”

3.2 Plan of Approach

To find the general solution, just follow the following steps.

• Solve the homogeneous system

x′(t) = Ax(t) =
[
a b
c d

]
x(t).

We do this by finding two independent solutions x1(t) and x2(t). Of course that’s easier said than
done. So we go into a little bit more detail.

– Assume x = ξeλt. Here ξ is a constant vector. Do not forget to write this assumption down
on your exam!

– Find the eigenvalues λ1 and λ2. We do this by solving (a− λ)(d− λ)− bc = 0.

– Find the corresponding eigenvectors ξ1 and ξ2. We do this by solving (A− λ1I)ξ1 = 0
and (A− λ2I)ξ2 = 0. It can be shown that the solutions are

ξ1 =
[

−b
a− λ1

]
and ξ2 =

[
−b

a− λ2

]
.

– Look at the eigenvalues.

∗ Are they real and different? Then

x1(t) = ξ1eλ1t and x2(t) = ξ2eλ2t.

∗ Are they complex? Then write

ξ1 = u + vi and λ1 = α + βi.

Now we have

x1(t) = eαt (u cos βt− v sinβt) ,

x2(t) = eαt (u sinβt + v cos βt) .

You may be wondering, why we only use one eigenvalue and one eigenvector. That is
because the two eigenvalues, and also the two eigenvectors, are complex conjugates (so
λ2 = α − βi and ξ2 = u − vi). This plan of approach explicitly uses that fact. (An
exception occurs if A is complex, but that situation isn’t part of this course.)

∗ Are they equal? Then solve

(A− λ1I) η = ξ1

for the constant vector η. Now we have

x1(t) = ξ1eλ1t,

x2(t) = ξ1teλ1t + ηeλ1t.
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So that’s how we find the solution to the homogeneous solution.
• Find a particular solution xp(t) for the nonhomogeneous system

x′(t) = Ax(t) + g(t).

– Look at g(t). Is it an exponential or a polynomial? g(t) is an exponential if it has the
form αeβt. It is a polynomial if its form is αt + β (or incidentally with higher powers of t).

– Yes? Then use method of undetermined coefficients. We do this because it is much
simpler than the other methods. Only if we can’t use this method, we take our refuge to a
different method.

∗ Assume the general form of xp(t). If g(t) = αeβt assume xp(t) = c1eβt. If g(t) =
αt + β, assume xp(t) = c1t + c2.

∗ Find xp
′(t).

∗ Insert xp(t) and xp
′(t) in the differential equation x′(t) = Ax(t) + g(t).

∗ Solve for c1 (and c2). If we are dealing with a polynomial, it will seem like we will
have 2 equations and 4 unknowns. To solve this problem, we need to apply a small trick.
We need to look at all the coefficients without a factor t (this gives us two equations) and
at all the coefficients with a factor t (giving us another two equations). This is similar to
what was discussed in the addendum about fractions.

– No? Use variation of parameters.

∗ Assume xp(t) = Φ(t)u(t).
∗ Assemble the fundamental matrix

Φ(t) =
[
x1(t) x2(t)

]
.

∗ Find Φ−1(t). This is usually the part requiring most work. One way to find Φ−1 is by
using the relation ΦΦ−1 = I. But there are a lot more methods to find the inverse matrix.

∗ Find u(t) using

u(t) =
∫

Φ−1(t)g(t) dt.

∗ Find xp(t) = Φ(t)u(t).

And now we’ve found the particular solution.
• Write down the general solution set

x(t) = c1x1(t) + c2x2(t) + xp(t).

And we’re done! That’s all there is to it.
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4 Stability of Systems of Differential Equations

4.1 When to use?

When it is asked. The question starts with ”Determine the type and (in-)stability...”

4.2 Plan of Approach

• Find the critical points. Of course you won’t have to do this when they are given.
– Set dx/dt = 0 and dy/dt = 0.

– Find all solutions (x,y).
What often goes wrong is that students do not find all solutions. It goes wrong when they
remove a term on both sides of the equation. Be careful with this! For example, consider the
equation (x + 1)y2 = (x + 1)y. We can’t say right away that this is equivalent to y2 = y. If
(x + 1) = 0 this doesn’t have to be true! So if you stripe away some term, separately consider
the case where that term is 0.
By the way, we are only looking for real critical points. If you find x2 = −2, you can simply
say ”no solutions” for that case.

• For every critical point, examine the type and stability.
– Define dx/dt = F (x, y) and dy/dt = G(x, y).

– Find the Jacobian matrix

J =
[
Fx(xcr, ycr) Fy(xcr, ycr)
Gx(xcr, ycr) Gy(xcr, ycr)

]
.

– Find the eigenvalues λ1 and λ2 of J . Don’t remember how to do this? See the previous
chapter. (Although we ignored complex critical points, we don’t ignore complex eigenvalues.
So if λ2 + 1 = 0, we have λ1 = i and λ2 = −i.)

– If λ1 = λ2, also find the eigenvectors. In other cases you don’t need to know the eigen-
vectors to determine the stability.

– Use the tables to find the critical point type. (The tables are on the next page.) You
won’t get these tables on your exam. Learn them by heart! Note that you need to write down
the type and stability, both for the linear system and the almost linear system. So for every
critical point, you need to find 4 pieces of data.

What often goes wrong here is that people forget critical points. When the stability is determined
for one point, people think they are done. Don’t forget the second (and incidentally third) critical
point!
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4.3 Stability Tables

Eigenvalues Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Proper node Unstable
r1 = r2 < 0, independent eigenvectors Proper node Asymptotically Stable

r1 = r2 > 0, missing eigenvector Improper node Unstable
r1 = r2 < 0, missing eigenvector Improper node Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ + µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ = 0 Center Stable

Stability for the linear system.

Eigenvalues of linear system Type of Critical Point Stability
r1 > r2 > 0 Nodal Source (Node) Unstable
r1 < r2 < 0 Nodal Sink (Node) Asymptotically Stable
r2 < 0 < r1 Saddle Point Unstable

r1 = r2 > 0, independent eigenvectors Node or Spiral Point Unstable
r1 = r2 < 0, independent eigenvectors Node or Spiral Point Asymptotically Stable

r1 = r2 > 0, missing eigenvector Node or Spiral Point Unstable
r1 = r2 < 0, missing eigenvector Node or Spiral Point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ > 0 Spiral point Unstable
r1 = λ + µi, r2 = λ− µi, λ < 0 Spiral point Asymptotically Stable
r1 = λ + µi, r2 = λ− µi, λ = 0 Center or Spiral Point Indeterminate

Stability for the almost linear system.
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5 Power Series

5.1 When to use?

When it is asked. The question starts with ”Find the general solution of the following differential
equation by means of a power series expansion...”

5.2 Plan of Approach

• Write down

y =
∞∑

n=0

an (x− x0)
n

,

y′ =
∞∑

n=0

an+1(n + 1) (x− x0)
n

,

y′′ =
∞∑

n=0

an+2(n + 2)(n + 1) (x− x0)
n

.

You can fill in the value for x0 here right away. By the way, x0 is always given in the question.
• Fill y, y′ and y′′ in into the differential equation.
• Pull all factors (x− x0) within the sum. This will only cause the power above the (x− x0) to

change. For example, (x− 2)2
∑∞

n=0 an(x− 2)n becomes
∑∞

n=0 an(x− 2)n+2.
• Set the power in the sum back to (x− x0)

n. Do this by changing the starting number. Also the
other occurrences of n will now change. For example,

∑∞
n=0 an(x− 2)n+2 becomes

∑∞
n=2 an−2(x−

2)n.
• Make the starting number of the sums equal by pulling out terms. Just look for the

highest starting number there is. Then make the starting numbers of all sums equal to that
number. For example, if the highest starting number is 2, then

∑∞
n=0 an+2(n + 2)(n + 1)(x − 2)n

becomes 2a2 + 6a3(x− 2) +
∑∞

n=2 an+2(n + 2)(n + 1)(x− 2)n.
• Join the sums together. That was the entire goal. Now that the powers and the starting numbers

are equal, we’re finally allowed to do this.
• Equate the coefficients. First look at all terms without a factor (x − x0). That gives you one

equation. If present, look at all terms with a factor (x−x0)1. This might give you an equation too.
Finally look at the general case: all terms with a factor (x−x0)n. This gives you another equation.
Solve this equation for the highest indexed coefficient. For example, if there is an+2 and an in the
equation, solve for an+2. Now you have found the recurrence relation.

• Use the recurrence relation to find the first few coefficients. Sometimes you can find exact
values. Sometimes you need to express the coefficients in a0 (and incidentally in a1 too).

• Write down the first few terms. Do this in the form y = a0 +a1(x−x0)+a2(x−x0)2 +a3(x−
x0)3 + . . ..

This plan of approach can initially seem vague. If that is the case, I would advice you to look at some
example solutions. The ones on the Aerostudents website follow this plan of approach. See if you can
identify the individual steps in it.
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6 Eigenfunctions

6.1 When to use?

When it is asked. Once every few years, they ask directly for eigenfunctions of a certain differential
equation. Then you need to use this.

As part of a Fourier Series Application question. We’ll address those later.

6.2 Plan of Approach

• Find the eigenfunctions yn and eigenvalues λn. The equation you need to determine the
eigenfunctions from is virtually always y′′ + λy = 0. Its solutions are the eigenfunctions yn. The
corresponding values of λ are the eigenvalues λn.

– Consider three cases: λ < 0, λ = 0 and λ > 0.

– For every case, do the following.

∗ Find the general solution set.
For λ < 0 this is y = c1e

µx+c2e
−µx, with µ =

√
−λ. You usually won’t find any non-trivial

solutions for this case.
For λ = 0 this is y = c1x + c2. In 50% of the cases you find a solution for this case. It is
customary to call this solution y0.
For λ > 0 this is y = c1 cos µx + c2 sinµx, with now µ =

√
λ. You usually find infinitely

many solutions for this, each depending on some constant n. It is customary to call these
solutions yn.

∗ Apply the boundary conditions. Use these conditions to find the two constants.
∗ Write down all non-trivial solutions. The trivial solution is y = 0. We’re not looking

for that solution. So if you only find y = 0, you don’t have to write down anything. (Note
that y = c is not trivial, so we do want such a solution!) By the way, if you have any
undetermined constants in your solution, just give them some value.

So now we’ve got the eigenfunctions! The above three steps might seem easy, but they are a lot of
work with many opportunities to make mistakes. Do not underestimate them.

• Normalize the eigenfunctions. You only have to do this when they specifically ask for the
normalized eigenfunctions. Otherwise, just skip this step. So how do we normalize eigenfunctions?

– Write down ∫ 1

0

(cnyn(t))2 dt = 1.

– Solve this equation for the constant cn. (If there is an eigenfunction y0, evaluate the
above integral separately for that case.)

– Write down the normalized eigenfunctions cnyn(t).
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7 Fourier Series

7.1 When to use?

When it is asked. The question then starts with ”Find the Fourier Series of the function...”

As a part of Fourier Series Applications. We’ll address those later.

7.2 Plan of Approach

• First assume

f(x) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bm sin

(nπx

L

))
.

• Find the period T and the value L = T/2. The period T is explicitly given in the question, by
f(x + T ) = f(x).

• Find a0 using

a0 =
1
L

∫ L

−L

f(x) dx.

• Find an using

an =
1
L

∫ L

−L

f(x) cos
(nπx

L

)
dx.

• Find bn using

bn =
1
L

∫ L

−L

f(x) sin
(nπx

L

)
dx.

• Fill an and bn in, into the expression for f(x).

This isn’t very difficult, so usually very few points are rewarded for such a question. The most difficult
part is the integration. Usually integration by parts is needed.
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8 Fourier Series Applications

8.1 When to use?

When it is asked. The question starts with ”Find a formal solution (...) u(x, t) of the...”

8.2 Plan of Approach

There are three types of questions for this: Heat conduction problems (HE), vibrating string problems
(VS) and the Laplace equation (LE). We will discuss the first two here. The Laplace equation is a bit too
difficult to discuss right away, so we will only discuss it in an addendum. I’d advise you to only spend
time on it when you have sufficient time left.

• Look at the form of the differential equation to determine its type. If the form is
α2uxx = ut, then we have a heat conduction problem. If the form is a2uxx = utt, we have a
vibrating string. If we have uxx + uyy = 0, we are dealing with the Laplace equation. We will treat
this case later.

• Assume that
u(x, t) = X(x)T (t).

• Derive that

Heat conduction problem Vibrating string problem

α2X ′′T = XT ′ a2X ′′T = XT ′′

X′′

X = 1
α2

T ′

T = −λ X′′

X = 1
a2

T ′′

T = −λ

X ′′ + λX = 0 X ′′ + λX = 0 (1)

T ′ + α2λT = 0 T ′′ + a2λT = 0 (2)

• Transform the boundary conditions. Although we have a differential equation for X, we have
boundary conditions like for example u(l, t) = 0. We first need to transform them to X(x). We do
this as follows. We know that u(l, t) = X(l)T (t) = 0 for every t. So X(l) = 0 or T (t) = 0. Since
T (t) = 0 for every t would give the trivial solution, we have X(l) = 0. All boundary conditions can
be transformed in this way. (Note that the initial condition u(x, 0) = f(x) can not be transformed
like this. We will use this one later.)

• Use equation (1) and the boundary conditions to find the eigenfunctions Xn(x) and
eigenvalues λn. So now we need to find eigenvalues. We already know how to do this. We do not
have to normalize those. (In fact, we may not even do this.)

• Substitute λn in (2) to find Tn(t). In case of a vibrating string problem, we also have to use an
initial boundary condition (one for T ) to find the solution.

• Calculate un(x, t) = Xn(x)Tn(t).
• Write down the form of the solution

u(x, t) = c0
u0(x, t)

2
+

∞∑
m=1

cnun(x, t).

If u0(x, t) doesn’t exist (which is the case if X0(x) doesn’t exist), then just ignore that term.
• Use the initial condition f(x) = u(x, 0). Just fill in t = 0 in the earlier found expression for

u(x, 0).
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• If

f(x) =
c0

2
+

∞∑
n=1

cn cos
(αx

l

)
for some value α, then write down

cn =
2
l

∫ l

0

f(x) cos
(αx

l

)
dx.

But if

f(x) =
∞∑

n=1

cn sin
(αx

l

)
then write down

cn =
2
l

∫ l

0

f(x) sin
(αx

l

)
dx.

Note that you only have to write down the equation for cn. You do not have to solve it. So in the
end your solution consists of two parts: The relation for u(x, t) with unknown coefficients cn, and
an equation showing how cn can be derived from f(x).

8.3 Addendum: The Laplace Equation

The Laplace equation is very similar to the vibrating string problem. So we will simply note the differ-
ences, and for the rest refer to the plan of approach for vibrating strings.

When dealing with the Laplace Equation, you will have an equation uxx + uyy = 0 and some boundary
conditions. Let’s take a close look at those boundary conditions.

Two boundary conditions are given for any x at constant y. (For example, u(x, 0) = 0 and u(x, h) = 0.)
Two other conditions are given for any y at constant x. (For example u(0, y) = 0 and u(w, y) = f(y).)
In these boundary conditions, there is always a function f(x) or f(y).

If we have a boundary condition equal to f(x), then consider this as a vibrating string (VS) problem
where

• t (in VS) has become y (in LE).
• The differential equations have become X ′′ + λX = 0 (1) and Y ′′ − λY = 0 (2).

If we have a boundary condition equal to f(y) (as in our example conditions), then we also consider this
as a vibrating string problem. But now

• t (in VS) has become x (in LE).
• x (in VS) has become y (in LE). (So we solve for Yn(y) first and then look for Xn(x).)
• The differential equations have become Y ′′ + λY = 0 (1) and X ′′ − λX = 0 (2).
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