Method of Characteristics

In Boyce & DiPrima only some (very special) second order partial differential
equations are considered. Also first order PDE’s do pop up, and we will
consider some examples of linear equations.
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Simplest example i +c Y 0
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Question: find all solutions w = w(x,t) of this equation.

Idea: consider the rate of change of w following a ‘moving observer’, i.e.
x = z(t).
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lying the chain rule: - (w(a(t), 1)) = Z- - + 57

applying the chain rule: - w(x(t),t) 9 i + T

. . dz
If the ‘observer’ moves with a constant velocity c: I c.
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hen it follows from o +coo =0 that — ( ) . -
then it follows from 5 +ca$ 0 that o w(z(t),t) 0, so w is

constant for an observer that moves with a velocity c.

Put otherwise:
w is constant along the curves (in this cases straight lines) x — ct = x.

These curves are called the characteristics of the solution.

The ’general solution’ is then given by w(x,t) = P(x — ct), where P is an
arbitrary (differentiable) function of one variable.

If w is given on a curve that intersects each characteristic in one point, then
w(z,t) is uniquely determined for any point (z,t).

Usually this curve is the line ¢ = 0, in which case one speaks of an initial
condition. Specifically, if w has to satisfy w(z,0) = g(z)

then P is specified by the constraint w(x,0) = P(z — ¢-0) = P(x) = g(z),
and the solution becomes w = g(x — ct).

Another way to view this: the characteristic going through the ‘general’
point (z,t) intersects the axis ¢ = 0 in the point (z — ¢t,0), so w(z,t) =
w(z — ct,0) = g(x — ct)
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Slightly more general e + c(x,t v 0
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Again we follow the solution w = w(z,t) along curves = = z(t) satisfying
dx
dt
Along these characteristic curves the solutions w = w(z,t) = w(x(t),t) are
constant.

= ¢(x,t), which like before are called the characteristic curves.



Often the description of the caracteristics can only be given implicitly, say
as k(x,t) = C in that case w(z,t) = P(k(z,t)) satisfies the PDE for any
(differentiable) function P.
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The solution of the initial value problem ot +c(z,t) or
w(z,0) = g(z)

can be found explicitly only if it is possible to find the intersection (xg,0) of
the characteristic curve through the point (z,t) and the line ¢ = 0.

C haracteristics and initial curve
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Example 1 =z 5 +t T 0, w(z,0) = g(x), forz>0.
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The PDE can be rewritten as — + - v - 0.
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For the characteristics we have to solve d—j = —, which is a separable
x

differential equation:
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d—fz; = xdr=1tdt = /:de:/tdt = §w2=§t2+0

The implicit form of the characteristics: 2% —t? = K.
This gives the general solution w(z,t) = P(z? — t?).
To satisfy the intial condition: w(x,0) = P(z?) = g(x), so P(x) = g(/z).

It can be easily checked that w(z,t) = g(v/2? —t?) indeed satisfies both
PDE and initial condition.
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E le2 (322 +3)— +6t— = 0.
xample 2 (327 + 3) 5 05
Again the characteristics are the solutions of a separable DE:
dz 6t
— = = (32°+3)drx=6tdt = 2°+3x=3>+C
dt 322+ 3 (827 +3) de SR +



So the characteristics are implicitly given by r(z,t) = 2° + 3z — 3t* = C,
and the ‘general solution’ becomes w(z,t) = P(z® + 3z — 3t* — ¢).

In this case it is not possible to find explicitly the solution that satisfies the
initial condition w(zx,0) = g(z).

Applications

A first order PDE often pops up as a continuity equation

Suppose some density (e.g. water, pollution, cars) is transported over a line
(pipe, canal, highway). Let p = p(z,t) be the density at position x at time
t and v = v(z,t) the velocity. Sometimes the ‘flow’ ¢ = ¢(x,t), i.e. the
‘mass’ transported per time unit is introduced: q(z,t) = p(x, t)v(zx,t).
The total mass in some interval a < z < b at some specific time ¢ equals

b
m = / p(x,t)dz

Likewise the inflow at a minus the outflow at b during a small interval At
equals

Min — Moyt = (q(a, t) — q(b, t)) At

If there are no ‘sources’ and no ‘sinks’ in the interval (i.e. no mass is created
or annihilated) then the change of mass dm/dt is only due to this in- and
outflow, which gives

Cii_? - % {/b plx,t) dx] = q(a,t) —q(b,1)

which can be rewritten as

/a %(m,t) dr = q(a,t) — q(b,t) = _/ %(w,t} dr

a

Since this equality holds on any small interval it may be concluded that

Op _ 0q _ 9(pv) Jv p
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If some further assumptions are made with respect to the relation between
flow and densities, like ¢ = ¢g(p), a PDE for p results:

dp _ 9g(p) ~  , Op dp |, \Op
o= o - IWg, = gty =

0

This equation is equivalent to the PDE we considered above.



In the theory of flow equations, I came across equation () disguised as

0q, Opw g Oh
Pogr ~ gy TPy
where p,, is the density of water, ¢, the flow in the z-direction, S, the ‘specific
storage’, and h the ‘head’.

0Gx Opuw .
If it is further assumed that p, ai > q, 8L’ which often seems to be the
x x
case, the equation reduces to
O Oh
ox ot
. , 0q, oh .
Plugging in Darcy’s law I —Kza— yields a second order PDE for
x x
the head: 3 5k o
— K, =—| = S,—
Ox { ax} ot

where K, denotes the ‘conductivity’ in the z-direction.
This equation generalizes to two and three dimensions:

0 oh 0 oh 0 oh oh

— | Ky =— — | Ky =— — | K, | = Ss =

ax( 0x)+3y( y8y>+8y( az> ot
which in the case of homogeneous (K, K,, K, are constant) anisotropic
(K, = K, = K,) flow simplifies to

o*h  9*h  0%h ) oh
K<8$2+ay2 +822) = KVh= 5.7

Concluding remarks

In fact the second ’slightly general’ example could be called a linear, ho-
mogeneous first order PDE, the general linear first order PDE would then

be 5 p
w w
t)— + b(z,t) - — = c(a,t
e, )5 b, ) - 5 = el 1)
Like in the case of linear ODE’s it is not difficult to show that the general
solution can be split into a homogeneous and a 'particular’ part: w(zx,t) =
wy (z,t) +wp(z, t).

The method of characteristics is also more or less applicable for the so-called
quasi-linear PDE

a(x,t, w)aa—lf + b(z, t,w) - (Z—: = c(z,t,w)

In both cases explicit solutions can seldom be found.
We will not pursue these extensions further.



Exercises Method of Characteristics

1.

Solve the PDE (1 +t2)g— - 2xt? =0 with the BC wu(x,0) = b(z).
T

ou L0

. Solve the PDE 22 4+ ¢+ 2% — 0 with the BC u(z,0) = b(z).

ot Ox

Solve the PDE  w; + 2xtu, =0 with the BC u(x,0) = b(z).

Show that the solution of the general first order linear PDE
ow ow
a(x,t)ﬁ + b(z,t) - e c(x,t)

can be written as w(z,t) = wy(z,t) + wp(x,t), where wy(z,t)
satisfies the homogeneous equation

) )
a(x,t)a—l: +b(x,t) - a_::] =0

Use the observation of the above exercise to solve the boundary value
problem

au u
Ly) =y
o TV, T u(ly) =y
(A particular solution is easy to ‘guess’.)
Find the general solution of the linear PDV
au N Ju (2)
- — x
890 dy g
Find the general solution of the linear PDV
5 ou  Ou

9z + oy g(z +y)
Hint: the substitution { f f j +y will bring the equation in the form

of the previous exercise.



Solutions to the exercises

Ou + th@ =0 with the BC wu(z,0) = b(x).

1. Solve the PDE (1 +t?) 5 3
T

Solution:
The characteristices follow from (1+t?) dx = 2xt dt, which is separable:

dx 2t dt dx 2t dt T
= = s [ == 2z =In(1+)+K < =
x 1+ 2 /x /1+t2 n el =In(l+£)+ 1+ 2

T

The characteristics are given by T

becomes u(z,t) = P(z/(1 + t?).
To satisfy the boundary condition: u(z,0) = P(z/(1 + 0%) = P(z) =

= ¢, so the general solution

b(x), which gives the solution w(z,t) =15 . itz
ou  __ Ou .
2. Solve the PDE 5 +e™® e 0 with the BC wu(x,0) = b(x).
x

Solution:
The characteristices follow from dx = e™" dt, which is separable:

ewdx:dtﬁ/exda::/dt<:>ex:t+K<:>ew—t:K

The characteristics are given by e* —t = ¢, so the general solution
becomes u(z,t) = P(e® —t).

To satisfy the boundary condition: wu(x,0) = P(e® —0) = P(e")
b(z). So P(x) = P(e™*) = b(Inx), which gives the solution wu(z,?)
P(e* —t) = b(In(e” —t)).

It is readily checked that this w(z,t) indeed satisfies both PDE and
BC.

3. Solve the PDE  u; + 2zt u, =0 with the BC wu(z,0) = b(x).
Solution:
The characteristices follow from dx = 2xt dt, which is separable:

d
_x = 2tdt<:>hl|,’]j" :t2+0<:> |ZZ'| — €t2+c — K€t2 @I‘eit? K
i

The characteristics are given by ze ” = K, so the general solution

becomes u(t, ) = P(ze~"), for an arbitrary function P.

To satisfy the boundary condition: u(0,z) = P(ze®) = P(z) = b(x).
So P(x) = b(x), which gives the solution wu(t,z) = P(ze ") =
b(ze ).



OR: on the characteristics u(t, z) = u(t, Ke'") = ¢,
so to satisfy u(0,z) = b(x): u(0, Ke®) = u(0, K) =
So u(t, Ke”) = b(K), and in a ‘general’ pomt (t,x):
the solution becomes u(x,t) = u(t, (ze~*)e!”) = b(ze

b(K).
“).

. Show that the solution of the general first order linear PDE
ow ow
a(m,t)ﬁ + b(z,t) - e c(x,t)

can be written as w(z,t) = wy(x,t) + wp(x,t), where wy(z,1)
satisfies the homogeneous equation

) )
a(x,t)a—f +b(z,t) - a—i’ =0

. Use the observation of the above exercise to solve the boundary value
problem

8u ou
+ =z, u(l,y)=1y>
5 Ve, (Ly) =y
(A particular solution is easy to ‘guess’.)

. Find the general solution of the linear PDV

ou  Ou

. Find the general solution of the linear PDV
Ju  Ou

92— 4+ - =
7%t oy 9(x +y)
Hint: the substitution { f f ; +y will bring the equation in the form

of the previous exercise.



