
Technische Universiteit Delft, Fac. EWI

Exam Differential Equations, AESB2110, 7 November 2014, 14:00-17.00

Each answer must be clearly motivated.
You receive a table with Laplace transformations and a few integrals. You may use a simple
calculator (which actually you won’t need.).
The (maximum) scores: exc.1: 6 pt; exc.2: 6 pt; exc.3: 9 pt; exc.4: 9 pt; exc.5: 6 pt.

1. a. Find the Laplace transform of the function

{
t, als 0 ≤ t ≤ 2

2 , als t ≥ 2

b. Using the Laplace transform find the solution of the initial value problem

y′′(t) + 4y′(t) + 4y(t) = t2e−2t, y(0) = 0, y′(0) = 2.

2. We consider the matrix A =

 1 1 1
1 1 1
1 1 a

, where a is a real number.

a. Show that A has the eigenvalue 0 for every value of a.

b. Find all eigenvalues of A for the case where a = −2.

c. Give the definition of ’diagonalizable matrix’ (this does not contain the word ei-
genvector!), and give an equivalent characterization in terms of eigenvalues and/or
eigenvectors.

d. For which value(s) of a is the matrix


1 2 a 4
0 −1 1 0
0 0 1 1
0 0 0 2

 diagonalizable?

3. In an isolated nature reserve there are two species with (scaled) population sizes x(t) and
y(t). The growth model is given by the two differential equations x(t) en y(t)

dx

dt
= 0.5x (6− x− 2y),

dy

dt
= 0.25y (8− 2x− 2y)

where t is measured in years.

a. Is this a predator-prey model or a model with competing species? (Of course you
have to motivate your answer.)

b. Using the direction field show that solutions starting from a point inside the square
0 ≤ x ≤ 10, 0 ≤ y ≤ 10 will never leave this square.

c. Find the four stationary points (For your convenience: (2, 2) is one of them.)

d. Find the local behavior around the stationary points. Classify them as node, star
point, . . . , stable or unstable.
Make a phase portrait, i.e. sketch a few solution curves consistent with your classi-
fication.



e. Describe what happens with the populations on the long run. Globally explain how
this depends on the initial population sizes.

4. For the (homogeneous) system x′(t) = Ax(t) =

[
1 −4
4 −7

]
x(t)

the solutions x1(t) =

[
1
1

]
e−3t en x2(t) =

[
3 + 16t
−1 + 16t

]
e−3t are given.

a. From the above deduce (so not by evaluating the characteristic polynomial!) what
are the eigenvalues and corresponding eigenvectors of A.

b. Find the solution of the homogeneous system that at t = 0 starts from the point
(6, 2). Give explicitly the two component functions x(t) and y(t) of x(t).

c. Classify the equilibrium point (0,0) and sketch a few solutions in the phase plane.
What is the behavior of the solutions x(t) for t→ ±∞? in your motivation explain
the role of the eigenvector(s).

Now consider the system x′(t) =

[
1 −4
4 −7

]
x(t) +

[
−2te−3t

−2te−3t

]
.

d. Use variation of parameters to find a particular solution for this (non-homogeneous)
system.

5. By the method of separation of variables (no ready-made formulas!) find the solution of
the following wave equation with initial values and boundary values:

∂2u

∂t2
= 16

∂2u

∂x2
(I)

ux(0, t) = ux(4, t) = 0 (II)

u(x, 0) = h(x) (III-a)
ut(x, 0) = 0 (III-b)

for 0 ≤ x ≤ 4, en t ≥ 0.



Uitwerkingen

1a First put g(t) in a suitable (standard) form:

g(t) = t · (1− u2(t)) + 2u2(t) = t− (t− 2)u2(t).

The L-transform becomes G(s) =
1

s2
− e−2s

s2
.

1b Laplace transform (taking into account s2 + 4s+ 4 = (s+ 2)2):

s2Y (s)− 0s− 2 + 4(sY (s)− 0) + 4Y (s) =
2

(s+ 2)3
⇔ Y (s) =

2

(s+ 2)2
+

2

(s+ 2)5
.

Inverse transform (noting that L−1 [1/s5] = t4/4! = 1
24
t4 ):

y(t) = 2te−2t + 2
24
t3e−2t = 2te−2t + 1

12
t4e−2t.

2a Obviously A has dependent columns, so there exists a v 6= 0 for which Av = 0 = 0v. This
v then is an eigenvector for λ = 0.

It’s not very hard to find such a v: the first two columns of A are equal, so v =

 1
−1
0

 does

the job.

Other sufficient argument: A has dependent columns, so Det(A) = Det(A− 0 I)= 0, showing
that 0 is a root of the characteristic equation Det(A− λ I)= 0.

2b First a reduction step using the first row, next a reduction step using the first column:∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1
1 1 −2− λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1− λ 1 1
λ −λ 0
1 1 −2− λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1− λ 2− λ 1
λ 0 0
1 2 −2− λ

∣∣∣∣∣∣
and then cofactor expansion using the second row:∣∣∣∣∣∣

1−λ 2−λ 1
λ 0 0
1 2 −2−λ

∣∣∣∣∣∣ = −λ
∣∣∣∣ 2−λ 1

2 −2−λ

∣∣∣∣ = −λ
(
(2− λ)(−2− λ)− 2

)
= −λ(λ2 − 6)

Equating to 0 gives λ1 = 0, λ2,3 = ±
√

6.

2c See Lay, § 5.3.

2d The matrix has eigenvalues λ1,2 = 1, λ3 = −1, λ4 = 2. Necessary diagonalizability: two
independent eigenvectors for λ1,2:

1− 1 2 a 4
0 −1− 1 1 0
0 0 1− 1 1
0 0 0 2− 1

 =


0 2 a 4
0 −2 1 0
0 0 0 1
0 0 0 1

 ∼


0 2 a 4

0 0 1+a 4

0 0 0 1
0 0 0 0


The (possible) pivots are framed. There are 3 pivots if 1 + a 6= 0, in which case there’s only 1
(indep.) eigenvector for λ1,2.
Only if a = −1 are there 2 pivots, leading to 4− 2 independent eigenvectors.
Conclusion: the matrix is only diagonalizable if a = −1.



3a The interaction follows from the coefficients of the terms xy. Both are negative, implying
there is mutual competition.

3b Focus on the direction field on the border, consisting of four parts:
For y = 10, 0 < x < 10 we read off y′(t) < 0, so a solution will move into the negative
y-direction, i.e. into the square. Likewise for the part x = 10, 0 < y < 10, y = 0, etc.

3c Find solutions of:

{
0.5x (6− x− 2y)

0.25y (8− 2x− 2y)
←→

{
x = 0 of 6− x− 2y = 0
y = 0 of 8− 2x− 2y = 0

Combining the four (!) possibilities easily produces the three points (0, 0), (0, 4) en (6, 0), and

from

{
6− x− 2y = 0

8− 2x− 2y = 0
follows the fouth point (2 2).

3d

{
dx
dt

= 0.5x (6− x− 2y)
dy
dt

= 0.25y (8− 2x− 2y)
=⇒

{
dx
dt

= 3x− 0.5x2 − xy
dy
dt

= 2y − 0.5xy − 0.5y2

For the liearizations (needed for the local behavior) we need the Jacobian matrix J(x, y) =[
3− x− y −x
−0.5y 2− 0.5x− y

]
.

J(0, 0) =

[
3 0
0 2

]
has eigenvalues 3 and 2, so (0,0) is an unstable node.

J(6, 0) =

[
−3 −6
0 −1

]
has eigenvalues −3, −1, so (6,0) is a (asymptotically) stable node.

J(0, 4) =

[
−1 0
−2 −2

]
has eigenvalues −2, −1, which gives again a stable node.

J(2, 2) =

[
−1 −2
−1 −1

]
vraagt iets meer werk.

the characteristic polynomial:

∣∣∣∣ −1− λ −2
−1 −1− λ

∣∣∣∣ = (1 + λ)2 − 2 gives the eigenvalues −1−
√

2 < 0 and −1 +
√

2 > 0, so (2,2) is a sadddle point.

For a sketch it helps to have the correponsing eigenvectors:[
−1− (−1−

√
2) −2

−1 −1− (−1−
√

2)

]
=

[ √
2 −2

−1
√

2

]
∼
[ √

2 −2
0 0

]
e.v.

[ √
2

1

]
≈
[

1.5
1

]
Likewise λ = −1 +

√
2

gives the e.v.

[ √
2
−1

]
≈
[

1.5
−1

]
.



3e An initial value close to the point (0,4) will give a solution converging to (0,4) (population
I dies out), and analogously around the other stable node (6,0).
Theoretically there will be a solution curve starting at (0,0) and converging to (2,2), and on
from ‘infinity’ to (2,2) (the dotted curve which will at some point on one of the lines x = 10
or y = 10 will enter the square [0, 10]× [0, 10] ). These two curves form the separatrix between
the the regions of attraction of the stationary points (0,4) and (6,0).

4a From the solution x1(t) it follows that A has the eigenvector

[
1
1

]
for the eigenvalue

λ = −3.

From the second solution it follows that −3 is an eigenvalue of multiplicity 2 (and

[
3
−1

]
is

a generalized eigenvector, but that you don’t (have to) know).

4b For this we have to find c1, c2 for which

c1x1(0) + c2x2(0) = c1

[
1
1

]
+ c2

[
3
−1

]
=

[
6
2

]
.

One easily finds c1 = 3, c2 = 1, and so the answer

{
x(t) = 6e−3t + 16t e−3t

y(t) = 2e−3t + 16t e−3t
.

4c Because of the repeated negative eigenvalue with only one eigenvector: (0,0) is a stable

improper node. Solution curves ‘come from’ (i.e. from t = −∞) the direction ±
[

1
1

]
and

‘deflect’ to approach (0,0) fro the opposite direction, i.e. along ∓
[

1
1

]
.

looking at the direction at e.g. the point (0,1):

[
x′

y′

]
=

[
−4
−7

]
, one may observe that solutions

above the line y = x come ‘from the north-east’ anf turn to the left to approach (0,0) from the
third quadrant . (For a more precise illustration: see B&dP § 9.1.)

4d Via the fundamental matrix F (t) =

[
1 3 + 16t
1 −1 + 16t

]
e−3t

with determinant 1 · (−1 + 16t)− 1 · (3 + 16t) · (e−3t)2 = −4 e−6t

and inverse matrix
1

−4e−6t

[
−1 + 16t −(3 + 16t)
−1 1

]
e−3t =

1

4

[
1− 16t 3 + 16t

1 −1

]
e3t

we find (in a completely standard way) by putting xp(t) = F (t)u(t)

that u(t) has to satisfy F (t)u′(t) = g(t), that is (completely standard again)

u′(t) = F−1(t)g(t) =
1

4

[
1− 16t 3 + 16t

1 −1

]
e3t
[
−2t
−2t

]
e−3t =

[
−2t

0

]
Rthare nice, isn’t it! ;-) From this,

u(t) =

[
−t2
0

]
=⇒ xp(t) = F (t)u(t) = . . . =

[
−t2e−3t
−t2e−3t

]

Besides, in this exercise it’s quicker to just solve the system F (t)u′(t) = g(t) ‘directly’:[
e−3t (3 + 16t)e−3t −2te−3t

e−3t (−1 + 16t)e−3t −2te−3t

]
∼
[

1 (3 + 16t) −2t
1 (−1 + 16t) −2t

]
∼
[

1 (3 + 16t) −2t
0 −4 0

]



from which we find: u′2(t) = 0, u′1(t) = −2t, enz. . . . .

5 The usual three-step appproach:
[I] Put u(x, t) = X(x)T (t), and rewrite to separate separate variables:

T ′′(t)

T (t)
= 16

X ′′(x)

X(x)
= constant

[II] 
X ′′(x)

X(x)
= C

X ′(0) = 0, X ′(4) = 0

⇒ . . .⇒ for C = −
(nπ

4

)2
: Xn(x) = cos

(
nπ
4
x
)
,

for n = 0, 1, 2, ....

For the above values of C:

T ′′(t)

T (t)
= 16C = −(nπ)2 ⇒ . . . ⇒ Tn(t) = An cos(nπt) +Bn sin(nπt)

All in all

u(x, t) =
∞∑
n=0

[
An cos(nπt) +Bn sin(nπt)

]
cos
(nπ

4
x
)

u(x, 0) = h(x) geeft h(x) =
∞∑
n=0

An cos
(
nπ
4
x
)
,

so the An are the coefficients of the cosine expansion of h(x).

Written out: A0 = 1
4

∫ 4

0

h(x) dx, and An = 2
4

∫ 4

0

h(x) cos
(
nπ
4
x
)
dx, for n ≥ 1.

[III] Lastly, ut(x, 0) = 0 gives
∞∑
n=1

Bnnπ cos
(nπ

4
x
)

= 0, from which we conclude that

Bn = 0.

(This could already have been concluded solving the equation T ′′(t)/T (t) = 16C.)


