## Method of Characteristics

In Boyce \& DiPrima only some (very special) second order partial differential equations are considered. Also first order PDE's do pop up, and we will consider some examples of linear equations.

## Simplest example $\frac{\partial w}{\partial t}+c \cdot \frac{\partial w}{\partial x}=0$

Question: find all solutions $w=w(x, t)$ of this equation.
Idea: consider the rate of change of $w$ following a 'moving observer', i.e. $x=x(t)$.
applying the chain rule: $\frac{d}{d t}(w(x(t), t))=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial t}$
If the 'observer' moves with a constant velocity $c$ : $\frac{d x}{d t}=c$.
then it follows from $\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=0$ that $\frac{d}{d t}(w(x(t), t))=0$, so $w$ is constant for an observer that moves with a velocity $c$.
Put otherwise:
$w$ is constant along the curves (in this cases straight lines) $x-c t=x_{0}$.
These curves are called the characteristics of the solution.
The 'general solution' is then given by $w(x, t)=P(x-c t)$, where $P$ is an arbitrary (differentiable) function of one variable.
If $w$ is given on a curve that intersects each characteristic in one point, then $w(x, t)$ is uniquely determined for any point $(x, t)$.
Usually this curve is the line $t=0$, in which case one speaks of an initial condition. Specifically, if $w$ has to satisfy $w(x, 0)=g(x)$
then $P$ is specified by the constraint $w(x, 0)=P(x-c \cdot 0)=P(x)=g(x)$, and the solution becomes $w=g(x-c t)$.
Another way to view this: the characteristic going through the 'general' point $(x, t)$ intersects the axis $t=0$ in the point $(x-c t, 0)$, so $w(x, t)=$ $w(x-c t, 0)=g(x-c t)$

Slightly more general $\frac{\partial w}{\partial t}+c(x, t) \cdot \frac{\partial w}{\partial x}=0$
Again we follow the solution $w=w(x, t)$ along curves $x=x(t)$ satisfying $\frac{d x}{d t}=c(x, t)$, which like before are called the characteristic curves.
Along these characteristic curves the solutions $w=w(x, t)=w(x(t), t)$ are constant.

Often the description of the caracteristics can only be given implicitly, say as $\kappa(x, t)=C$ in that case $w(x, t)=P(\kappa(x, t))$ satisfies the PDE for any (differentiable) function $P$.
The solution of the initial value problem $\left\{\begin{array}{l}\frac{\partial w}{\partial t}+c(x, t) \cdot \frac{\partial w}{\partial x}=0 \\ w(x, 0)=g(x)\end{array}\right.$
can be found explicitly only if it is possible to find the intersection $\left(x_{0}, 0\right)$ of the characteristic curve through the point $(x, t)$ and the line $t=0$.


Example $1 x \frac{\partial w}{\partial t}+t \frac{\partial w}{\partial x}=0, w(x, 0)=g(x)$, for $x>0$.
The PDE can be rewritten as $\frac{\partial w}{\partial t}+\frac{t}{x} \frac{\partial w}{\partial x}=0$.
For the characteristics we have to solve $\frac{d x}{d t}=\frac{t}{x}$, which is a separable differential equation:

$$
\frac{d x}{d t}=\frac{t}{x} \Rightarrow x d x=t d t \Rightarrow \int x d x=\int t d t \Rightarrow \frac{1}{2} x^{2}=\frac{1}{2} t^{2}+C
$$

The implicit form of the characteristics: $\quad x^{2}-t^{2}=K$.
This gives the general solution $w(x, t)=P\left(x^{2}-t^{2}\right)$.
To satisfy the intial condition: $\quad w(x, 0)=P\left(x^{2}\right)=g(x)$, so $P(x)=g(\sqrt{x})$.
It can be easily checked that $w(x, t)=g\left(\sqrt{x^{2}-t^{2}}\right)$ indeed satisfies both PDE and initial condition.

Example $2\left(3 x^{2}+3\right) \frac{\partial w}{\partial t}+6 t \frac{\partial w}{\partial x}=0$.
Again the characteristics are the solutions of a separable DE:

$$
\frac{d x}{d t}=\frac{6 t}{3 x^{2}+3} \Rightarrow\left(3 x^{2}+3\right) d x=6 t d t \Rightarrow x^{3}+3 x=3 t^{2}+C
$$

So the characteristics are implicitly given by $\kappa(x, t)=x^{3}+3 x-3 t^{2}=C$, and the 'general solution' becomes $w(x, t)=P\left(x^{3}+3 x-3 t^{2}-c\right)$.
In this case it is not possible to find explicitly the solution that satisfies the initial condition $w(x, 0)=g(x)$.

## Applications

A first order PDE often pops up as a continuity equation
Suppose some density (e.g. water, pollution, cars) is transported over a line (pipe, canal, highway). Let $\rho=\rho(x, t)$ be the density at position $x$ at time $t$ and $v=v(x, t)$ the velocity. Sometimes the 'flow' $q=q(x, t)$, i.e. the 'mass' transported per time unit is introduced: $\quad q(x, t)=\rho(x, t) v(x, t)$.
The total mass in some interval $a \leq x \leq b$ at some specific time $t$ equals

$$
m=\int_{a}^{b} \rho(x, t) d x
$$

Likewise the inflow at $a$ minus the outflow at $b$ during a small interval $\Delta t$ equals

$$
m_{\text {in }}-m_{\text {out }}=(q(a, t)-q(b, t)) \Delta t
$$

If there are no 'sources' and no 'sinks' in the interval (i.e. no mass is created or annihilated) then the change of mass $d m / d t$ is only due to this in- and outflow, which gives

$$
\frac{d m}{d t}=\frac{d}{d t}\left[\int_{a}^{b} \rho(x, t) d x\right]=q(a, t)-q(b, t)
$$

which can be rewritten as

$$
\int_{a}^{b} \frac{\partial \rho}{\partial t}(x, t) d x=q(a, t)-q(b, t)=-\int_{a}^{b} \frac{\partial q}{\partial x}(x, t) d x
$$

Since this equality holds on any small interval it may be concluded that

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\frac{\partial q}{\partial x}=-\frac{\partial(\rho v)}{\partial x}=-\rho \frac{\partial v}{\partial x}-v \frac{\partial \rho}{\partial x} \tag{*}
\end{equation*}
$$

If some further assumptions are made with respect to the relation between flow and densities, like $q=g(\rho)$, a PDE for $\rho$ results:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial g(\rho)}{\partial x}=-g^{\prime}(\rho) \frac{\partial \rho}{\partial x} \Longrightarrow \frac{\partial \rho}{\partial t}+g^{\prime}(\rho) \frac{\partial \rho}{\partial x}=0
$$

This equation is equivalent to the PDE we considered above.

In the theory of flow equations, I came across equation (*) disguised as

$$
-\rho_{w} \frac{\partial q_{x}}{\partial x}-q_{x} \frac{\partial \rho_{w}}{\partial x}=\rho_{w} S_{s} \frac{\partial h}{\partial t}
$$

where $\rho_{w}$ is the density of water, $q_{x}$ the flow in the $x$-direction, $S_{s}$ the 'specific storage', and $h$ the 'head'.
If it is further assumed that $\rho_{w} \frac{\partial q_{x}}{\partial x} \gg q_{x} \frac{\partial \rho_{w}}{\partial x}$, which often seems to be the case, the equation reduces to

$$
-\frac{\partial q_{x}}{\partial x}=S_{s} \frac{\partial h}{\partial t}
$$

Plugging in Darcy's law $\left(\frac{\partial q_{x}}{\partial x}=-K_{x} \frac{\partial h}{\partial x}\right)$ yields a second order PDE for the head:

$$
\frac{\partial}{\partial x}\left[K_{x} \frac{\partial h}{\partial x}\right]=S_{s} \frac{\partial h}{\partial t}
$$

where $K_{x}$ denotes the 'conductivity' in the $x$-direction. This equation generalizes to two and three dimensions:

$$
\frac{\partial}{\partial x}\left(K_{x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial y}\left(K_{z} \frac{\partial h}{\partial z}\right)=S_{s} \frac{\partial h}{\partial t}
$$

which in the case of homogeneous ( $K_{x}, K_{y}, K_{z}$ are constant) anisotropic ( $K_{x}=K_{y}=K_{z}$ ) flow simplifies to

$$
K\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}\right)=K \nabla^{2} h=S_{s} \frac{\partial h}{\partial t}
$$

## Concluding remarks

In fact the second 'slightly general' example could be called a linear, homogeneous first order PDE, the general linear first order PDE would then be

$$
a(x, t) \frac{\partial w}{\partial t}+b(x, t) \cdot \frac{\partial w}{\partial x}=c(x, t)
$$

Like in the case of linear ODE's it is not difficult to show that the general solution can be split into a homogeneous and a 'particular' part: $w(x, t)=$ $w_{H}(x, t)+w_{P}(x, t)$.
The method of characteristics is also more or less applicable for the so-called quasi-linear PDE

$$
a(x, t, w) \frac{\partial w}{\partial t}+b(x, t, w) \cdot \frac{\partial w}{\partial x}=c(x, t, w)
$$

In both cases explicit solutions can seldom be found.
We will not pursue these extensions further.

## Exercises Method of Characteristics

1. Solve the $\operatorname{PDE}\left(1+t^{2}\right) \frac{\partial u}{\partial t}+2 x t \frac{\partial u}{\partial x}=0$ with the $\mathrm{BC} \quad u(x, 0)=b(x)$.
2. Solve the $\operatorname{PDE} \frac{\partial u}{\partial t}+e^{-x} \frac{\partial u}{\partial x}=0$ with the BC $u(x, 0)=b(x)$.
3. Solve the PDE $u_{t}+2 x t u_{x}=0$ with the BC $u(x, 0)=b(x)$.
4. Show that the solution of the general first order linear PDE

$$
a(x, t) \frac{\partial w}{\partial t}+b(x, t) \cdot \frac{\partial w}{\partial x}=c(x, t)
$$

can be written as $w(x, t)=w_{H}(x, t)+w_{P}(x, t)$, where $w_{H}(x, t)$ satisfies the homogeneous equation

$$
a(x, t) \frac{\partial w}{\partial t}+b(x, t) \cdot \frac{\partial w}{\partial x}=0
$$

5. Use the observation of the above exercise to solve the boundary value problem

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x, \quad u(1, y)=y^{2}
$$

(A particular solution is easy to 'guess'.)
6. Find the general solution of the linear PDV

$$
2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=g(x)
$$

7. Find the general solution of the linear PDV

$$
2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=g(x+y)
$$

Hint: the substitution $\left\{\begin{array}{l}s=x \\ t=x+y\end{array}\right.$ will bring the equation in the form of the previous exercise.

## Solutions to the exercises

1. Solve the $\operatorname{PDE}\left(1+t^{2}\right) \frac{\partial u}{\partial t}+2 x t \frac{\partial u}{\partial x}=0 \quad$ with the $\mathrm{BC} \quad u(x, 0)=b(x)$.

Solution:
The characteristices follow from $\left(1+t^{2}\right) d x=2 x t d t$, which is separable:
$\frac{d x}{x}=\frac{2 t d t}{1+t^{2}} \Leftrightarrow \int \frac{d x}{x}=\int \frac{2 t d t}{1+t^{2}} \Leftrightarrow \ln |x|=\ln \left(1+t^{2}\right)+K \Leftrightarrow \frac{x}{1+t^{2}}=c$
The characteristics are given by $\frac{x}{1+t^{2}}=c$, so the general solution becomes $u(x, t)=P\left(x /\left(1+t^{2}\right)\right.$.
To satisfy the boundary condition: $u(x, 0)=P\left(x /\left(1+0^{2}\right)=P(x)=\right.$ $b(x)$, which gives the solution $u(x, t)=b\left(\frac{x}{1+t^{2}}\right)$
2. Solve the $\operatorname{PDE} \frac{\partial u}{\partial t}+e^{-x} \frac{\partial u}{\partial x}=0$ with the BC $u(x, 0)=b(x)$.

Solution:
The characteristices follow from $d x=e^{-x} d t$, which is separable:

$$
e^{x} d x=d t \Leftrightarrow \int e^{x} d x=\int d t \Leftrightarrow e^{x}=t+K \Leftrightarrow e^{x}-t=K
$$

The characteristics are given by $e^{x}-t=c$, so the general solution becomes $u(x, t)=P\left(e^{x}-t\right)$.
To satisfy the boundary condition: $\quad u(x, 0)=P\left(e^{x}-0\right)=P\left(e^{x}\right)=$ $b(x)$. So $P(x)=P\left(e^{\ln x}\right)=b(\ln x)$, which gives the solution $u(x, t)=$ $P\left(e^{x}-t\right)=b\left(\ln \left(e^{x}-t\right)\right)$.
It is readily checked that this $u(x, t)$ indeed satisfies both PDE and BC.
3. Solve the PDE $u_{t}+2 x t u_{x}=0$ with the BC $u(x, 0)=b(x)$.

Solution:
The characteristices follow from $d x=2 x t d t$, which is separable:

$$
\frac{d x}{x}=2 t d t \Leftrightarrow \ln |x|=t^{2}+C \Leftrightarrow|x|=e^{t^{2}+C}=K e^{t^{2}} \Leftrightarrow x e^{-t^{2}}=K
$$

The characteristics are given by $x e^{-t^{2}}=K$, so the general solution becomes $u(t, x)=P\left(x e^{-t^{2}}\right)$, for an arbitrary function $P$.
To satisfy the boundary condition: $u(0, x)=P\left(x e^{0}\right)=P(x)=b(x)$. So $P(x)=b(x)$, which gives the solution $u(t, x)=P\left(x e^{-t^{2}}\right)=$ $b\left(x e^{-t^{2}}\right)$.

OR: on the characteristics $u(t, x)=u\left(t, K e^{t^{2}}\right)=c$, so to satisfy $u(0, x)=b(x): \quad u\left(0, K e^{0}\right)=u(0, K)=b(K)$. So $u\left(t, K e^{t^{2}}\right)=b(K)$, and in a 'general' point $(t, x)$ : the solution becomes $u(x, t)=u\left(t,\left(x e^{-t^{2}}\right) e^{t^{2}}\right)=b\left(x e^{t^{2}}\right)$.
4. Show that the solution of the general first order linear PDE

$$
a(x, t) \frac{\partial w}{\partial t}+b(x, t) \cdot \frac{\partial w}{\partial x}=c(x, t)
$$

can be written as $w(x, t)=w_{H}(x, t)+w_{P}(x, t)$, where $w_{H}(x, t)$ satisfies the homogeneous equation

$$
a(x, t) \frac{\partial w}{\partial t}+b(x, t) \cdot \frac{\partial w}{\partial x}=0
$$

5. Use the observation of the above exercise to solve the boundary value problem

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x, \quad u(1, y)=y^{2}
$$

(A particular solution is easy to 'guess'.)
6. Find the general solution of the linear PDV

$$
2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=g(x)
$$

7. Find the general solution of the linear PDV

$$
2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=g(x+y)
$$

Hint: the substitution $\left\{\begin{array}{l}s=x \\ t=x+y\end{array}\right.$ will bring the equation in the form of the previous exercise.

