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- [J PREFACE

This Student Solutions Manual contains detailed solutions to selected exercises in the text
Multivariable Calculus, Seventh Edition (Chapters 10-17 of Caleulus, Seventh Edition, and
Calculus: Early Transcendentals, Seventh Edition) by James Stewart. Specifically, it includes solu-
tions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and
Problems Plus section. Also included are all solutions to the Concept Check questions.

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, readers of the Early Transcendentals
text should use the references denoted by “ET.”

Each solution is presented in the context of the corresponding section of the text. In general,
solutions to the initial exercises involving a new concept illustrate that concept in more detail; this
knowledge is then utilized in subsequent solutions. Thus, while the intermediate steps of a solution
are given, you may need to refer back to earlier exercises in the section or prior sections for addition-
al explanation of the concepts involved. Note that, in many cases, different routes to an answer may
exist which are equally valid; also, answers can be expressed in different but equivalent forms. Thus,
the goal of this manual is not to give the definitive solution to each exercise, but rather to assist you
as a student in understanding the concepts of the text and learning how to apply them to the chal-
lenge of solving a problem.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG
Palomar College

BARBARA FRANK
Cape Fear Community College
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1 ABBREVIATIONS AND SYMBOLS

CD  concave downward
CU  concave upward
D  the domain of f
FDT  First Derivative Test
HA  horizontal asymptote(s)
I interval of convergence
I/D  Increasing/Decreasing Test
1P  inflection point(s)
R radius of convergence
VA  vertical asymptote(s)r

2% indicates the use of a computer algebra system.

£ indicates the use of I’'Hospital’s Rule.

L indicates the use of Formula j in the Table of Integrals in the back endpapers.
= indicates the use of the substitution {u = sinz, du = cos z dz}.

= indicates the use of the substitution {u = cosz,du = —sina dz}.
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10 [0 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

Lo=t2+t y=t2—t -2<t<2

t | -2 -1 0 1 2
T 00 2 6
Y 6 2 0 0 2

3. z=cos’t, y=1—sint, 0<t< /2

t |0 w/6 /3 /2
x |1 3/4 1/4 0

y |1 1/2 1-L=~013 0

5. z=3—4t, y=2-3¢

(2)

le]-1 0 1 2
x| 7 3 -1 =5
y| 5 2 -1 -4

b)z=3—4 = 4=—2+3 = t=-3lz+% 50

y=2-3-2-3(-to+ ) =2+da-% > y=fa-

==

T.z=1—¢% y=t—2, —2<t<?2

(a)
t | -2 -1 0 1 2

z|-3 0 1 0 -3
g | —4 -3 -2 =1 0

byy=t—2 = t:y+2,so:c=1—t2=‘l—(y+2)2 =

z=—(y+2)%+1 or z=—y’ —4dy—3, with—4 <y <0

==2
(2, 6)
=2
4 (6,2)
=0
(0, 0)
0 2 x
¥
t=0
17 Y
r:
s =1
!:E 3
(0,0)
1) T %

-

(=3,-4)
=
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2 L[ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Sz=viy=1-t : o.1.e=0
@ , ‘
t|]o0 1 2 3 4 : (1,0) t=1
2|0 1 1414 1732 2 ‘ 0 *
y|1 0 -1 —3 -3 ' '
Mz=vi = t=2> = y=1—t=1—2" Sincet>0,2>0 B, ) pesi
) ; y —3) 1=
So the curve is the right half of the parabola y = 1 — 2. ‘
1. @)z —sinh,y =cosif, T<O<m ' (b) y
1
z? + 4% = sin® %6 + cos? -%9 = 1. For —m < @ < 0, we have ’
—1<z<0and0<y<1.For0<®#<mwehave <z <1
and 1 > y > 0. The graph is a semicircle. ' : 5
4 _—Il 0 1 x
13, (8) x =sint,y=csct, 0 <t < & —csct—L—l (b) Y
' - ’y_. ; 7l = T sint 2 _
‘ For0<t< 7. wehave 0 <z < 1 and y > 1. Thus, the curve is the
portion of the hyperbola y = 1/ with y > il 1,1
‘ 0 x
16 @We=e" =% 2A=lhs = t=3ihz (b) +
y:t-|—]_:%]_ng;-|—l, ' 1__/,”/
of 1

17. (a) z =sinht, y =cosht = y® —z® = cosh®t —sinh®# = 1. Since b o

X
y = cosht > 1, we have the upper branch of the hyperbola 4> — z* = 1. . \/ o

1

(=]
=

19, & =3+ 2cost,y =1+ 2sint, /2 <t < 3w/2. By Example 4 withr = 2, h = 3, and k = 1, the motion of the particle
takes place on a circle centered at (3, 1) with a radius of 2. As ¢ goes from Z to 2, the particle starts at the point (3, 3) and

moves counterclockwise along the circle (z — 3)* + (y — 1)2 = 4to (3, —1) [one-half of a circle].

: g T Y . 5 5 x\2 yy\2 ;
21. x = bsint, y = 2cost = s1nt=5—,cost=§. sin“t4cos"t=1 = (g) +(§) = 1. The motion of the

particle takes place on an ellipse centered at {0, 0). As t goes from — to 5, the particle starts at the point (0, —2) and moves
clockwise around the ellipse 3 times.

23. Wemust have 1 < = < 4 and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

(© 2012 Cenpage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.




SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS O 3

25. When t = —1,(z,y) = (0, —1). As ¢ increases to 0, x decreases to —1 and y ¥
increases to 0. As t increases from O to 1, x increases to 0 and y increases to 1. (

As t increases beyond 1, both z and y increase. For ¢ < —1, x is positive and / s
decreasing and ¥ is negative and increasing. We could achieve greater accuracy E;Loﬂ)\ 0.1} 4 _|x
by estimating z- and y-values for selected values of ¢ from the given graphs and .

plotting the corresponding points.

27. When t = 0 we see that z = 0 and y = 0, so the curve starts at the origlin. Ast 3; ] il
increases from 0O to %, the graphs show that y increases from O to 1 while z { -
increases from 0 to 1, decreases to 0 and to —1, then increases back to 0, so we E §
arrive at the point (0, 1). Similarly, as ¢ increases from 3 to 1, y decreases from 1 L

to O while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating z- and
y-values for selected values of £ from the given graphs and plotting the corresponding points.

=il

=1

29. Use y = t and z = t — 2sin «t with a t-interval of [—, 7].

"3, (@) z =21+ (T2 — @)ty = y1 + (y2 —y1)t, 0 < t < L. Clearly the curve passes through Py (z1,31) when t = 0 and
through P (@2, y2) when t = 1. For 0 < ¢ < 1, @ is strictly between 1 and 2 and y is strictly between y; and ys. For

Yz —1 (

every value of ¢, z and y satisfy the relationy — 11 = e
2 — 1

2 — x1), which is the equation of the line through

Pi(x1,y:) and Pz(.‘i’:z, y2).

— T—z;
vy—-h _ L. if we call that common value £, then the given
Y2 —n T2 — 1 ‘

Finally, any point (z, v) on that line satisfies
parametric equations yield the point (z,y); and any (x, ) on the line between P, (1, y1) and Pa(z2,y2) yields a value of
t in [0, 1]. So the given parametric equations exactly specify the line segment from P (1, 3n) to Pa(z2,y2).

(B)z=—24[3—(-2)t=—2+5tandy =T+ (-1 -7}t =7—8tfor0 <¢ < 1.

33. The circle 2 + (y — 1)* = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by = 2cost,
y = 1+ 2sint, 0 <t < 27. This representation gives us the circle with a countercloclfwise orientation starting at (2, 1).
(a) To get a clockwise orientation, we could change the equations to = 2cost, y = 1 — 2sint, 0 < t < 2.

(b) To get three times around in the counterclockwise direction, we use the original equations * = 2cost, y = 1 + 2sini with

the domain expanded to 0 < < 6.

(©) 2012 Cengage Learning. All Rights Reserved. May nol be d, copied, or duplicated, or posted i a publicly accessible websile, in whole or in part.



4

35.

7.

39,

O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(c) To start at (0, 3) using the original equations, we must have z1 = (; that is, 2 cost = 0. Hence, t = 7. So we use
¢ =2cost,y =1+ 2sint, LES S
~ Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use
z=—2sint,y=1+2cost,0 <t <.
Big circle: It’s centered at (2, 2) ‘with a radius of 2, so by Example 4, parametric equations are

x =2+ 2cost, y =2+ 2sint, 0<t< 2

Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are

(lef))
(right

z=1+0.1cost,
z =23+ 0.1cost,

0<t<2nr
0<t<2nm

y.= 3+ 0.1sint,

and y=3+0.1sint,

Semicircle: 1t’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

rz=2+1cost, , y=2+ 1sint, w<t<2mw

To get all four graphs on the same screen with a typical graphing éalculator, we need to change the last ¢-interval tO[O,.Zﬂ_'] in
order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to

T |

get the lower half—one is to change the “+"toa in the y-assignment, giving us

¢ = 2+ 1cos(0.5¢), y=2-—1sin(0.5t),- 0<t<2w

@z=t" = t:m”a,soy:tg = z?/3,
We get the entire curve y = 2°/2

traversed in a left to Since z = t® > 0, we only get the right half of the

right direction. curve y = /3,
¥ y
r=iy=¢ =1 ‘
p=z* t>0
/"
“7<0
0 b 0 x
©z=e3=(e*)? [Boet =23, ¥
. g = 43l’
y=e 2 _ (B t)? =‘($1/3)2 — :L‘2/3. y—efz' <0
If t < 0, then o and y are both larger than 1. If ¢ > 0, then z and y > (/
1,1
are between 0 and 1. Since & > 0 and y > 0, the curve never quite 0 L ~
reaches the origin. |
The case § < 6 <  is illustrated. C has coordinates (rf, r) as in Example 7, 2
and @ has coordinates (r8,r + r cos(m — 0)) = (rf, 7(1 — cos 9)) Ly D
. r
[since cos(m — ) = cosmcosa + sinwsine = — cos ], so-P has c
8
coordinates (rf — rsin{7 — ), 7(1 — cos)} = (r(0 — sin8),7(1 — cos 8))
[since sin(m — o) = sin @ cos & — cos 7 sin & = sin ] Again we have the Of——r6 — x

parametric equations z = (6 — sin8), y = r(1 — cos ).

© 2012 Cengage Learning, All Rights Reserved. May not be d

copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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SECTION 10.1  CURVES DEFINED BY PARAMETRICEQUATIONS O 5

i

41. 1t is apparent that z = |OQ)| and y = |@P| = |ST|. From the diagram, y
z = |0Q| = acosfand y = |5T| = bsin §. Thus, the parametric equations are
z = acos® and y = bsin 8. To eliminate # we rearrange: sinf = y/b = <, b
sin® @ = (y/b)? andcosf = z/a = cos®§ = (z/a)®. Adding the two Q

equations: sin? 8 + cos? § = 1 = z%/a® + y? /b, Thus, we have an ellipse.

43. C = (2acot 8, 2a), so the z-coordinate of P is & = 2acot . Let B = (0, 2a).
Then ZOAB is a right angle and ZOBA = 0, so |OA|'= 2asin # and

A = ((2asinf) cos b, (2asin §) sin 8). Thus, the y-coordinate of P
is y = 2asin? 6. i

45, (a) 4 There are 2 points of intersection:

(—3, 0) and approximately (—2.1,1.4).

y N
Sl

-4

(b) A collision point occurs when z1 = z2 and y1 = y2 for the same ¢. So solve the equations:
3sint = —3+4cost (1)

2cost =1+ sint 2)

From (2), sint = 2cost — 1. Substituting into (1), we get 3(2cost — 1) = —3 +cost = beost =0 (*) =
cost=0 = t=7For %" We check thatt = 57“ satisfies (1) and (2) but t = % does not. So the only collision point
occurs whent = 37", and this gives the point (—3, 0). [We could check our work by graphing =, and z2 together as

functions of t and, on another plot, 71 and y2 as functions of ¢. If we do so, we see that the only value of ¢ for which both

pairs of graphs intersect is t = 3‘21.]

(c) The circle is centered at (3, 1) instead of (—3, 1). There are still 2 intersection points: (3,0) and (2.1, 1.4), but there are

no collision points, since (%) in part (b) becomes 5cost =6 = cost = % > 1.

. z=ty= t3 — ct. We use a graphing device to produce the graphs for various values of ¢ with —r < ¢ < 7. Note that all

the members of the family are symmetric about the z-axis. For ¢ < 0, the graph does not cross itself, but forc = O it has a

cusp at (0, 0) and for ¢ > 0 the graph crosses itself at z = ¢, so the loop grows larger as ¢ increases.

3

=] —1
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49, x =t +acost,y =t +asint,a > 0. From the first figure, we see that

6 O CHAPTER10 PARAMETRIC EQUATIONS ‘AND POLAR COORDINATES

curves roughly follow the line y = x, and they start having loops when a

is between 1.4 and 1.6. The loops increase in size as @ increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,
that is, we seek the values of a for which there exist parameter values ¢ and w such that ¢ < « and

(t+acost,t+asint) = (u+ acosu,u+ asinu).

¥4 T In the diagram at the left, T denotes the point (¢, t), U the point (u, u),
i_’./“ u :.‘r and P the point (¢ + acost,t+asint) = (u + acosu, u + asinu).
& a\ ‘: i U Since PT = PU = a, the triangle PTU is isosceles. Therefore its base
( T j = angles, « = ZPTU and 8 = ZPUT are equal. Since o = ¢ — § and
\\‘\g_// 4 B=2r—3 —u= 57“ — u, the relation & = 3 implies that
i u+t+t=3 Q).

x

Since TU = distance((t, t), (u, u)) = /2(u — t)2 = v/2 (u — t), we see that

%Wi (u—1)/v2
PT a
u—t=+v2acos(t —Z) (2). Nowcos(t — %) =sin[% — (t — Z)] =sin(3E —¢),

,sou—t=+/2acosaq, that is,

cosx =

so we can rewrite (2) as u — t = v/2asin(3F —t) (2'). Subti'acting (2') from (1) and

dividing by 2, we obtain ¢t = 2% — Jga sin(3F —t),or 3 — ¢ = I sin(3 — ¢) (3). b— Z =y —]
Since a > 0 and ¢ < w, it follows from (2') that sin(ﬂ—d“- - ) > 0. Thus from (3) we see that ¢ < 3—}. [We have

implicitly assumed that 0 < ¢ < 7 by the way we dréw our diagram, but we lost no generality by doing so since replacing ¢

by t + 27 merely increases z and y by 2. The curve’s basic shape repeats every time we change t by 27.] Solving for a in

D (3m _ ¢ ;
(3), we geta = ﬂ“ﬁf\-_ Write z = L;’ —t. Thena = @, where z > 0. Nowsinz < z forz > 0,50 a > v/2.
sin(3E — ¢) sin z
[Asz—»ﬂ*, that is, as ¢ — (gf-)_,a —y \/5]

51. Note that all the Lissajous figures are symmetric about the z-axis. The parameters a and b simply stretch the graph in the

z- and y-directions respectively. For & = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses

(© 2012 Cengage Learning. All Rights Reserved. May not be s d. copied, or dupli , or posted to n publicly accessible website, in whole or in part.
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SECTION 102 CALCULUS WITH PARAMETRICCURVES 1 7

itself at the origin and there are loops above and below the -axis. In general, the figures have n — 1 points of intersection,

all of which are on the y-axis, and a total of n. closed loops.

21 3.1
L n=3 S PP %) —F @b =23
Lyies - (@, b)=(3,2)
= t@bh=21
1.1 —2.1 2.1 —3.1 3.1

—-21 -31
n=2 n=3
10.2 Calculus with Parametric Curves
. dy ; dx . dy dy/dt 2t+1
LT = ty=t’+t => —S =241 — = t,and =2 = = )
T =k, s P a2+l g=icab-tamiand g = i@ Ieoat+smi
2 dy dz dy  dy/dt —3t2

Lz = —, y=2—tt=1 L =_32""=4—2and 2 = = : =

.z=1+4t—t*, y=2-1t"; ¢t e S’d.t t, an dz ~ dajdt 472t.Whent 1,
(z,y) = (4,1) and dy/dz = —2,soan equation of the tangent to the curve at the point corresponding to £ = 1 is

y—1=-—3(x—4),orj=—-3z+7

@ = tcost +sint, L = t(—sint) + cost, and o dy/di _ tcost + sint

5. x = tcost, y = tsint; t =. = — - :
:c y=ta dt di dr dx/dt —tsint+ cost

When ¢ = 7, (z,y) = (—m,0) and dy/dx. = —w/(—1) = m, so an equation of the tangent to the curve at the point

corresponding to t = 7w is yy — 0 = 7wz — (—7)], or y = 7x + 7.

dy , dov

dy _,, dv dy _ dy/dt 2t
dt T dt

— =2 At(1,3),

7. @ z=1+1Int, y =1t +2; (1,3). dz = dojdi = 10

1
:?,an

z=1+Ini=1 = Iht=0 = t=1and%=2,soanequationofﬂ‘netangentim—3=2(a:—1),

ory =2z + 1.
Mz=1+lnt = Int=z—-1 = t=¢"Lsoy=+2=("1)’+2=e""242andy =¢**2.2

At (1,3),y' = e*P~2.2 = 2, 50 an equation of the tangentisy — 3 = 2(z — 1),ory = 2z + 1.

9. x = 6sint, y =t* +t; (0,0). 20

dy dyfdt 2t 41

dr ~ dz/dt  6cost

. The point (0, 0} corresponds to ¢t = 0, so the \

slope of the tangent at that point is é. An equation of the tangent is therefore
(0,0)

y—0=3%(z—0),0ory = gz

—2

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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15.

17.

19.
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d {dy
dy dy/dt 2t+1 1 d? dt( ) —1/(2%) _ 1
=1 2 —_— 2 _J—_y — = — —y = = T
BEtLY=EEt = TR B TR T e dE 2% T

The curve is CU when dQ— > 0, that is, when ¢ < 0.

dz?
- dy dyfdt —tet+et e f(1-1) o
gl g g - ol - = _
BEERSRT T a dz/dt et et N

d (dy
d’y _ E(E) _e R+ —t)(—2e7) e H(-1-242t) -

i e = = — = (2t — 3). The curve is CU when
2
j:rz > 0, that is, when ¢t > -
z = 2sint, y =3cost, 0 <t < 2m.
d (dy
dy _dy/dt —3sint 3 &y dt \ dz _ —3sec®t 3 4
dz ~ dz/d  Dcost | 2t Ea T @ikt - 2cost . 4°C b

The curve is CUwhensec®t <0 = sect<0 = cost<0 = F<t<

ui‘._.‘i’

dy dy

T O S _ 2
c=t"—3t y=1t 3. 0t 2tsodt =0 @It 0 < - \
— de _ o, _ - da _
(z,y) = (0,-3). 5 = 3t° -3 = 3(t+1)(t—1),s0 e 0 & P
t=-lorl <« (z,y) =(2,—2)or(—2,—2). The curve has a horizontal (_f' _12} ‘,2___2’
tangent at (0, —3) and vertical tangents at (2, —2) and (-2, —2). . \ ©, —3) /
\ J
—4
T = cosf, y = cos30. The whole curve is traced out for 0 < @ < . : 2 —
dy () w1
— = —3sin 36, so — Y_0 & sin39=0 & 30 =0,x, 2w, or 3w & 0=2m/3 =0
de dﬂ
=05 Fom & (@y) =11, (F-1) (1) 0r (-1, ~1). » [
@- —s8ind, sod =0 & sinf=0 & f=0o0r7m & ‘
dg — de 1
P -1,-1) (3.-1)
= - s - == — 0=m =3
(m,y) (1,1) or (—1,—1). Both dgand 7 equal 0 when @ = 0 and 7. i : ! )
To find the slope when 6 = 0, we find hm dy = lim SRl U, COUA = 9, which is the same slope when 8 = .

6—0 —sinf = 9—0 —cosf

Thus, the curve has horizontal tangents at (3, —1) and (—3, 1), and there are no vertical tangents.
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21,

23,

25,

21.

L az=2t3 y=1+4t—> =

SECTION 10.2  CALCULUS WITH PARAMETRIC CURVES [ g

From the graph, it appears that the rightmost point on the curve z = ¢ — 1%, y — ¢* 3

is about (0.6, 2). To find the exact coordinates, we find the value of ¢ for which the
graph has a vertical tangent, that is, 0 = do/dt =1 — 6t° « t=1/6.

Hence, the rightmost point is

(1/\“/6— 1/ (6 ¥6) e/ ¥5) = (5-5—6/5, 36_1/5) ~ (0.58,2.01).

2, y = t® — ¢ in the viewing rectangle [-2, 1.1] by [—0.5, 0.5]. This rectangle

We graph the curve z = t* — 2¢° — 2¢
corresponds approximately to ¢ € [—1,0.8].

0.5 : 7.5

=2 - | 7 S

—0.5 =]

We estimate that the curve has horizontal tangents at about (—1, —0.4) and (—0.17,0.39) and vertical tangents at

dy _ dy/dt 2 —1
about (0, 0) and (—0.19, 0.37). We calculate dy dyjet 8 - The horizontal tangents occur when

dz ~ dx/dt 445 — 612 — 4t
dy/dt = B —-1=0 & t= j:%, so both horizontal tangents are shown in our graph. The vertical tangents occur when

do/dt =26(26* — 3t —2) =0 & 20(2t+1)(t—2)=0 < ¢=0,—1 or2. Itseems that we have missed one vertical

tangent, and indeed if we plot the curve on the t-interval [—1.2, 2.2] we see that there is another vertical tangent at (—8, 6).

i

z = cost,y =sintcost. dx/dt = —sint, dy/dt = —sin®t + cos? t = cos 2¢. iy ¥

(z,y) =(0,0) & cost=0. & tisanodd multiple of 3. Whent = %,

dx/dt = —1 and dy/dt = —1,so dy/dz = 1. Whent = 3, dz/dt = 1 and

dy/dt = —1. So dy/dz = —1. Thus, y = x and y = —x are both tangent to the

curve at (0, 0).

r =10 —dsinb, y=r— dcosé.

de i dy dsinf
& o r—dcosf, 2 g o P Y
@) ag S, de e dr  r—dcos@

(b) If0 < d < r, then |dcosf| < d < r,sor —dcos® > r —d > 0. This shows that dz/dé never vanishes,

‘50 the trochoid can have no vertical tangent if d < r.

d—yfdy/dt-—zl_gt.Nowsoh}egg:I feeaiy

dz  dzjdi 6 dz T

6 +2t —4=0 <« 23t—2)(t+1)=0 & t=32ort=—11Ift=2, thepointis (3, 2), and ift = —1,

the point is (—2, —4).
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10 O CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
31. By symmetry of the ellipse about the x- and y-axes,
A=4 [ yde = 4f:/2 bsinf (—asinf) dé = 4abf0”/2 sin? 9 df = 4abf;/2 (1 — cos 26) dd

= 2ab[6 — % sin20]™® = 2ab(%) = mab

33, Thecurve s = 1+ €, y = t — 2 = t(1 — ¢) intersects the z-axis when y = 0, ¥ 1
t=0 $=
that is, when ¢ = 0 and £ = 1. The corresponding values of z are 2and 1 + e. Xk ,_..___J/
0 i ' x
The shaded area is given by : : R

x=1+e $=1
[ —umde= [ -0l @ar= -2t a

=2 =0
= [dietdt — [ t2etdt = [} te'dt — [t%*], + 2 [y te'dt  [Formula 97 or parts]
=3[ tetdt —(e—0)=3[(t— 1)et]; —e  [Formula 96 or parts]
=3[0—(-1)]—e=3-¢ '

35. z =70 —dsinf, y =r — dcos0.

A= [T yde = [27(r — dcosd)(r — deosf) df = T (r? — 2dr cos @ + d? cos® 6) df
= [r®0 — 2drsin0 + 3d*(6 + -;-,Si.l’l?ﬂ)]iﬂ = 2772 4 d®
Wa=t+e ', y=t—€", 0t <2 defdt=1—-etanddy/dt=1+e"", 50
(dz/dt)? + (dy/dt> = (1 — e ?)* +(1+e )P =1—2e" 4-};—Zt +14+2e 4t =24 2%,

Thus, L = [ /(d/dt)? + (dy/dt)2 dt = [ V2 + 2e~% dt ~ 3.1416.

3. z=1t—2sint, y=1—2cost, 0 <t < dm. dz/dt =1 —2costand dy/dt = 2sint, so
(dz/dt)® + (dy/dt)?> = (1 — 2cost)® + (2sint)® =1 — 4cost +4cos?t +4sin®t = 5 — 4 cost.

Thus, L = [° /{da/di)? 1+ (dy/dE)2 dt = [, /5 — dcosidt ~ 26.7298.

Moz =143, y=4+2% 0<t<1 de/dt=6tanddy/dt = 6t%, so (dw/dt)® + (dy/dt)* = 36t* + 36t
1 : 1 2 |
Thus, L =f /3612 + 36t dt:f 6t +/1+12dt = sf Vi (3du) [v=1+1 du=2tdt]
0 0 q

. 2
=3[2u¥2] =2(2%2 - 1) =2(2v2-1)
1
_ dx . dy :
43, x =tsint, y =tfcost, 0 <t < L T :tcost+smtandg = —tsint 4 cost, so

dz\?  (dy\?
(E) +(d_::) =% cos®t + 2sint cost +sin® ¢ + 2 sin® ¢ — 2t sint cost + cos® £
=1%(cos® t +sin®¢) +sin®t +cos®t = % + 1.

Thus, L= [§ VE+1dt & [MVTFT1+ it +vE+1)] = 3vZ+ 3 In(1+v2).
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47,

49.

1.4

-1.4

z=t—e,y=t+e, 6<t<6.

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES O
z =elcost, y=e'sint, 0 <t <.
2 \2 2 . y
(%) + (%) = [¢*(cost —sint)]® + [e*(sint + cost)]?
= (e’)*(cos®t — 2cost sint + sin®¢) '
+ (e*)?(sin® t 4+ 2sint cost + cos® ¢

= e**(2cos®t + 2sin’ t) = 2e**
Thus, L = [ V2e® dt = [ V2e dt =2 [e*]] =2 (e" - 1).
The figure shows the curve = sint + sin l.St, y=costfor0 <t < 4m.

dz/dt = cost + 1.5 cos 1.5¢ and dy/dt = —sint, so
(dz/dt)? + (dy/dt)* = cos® t + 3cost cos 1.5t + 2.25 cos® 1.5¢ + sin? ¢.

Thus, L = ;™ +/T+ 3cost cos 1.5 + 2.25 cos? 1.5t dt ~ 16.7102.

';_7)2 s (%f =(1-¢€)?+ (1+e) =(1-2"+*) + (142" +€*) =2+ 2e%,50 L = (% V2 ¥ 2T dt.

Set f(t) = v/2 + 2e?*. Then by Simpson’s Rule with n = 6 and At = '6—_(6_& = 2, we get
L~ 2[f(—6) +4f(—4) + 2f(—2) + 4(0) + 2f(2) + 4 (4) + f(6)] ~ 612.3053.

5, ¢ = sin’t, y = cos’t, 0 < t < 3.

(dz/dt)? + (dy/dt)* = (2sint cost)? + (—2costsint)® = 8sin® tcos® ¢t = 2sin® 2t =

K s P e
Distance = [ v/2|sin2t| dt =62 [;/*sin2¢dt [by symmetry] = —3 2 [cos2t]

ks
4]

(since z, y > 0), and this segment is completely traversed as ¢ goes from 0 to 5. Thus, L = [ 74

53. z — asinf, y = bcosf, 0 < 0 < 2.

(%Y + (%)’ = (acos6)? + (—bsinf)? = a2 cos? 6 + b% sin® 6 = a*(1 — sin® 6) + b? sin?

2
=a®— (a® - b?) sin29=a2—czsin28:a2(1— C—gsinzﬁ) = a%(1 —e’sin®0)
a

So L = 4[:”2 \/a? (1 —e2sin?6) df  [vy symmeiry] = 4a fu"m V1 — e2sin®6dé.

5§5. (a) & = 11cost — 4cos(11£/2), y = 11sint — 4sin(11¢/2).
Notice that 0 < ¢ < 27 does not give the complete curve because
x(0) # x(2x). In fact, we must take t € [0, 4] in order to obtain the _
complete curve, since the first term in each of the parametric equations has
period 27 and the second has period %72 = 4Z, and the least common

integer multiple of these two numbers is 4.

(@) 2012 Cengage Leaming. All Rights Reserved. May not be d, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

-3v2(-1-1)=6v2.
The full curve is traversed as ¢ goes from 0 to F, because the curve is the segment of = + = 1 that lies in the first quadrant

sin 2t dt = /2, as above.
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12 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b) We use the CAS to find the derivatives dz/df and dy/dt, and then use Theérem 6 to find the are length. Recent versions

of Maple express the integral f;" /(dz/dE)? + (dy/dt)? dt as 88(2 v/214), where E(x) is the elliptic integral
f \/1 - aﬂt"

dt and i is the imaginary number /—

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command
evalf (Int (sqrt (diff (x,t) 2+diff(y,t)"2),t=0..4*P1i)) ; to estimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11 | \/—4 cost cos(lT) 4sint sm(lT) + 5dt.

57. z =tsint, y =tcost, 0 <t < w/2. dx/dt =tcost+ sintand dy/dt = —tsint + cost, s0

(da/dt)* + (dy/dt)* = t* cos® t + 2t sint cost 4 sin® ¢ + % sin® £ — 2 sint cost + cos? ¢
= t*(cos? t | sin” t) tsin?t+cos?t =12 +1

S = fomyds = []/* 2rtcost\/& + Ldt ~ 4.7394.
59, x=1+te', y=(t2+1)e’, 0<t < 1.

(%)2 + (‘—U‘g)2 = (te* + €)% + [(té + Vet +et(26))? = [t + 1) + [ (£ + 2t + 1)]°
=P+ 12+ S+ 1) =+ 1)1+ (E+1)"], so

5= [2nyds = [ 2n(® + 1)e* /¥ (t + 1)2(82 + 2t + 2)dt = [ 2m(t* + 1)e® (t + 1) VI + 2t + 2dt = 103.5999.

Blz=1t% y=1, 0<t <1 () 4 (@) = (3%) + (2t)° = 90t* + 46>,

rl 1 rl
S:f amyy/ ()" + (%) dt = / 2wt2\/9t4+4t2dt:2ﬂ'/ /12912 + 4) dt
0 i 40

0

13 _ _ _ 13
=2 [ (u94)\/ﬂ(1—18du) [#—9*”4‘12—@—4)/9,] 2 (P gy g
4

du = 18t dt, so L df = {5 du 9-18 /,

13 13
5/2 8,..3/2 N 2 b/2 3/2
%[u/ Ju/L —EE[BUJ/ —20111/1[4

= 25 ((3-13° VI3 — 20 13V/13) — (3-32 — 20 8)] = 2% (247 /13 + 64)
63. 2 =acos’f, y =asin®0, 0< O < 3. (2_5)2 o (%)2 = (~3acos®f sin 0)% + (3asin® 0 cos§)* = 9a*sin” § cos® 0.

8= f"/z 27 - asin® 0 - 3asinf cosfdf = ﬁfrazjwfz sin 0 cos0df = Ema®[sin® 9]3/2 = 8ra®

65.2=3% y=2% 0<¢t<5 = (L) 4 (%) =(6t)* +(6¢°)° = 3612(1 +2) =

S = [? 2mz \/(de/dt)? + (dy/dt)? dt = [} 2m(3t*)6t VI + 2 dt = 18 [ t*/T+ £ 2t dt

S —— 2 26 26
= 187Tf126 (u—1)yudu [L;ZL? '] = 1871'112(‘(&3/2 — N du = 1871’[%155/2 = %?1,3/2] )

= 18((2 6763/ — 226 V26) — (2 ~ 2)] = %x (949 V26 + 1)
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 SECTION10.3 POLAR COORDINATES O 13

67. If ' is continuous and f'(t) # 0 for a < ¢ < b, then either f'(t) > 0 for all ¢ in [a, b] or f'(t) < O forall t in [a, b]. Thus
& T y el f

is monotonic (in fact, strictly increasing or strictly decreasing) on [a, b]. It follows that f has an inverse. Set FF =go f~1,

that is, define F by F(z) = g(f'(z)). Thenz = f(t) = [ *(z)=t,50y = g(t) = g(f *(z)) = F(a).

o[ dy dp  d. _ifdy 1 d (dy dy _ dyjdt _ g
= 1 —_— A = 1= = —-— | = —— = -
. §5) = (d.m) FIA (dm) 1+ (dy/da)? [dt(da: O e e E
d(dy\ _d(9\_ iie—ay g 1 AN . ‘
dt(d:t) = dt(i) =g &~ 1L GJap 32 = Bag Using the Chain Rule, and the

i .
fact that s Ef VP + (@Y dt = = /(&) + (2)° = (52 + %), we have that
D .
dp _ de/dt _ (@i —Ey 1 _ & —dy . Sorc:@ _|_#i—2y | _ |2 — ¥y
ds ds/dt 22452 (22 + y'2)1/2 (22 + 3;,2)3/2' ds (&2 +2}2)3/2 == (:t2 + yz)sfz.
. i . ody . d%y
byz=zandy = f(z) = m=1,z=0&ndy=?d—$—,y=ﬁ.
So o — 1L (@y/da?) —0-(dy/da)| _ __ |d’y/da’|
B (L+ (dy/d=)?P2 [1+(dy/dz)?]3/2

Mz=0-sinf = &=1-cosd = Z=sinbandy=1-cosf = g=sinf = § = cosh. Therefore,

N Icost?—cosQB—sinZB! _ |cos 6 — (cos® @ + sin? 7)|

loenll 1] i top of the arch is

= [(1 —cos@)? +sin®6]3/2 (1 —2cosf + cos? § + sin® §)3/2

~ (2—2cosf)3/2°

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when 6 = (2n — 1),

lcosm — 1]

L1 1

so take nn = 1 and substitute # = 7 into the expression for x: k =

73. The coordinates of T" are (r cos 6, rsin6). Since TP was unwound from

arc TA, TP has length rf. Also /PTQ = ZPTR— LQTR= 3w — 0,

so P has coordinates x = cos 8 + 7 cos(37 — 6) = r(cos8 + sin 9),

y =rsinf — rfsin(3w — ) = r(sinf — fcosf).

10.3 Polar Coordinates

(2 — 2cosm)3/2 -

2—2(-1)p2 %

1 () (2,%)

requirement.

(© 2012 Cengage Leamning. All Rights Reserved. May not be d, copied, or dupli

By adding 2 to §, we obtain the point (2, %*). The direction

opposite § is %’, 50 (—2, ‘%’r) is a point that satisfies the r < 0
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14 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

® (1,2 ' . >0 (1, -3 4+27) = (L, 5
' r<0: (—1,-3 4+7) = (-1,%)

’

© (-1,%) r> 0 (—(-1), % +%) = (1,3
r <0 (1,5 +2r) = (-1, %)

(1.5)

3. (a) z=1cosm=1(—1) = —1land
y = 1sin7 = 1(0) = 0 give us
i, g ™ the Cartesian coordinates (—1,0).
(b) — 2(:05(—-3:31) — 2(—%) — —1and
y=2sin(-3) = 2(_ 23) = —+/3
0] .
L/, give us (—1, —v/3).
3
o.-%)
(© $=—2c0337"=—2(—32@):\/2_and
\%,E, y=—231n3—4’5=—_2(&;—§)=g\/§
% “ gives us (v/2, H\/ﬁ)
3

5, (a);c=2a;{dy=_2 = -r=,/22+(_2)2=2ﬁmd9=tm‘1(;22)_=—%.Smce‘(Q,—iz)isinthefourth

quadrant, the polar coordinates are (i) (2 v/2, ) and (ii) (-2 v/2, &).

Mz=-landy=+v3 = r= (=14 (x/g)z =2and f = tan™?! (_if) = 2% Since (41, \/5) is in the second

* quadrant, the polar coordinates are (i) (2, 4F) and (ii) (—2, 7).

© 2012 Cengage Learning. All Rights Reserved. May not be d, copied, or duplicated, or posted to & publicly accessible website, in whole or in part.
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'

7. r > 1. The curve r = 1 represents a circle with center 9.7>20, n/4< 0 <3r/4.
O and radius 1. So r > 1 represents the region on or @ = k represents a line through O.

outside the circle. Note that € can take on any value.

=l
|

|
r=1

4

3
\“r=3
=215
oy
i)
;b
o &
LA
s
’
L
=37
et

13. Converting the polar coordinates (2, /3) and (4, 2m/3) to Cartesian coordinates gives us (2cos ,2sin Z) = (1,v/3) and

2z

(4cos Z=,4sin 3£) = (—2,2+/3). Now use the distance formula.

d=y/(z2— ) + @2 —1)* = (-2~ 1+ (2VE - V3)’ = VOF3=VIZ=2V3
15. 12 =5 <« x+y* =5, acircle of radius v/5 centered at the origin.

17.7=2cos@ = r’=2cosf & z°+y’=22r & z? —2z4+1+9y°=1 & (x —1)% + 4% = 1, acircle of
radius 1 centered at (1,0). The first two equations are actually equivalent since r* = 2rcosf = 7(r —2cosf) =0 =
r =0 or + = 2cosf. Butr = 2cos § gives the point 7 = 0 (the pole) when # = 0. Thus, the equation » = 2 cos # is
equivalent to the compound condition (r = 0 or r = 2cos#).

19. 72cos20 =1 & r1*(cos’f—sin’f)=1 & (rcosf)’ —(rsinf)®>=1 & x*—y® =1, ahyperbola centered at

the origin with foci on the z-axis.

M. y=2 & rsinf=2 & r=,—2-— & r="12cscl
sin @

B.y=1+3cr & rsinf=1+3rcosd < rsinf@—3rcosf=1 & r(sind—3cosf) =1 <«

1
"= Sinf —3cost

2% 2’ +y* =2z & r°=2%rcosf & 712—2crcosf=0 < 7(r—2ccosf) =0 & r=0orr=2ccosb.

r = 0 is included in 7 = 2ccosf when ! = % + n, so the curve is represented by the single equation r = 2ccos 0.

© 2012 Cengage Leaming.-All Rights Reserved, May not be d, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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”

27. (a) The description leads immediately to the polar equation 6 = %, and the Cartesian equation y = ta.n(—g-) &= 7‘5 zis
slightly more difficult to derive.

(b) The easier description here is the Cartesian equation z = 3.

29, r = —2sinf

0 T ) 27 @
¥ @.3m2)
31. r=2(1 + cos @)
5
4
4,0
O\J
7 2 0
8.r=0, 620 '
\ (27, 2)
(4]
0 ]
35, r = 4sin 30 -
=7
41 \ VA
50 2 =
(.3
6 1
0 ' T 8 .
‘ FEANT A
_4 -+ "a’ '\\‘

37. r =2cos4d
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3. r=1—2sind £

N e

41, 7% = 9sin 20 r?

43, 7 = 2 4 sin 360
(3, m/6)

h
b

Zl'rr
3r Iz lx 6
6 6 6
45 r =1+ 2cos 20 _ 2z _m
e 6=3
L ““ !"’
Y i 3w
= ‘\". -4"./ (_i T)
3, m) () (3,0)
Ui T 27 A
: ! "' ‘-\‘\ e
o] =\ J2zm " 4=\ fsm ' 5 L3
U 2 6 /| N

47, For @ = 0, 7, and 27,  has its minimum value of about 0.5. For § = § and "’T” 7 attains its maximum value of 2.

We see that the graph has a similar shape for 0 < ¢ < wandw < 0 < 27.

r 2
2

1+
1
0 " - T 2% 8 0
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49, z = rcosf = (4+ 2sech)cosf =4cosf+ 2. Now,r = 00 =

(44 2secf) w00 = 60— (Z)” orf — (32)" [since we need only
2 2

consider 0 < 8 < 2r],s0 lim z = lim (4cosf+ 2) = 2. Also,

8—m/2
r——oco = (4+2secf) »-c0 = 06— (£)Torf— ()7, s0
lim = lim (4cos@+ 2) =2 Therefore, lim =2 = z = 2isa vertical asymptote.
ro—00’ fosm/2t Sl 7

§1. To show that 2 = 1 is an asymptote we must prove lirdr:l z=1.
r—too

z = (r)cosf = (sin@ tand) cos§ = sin® 6. Now, 7 — 00 = sinf tand — oo =

g — (32&)_’50 lim z = lim sin?§ =1 Also,r - —co0 = sinf tanf — o0 =
r—oo f—mr/2—
60— (%)",s0 lim o= lim sin®6 =1 Therefore, lim =1 = z=1is
. r——o0 f—m/2t r—too

a vertical asymptote. Also notice that z = sin®# > 0 for all §, and 2 = sin® # < 1 forall . And = # 1, since the curve is not

defined at odd multiples of 7. Theréforc, the curve lies entirely within the vertical strip0 < x < 1.

53. (a) We see that the curve » = 1 + csin 6 crosses itself at the origin, where r = 0 (in fact the inner loop corresponds to
negative r-values,) so we solve the equation of the limagon forr =0 < esind=-1 < sind = —1/c. Now if
le| < 1, then this equation has no solution and hence there is no inner‘loop. But if ¢ < —1, then on the interval (0, 27)
the equation has the two solutions § = sin™(—1/c) and # = m — sin~*(—1/c), and if ¢ > 1, the solutions are
§ = -sin"'(1/c) and § = 21 — sm_1(1/c). In each case, r < 0 for & between the two solutioné, indicating a loop.

(b) For 0 < ¢ < 1, the dimple (if it exists) is characterized by the fact that y has a local maximum at 8 = 321 So we

'. Cdy . j J — —— :
determine for what c-values dTOg is negative at § = :-;25,, since by the Second Derivative Test this indicates a maximum:

dy . ! d*y :
@=cos€+2c3m9cos€=c059+csm20 = Eg:—sm9+2ccos29.

At 6 = 3= _this is equal to —(—1) + 2¢(—1) = 1 — 2¢, which is negative only for ¢ > 1. A similar argument shows that

y =rsind =sinf +csin’§ =

for —1 < ¢ < 0, y only has a local minimum at # = 3 (indicating a dimple) for ¢ < —%. .

55. 7 =2sinf = a=rcosf =2sinfcosf =sin20,y=rsind =2sin’f =

dy dy/df 2-2sinfcosf sin20
dz ~ dx/d8 cos20-2  cos20 L

=]

When 6 = %, . ta.n(2 . E) = tan% = /3. [Another method: Use Equation 3.]

dz 6
57.r=1/0 = z=rcosf = (cos®)/0,y=rsind=(sind)/0 =

dy _ dy/df _ sin8(—1/6%)+ (1/8)cosf@ 6° —sinf+0cosh

de ~ dz/d6  cosf(—1/6%) — (1/6)sinf 07 —cos0—Osinf

: _ 4y _ —0+w(=1) _ —w _
e -~ 5

-R.
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SECTION 10.3 POLAR COORDINATES O

59. r=cos20 = xz=rcosfl =cos20 cosl,y =rsinf =cos20 sinf =

61.

63.

dy dy/df _  cos20 cosf + sinf (—2sin 26)
dz ~ dx/df ~ cos20(—sinB) + cosf (—2sin 20)
Whend = * % _ 0(v2/2) + (vV2/2)(-2) _ —v2 _
4'dz  0(—v2/2) + (vV2/2)(-2) —V2

r=3cosf = z=rcosf =3cost costh, y=rsinf =3cosf sinf = -
4 — _3gin*0+3cos’ 9 =3c0s20=0 = 20=ZXordE & 6=Zordr
Sothetangent1shonzontalat(\/_,4)and( %,%’i) [sameas(%,—%)].
%=—Gsin6‘cose=k3sin29=0 = 20=0orm < 6=0o0r%.Sothe tangent is vertical at (3,0) and (0, &

r=1+cosf = z=rcosf =cosf(l+cosf), y=rsind =sinf(l+cosf) =

‘--j-%=(1+c030)cosﬂ—sin29:260328+cosﬁ—1=(2c0$9—1)(_c0s6+1):0 = cosf=j3or—1 =

8= -’é,'rr,orﬁ—" = horizontal tangent at (%,%),(O,w),aﬂd 3,5,

- 22 = —(1+cosf)sinf — cosfsinf = —sinf (1+2cosf) =0 = sinf=0orcosf=-1 =

65.

67.

6=0,m %, or % = vertical tangent at (2,0), (3, %), and (3, %).

2178
St ; dy/dé
Note that the tangent is horizontal, not vertical when # = =, since hm

f—m da:/dﬂ =8

2

r =asinf +bcosf = r?=arsinf+brcosf = z*+y’ =—ay+bz =

2® b+ (36 +4° —ay + (3a)f = (36 + (3a)® = (z— 1)+ (y— a)’ = L(a? + %), and this is a circle
with center (b, 3a) and radius £Va? + 12, ‘

r = 1 + 2sin(0/2). The parameter interval is [0, 4r]. 69. 7 = "% — 2cos(46).
. 29 . The parameter interval is [0, 27].
' 35
( =
-34 1.8
-3 3

L ="

L L i

71. # = 1 + cos?%® . The parameter interval is [0, 27).

’
1.1 .

-11
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20 O CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

73. It appears that the graph of r = 1 +sin (9 — %) is the same shape as
the graph of r = 1 + sin 8, but rotated counterclockwise about the
origin by %. Similarly, the graph of r = 1 + si.n(ﬁ - %) is rotated by

% In general, the graph of r = f(0 — «) is the same shape as that of

7 = f(8), but rotated counterclockwise through o about the origin.

That is, for any point (o, fa) on the curve = = f(6), the point

(ra, 0o + a) is on the curve r = f(6 — &), since ro = f(fo) = f((fo + @) — ).

75. Consider curves with polar equation r = 1 + ccos 8, where ¢ is a real number. If ¢ = 0, we get a circle of radius 1 centered at
the pole. For 0 < ¢ < 0.5, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 0.5 < e <1,
the left side has a dimple shape. For ¢ = 1, the dimple becomes a cusp. For ¢ > 1, there is an internal loop. For ¢ > 0, the
rightmost point on the curve is (1 + ¢, 0). For ¢ < 0, the curves are reflections through the vertical axis of the curves

with e > 0.

L5 15 1.5 2

-1 <> 2 -1 (D 2. -1 2 -1 3
J J \ k/l L J
=1.5 -1.5 . —1.5 -2
e=0.25 : c=10.75 . c=1 a=2
dy dy/d i
tan ¢ — tané dr —tan? dx/df o
: 14+ —<tand -
er an 1+da:/d9tan9
dy _dz. ' (d smBJrrcosG)Atanﬂ(d—cosé‘—rsmﬁ) sin® 0
T Etan@ a6 a0 rcosf +r- p—"
. d:c dy T (dr dr dr sin®0
i Y =, — i -+ — :
-I- 70 (‘da‘cosﬂ @"smﬁ) \ tanf?( smH-l—rcosQ) 7 cosf + g7 I——
_ rcos 0+ rsin® 6 i
T dr o2 dr . 2 © dr/do
%0 cos? 6 + — ke 8
10.4 Areas and Lengths in Polar Coordinates
Lr=e% nja<o <
A f r2df = f %(8—9/4)2 do = f %efa/z 4o — %[_2679/2]‘"’ _ —l(e_'T/z _ e—'n'/4) N
/2 /2 w/2
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SECTION 104 AREAS AND LENGTHS IN POLAR COORDINATES 1 * 21
3. r?=9sin20, >0, 0<8<7w/2

w/2 /2
A=/ %r2d3=f 1(9sin20) df = [ cos26]™/* = ~2(-1-1) =
8] . 0

27 2
Bl DR E T L= fg :[ 1(ve) dB:[ 10d6 = [36%])°" = #?
0 . o :

7.r=4+3sinf, —E <0< T,

/2 ) /2
A:/ %((44_351119)2039:%/ (16 + 245in 6 + 9sin? ) d
—n/2 ' —7/2
/2 ;
sl / (16 +9sin*@)df  [by Theorem 4.5.6(b) [ET 5.5.7(b)]]
—7/2
/2
=3.2 f [16+9-1(1 —cos20)]d?  [by Theorem 4.5.6(a) [ET 5.5.7(a)]]
0 .
_f (& — Zcos20)df = [0 - 4smza]"’2 =(3E-0)-(0-0)=4
9. The area is bounded by 7 = 2sinf for @ = 0to § = 7. | (2, m/2)
A=[ %#de:%f (25in9)2d9=%f 4sin® 0 df
0 ‘ 0 q
m ™ ‘
=2f %(l—cos2€)d9=[9—%sin29]u=7r . =2sin ¢
0 : -
L]

Also, note that this is a circle with radius 1, so its area is 7(1)* = .

27 27 :
1. A= f 1r?do = f 1(3+2cos6)*df = (9 + 12 cos§ + 4 cos® 8) df

8 (3, m/2)
= %/0 [9+12¢cos6 +4- 1(1 +00329)] do . (1,1r)< 5,0
2w (
= %/; (11 + 12cos 8 + 2cos 20) df = 1 [116 + 12sind -I-sin?ﬁ?];’r (3.37/2) \J

3(227) = 11w

@
>
I

2m 2 27 . I
/ %rzda=f 1(2+5in40)°do =1 [ (4 +4sindd + sin® 49) do '
0 0 S '

2 . l

%f [4+4sin46 + 2(1 — cos86)] df ‘ .

{ xS

= ] 1 119 1 2 . C/\
/‘; (5+4S]ﬂ49—§C058€)d9="2'[59_(“0849_'1'_65“186]0

= H@r—1)— (-] ==

Il

=
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22 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

27 2r .
15. A:[ -;-'rz dﬂ:f %(\/1+003259)2d6 ' 1.4
0

0 .

2 27

:%fo (1+003950)d8=%f0 [1+ 3(1+ cos 106)] d6 _2_]( 5J\/\1 Ll
:%[%3-{-%5&11@9]2“2%(311-):%77 [ R\)—j J

17. The curve passes through the pole whenr =0 = 4cos30 =0 = cos30=0 = 30=F+mn =

- 0 = & + %n. The part of the shaded loop above the polar axis is traced out for

8 =0to 8 = /6, s0 we’ll use — /6 and 7 /6 as our limits of integration. r=4dcos 30
' /6 /6
A= [ Hacos30)*do= zfﬂ 1(16 cos? 36) df

/6
- 16[0 1(1+cos69)df = 8 [0+ £ sin64]]/* =8 (%) = 4r

19.r=0 = sindd=0 = 4=mn = 0=7In
/4 " w /4 w/4
A:f 1(sin46)* dé = %f sin” 40 d6 = %f 3(1 — cos8f) df
0 ' . 0 0

=§[o- %sinSBI];/'*‘: 1(z) = inx

2. r * This is a limagon, with inner loop traced
; r=1+ 2sin @ (rect.) r=1+2sin#

out between § = % and 2% [found by

solving 7 = 0].

0 7_7,\/ 27 8 ==
-1t 5 a - e

el ==

~J

3w /2

37 /2 : 37/2 ’
A:zf %(1+251n9)2d9:f (1+4sin9+4sin29)d9=/ [1+4sin6+4- 2(1 — cos26)| df
T /6 7/6 7r/6 18
= [9—4cos8+20 —sin20]5n7e = (F) — (F+2v3- ) =n-3f ‘
23. 2cos8=1 = cos@=1 = @=7Torir. : ®.7)

CA=2f3 L[(2c0s8)? —12]d6 = [/} (4c0s? 6 — 1) df

= /3 {4 [%(14—00329)] _1}d9=f01r/3(1+200529)d9 Q

0

= [6+sin28}"/3* “+32@

o 3
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES O 23

25. To find the area inside the leminiscate 72 = 8 cos 26 and outside the circle 7 — 2,
we first note that the two curves intersect when r* = 8 cos 26 and r = 2,

that is, when cos 26 = L For—m<O<m, 0820 = 3 & 20=x4w/3

or£57/3 < 8= +x/6or+57/6. The figure shows that the desired area is

4 times the area between the curves from 0 to /6. Thus,

A=4[7/%[1(8cos20) — 3(2)%] d6 =8 [T/%(2c0s26 — 1) do
_ =s[sinza—e]:/'ﬁ;s(\/ﬁ/z—w/s) — 43— dn/3

21 3cosfl=1+cosf < cosb=5 = O=For—3.

A 2["’/3 1[3(:059) ﬁ(l_;_cose)?]de r=1+cosé

=f"/3(8c05267'2c036~1)d6 f“/3[4 (14 cos 20) — 2cos6 — 1] d8

= J/%(3+4c0820 — 2cos6) df = [30 + 2sin 20 — 2sm9]"’3

=7r—|-\/§f\/§=1r . r=3cos @
s sin # :
2. v/3cosf =sinf = 3= = tanf=+3 = 0=z p==z
- cos . X r=sinf Pl
/3 1 /2 1 2 A
A= [77 3(sin6)* df + [7/5 5 (VBeosb) df
=[5 1-$(1—cos260)d0 + [T/ 1 -8 3(1 + cos 26) df
[¢]
=1[s _%mnze]"/a+g[9+%sinza];;§
=4[(5-9) -0 +1{E+0 - (3+4)] oo
=r_¥i m_ 3/3__5n_ V3
12 716 -8 T 16 24~ 4
s sin 26
3. sin26 = cos26 = =1 = tan20=1 = 20=% =
0s 26 %

A=8. 2[“’8;sm229d9 8 f7/® 1(1 — cos 46) df

=4[9— 2aindd]]* =4(2-1.1) =% -1

33. sin20 = 20 = tan20=1 = 20=1% 0=%

e s < = B = §in26

A= 4]”/8151.1120019 [since 7% = sin 26)
= f77/® 25in26 d8 = [ cos 26];®

—-3vI-(-1=1-4v2
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24 - 0 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

35. The darker shaded region (from # = 0 to § = 27/3) represents 3 of the desired area plus % of the area of the inner loop.

From this area, we’ll subtract % of the area of the inner loop (the lighter shaded region from § = 27 /3 to § = ), and then

double that difference to obtain the desired area.

A =227 3(3 + cos0)” db — [, 3(3 +cost)” db]
=L G +0056+00529)d9_ Jonsa (§ +cos6+ cos®0) do
=[5/ [3 +cos 0+ § (1 + cos 20)] b

= Jonro [ +cosf + 3 (1+ cos26)] df

0 . 9 sin20]*% 6 9 sin20]"
_I:Z+S1n9+§+_4_:| 7[1+31n9+§+ 1 ]

0 2x /3

[+ 5+ 8- F) - B D+ [+ F+4-9)

=24+33=1%(r+3v3)

Il

37. The pole is a point of intersection.

r=3sin ¢
1+sinf=3sinf = 1=2sinf = sinf=1 =
_ 5
6=Zoriz,
The other two points of intersection are (2, Z) and (2, 3£).
r=1+sin

39, 2sin20=1 = sin20=3 = 20=7%, 55 11 o Un

By symmetry, the eight points of intersection are given by

5r 13 17
(1,0), where 0 = 5, 3%, 43, and 25T, and

__ 7m 1llw 19w 237
(—1,8), where ¢ = %, 2L, 22X and 257,

[There are many ways to describe these points.]

41, The pole is a point of intersection. sin # = sin 20 = 2sin§ cosf <

sinf(1—2cosf) =0 < sinf=0Oorcosf=3 =

6 =0,7m, §,0or —% = the other intersection points are (32@, %)

and (32@, %’r) [by symmetry].
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES 0O 25

43 ‘34 : 3 y=2x
ol ) Y. U '8 ™
L r=2 ’
* : \/ y=1+sinx
—3 P 3
—r=1+sin#
ik} 14 ; t
- 7
-0.3 =

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the -values
of the intersection points to be o = 0.88786 ~ 0.89 and  — o &= 2.25. (The first of these values may be more easily
estimated by plotting y = 1 + sinz and y = 2z in rectangular coordinates; see the second graph.) By symmetry, the tota;l
area contained is twice the area contained in the first quadrant; that is,

o w/2
A:zf 1(26)° d9+2f
0 @

= [36%]5 + [~ 20050 + (30— §sin20)] 7% = $0°+ [(§ + 5) — (o~ 20080+ o~} sin2a)] 34645

o /2
1(1+ sing)? dﬂ:/u 4e2do+f [1+2sin6+ (1 — cos26)] db
§ o

o

8 L= fb V2 + (dr/dg)? dg = fw V/(2cos0)2 + (—2sin ) df
a 0
= fﬂ \/4(c0329+sin20)d9 = jﬂr Vido = [20]:: =27
o 0

As a check, note that the curve is a circle of radius 1, so its circumference is 2m(1) = 2.

b 2n ' 2
47. L:/ rz-l-(dfr/dt?)?dH:f 1/(62)2+(26}2d9=j VO + 46° de
a o] 0
2 2
=[ 1/92(92+4)d9:f 0/ +4do
0 0

Now let u = 6% + 4, so that du = 20 df [Bdﬁ:%du] and

2m pamita 4(r?41)
/ 6/0% +4d0 =£ Vudu= .%. ; % [u3/2]4 _ %[43/2(7r2 T i %[(ﬁz +1)2 1

L «
1
= cos®(8/4) + cos®(8/4) sin®(6/4) —07s P\ 1.25
= cos®(#/4)[cos®(8/4) + sin®(#/4)] = cos®(8/4) CJ

=1

49. The curve r = cos*(#/4) is completely traced with 0 < § < 4.

72 + (dr/df)* = [cos*(6/4)] + [4cos®(8/4) - (—sin(6/4)) - 1]*

L= Jo™ \feosS(0/4) do = ;™ |cos®(8/4)| dO

=2 [ cos®(8/4)df [since cos®(8/4) > 0 for0 <@ < 27] =8 [ cosudu [u=16]

=Sf;m(l—sinzu)cosudu=8f01(1_$2)dm [z:sinu, }

da = cosudu

=sfo- 3l =8(1-§) = ¥
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51. One loop of the curve r = cos 26 is traced with —7/4 < 8 < = /4.
/4

2 . 3
r2+(%) = cos® 20 + (—25in 20)* = cos® 20 + 4sin? 20 = 1+ 3sin?20 = L

V1 + 3sin? 2040 =~ 2.4221.

—m/4

53. The curve r — sin(6sin ) is completely traced with 0 < § < 7. 7 =sin(6sinf) = % = cos(6sinf) - 6cosd, so

2 E ™
4 (g;;.) = sin®(6sinf) + 36 cos® fcos?(6sind) = L / \/sinz(ﬁsin 6) + 36 cos? 0 cos?(6sin ) df ~ 8.0091.
. N 1]

55, (a) From (10.2.6),

S = [ 2ny\/(dz/dB) + (dy]d0)> df

= [?2xy /r® + (dr/d6)?d6 [from the derivation of Equation 10.4.5]

= [ 2xrsin6y/r2 + (dr/d6)? df

(b) The curve 7> = cos 20 goes through the pole when cos 26 =0 =

20=% = 0= 7%. We'll rotate the curve from § = 0 to @ = % and double

this value to obtain the total surface area generated.
dr\’ _sin®20  sin®20
dd) = T2  cos28’

/4 /4 2 s 2
§= 2/ 2 v/cos 20 sin 0 4 /cos 26 + (sin? 26) /cos 26 df = 4«/ Vcos 20 sin \/&i‘ﬁm—%de
0’ 0

/4 /4
:47rf VcosZGsinB;dﬂzéﬂf sin9d9=47r[-—cos€]g/4=—4#(3?—1) =27r(2—\/§)<
5 0 ) 0 .

2 =cos20 = 21‘%:—2@128 = (

vcos 20

10.5 Conic Sections

1. 22 =6yandm2:4py = 4dp=6 = p=%. 32z = —yz = y?:—?:c. 4p = -2 = R:——;—.
The vertex is (0, 0), the focus is (0, £), and the directrix The vertex is (0, 0), the focus is (—3,0), and the
sy =—3. directrix is z = 3.
y
6l

-t
]
B
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SECTION 10.5 CONIC SECTIONS O 27

5 (z +2)% =8(y — 3). 4p = 8, s0 p = 2. The vertex is Ty +2y+1224+25=0 =
(-2, 3), the focus is (—2, 5), and the directrix is y = 1. VA l=—122-24 =
y (y+1)2 = —12(z +2). 4p = —12, s0p = —3.
(=2,5) / _ The vertex is (—2, —1), the focus is (—5, —1), and the
x/ : directrix is z = 1. ' _
i y
y=l
X

x (5,71 e . x

x=1

9. The equation has the form y* = 4px, where p < 0. Since the parabola passes through (—1,1), we have 1% = 4p(—1), so

2

4p = —1 and an equationisy®> = —z orz = —y®. dp=—1,s0p= —1 and the focus is (—1, 0) while the directrix

is:c=%.
2 3
11.%-!-%:1 = a=vVI=2b=v2,c=vVa® =02 =/A—2=+/2. The

y
2
ellipse is centered at (0, 0), with vertices at (0, +2). The foci are (0, +v/2). V2

-2
-2
z? ,y! :
B.27+9’=9 & S+T=1 = a=+9=3, 16,927 — 18z + 4y =27 @
o (- -
b=fleles VBB aie 1 =vi=20 9z® -224+1)+4°=27T+9 &
$ 2
The ellipse is centered at (0, 0), with vertices (%3, 0). Oz—1)? +4y? =36 (@—1?% ¥ _,
1 )

The foci are (£2+/2, 0). e bt - (1,0),

vertices (1,=£3), foci (1,++/5)

e o N (13)

S AN,
W

(1,-3}

2

2
17. The center is (0,0), a = 3, and b = 2, so an equation is _a:T . %- = 1. ¢ = v/a? — b2 = /5, so the foci are (0, +v/5).
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19.

21.

23.

21.

3.

33.

L +2y =422 43 & P+UY+1=424+4 & (W+1)1?-42?=4 &

0 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

2 2

¥ T _ . = - - y
i e | = - = /2 =
5= = a=5b0=3ec=yB+0=y/34 = “ (o.Ja?)\ -
center (0, 0), vertices (0, =5), foci (0, v/34 ), asymptotes y = +3 . > /(3 5
Note: 1t is helpful to draw a 2a-by-2b rectangle whose center is the center of (0.3) 7
the hyperbola. The asymptotes are the extended diagonals of the rectangle. ',,' >
(0, —5) \\‘Q “\‘
;’_& \“‘-. __5
0.—V/34) i

PPl & LamL.ol & astel % | % ¥z

= 100 100 i 0,10
¢=+/100 + 100 = 10v/2 = center (0, 0), vertices (10, 0), \ /

~10v2,0) Y_io o | 7 1042, 0)
foci (+10+/2,0), asymptotes y = + 12z = +a ( f/)( 5 U)‘: £ 0.0 :
4z —y? — Uz —4y+28=0 & y
4z —62+9)— (1P +4y+4)=-28+36—-4 &
. _ 22 2 0
z-3)-(y+2)°=4 « i 13) - ("”;2) =1 =%
22

a=+vVI=1b=vVA=2c=+I+F =5 = (3_\5'_2)4"
center (3, —2), vertices (4, —2) and (2, —2), foci (3 = /5, —2),

asymptotes y + 2 = +2(z — 3).

.z =y+1 & z°=1(y+ 1). This is an equation of a parabola with 4p = 1, so p = . The vertex is (0, —1) and the

focus is (0, —3).
P=qy-2 & £+ -4dy=0 & 2+2-Ww+1)=2 & 2+2y-1)*=2 &

2 _ )2
% + -(—y—li = 1. This is an equation of an ellipse with vertices at (++/2, 1). The foci are at (+/2 — 1,1) = (£1,1).

2
(ﬂ-%i — z% = 1. This is an equation
of a hyperbola with vertices (0, —1 £ 2) = (0,1) and (0, —3). The foci are at (0, —1++/4+1) = (0,—1 & VE).

The parabola with vertex (0, 0) and focus (1, 0) opens to the right and has p = 1, so its equation is y? =dpz,ory® =4z,

The distance from the focus (—4, 0) to the directrix z = 2.is 2 — (—4) = 6, so the distance from the focus to the vertex is
2(6) = 3 and the vertex is (—1,0). Since the focus is to the left of the vertex, p = —3. Anequationis y* = 4p(z +1) =

y* =—12(z +1).
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37.

39,

4.

47.

51.

SECTION10.5 CONICSECTIONS O 29

A parabola with vertical axis and vertex (2, 3) has equation y — 3 = a(z — 2)*. Since it passes through (1; 5), we have
5—3=a(l-2)? = a=2,so0anequationisy — 3= 2(z — 2)°.

The ellipse with foci (42, 0) and vertices (45, 0) has center (0, 0) and a horizontal major axis, witha = 5and ¢ = 2,

:1':2 y2
sob® =a?—c? =25—4=21. Anequationis%-i-ﬁ =1

Since the vertices are (0,0) and (0, 8), the ellipse has center (0, 4) with a vertical axis and a = 4. The foci at (0, 2) and (0, 6)

: - . (=07 | (y—4)?
are 2 units from the center, so ¢ = 2 and b = v/a? —c? = /4% — 22 = /12, An equation is + =1 =

b2 aZ

Ll Y

+—_

12 16

al 2 —4 2
L. :2 ) = w—47 _ L. The focus (—1, 6) is 2 units

An equation of an ellipse with center (—1, 4) and vertex (—1,0) is PP
2 2
from the center, so ¢ = 2. Thus, b + 22 = 4% = }* = 12, and the equation is (@ _le) + (v ;64) =1L
2y
. An equation of a hyperbola with vertices (&3, 0) is ¥ = 37 = 1. Foci (£5,0) = c=5and3>+b*=5> =
2 2
P=25-9= lﬁ,soﬂleequationis%- - % =1

. The center of a hyperbola with vertices (—3, —4) and (—3,6) is (=3, 1), so a = 5 and an equation is

(y—1? (z+3)°

= 1. Foci (—3,-7)and (-3,9) = c=8,505°+b* =8 = ?=64—25=39and the

52 b?
.. -1 (=+3)? _
equation is %5 39 1.
. oa? ‘ya
The center of a hyperbola with vertices (43, 0) is (0, 0), so @ = 3 and an equation is A e 1,
b ) I T
Asymptotes y = +2z = = 2 = b=2(3) = 6 and the equation is e 1

. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

a — ¢ from it) while the farthest point is the other vertex (at a distance of a + ¢). So for this lunar orbit,

(a—c)+ (a+c) =2a= (1728 4+ 110) + (1728 4 314), or a = 1940; and (a + c) — (a — ¢) = 2¢ = 314 — 110,
2 2

@ y
3,763,600 T %

- - . s & -
orec=102. Thus, * =a” — ¢ 3,753,196, and the equation is 3.753.196

(2) Set up the coordinate system so that A is ( —200, 0) and B is (200, 0).

|PA| — |PB| = (1200)(980) = 1,176,000 ft = 24 mi = 2¢ = a = 1225 andc = 20050

B2 = 2 _ g2 — 2339375 12122 12137

121 1,500,625 3,339,375
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_ (121)(200)* 1217 _ 133575
(b) Duenorthof B = z=200 = 1500625 3339375 1 = y= 539 248 mi
53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

y=flz) =

)
1+ o5

=3 VP et 0y = 7o’ +27) 7/ and

_a 2y—1/2 2

y”——[(b2+m) -
b

(b* +2°) 3/2] = ab(b® + z*)™*/% > 0 for all , and so f is concave upward
2
55. (a) If k > 16, thenk — 16 > 0, and = ? + —=— i 1 is an ellipse since it is the sum of two squares on the left side
b) If0 < k < 16, th 1 eV
(b) If 0 < & < 16, then k — 16 < 0, an T+k—16
left side.

= 1 is a hyperbola since it is the difference of two squares on the

(c) If k < 0, then k — 16 < 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1
(d) Incase (a), a® =k, b =k —16,and * = a

b? = 16, so the foci are at (44, 0). Incase (b), k — 16 < 0,50a* =k
b =16 — k, and ¢ = a® + b = 16, and so again the foci are at (+4, 0)
5.2° =dpy = 2w=4py = y' =

o so the tangent line at (zo, yo) i

are & + /a? + 4p?

y
:; = ";; {z — xo). This line passes through the point (a, —p) on the i
directrix, so — AE-—wU(af:z) = —d4p® — 2} = 2azo — 2z} &
) P 4p = 2p ] p 0= 0 1] . \/
—2ax0—4p° =0 & zi—-2am+a’=a’+4p? & Lk
(vo—a)* =a®+4p® & a0 =a=x+/a®+ 4p?. The slopes of the tangent lines at z = a +

aZ + 4p2
, so the product of the two slopes is
a+ +/a? 4+ 4p? a.—\/a,2+4p a® — (a? +4p) —4p2___1
2p 4p? p
showing that the tangent lines are perpendicular.

59,

9z° +4y" =36 < % 4 %— = 1. We use the parametrization z = 2 cost, y = 3sint, 0 < t < 2m.-The circumference
is given by

= [om \/(da/dt)? + (dy]dt)? dt = [2™ \/(—2sint)? + (Bcost)? dt =
V4 + 5cos? tdt

V4sin® t 4 9cos? t dt

Now use Simpson’s Rule wiih n=_§8,4&= gr—p

—, and f(t) = /4 + Bcos? t to get
L SE = 11'34

=44 [£(0) + 47(5) + 27 (5) + 4 (58) +2£(m) + 41 (F) + 21 (F) +47 () + F2m)] ~ 159,
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2 2 2 2 2
T y y _ T —a
515—5—2:1 = -i,-s--— 22 = Y= :l: V$2—02

A= 2/ —\z? 2 dx 3926[ \/.'1:2—0,2——ln|:3+ 2 —ag?
=§[cm-a21n|c+m|+a2mpa|]
Sincea? +b =c*,*—a?=b,and V2 —aZ =b

= 2[eb—a*ln(c-+) + a*lna] = 2[cb+ a*(1na ~ In(b + )

L

= b%c/a+ ablnfa/(b+ c)], where ¢* = a® 4+ b%.

|8,

2
63. 92 +43° =36 < e % =1 = a=3,b=2 Bysymmetry, Z= 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is § (rab) = 3. Solve 92 + 4y® = 36 for y to get an equation for the top half of the ellipse:

—

922 +4y° =36 © 4°=36-92" & y¥=204-2%) = y=3F/I—2" Now

_ 1 tan L PIIB N B P .8 ¥
y=% [ Stera-2 [ 1(3vis) a-g [ - 3
3 3 14 8 /16 _4
“ 8 f{'l'm)dm_w[“ 3$]0‘4w(3)_w
so the centroid is (0,4/7). * OI x *
. T L -2 2yy b’z
65. Differentiating implicitly, e + o 1 = Pl + S e 0 = ¢y = 5y [y # 0]. Thus, the slope of the tangent

2

line at P is —22? . The slope of F} P is and of FoP i |s By the formula from Problems Plus, we have
1
Y1 b2y ‘
tano = _TLte a2y - a®yi + b2z (21 +¢) - a?b? + bPex using b?2% + a?y? = a?b?,
b2z a?yi(zy +¢) — Pz Ay + eleys and a2 — b2 = ¢2
a?y1(z1 +c)
3 bz(cﬂ:l +(12) 7 b?,
T eyi(ex +a?) e
d
an -ngl B -
a2y Ty —e fazyf — b2z, (z1 — ) —a?b? 1+ bler b? ((:1:1 — 0.2) B2
tanﬁ = 3 = ) = 3 — 2 _—
__ blmp a?yy (z1 —¢) — PPxiyy Ay —a?cyy eya(exzs —a?)  onp
a?y1(z1 — )
Thus, o = f.
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10.6 Cbnic Sections in Polar Coordinates

1. The directrix z = 4 is to the right of the focus at the origin, so we use the form with “+ e cos 6 in the denominator.

ed 4 4

1+ec059=1+%c059 2 4 cosf’

LS

(See Theorem 6 and Figure 2.) An equation is r =

3. The directrix y = 2 is above the focus at the origin, so we use the form with “+ ¢sin #” in the denominator. An equation is

ed 152 6

T =1tesnd 1+1b6sind 2+3smnd

5. The vertex (4, 37r/2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus (d = 8), and we
use the form with “— esin #” in the denominator. e = 1 for a parabola, so an equation is

i ed 18 8
"~ 1—esinf 1—1sinf 1—sind’

7. The directrix r = 4 sec f (equivalent to r cos @ = 4 or & = 4) is to the right of the focus at the origin, so we will use the form

with “+ e cos 6" in the denominator. The distance from the focus to the directrix is d = 4, so an equation is

. ed 34 2 4
~ l+ecosd 1+1cosf 2 2+cosé
4 s 4ys . . -
9.r—5ﬁ45in9 1/5‘—lkgsmg,wheree—t.,andeci_5 =% d'=1,
- y
e 4, /2
(a) Eccentricity = e = -‘51 @, =2)
(b) Since e = £ < 1, the conic is an ellipse.
(c) Since “— esin#” appears in the denominator, the directrix is below the focus 4 1
‘ &7\ o (5.9
at the origin, d = |F| = 1, so an equation of the directrix is y = —1. T =g x
. . EE
(d) The vertices are (4, %) and (3, 3°).
2 1/3 2/3 :
Nr=— — . =_"1"_ = =2 =3
r 37 3sm0 1/3 1+1sin€,wheree landed=35 = d=3
i ‘ y
(a) Eccentricity=e¢ =1 ¥ s s b i e

(b) Since e = 1, the conic is a parabola. (%‘ w)ﬁ\(%. D)

(¢) Since “+ esin #” appears in the denominator, the directrix is above the focus 0 x

at the origin. d = |Fl| = %, so an equation of the directrix is y = %.

(d) The vertex is at (3, §), midway between the focus and directrix.
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9 1/6 3/2 1 3
= — == ———— wh =zanded=35 = d=
13.r 61 2c0s0 1/6 1+%msoweree 3 and e 3

eI

(a) Eccentricity =€ = %
(b) Since e = 3 < 1, the conic is an ellipse.
(c) Since “+-e cos 0" appears in the denominator, the directrix is to the right of

the focus at the origin. d = |FI| = £, so an equation of the directrix is

T =

D
5

(d) The vertices are (3,0) and (§,7), so the center is midway between them,

that is, (1%, 7).

3 1/4 _ 3/4
4—8cosf 1/4 1-—2cosf

ol

15, r = ,wheree = 2anded =3 = d=

(a) Eccentricity =e = 2
(b) Since e = 2 > 1, the conic is a hyperbola.
(c) Since “—e cos § ™ appears in the denominator, the directrix is to the left of

the focus at the origin. d = |FI| = £, so an equation of the directrix is

=3
z=—3.

(d) The vertices are (—32, 0) and (§, m), so the center is midway between them,

that is, (3, ).

ML (@ r= ,wheree =2anded =1 = d = 3. The eccentricity

1
1—2sin@

e = 2 > 1, so the conic is a hyperbola. Since “—e sin@” appears in the

denominator, the directrix is below the focus at the origin. d = |Fi| = 1,

s0 an equation of the directrix is y = —3. The vertices are (—1, %) and
i 3—") so the center is midway betw! h h is, (2,3
3,37, y een them, that is, (3, 3F).

(b) By the discussion that precedes Example 4, the equation

1

= T 2sm( - =)
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19. For e < 1 the curve is an ellipse. It is nearly circular when e is close to 0. As e

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At e = 1, the curve becomes a parabola with focus at the origin.

N |PF|=e|Pl] = r= e[c%—rcos(w— 0)) = e(d+rcosf) = : ¥ |
r(l—ecosf) =ed = r—e—d P
i ~ 1—ecosd

23. |PF|=e¢|Pl| = r=e[d—rsin(d—7)]=e(d+rsinf) = Y
0
r(l—esinf) =ed = 'r=—-e£-.—
. 1—esinf =1r x
P
I y=—d

25. We are given e = 0.093 and a = 2.28 x 10%. By (7), we have

a(l—e?) _ 228 x 10°[1 — (0.093)%] _  2.26 x 10°

o~

"= 1fecosf  1+0093cos@ 1+0.093cosf

27. Here 2a = length of major axis = 36.18 AU = a = 18.09 AU and e = 0.97. By (7), the equation of the orbit is

_18.09[1—(0.97)*) 107
T 1+4097cos@  1+0.97cosf

. By (8), the maximum distance from the comet to the sun is
18.09(1 + 0.97) ~ 35.64 AU or about 3.314 billion miles.

29. The minimum distance is at perihelion, where 4.6 x 10" = r = a(1 — €) = a(1 — 0.206) = a(0.794) =
a=4.6 x 107/0.794. So the maximum distance, which is at aphelion, is
r=a(l+e) = (4.6 x 107/0.794)(1.206) ~ 7.0 x 10" km.

31. From Exercise 29, we have e = 0.206 and a(1 — e) = 4.6 x 107 km. Thus, @ = 4.6 x 107/0.794. From (7), we can write the
2

. ; e . '
equation of Mercury’s orbit as r = a— . So since
q Ty 1 + ecosf

dr _ a(l—e’)esind
dd ~ (1+ecosh)?

A dr T d(1-€?)? | a*(1—e?)?e’sin?f  a?(1—é?)?
df) — (1+ecosd)? (1+ecosf)* = (1+ecosfh)?

(1 + 2ecos0 +€?)
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the length of the orbit is

JITE 7200080
[ V72 (dr/do)? dB—a.l—e)/ 1+e® +3ecosd ) 3.6 16° km

(14 ecos8)?

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius a

is 2ma =~ 3.6 x 10% km..

10 Review
CONCEPT CHECK

1. (a) A parametric curve is a set of points of the form (z,y) = (f(t), g(¢)), where f and g are continuous functions of a
variable t. A
(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the
curve by finding f(t) and g(t) for various values of ¢, either by hand or with a calculator or computer. Sometimes, when
f and g are given by formulas, we can eliminate ¢ from the equations = = f(t) and y = g(t) to get a Cartesian equation
relating = and y. It may be easier to graph that equation than to work with the original formulas for = and y in terms of ¢.

dy /dt

qojar ifde/dt # 0]

2. (a) You can find % as a function of t by calculatlng ;i

(b) Calculate the area as [,y dz = [ g(t) f'(t)dt [or [ g(t) f'(£)dt if the leftmost point is (£(8), g(3)) rather
than (f(a), g(a))]. |

3. @ L= [° /{da]d)? + (dy/db)? dt = [° /IR + g O dt

) S = [* 2my\/(dz/di)® + (dy/dt)? dt = [ 2mg(t)/[FOF + g D] dt

4, (a) See Figure 5 in Section 10.3.

(b) z =rcosf, y =rsind

(c) To find a polar representation (7, @) with 7 > 0 and 0 < @ < 2, first calculate r = /22 + 2. Then @ is specified by

cos@ = z/r and sinf = y/r

dr\ .
33 20 (y) dB (ram@) (aﬁg)ﬁmﬂercosB
5. (a) Calculate % dx =y 7 , where r = f(8).
® B (TCUSB) £ ) cos 0 — rsinf
dé dé a0

(b) Calculate A = [* 1r2d6 = [* 1[£(6)]* db

(© L= [’ \/(dze/dO)® + (dy/dB)2 do = [’ /v + (dr]dB)2 d6 = [’ \/TFOZ + [F'(6)] dO

6. (a) A parabola is a set of points in a plane whose distances from a fixed point F' (the focus) and a fixed line I (the directrix)

are equal.
(b) 2 = 4py; y? = dpx
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3 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
7. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.
2 2 '
T y
(b) ;5-+——-——a2_cg =1
8. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.
This difference should be interpreted as the larger distance minus the smaller distance.
2 2
B e B
® a® ¢2—a? :
2 _ 2
o T LA
' a
9. (a) If a conic section has focus F' and corresponding directrix , then the eccentricity e is the fixed ratio | PF| / | PI| for points
P of the conic section.
(b) e < 1 for an ellipse; e > 1 for a hyperbola; e = 1 for a parabola.
ed . ed - ed ed
=dr=——¢t=—-dir=———.y=dir=————.y=-—dir= ———.
Q=dr 1+ec059r "1 _ecost Y o 1+esin8y Ve 1—esinf
TRUE-FALSE QUIZ

1. False.  Consider the curve defined by = = f(t) = (t —1)® and y = g(t) = (t — 1)®. Then ¢’ () = 2(t — 1), 50 ¢'(1) = 0,

' but its graph has a vertical tangent when ¢ = 1, Note: The statement is true if f'(1) # 0 when ¢'(1) = 0.

3. False.  Forexample, if f(£) = cost and g(t) = sint for 0 < t < 4, then the curve is a circle of radius 1, hence its length
is 2m, but '™ /[f/OF + [ (02 dt = [,™ /(—sint)? + (cost)? dt = f:“ 1dt = 4, since as t increases
from 0 to 4, the circle is traversed twice.

5. True. The curve r = 1 — sin 26 is unchanged if we rotate it through 180° about O because
1—sin2(0 4 m) =1 —sin(26 -+ 27r) = 1 — sin 20. So it’s unchanged if we replace r by —r. (See the discussion
after Example 8 in Section 10.3.) In other words, it’s the same curve as r = —(1 — sin 20) = sin 26 — 1.

7. False.  The first pair of equations gives the portion of the parabola y = z* with > 0, whereas the second pair of equations
traces out the whole parabola y = 22,

9. True. By rotating and translating the parabola, we can assume it has an equation of the form y = cz?, where ¢ > 0.

The tangent at the point (@, ca®) is the line y — ca® = 2ca(x — a); i.e., y = 2caz — ca®. This tangent meets
the parabola at the points (:_c, czQ) where cz? = 2caz — ca®. This equation is equivalent to £ = 2az — a?
[sincec > 0]. Butz® =20z —a? & 2*-2a2+a’=0 & (z-a)’=0 & z=a &

(z,ex?) = (a,ca®). This shows that each tangent meets the parabola at exactly one point.
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EXERCISES

Lz=t*+4t,y=2—-t-4<t<1.t=2—1y,s0 ¥4
(0.6), t=—4

z=(2-y) 2 +42-y) =4—-y+* +8-dy=y -&+12 &

z+4=1vy* — 8y + 16 = (y — 4)°. This is part of a parabola with vertex iy

(—4, 4), opening to the right. \:

3. y =sech = . =l.Sinceﬂﬁggw/2,0<m$1andy21. Y
cosf =z

This is part of the hyperbolay = 1/z.

! (L,1),8=0
0 x
5. Three different sets of parametric equations for the curve y = v/ are
Me=t y=vt

(iaz=t! y=1

(iii) z = tan’ ¢, y=tant, 0 <t < /2

There are many other sets of equations that also give this curve.
7. (a) (4| %v_r) The Cartesian coordinates are z = 4 cos ET" = 4(_%) = -2 and

' = dgin 2w — 43 = . ;
i y =4sin & _4(2 )—2\/§,thatls,thep01nt(—2,2\/§).

N

(b) Given z = —~3and y = 3, we have r = /(=3)2 + 32 = /18 = 3 /2. Also, tan§ — ¥ s teng= —35, and since

T

(—3, 3) is in the second quadrant, § = 34—" Thus, one set of polar coordinates for (—3, 3) is (3 /2, 1), and two others are

(3v2,45%) and (-3V2, F).

9. r = 1 — cos . This cardioid is r
symmetric about the polar axis. 41 (.5
& {2, )
' — o
0 T 2 8
& 3
(1.5)
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'

1. r = cos36. Thisisa g
. 11
three-leaved rose. The curve is
traced twice. s i
6
0 - P @\_}
_1-- '
13. r = 1 4 cos 26. The curve is r ' 7
symmetric about the pole and 24 : 1
‘ 9. 2,0
both the horizontal and vertical ks = el
axes. ) . s
0 s T & 2‘11' g
2 2
15. r = s = e=2>1 éo the conic is a hyperbola. ‘d,e‘ =3 =
14 2sin@ , :

d = £ and the form “+2sin §” imply that the directrix is above the focus at

the origin and has equation y = 2. The vertices are (1, %) and (-3, 3£).

2

Ml.z+y=2 & rcosf@+rsinf=2 & r(cosf+sind)=2 & T:___—cosf?+sin6

1

19. r = (sin ) /0. Asf — £oo,r — 0.

As @ — 0, r — 1. In the first figure,
there are an infinite number of y= %
:c-intercepts at x = 7n, n a nonzero
integer. These correspond to pole — -
points in the second figure. - o
—0.75
21, :c:ln\t,y:l-&-f?;t:l. %=2tand%=%,so% = i‘iﬁjﬁ = 12_/tt: “

When ¢ =1, (z,y) = (0,2) and dy/dz = 2.

B.r=e’? = y=rsinfd=esinfandz =rcosf = e "cos) =

dy dy/dd  Srsinf+rcosf —e"sinf+e "cosf —e’  sinf —cosd

de ~ dx/df 4 cosf — rsin@ T —e%cosf—efsinf —e® cosf+sind
_ &y _0-(-1)_ 1 _
Whenﬂ—w,dmu 110 -1 1.
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21.

3.

33.
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< _ dy dy/dt _ 1+4sint
m=itoing y=t—wel = O /@ 1+ooa?

d (dy (1+cost) cost — (1 + sint)(—sint)
d?y dt \dr {1+ cost)? _ cost+cos’t+sint+sin’t 14 cost+sint

dz? ~  dz/dt - 1+ cost (1+cost)? (1+ cost)?

We graph the curve o = t° — 3t,y = t> + ¢+ 1 for —2.2 <t < 1.2, 4

By zooming in or using a cursor, we find that the lowest point is about

(1.4,0.75). To find the exact values, we find the ¢-value at which
dy/dt=2t+1=0 & t=-1 @,(w,y)é(%,%). : )
—4 5 29

. ' = 2acost —acos2t = @:—2asint+2asin2t=2asint(2cost—1):O <

dt

gint=0orcost=%1 = t=0,%,mor I

y =2asint —asin2t = %=2acost—2a.c032t=2a(1+cost—2c032t):2a(l—~cost)(1+2cosf,)=0 ="

t=0,2, or

wlg

Thus the graph has vertical tangents where ¢ = %, = and 7, and horizontal tangents where ¢ = 2 and 4. To determine

i ‘ . dy/dt o S
what the slope is where ¢ = 0, we use I'Hospital’s Rule to evaluate 1.51’[1] d?'_?dt = 0, so there is a horizontal tangent there.

i T Yy y4
0 a 0

3 3
3 2 Aé__a (~3a,0) (a, 0)
ZTK 7';'0‘ 342@'“ ,l 0 : x
T | —3a 0

The curve r* = 9 cos 50 has 10 “petals.” For instance, for —75 < 8 < 75, there are two petals, one with r > 0 and one

with r < 0.
A=10["/0 3r2do =5 [T/} 9cos50dd =5-9-2 [/ cos 50 df = 18[sin50] /" =18

The curves intersect when4cos# =2 = cosfd=31 = 0=+

wld

for —m < @ < m. The points of intersection are (2, ) and (2, —%).
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35. The curves intersect where 2sin @ = sinf + cosf =

sinf =cosf =0= and also at the origin (at which § = T’T
on the second curve).

f"m 1(2sin ) dé)+f37r/zi 1(sin® + cos 0)* do

= J5 (1 —cos20)do + § [27/* (1+ sin 20) b

3w /4 r=2sind r=sin 0+ cos 8

[9——sm20]“/4 [ 0——00529] =3z(r—1)

.z N 32, y =265
L= [?/(dz/diy? + (dy/dt)2 dt = [ /(602 + (62)2 dt = [} mdt 3 V36 VI + 2 dt
= fu 6[t|vI+E2dt = ﬁf;t\/l—l—_tzdt :6f15u1/2(%du) [u: 14 t% du = 2t di]
=6-3-3[u7]) =25 — 1) = 2(5 VB - 1)

2m 2
/6% do = —"96;” dé

T

39, L= [ \/rE+ (dr]dO)2 do = [*" \/(1/6)% +

2m
u | VO +1 5 Vri+1l VaArT+1 2 + vdw? + 1
= |—X—""+4In VoE+1 = - In
|: ] + (9+ + )]w b 27 r T+ 241

_ 2\/1T2+1,—\/47r2+1+ln(27r+\/47r2+1)
' 2m T+ vVm2+1

3

t 1
.= = — 4 — <t<
M. z =41, 4 3+2t2,1_t_4 =

S = [} 2ry\/(dz/dty® + @y/dt)® dt = [ 2 (36° + 1672) 1/ (2/vE)® —t73)2dt
=2 [} (3 + 172 VI + 10 2dt =27 [} (3¢5 + S+ t7%) dt = 2n [ﬁt” + 86— 1¢4]] = e,

43, For all c except —1, the curve'is asymptotic to the line z = 1. For

¢ < —1, the curve bulges to the right near y =0. As¢ increases, the
bulge becomes smaller, until at ¢ = —1 the curve is the straight line z = 1.

As ¢ continues to increase, the curve bulges to the left, until at ¢ = 0 there

is a cusp at the origin. For ¢ > 0, there is a loop to the left of the origin,

whose size and roundness increase as ¢ increases. Note that the z-intercept

of the curve is always —c.
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45, E—; + y—;— = 1is an ellipse il st (0,0). 4.6y +z—36y+55=0 <
a=3b=2v2¢c=1 = 6(y° —6y+9)=—(z+1)
foci (%1, 0), vertices (£3, 0). (y—3)2%= —3(z + 1), a parabola with vertex (—1,3),
¥y opening to the left,p = —3; = focus (—22,3) and
B directrix x = _-'5%_ |
- ,,
—3!J3 A
-242
0 x

49. The ellipse with foci (+4, 0) and vertices (£5, 0) has center (0, 0) and a horizontal major axis, with @ = 5 and ¢ = 4,

so b® = a® — ¢ = 5% — 4% = 9. An equation is 2—5- + %
) g - v oz
51. The center of a hyperbola with foci (0, £4) is (0, 0), so ¢ = 4 and an equation is — — 7= 1
s a
The asymptote y = 32 has slope 3, so % = % "= a=3banda®+b =c* = ()24 =4 =
2 2 2 2
10b° =16 = b =:andsoa 6 — £ = Z2. Thus, an equation is 7275 8/5 1,0r 7 3 1.

53. 2 = —(y — 100) has its vertex at (0, 100), so one of the vertices of the ellipse is (0, 100). Another form of the equation of a

parabola is % = 4p(y — 100) so 4p(y — 100) = —(y — 100) = 4p=-1 = p= —2. Therefore the shared focus is

found at'(O, 39)s02c =32 -0 = c= 22 and the center of the ellipse is (0, 332). Soa = 100 — 32 = 4 and
4012 — 399 _ : . = 2t (=)
L S G a = 25 ; =
LI . = 25. So the equation of the ellipse is — b" -l- pe 1 = 5t (@3)2 =1
8
(8y — 399)*
o 1 SR T I
or 5 -+ 160,801
d 4
. Directrix z = d=4,s0e=1} = - ;
55. Directrixz =4 = =g = T 14+ecosf 3+ cosé
. 3 3t 3t‘]z.
§7. (a) If (a, b) lies on the curve, then there is some parameter value ¢y such that 7——75 = a and 7 e s
1 1

the point is (0, 0), which lies on the line y = x. If¢; 7 0, then the point corresponding to t = fl is given by
21

3(1/t) 3% . 3(/t)* 3t ;
Al /eE —B+1- 2 =g ey B+l a. So (b, a) also lies on the curve. [Another way to see
this is to do part (e) first; the result is immediate.] The curve intersects the line y = x when . = 3—{3 =
1+t 1413

t=1t> = t=0orl,so the pointsare (0,0) and (£, 3).
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dy  (1+t°)(6f) — 3¢(3t?) 6t —3¢* i % _ s
®) = = AL 0 = T8y = 0 when 6t — 3t* =3t(2— ) =0 = t=0o0rt= {2, so there are

horizontal tangents at (0,0) and (¥/2, ¥/4 ). Using the symmetry from part (a), we see that there are vertical tangents at

(0,0) and (¥4, ¥/2).

(c) Notice thatas t — —17, we have £ — —ocoand y — co. Ast — —17, we have  — oo and y — —00. Also

" CBt+3P+(1+4%) 4+ (t41)? _ .
y—(—z—1)=y+z+1= 118 =1 —tz_t_i_l—*Oast—>—1.Soy4—m—1:sa
slant asymptote.

Codz (L+t3)(3) —3t(3t%)  3-—6t° dy 6t — 3t dy dyfdt t(2—1t%)
dy — = = d fi . 80— = =1
@ % (1+5)2 (15 ¢aye 2nd from part (b) we have ‘3 = s S0 00 = G0/ — 1000

d(dy)
2 314
dy  dt\dz/  2(1+4¢°) Sg 8 pe 1

Also 2 = “@jdi 31— 28) R

So the curve is concave upward there and has a minimum point at (0, 0)

and a maximum point at (\3/5, V/4). Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

3t )3 ( 3 )3 ot a1+t 27

3 3 _ = =
@z +y = (1+t3 1+ a+)3 A+8P  ([1+8)2

' 3t 3t? 27t? g . .
3wy—3(1+t3)(1+t3)f(1+t3)2,soa: + y° = 3xy.

(f) We start with the equation from part (¢) and substitute = = 7 cos @, y = rsinf. Thena® +y°® = 3zy =

3cosf sinf

r® cos® @ + 72 sin® 0 = 3r? cos @ sin f. For r # 0, this gives r = poe s

. Dividing numerator and denominator

1 sin 0
(cos(?) cosf _ 3sech tan§
sin®¢ ~ l-+tan®@’
cos?

by cos® 6, we obtain r =

(g) The loop corresponds to 6 € (D, Z), so its area is
e 2 (772 (3sec tand\? 9 [/ sec?d tan® @ 9 [ wldu
= e s ——df = - ———5 [letu=tan@
A= [ /0 (1+ta.n39)d0 2]0 (1+ tan® §)2 2,/0 Efadp Fonstand]
= Jim §[-50+2) =3

(h) By symmetry, the area between the folium and the line y = —z — 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is %, andsincey =-—-x—1 =
rsinf = —r cos() -1 = r= S Y the area in the fourth quadrant is
sinf + cos 6§’
1 [/ 1 ? 3sech tan & CAS 1 3
= —m——————— |} " | ———— df?-—Th fore, the total s 2(3) = 3.
2 [ 2 [( sinB-i—cosé‘) (1+ta.n39) RO M AR AeE 18 o B{E) =

{© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted (o a publicly accessible website, in whole or in part.
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. Vertical tangent lines occur when

t t g t d i
1. ¢ = md.’u, =./, Smudu,sobyFTCl,wehaveim—=£an _y:m_nt
u Lou dt t dt t

% =0 < cost=0. The parameter value corresponding to (z,y) = (0, 0) is £ = 1, so the nearest vertical tangent

occurs when ¢ = F. Therefore, the arc length between these points is

w2 | fdp\? dy\* */2 [cog’t , sint R ol | /2 "
L=£ (E) +(EE)dt—/j: t—z-l——tz—tu-/l ?=[]nt]1 =In%

3. In terms of z and y, we have z = rcos @ = (1 + csin6) cosd = cosf + ¢sinf cosf = cos + %csinZGand
y=rsinf = (1+csinf)sinfd =sinf +csin®d. Now —1 <sinf <1 = -1<sinf+csin’d<1l+c<2 50
—1 < y < 2. Furthermore, y = 2whenc=1and ¢ = §, whiley = —1forc=0and § = %” Therefore, we need a viewing,
rectangle with —1 <y < 2.
To find the z-values, look at the equation z = cosf + %csin 20 and use the fact thatsin20 > 0for0 < 6 < 4 and

sin 20 < 0 for —% < 0 < 0. [Because 7 = 1+ ¢sin @ is symmetric about the y-axis, we only need to consider

sl

<8 < %.] Sofor —5 < @ <0, z has a maximum value when ¢ = 0 and then 2 = cos f has a maximum value
of 1 at @ = 0. Thus, the maximum value of z must oceur on [0,3] withc=1. Thenz = cosf + 1sin20 =
g% = —sinf +cos20=—sinf+1— 2sin’8 = -f% = —(2sinf — 1)(sinf + 1) = 0 whensinf = —1 or %

[butsin® # —1for0 <6 < 3]. Ifsinf = }, then @ = ¥ and

T =cos§ + -lfsin 3= %\/5 Thus, the maximum value of z is %\/5, and,
by symmetry, the minimum value is —3 v/3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

r=1+csinf, where 0 < c < 1,is [-3v/3, 3v3] x [-1,2].

2 2
5. Without loss of generality, assume the hyperbola has equation 2—2 - %5 = 1. Use implicit differentiation to get
2 2y ,  bx o . . be
- — = 0,s0y’ = Ty The tangent line at the point (¢, d) on the hyperbola has ec.luanon y—d= m(z —c).
e

o b b
The tangent line intersects the asymptote 3y = —a when —z— (r—¢) = abdz—a’d® =bcz—bc? =
a

T ad
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obdz — Bez = a3 — B = $=azdz—b2f:2__a',d+bc bad+bc=ad'+bc'

and the y-value is

blad—be) b a b a
Similarly, the tangent line intersects y = —%m at (bc ; ad' o8 — bc) . The midpoint of these intersection points is
l1fad+bc  bec—ad\ 1(ad+bc  ad—be\\ _ (12bc 12ad\ _ -
(5( b + 5 ),-2-( = + = ))—(2—5—,2 = )—(c,d),thepomtoftangency.

Note: 1f y ='0, then at (+a, 0), the tangent line is & = =-a, and the points of intetsection are clearly equidistant from the point

of tangency.
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11.1 Sequences

-

. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers,
(b) The terms a,, approach 8 as n becomes large. In fact, we can make a,, as close to 8 as we like by taking n sufficiently
large.

(c) The terms a, become large as n becomes large. In fact, we can make a,, as large as we like by taking n sufficiently large.

3 . the sequence is 2 1 8 B 10 B 1%5_8_3
b B ey S ORI I+l d+ 1 B B+ BT 1 E s E

" _(—1)“"'the“- 1-11-11 ~Jr_1 1 1 1
b By = S S0 MR AEQUOROEIR : T 25°125° 625'3125° [

R SfLl1111 111 1 1
R T L e T 2'6°24'120° 720"
9. a1y = 1, an41 = 5an — 3. Each term is defined in terms of the preceding term. a2 = 5a; —3=5(1) —3 =2.
a3 =5az —3=5(2)—3=7. a1 =5a3—-3=5(T)—-3=32. as=>5as—3=5(32) —3=15T7.

The sequence is {1,2,7,32,157,...}.

1 =92 o O dn == a1 —_2_—2 a—i—z_/s—g a._ s  _ 2/5 _2
S e E T e P w142 3 T 14e 1428 5 T 1ta 1425 7
as =2 = 2T _ 2 Thesequenceis {2,2,2,2,3,..}.

1+aq , 1+2/7

a 1
13. {1,1,1,1, 1 ...}, The denominator of the nth term is the nth positive odd integer, 50 a, = o
15. {—3, 2 —%, % —=, .. } The first term is —3 ancl each term is f§ times the preceding one, so a,, = _3(_,%)“'1,

17. {3,—%,2,-28,2 ..} The numerator of the nth term is n? and its denommator is 7 + 1. Including the alternating signs,

n2
n+1"

we get an = (—1)"*!
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19.

21.

25,

27.

29.

3.

33.

O CHAPTER 11 INFINITE SEQUENCES AND SERIES
An h
) . 3n
. n—1+6n 0.5+ .....I.lll
0.4 *
1 0.4286
2 0.4615
3 0.4737
4| 04800 o s 1o«
= i It appears that lim a, = 0.5.
6 0.4865 . Reven :
7 0.4884 . 3n (3n)/n : 3 3 1
l = I —— 1 — T - T -
8 0.4898 Frar + 6n v (1 Jrrﬁ'n.)/'n, o 1/n+6 6 2
9 0.4909 |
10 0.4918
a
n an=1+(—%" 1 . T
1 0.5000 )
2 1.2500 »
3 0.8750
4 1.0625 0 : =
5 0.9688 '
6 10156 It appears that nlirgc 8= L
4 D:gpss lim (14 (-1)") = lim 1+ lim (—4)" =140 =1 since
9 0.9980 lim (—1)" =0by (9).
10 1.0010 '
. an=1—(0.2)",s0 lim @, =1—0=1by(9). Converges
n—oo
Q= 3+5n” = (3+5n2}/n2 = 5+3/n2 SO @y, — 240 =05asn — co. Converges
"Tn4n? T (n+n2)/m? - 1+1/m0T " 140 ' ®
Because the natural exponential function is continuous at 0, Theorem 7 enables us to write
lim an, = lim /™ = glimn—ee(l/7) — 0 =1 Converges
2 . : 2nw)/n ; 2 o ; ; : .
Ifb, = ﬁ%, then nli.ngo b, = nh_n;tc -(I(TTS?SW = lim 1/n:- - Gl % Since tan is continuous at 7§, by
z 2nm . 2nm T
Theorem 7, “h_{]go tan (m) = tan (nlingo g 817.) = tan i 1. Converges
o — n? n? A\/n3 vn

50 an, — coasn — oo since lim y/n = oo and
n—oo

Vi3 tdn +4n/\/n3 - V1+4/n?’
lim y/1+4/n?=1. Diverges

lim |ap| = lim oA
n—oo

A - = % nlﬂ:lgg n_zlﬁ — %(0) =0, so nli.nélo an = 0 by (6). Converges
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35. a, = cos(n/2). This sequence diverges since the terms don’t approach any particular real number as n — co.
The terms take on values between —1 and 1.
_(@n-1) (2n —1)! B 1
otn=Gn 1) - @rr )E@)@n-1!  @n+D@n) G-y, o
n - -n —2n .
39, a, = e . AN i IL —+Q0asn — ocobecause 1 +e 2" — lande™ —e™" — oo, Converges
n—-1 en et—e™m
5 n2 % u Zm i} 2 g
M, o, =n"e”" = —. Since lim — = lim — = lim — =0, it follows from Theorem 3 that lim a, = 0. Converges
z—oo g% z—o0 T m—o0 % H— 00
cos® n i 2 1 ‘cos® n
43.0< on < o [since 0 < cos*n < 1], so since hm 0 o = 0, —2n—-} converges to () by the Squeeze Theorem.
e _sin(l/n) . . sin(l/z) . ‘
45. a, = nsin(l/n) = i Since IlLrgc i ¢I—»o+ [where t =1/z] =1, it follows from Theorem 3
that {a,, } converges to 1.
2\ 2
7. y=(14= = Iny=zln(l+-),s0
T z
T
, o In(14+2/z) w o, 142/ o 2
ARV EI T AT e T 7
2 @ 2 g
lim (1 + ;) = lim e"™¥ =¢?, 50 by Theorem 3, llm (1 -+ E) =e¢®. Converges
=+ 00 i T—+O0
2n® +1 2+1/n
49, a, = In(2n% + 1) — In(n® 4+ 1) =].r1( 1 ) =In (1_'_1; ) —In2asn — co. Converges
51. a,, = arctan(lnn). Let f(x) = arctan(ln ). Then lenc}o f(z) = F since Inz — oo as z — oo and arctan is continuous.
Thus, lim an, = lim f(n) =Z. Converges
n—oo n—oo
53. {0,1,0,0,1,0,0,0,1,...} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrari ly close to
either one (or any other value) for n sufficiently large.
n! 1 2 3 n—-1) n 1 n n .
85. an = O Ry g = 5% [for n > 1] =Z—vooasn—>oo,so{an}dwerges.
57. 2, ~ From the graph, it appears that the sequence converges to 1.
. {(—2/e)" } converges to 0 by (7), and hence {1 + (—2/¢)"}
- convergesto 1 4+ 0 =1.
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1
59, i ~
D\ Ja
2
61. - N
0 b = 21
. )
=2
63, I
-

A\ | IS Jlo

From the graph, it appears that the sequence converges to %

Asn — 0o,

_ [3¥m? 3/n® +2 0+2 \/T 1
An = = = e, e A Py
8n? +n 8+1/n 840 4 &

so lim a, = 1.
n—+00

n? cosn
1+n?

bis

divergent, since it oscillates between 1 and —1 (approximately). To

n2

T

From the graph, it appears that the sequence {a. } & {

prove this, suppose that {a,, } converges to L. If b, =

% = L. But e cos N, S0

a
lim — =
bn

M—00 bﬂ

. a ; : o :
lim — does not exist. This contradiction shows that {a,, } diverges.

n—00 {n .

{bn} converges to 1, and

From the graph, it appears that the sequence approaches 0.

_1.3.5---(2n-1) 1 3 § 2n—1
W = (2n)" T 2n 2n 2n 2n

<i.(1).(1) ..... (l)=i—»0asn—+oo

~ 2n 2n

So by the Squeeze Theorem, { 2 } converges to 0.

65. (a) a, = 1000(1.06)" = a1 = 1060, az = 1123.60, az = 1191.02, a4 = 1262.48, and a5 = 1338.23.

(b) lim @, = 1000 lim (1.06)", so the sequence diverges by (9) with 7 = 1.06 > 1.

67. (a) We are given that the initial population is 5000, so Py = 5000. The number of catfish increases by 8% per month and is

decreased by 300 per month, so P, = P, + 8%F, — 300 = 1.08F — 300, Pz = 1.08P; — 300, and so on. Thus,

Bhi= 1-08Pn—1 — 300.

(b) Using the recursive formula with Py = 5000, we get Py = 5100, P; = 5208, P3 = 5325 (rounding any portion of a

catfish), Py = 5451, Ps = 5587, and Ps = 5734, which is the number of catfish in the pond after six months.

69. If r| > 1, then {r"} diverges by (9), so {nr"} diverges also, since [nr"| = n |r"| > [r"|. If || < 1 then

: g ; T H 1
lim zr® = lim — =
T—+00 z—roo TTF

whenever |r| < 1.

(@ 2012 Cengage Learning. All Rights Reserved. May not be
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1.

73.

75.

79.

81.

83,

T = —2—?:-:-1— defines a decreasing sequence since for f(z) = () =

SECTION114 SEQUENCES O 49

Since {a.} is a decreasing sequence, a, > an41 forall n > 1. Because all of its terms lie between 5 and 8, {a,}isa

bounded sequence. By the Monotonic Sequence Theorem, {ax } is convergent; that is, {a, } has a limit L. L must be less than

8 since {a.} is decreasing, 50 5 < L < 8.

1 1 1
Mm+D+3 2m+5 ~2n+3

By = is decreasing since an41 = = ay, foreach n > 1. The sequence is

1
2n+3
bounded since 0 < an < % forall n > 1. Note that a; = 3.

The terms of a, = n(—1)" alternate in sign, so the sequence is not monotonic, The first five terms are —1, 2, —3, 4, and —5.

Since lim |a.| = lim n = oo, the sequence is not bounded.
n— oo

n—oo0

z (® +1)(1) —2(2z) 1-—2a®

(@+1 (@ +1)

7 <0

n Tat4l

for z > 1. The sequence is bounded since 0 < a, < 3 foralln > 1.

For {\/51 V2v2,1/2v2V72, }, ar =22 gp = 23/% g5 =278 s0q, =200/ — 91—(1/2")
lim a, = lim 9l-(1/2") — 91 = 2. |
Nn—0oQ n—oa

Alternate solution: Let L = lim a,. (We could show the limit exists by showing that {a.} is bounded and increasing.)

Then L mustsatisfy L =+2-L = L*=2L = L(L—2)=0. L # 0 since the sequence increases, so I, = 2.

a1=10n11=3— i We show by induction that {ax } is increasing and bounded above by 3. Let P,, be the proposition

n

. . 1
that a1 > an and 0 < an, < 3. Clearly P is true, Assume that P, is true. Then anq1 > an = 7 < 1 =%,
n+1 An
1 1 ) 1 s & d <
= > ——. Now @42 =3 — >3- — =an41 © Pnyi. This proves that {a,} is increasing and bounded
Qn41 n An+1 ap

above by 3,50 1 = a1 < a, < 3, thatis, {a.} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If L = lim ay,then lim a,41 = L also,so L mustsatisfy L=3—1/L = L[*-3L+1=0 = L=—3$2@_
n—o00 n—oo
ButL > 1,50 L = 355,

(a) Let a,, be the number of rabbit pairs in the nth month. Clearly ay = 1 = aa. In the nth month, each pair that is
2 or more months old (that is;, @n—2 pairs) will produce a new pair to add to the a,,—y pairs already present. Thus,

@n = Gn-1 + Gn-2, 50 that {a. } = {f=}, the Fibonacci sequence.

fn f'rm.—l -+ f'n.—z fﬂ.—2 ‘ 1 1 "
= =1+5"= =14 =1+ L= lim an,
fn—l fu—l fn—} fn_l /fn_z " An-2 ull-goa

1
(b) an = ‘I“i = Opn-1=
T

[
then L = lim an—1and L = lim a,_2, so L must satisfy L:1+:}L— = L[’-L-1=0 = L_—.-l—'i'BA/—E

[since L must be positive].
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; 5
. T
85. (a) 52 i From the graph, it appears that the sequence {E}
- " R . n5
converges to 0, that is, lim - = 0.
n—oo N.:
uk . g /10
1 ' 0.03
(b) e N\ ~ ~
. =01 &
2 y =0.001
75 N : . . 125 9.5 : — 155
0 0

From the first graph, it seems that the smallest possible value of N corresponding to e = 0.1 is 9, since n®/n! < 0.1
whenever n > 10, but 9% /9! > 0.1. From the second graph, it seems that for £ = 0.001, the smallest posgible value for N
is 11 since n® /n! < 0.001 whenever n > 12.
87. Theorem 6: Ifnli_l.go |an| = 0 then nh_{r;o — |ax] = 0, and since — |an| < an < |an|, we have that nl;u};Q an = 0 by the
Squeeze Theorem.

89. To Prove: If lim a, = 0and {b,} is bounded, then lim (a.b,) = 0.

Proof: Since {b,} is bounded, there is a positive number M such that |b, | < M and hence, |ax| |bn| < |an| M for

allm > 1. Lete > 0 be given. Since lim a, = 0, there is an integer N such that |a, — 0| < -J\EA’ ifn > N. Then
n—00

|anbn — 0] = |anbn| = |an| [bu| < |an| M = |an — 0| M < % .M =eforalln > N. Since & was arbitrary,
lim (anbn) = 0.

91. (a) First we show thata > a1 > by > b.
2
ar—by = 2§t — Vab=}(a—2vab+b) = }(va-vh) >0 [sincea>b] = ar > by Also

a—a1=a—4(a+b)=21(a—b)>0andb—b, :b—JE:JE(\/E—VE) <0,50a> a1 > by > b. Inthe same

way we can show that a; > az > b2 > by and so the given assertion is true for n = 1. Suppose it is true for n = k, that is,

ag > ag41 > brg1 > by, Then
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2
Grya — bz = %(ak+1 + bey1) — Varpibrgr = (a.k+1 2v/@r+1bey1 + bk+1) = %(, fCrt1 — \/bk-{-l) >0

1
Qir1 — Ok2 = Qg1 — %(ak+1 + bpy1) = E(ﬂk+1 — br41) > 0, and

bt — btz = b1 — V/@ks10k41 = v/brt1 (\/ brt1— \/ak+1) <0 = ar+1 > k42 > bego > iy,

so the assertion is true for n = k -+ 1. Thus, it is true for all n by mathematical induction.

(b) From part (a) we have @ > an > @n41 > byt > ba > b, which shows that both sequences, {a,} and {b}, are

monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let nango an = aand ulingo b. = . Then ,,h_."go nil = nlll-:go a"—;—bﬂ = a= a—;,’j‘
2a=a+f = a=p.
bnli—]}go Pa bp
93. (a) Suppose {pn} converges to p. Then pn41 = T = "lim Pnt1 = I = p= e =

=00

P +ap=bp = plpt+ta—-b=0 = p=0orp=b—a.

§os

G+Pn 1+

b b [2% b b\? b\"
(c) By part (b), p1 < = Po, P2 < m< Po, pa < = P2 < = po, etc. In general, p, < =) po

so 11m Pn < lim (2—) -po = 0since b < a. [By(’!), lim r.“:Oif_—1<r<1.Here'r=26(0,1).]

n—o0

(b) Prs1 = < (g)pn since 1 + Eai >1.

(d) Let a < b. We first show, by induction, that if py < b — a, then p, < b — @ and ppy1 > pa.

bpo po(b —a — po) :
—pop=————"—">0sincepg <b—a.S > po.
a+po m a+po b g e S

Forn = 0, we have p; — po =

Now we suppose the assertion is true for n = &, that is, pr < b— a and pr4+1 > pi. Then

_ bpr. _ a(b—a)+bpy —apx —bpx _ alb—a—ps)
b—a—pr1=b—a e e = i > 0 because pr < b— a. So

bpr+1 Prt1(b—a— pria) ;
+1 < b—a. And — D] = ————— — Phep1 = > 0 since py+1 < b — a. Therefore
Pr+1 Prk+2 — Ph+41 @+ Pert Phe41 i Ph+1 )

Pr+2 > Pi+1. Thus, the assertion is true for n = &k + 1. It is therefore true for all n by mathematical induction.
A similar proof by induction shows that if pg > b — a, then p, > b — a and {p. } is decreasing.
In either case the sequence {p, } is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim p, =b—a.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.
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3. % an= lim s, = lim [2-3(08)"] = lim 2 -3 lim (0.8)" =2 3(0) =2

n=l

@ 1 1 ¥ 1
5. Fornz::l —30n = 3. §1 =a == 1, sa=s14+a =1+ 78 = 1.125, s3 = s2 +az =~ 1.1620,
84 = 83+ aq = L1777, 55 = 54 + as = 1.1857, sg = s5 + ag =~ 1.1903, s7 = sg + a7 ~ 1.1932, and

sg = s7 +ag = 1.1952. Tt appears that the series is convergent.

o0

n n 1 2
7. For sl = . s1=a1=——-==05 s =51 +a2 =05+ —— =~ 1.3284,
BT Tive "TuS1A SR 7|

83 = $2 + a3 = 2.4265, s4 = 83 + aa = 3.7598, s5 = 84 + a5 ~ 5.3049, sg = s5 + ag ~ 7.0443,

s7 = 56 + a7 =~ 8.9644, sg = sy + ag =~ 11.0540. It appears that the series is divergent.

9. L i
-
n o L@ i
1| —2.40000 ® . f ¥
2 [ —1.92000
3| —2.01600
{54) .
41 —1.99680
5 | —2.00064 )
6 | —1.99987 . g
7 | —2.00003 ; : o ’
From the graph and the table, it seems that the series converges to —2. In fact, it is a geometric
8 | —1.99999
: : ; sy (P8 2 -2 -2,
9 [ —2.00000 series witha = —2.4 and r = —%;, S0 its sum is Y 1,, == - 41 = & = —2.
n=1 (—‘))n 1= (_E) 1.2
10 | —2.00000 :
Note that the dot corresponding to n = 1 is part of both {a.. } and {s, }.

TI-86 Note: To graph {an} and {sn }, set your calculator to Param mode and DrawDot mode. (DrawDot is under
GRAPH, MORE, FORMT (F3).) Now under E (t )= make the assignments: xt1l=t, ytl=12/(=5)"t, xt2=t,
yt2=sum seq(ytl,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use
1,10,1,0,10,1,-3,1,1 toobtain a graph similar to the one above. Then use TRACE (F4) to see the values.

. 1 \
Sn

0.44721
1.15432 L
1.98637 {Sn} -
2.83080 ' .
3.80927 ' ; L (e
475796 R AR NN A *
5.71948
o n ; - .
3222:? The series “21 \/_nz=+4 diverges, since its terms do not approach 0.
8.64639

© W 9 ;oo S

—
o
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13. - ~
n Sn
1 | 0.29289 ()
2 | 0.42265 L owee ¥
3 | 0.50000 .
4 | 0.55279
5 | 0.59175 : {a,}
6 | 0.62204 5 W ST T
¥ | SR From the graph and the table, it seems that the series converges.
8 | 0.66667
o | o.68377 5’::(_1__ 1 )z(i_i)J,(i_L)Jr...Jr(_l__ 1 )
10 | 0.69849 asi\VR Vil Vi 1\/§ V2 V3 vk VE+1
: i ’
vk+1
1 il
SO l-——]=1. "
1121('\/— \/'n.+ ) k-too( .‘/k_l_l)
15. (a) lim a, = lim i =2 , so the sequtence {a, } is conver; eﬁtb (11.1.1).
- (@) n—-c:ea'fI n—oo 3n + 1 3 ¥ = o v
(b) Since lim a, = % # 0, the series ) an is divergent by the Test for Divergence.
oD n=1
17. 3 — 4+ 18 — & 4 ... isa geometric series with ratio r = —3. Since |r| = § > 1, the series diverges.
19. 10 — 2 + 0.4 — 0.08 + - - - is a geometric series with ratio —-% = — 1. Since |r| = 1 < 1, the series converges to
a __ 0 __10_50_2
1—-r 1-(-1/5) 6/5 6 3°
21. i 6(0.9)™" is a geometric series with first term a = 6 and ratio r = 0.9. Since |r| = 0.9 < 1, the series converges to
n=1
a 6 6
— = — = 60.
1-r 1-09 01
P (_3)71.—1 1 o 3 n—1 ) . . ) . . - . ]
23 3 S b 1 . The latter series is geometric with @ = 1 and ratio r = —%. Since |[r| = § < 1, it
n=1 n=1l
converges to -lt(igw = 4. Thus, the given serics converges to (1) (%) = 3.
25, i B . i (T—r)“is a geometric series with ratio r = . Since |r| > 1, the series diverges.
n=0 3" 3.5 \3 3
27 = + =4 = 1 + S 4= § Y i i L This is a constant multiple of the divergent harmonic series
376 2" 15 35w P g .54
it diverges.
29 & Bl diverges by the Test for Divergence since lim. a, = lim —— - #0
b e gr—y TSy g g el 87 O
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33.

37.

39,

4,
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Converges.
oo 1 + 2" o0 1 ‘n oo . .
. 33 e Z T 3—n =: 5 [sum of two convergent geometric series]
n=1 n=1
1/3 2/3 1
==42=
=11 ti-z3 2t

f V2 =242+ 24 2+ ... diverges by the Test for Divergence since
n=1

lm a, = lim ¥2= lim 2"/* =20 =1+#0.

TL=— 00 n—oo n—oa

= (7?41 o .
e ].n(—-) diverges by the Test for Divergence since

n=1 2112 + 1 )
i s, o B il e | sl e, LY itk
n—00 L n—o0 27?.2 - 1 i n-—00 27’?.2 + 1 - 2 ’
o e
33 (%)k is a geometric series with ratio r = I ~ 1.047. It diverges because |r| > 1.
k=0
o0
Y arctan n diverges by the Test for Divergence since im a, = lim arctann = #0.
n=1 n—oo n—oo
= 1 o (1\", g g g 1 : 1 .. 1 .
3 - Y o) is2 geometric series with first term a = = and ratior = e Since |r| = = < 1, the series converges
n=1 n=1 e
1/e /e e 1 o
- e l e i— Y
07— % =1k e - By Example 7, E1 AET 1. Thus, by Theorem 8(ii),
= (1 1 =1, = 1 1 1 e-1_ e
—_ —_— — —_ — 1= = 4
§1(6“+n(n+1)) ﬂ§16"+,§1n(n+1) e—l+ e—1+e—1 e—1

&= 2
. Using partial fractions, the partial sums of the series }, ——— are

n=2 n2 =% |

L 2

=& wem & (P )

:(l_é)+(;_3)+(;_%)+...+(-n13-ni1)+(n12—%)

J; 1
Thi tel lgp=145 ey
is sum is a te escoping series and s + I
B 2 N : 1 1 ], 3
Tt S i~ A = i, (”a‘—n_l ‘;) =7
. For the series E a y8n = Z": —3- = i 1 = L [using partial fractions]. The latter sum is
n(n+3) Si(E+38)  SNd i+3

(=-P+B-P+R-D+G-H -+ (F5—3) +Fr-wde) + [F -+ (4 -

=14+3+3— 35— 735 — =43 [telescoping series]
TG 5 s | lim (1 Ly el =1 1=14 ¢
"2 e Ao T (i oS T o wk) Sl =4 Comenges
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47.

49,

§1.

53.

55.

89.

61.
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For the series ) (31/” = e1/‘”+1)),

n=1

§p = i (elf" — el/(i'"'l)) = (e! — 61/2) I+ (61/2 - 61/3) +o 4 (e”" - el/(““)) =g — !/ (n+1)
i=1

[telescoping series]

Thus, 3 (e”" - e”(“‘"'”) = lin;c Sn = lixrcllO (e — 61/(""'1)) =e—e”=e—1. Converges

(a) Many people would guess that z < 1, but note that x consists of an infinite number of 9s.
b) = = 0.99999 2 + o+ — _B_ = E —, which is a geometric series with a; = 0.9 and
=i T 10 100 1000 10000 7T 4T e WAL S
. 09 0.9 3
7 =0.1. [ts sum is s 1, that is, = = 1.

(c) The number 1 has two decimal representations, 1.00000. .. and 0.99999. ...

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 0.5 can be written as 0.49999 . . . as well as 0.50000. . ..

08= 1—86 + 1102 + -+ is a geometric series with a = % andr = 110. [t converges to e l_ﬁ_/ll%ﬁ — g-

2516 =2+ ‘1’32 o ?—(llg + -+, Now % +- -?%3 + -+ is a geometric series with a = % andr = 1—(1)-5 It converges to
T2 = T4 = oo = o T3S =2+ 50 = gt = 5

1.5342 = 1.53 + 14024 + f—;e--&----.Now % + 14026 -+ -+ is a geometric series with a = % andr = 1%

e s = 42/10°  42/10" 42
COMVeTBes 10 T = T—1/102 ~ 99/10% _ 9900

42 _ 153 42 15147 42 _ 15189 5063

9900 ~ 100 © 9900 ~ 9900 ' 9900 ~ 9900 - 3300

Thus, 1.5342 = 1.53 + ——

[==] o0 3

5 (=5)"a™ = 3 (—bx)" is a geometric series with r = —bx, so the series converges < |r| <1 <«

n=1 n=1

—5z —5x

_bz| <1 & |z|< i thatis, —% <2 < L. Inthat case, the sum of the series is —— = = )
|=5z| Iel <3 o 8 1-r 1—(-5z) 145z

& - 2)" = — 23", ; ; ; —2 A
P (:5—3“—) = ¥ (w 3 ) is a geometric series with r» = 3—3—, so the series converges < |r| <1 <«
n=0 n=0

—2 —2
23 ‘<1 At —1<mT<1 & —3<x—-2<3 <& —1<z<b5. Inthatcase, the sum of the series is
a ik _ i ! 3
1—r ;_2=2 3-(z—2) 5-a
3 3
=2t = 2\ ST 2 , 2
b3 = ¥ = |sageomelr|csenesw1thr=;,sothcscnesconverges e <l & |=[<1 «
n=0 =0 iy d z

& 1 o
1—7 1-2/z =z-2

2<|z| 4 =z >2o0rz < —2. Inthat case, the sum of the series is
/
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65.

67.
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o0

- ‘
Y. e = 3 (e*)" is a geometric series with r = e, so the series converges > |r|<1 & |f| <1 &
n=0 n=0

.
l—r 1—e=

—1<e® <1 & 0<e® <1 & z<0.Inthatcase, the sum of the series is

After defining f, We use convert (£, parfrac) ; in Maple, Apart in Mathematica, or Expand Rational and

’+3n+1_1 1
(n?+n)3 ~nd® (n+1)3

The series converges to lim s, = 1. This can be confirmed by directly computing the sum using

Simplify in Derive to find that the general term is . So the nth partial sum is

sum(f,n=1..infinity) ; (in Maple), Sum[f, {n, 1, Infinity}] (in Mathematica), or Calculus Sum

(from 1 to oo) and Simplify (in Derive).

Forn=1,a; =0since sy = 0. Forn > 1,

g B _n=1 m-1-1 m-1n—(r+1)(n—2) 2
REIRTIWL T a1l me=131 (n+1)n " n(n+1)
o= g ., 1—1/n
AlSO,Elau—nlﬂesn—nEI%Om— .

(a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%
of the first 150- mg tablet, that is, [150 + 150(0.05)] mg. After the third tablet, the quantity is
(150 + 150(0.05) + 150(0.05)%] = 157.875 mg. After n tablets, the quantity (in mg) is

150(1 — 0.05™) _ 3000

150 + 150(0.05) + - - - + 150(0.05)™~*.-We can use Formula 3 to write this as =005 = 19

(1 - 0.05™),

(b) The number of milligrams remaining in the body in the long run is lim [29%2(1 — 0.05")] = 2229(1 — 0) ~ 157.895,

only 0.02 mg more than the amount after 3 tablets.

(a) The first step in the chain occurs when the local government spends D dollars. The people who receive it spend a
fraction ¢ of those D dollars, that is, De dollars. Those who receive the Dc dollars spend a fraction ¢ of it, that is,

Deé? dollars. Continuing in this way, we see that the total spending after n transactions is

_an
Sn=D+Dc+Dc2+---+Dc“1=-Q(11_—Cclby(3).
. .. Dl-_ D . . . D . . o
) lim Su = Mm bl = = lm (1-eh) = g [smceO<c<1 = limc f]

= % [sincec+s=1] = kD [since k= 1/s]

Ife = 0.8, then s = 1 — ¢ = 0.2 and the multiplier is k = 1/s = 5.

. 3 (1+¢) " is a geometric series witha = (1 4-¢) ™% and r = (1 + ¢) ™", so the series converges when

n=2

|(l+c)_1|<l < |14¢>1 & 14+e>lorl4+ec<—1 & c>0o0rc< —2. We calculate the sum of the
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ies and set it equal to 2: 1+~ 3 o [t 2—2—2 - & 1=2(1+¢)*—-2(1+¢)
series and set 1t equal to '1—(1+c)ﬁ1 = - = 1+tec = c c) =

26 +2c-1=0 & c= iﬁﬂ = iﬁ% However, the negative root is inadmissible because —2 < —‘Jig-”—l < 0.

Soc= -‘/ET_:L

e — 61+%+%+---+% =elel/2eV3. et 5 (141) (1 I 721.) (1+ %) (1‘4” ;11.) [e® > 1+ ]

T 123 n

Thus, ¢ > n+ land lim e*® = oo. Since {s,} is increasing, n].in(nﬂ 8§, = 00, implying that the harmonic series is
n—oo "
divergent.

Let d,, be the diameter of C,,. We draw lines from the centers of the C; to

the center of D (or C), and using the Pythagorean Theorem, we can write

124+ (1-3d)*=(1+3d)" & dz{

1=(1+3id)? = (1 - 1d1)* = 2d; [difference of squares] = dy = 3.

Similarly,

1
1= (14 3d2)” — (1 —dh — 4d2)” = 2d2 + 2d1 — &} — dd / T\
=(2- di)(dr +ds) &

(1—di)? s ¢ £ e [L—(dy +do))* ..
= —ls =T e bl e [~ dy— - 2d)* & =k :
da —aq & 2 —d, (1+3ds)” = ( 1 — da — 3d3) ds 2 (di + da) , and in general,
(1— ::1=1d=')1z

dyia = 5 g If we actually calculate dz and d3 from the formulas above, we find that they are é = ﬁ and
— 2ui=1 W ) ]

-1% = 3—11 respectively, so we suspect that in general, d,, = n(n;-l-l) To prove this, we use induction: Assume that for all
k<mndp= X e Thenfjd»—lf i e =ty [telescoping sum]. Substituting this i
<= , k_k(k—i-l)-k e n L i = Al Bl ping sumj. substituting this into our
1 n 1? 1
n+ 1 (n+1)° 1

formula for dp+1, we get dny1 = = -

g_(_" n+2  (m+D)n+2) and the induction is complete.
n+1 n-4+1

Now, we observe that the partial sums ., d; of the diameters of the circles approach 1 as n — oo; that is,

o0 (=] i

2= D,

——— =1, which is what we wanted to prove.
n=1 iz n(n+1)

Theseriesl —1+1—1+1—1+--- diverges (geometric series with r = —1) so we cannot say that

(y S, R, [, S, (R, (S, o S

32 ey = Jim Yoo = Jim. el = ¢ lim Yol @i = e o an, which exists by hypothesis.(
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83. Suppose on the contrary that } (an + bn) converges. Then Y (an + bn) and 3 a,, are convergent series. So by
Theorem 8(iii), Y, [(@» + bn) — @x] would also be convergent. But 3 [(a,, + bn) — @n] = ¥ bn, a contradiction, since
3~ by is given to be divergent.

85. The partial sums {3, } form an increasing sequence, since s, — $,—1 = an > 0 for all n. Also, the sequence {s } is bounded

© since 8, < 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

> an is convergent.
87. (a) At the first step, only the interval (%, %) (length %) is removed. At the second step, we remove the intervals (-51;, %) and
(Z,%), which have a total length of 2 - (%)2 At the third step; we remove 27 intervals, each of length (%)3 In general,

at the nth step we remove 2" " intervals, each of length (3)", fora length of 2"* - (3)" = 3 (%)"71. Thus, the total

length of all removed intervals is El 1(3)" = 285 =1 [geometric series with a = § and r = 2]. Notice that at
n=

the nth step, the lefimost interval that is removed is ((3)™, (3)"), so we never remove .0, and 0 is in the Cantor set. Also,

the rightmost interval removed is (1 — (3)",1— (3)™), so 1 is never removed. Some other numbers in the Cantor set

(b) The area removed at the first step is ; at the second step, 8 - (-!'5) at the third step, (8)% (% ) In general, the area

rémoved at the nth step is (8)" " (1)" = 1 (&)* ™", so the total area of all removed squares is

9
= 1/8\"" _ 1/9
,§1§(§) =T_8p@ "

o 1 1 2 5 5 3 23
- (a)Fornz_:l( +1)" R T i U R W W L e R W B o e 7
-1
34:§i+1——§ﬂ i;g The denominators are (n + 1)!, so a guess would be s,, = %.
1 211 E+1)!—1
(b)Forn=1,5 = F=Tg o SQ the formula holds for n = 1. Assume s = (_(k:T)l)’"_ Then
. (k1) -1 k+1 _(k+1)!—1+ k+1 (k42— (k+2)+k+1
TR TR+ R+HDT (k4 DI(k+2) (k+2)!
_(E+2) -1
T (k+2)!
Thus, the formula is true for n = k + 1. So by induction, the guess is correct.
. o (nD)-1 s N © n
(c)nlilblolcan—"]i'rgo—(nJrl)! —n_.ngol [CES] _landso.,gl—(n-}-l)l_l'
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11.3 The Integral Test and Estimates of Sums

59

: 1 % .1 y
1. The picture shows that az = 713 < [1 i3 dex, ;
y=Ta
_1< 310‘,:1:andscucms4:)Z /wld:uThe
3 =313 < , T33 o n :
integral converges by (7.8.2) with p = 1.3 > 1, so the series converges. e i
' 0 2 3 4 x

3. The function f(z) =1/ vz = z~Y/® is continuous, positive, and decreasing on [1, co), so the Integral Test applies.

; ] i
S e P de = lim [ o/ de = lim [%w‘m] | = Jim (%t‘% - —2) =o0,50 Y. 1//n diverges.

t—oo =

5. The function f(z) = is continuous, positive, and decreasing on [1, co), so the Integral Test applies.

1
(2x + 1)3

e dx¥Mfe—l do= i [obiome b | = fim et e LYo 2
_/; 2z +1)2 7 oo f; (2e+1P T toee| 4 (22+1)2),  t—ec\ 4(2t+1)2 36/ 36

Since this improper integral is convcrgcnt, the series }: (—2_11_—1)3 is also convergent by the Integral Test.

is continuous, positive, and decreasing on [1, co), so the Integral Test applies.

7. The function f(z) = wzi 1

t—oo fy z2 +

- g : o & 1 2 ¥ e 2 _ . .
/; =71 dz = lim o de = =t1_15.10 [5 In(z” + 1)} T3 tlingo [In(¢” + 1) — In2] = co. Since this improper

o0
integral is divergent, the series zL is also divergent by the Integral Test.
n=1,ﬂJ

+1

9. ic:l n}/- is a p-series with p = +/2 > 1, so it converges by (1).

"1+< : 4 £ + = - +L, v i —I—.This is a p-series withp =3 > l,soitconvergesby.(l).
827 64 ' 125 oy nd

1. 1+%+%+%+%+---=;2ni1. The function f(z) = 2:.:1—1 %

continuous, positive, and decreasing on [1, co), so the Integral Test applies.

fl 2m—1

diverges.

1

tluin'nolo [3In|2z — 1\] = —;— lim (1n(2t —1) — 0) = oo, so the series n¥1 5

o’ oo oo o0 §
15. \/—+4 E(%%—i): > n—;,'lﬁﬁ- b —4- Z : is a convergent p-series withp = § > 1.
n=1 n

n—l n=1 n? =1 n? =1 nd/2

||M8

= =]
i = Z 5 is a constant multiple of a convergent p-series with p = 2 > 1, so it converges. The sum of two
B =

convergent series is.convergent, so the original series is convergent.
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60 O CHAPTER11 INFINITE SEQUENCES AND SERIES

17. The function f(z) = is continuous, positive, and decreasing on [1, 00), so we can apply the Integral Test,

e
22 +4
. 1 .7 3 ¢ 1 _‘ . 1 -1 & t_ 1 t ; o | 1
/1‘ —$2+4d$_-c]i.lgofl m2+4dmftlinc}o{2tan QLth]EED{tan 3 tan 5
o niffee) ‘

=—|= —tan =
2|2 i 2

Therefore, the series E L COTverges.
n=1T + 4
o0 o0
19. 3 ]n_ = LS since Il 0. The function f(z) = ]n_ is continuous and positive on [2, 00).
n=1 n3 n=2' n? 1
/

z*(1/z) — (Inz) (32> 2> —3z°Imz 1-—3Inz EN
filz) = (/)(ms()z 8 ) — =—73 <0 & 1-3lnz<0 & hz>3 &

T > e’ 14,50 fis decreasing on [2, oo), and the Intepral Test applies.

= Ing t mz 11° 1 _ 1] () 1 Inn
Fasln | S S Ju [—@ - E] = {‘@(m” D] gotesin T, I3
converges.
) u=Inz,dv=2"de = du= (1/z)dr,v=—32"7 50
/ ln—mdm =-1 2ln:c—./ —137%(1/z)dz = —22 "Inz +%/‘m73 dt=—-1z Inr—ia?+0C.
2nt+1Y u 2t 41 J
Gox): t]ioc <_ 442 ) - t]iﬂglo 8 Htliﬂiﬁ =0
2. f(z) = - is continuous and positive on [2, 0o), and also decreasing since f'(z) = s < 0 forz > 2, so we can’
' zlnz e 72(Inz)? ’
use the Iptegral Test. jz ﬁ dr = tlgl;.o lo(lnz)]; = f]i,rﬂlc In(Int) — In(ln 2)] = o, so the series :Z; nll = diverges.

23. The function f(z)'= e'/#/z? is continuous, positive, and decreasing on [1, c0), so the Integral Test applies.

[g(z) = e!/® is decreasing and dividing by = doesn’t change that fact.]

I/m ‘ 1/ @ e ) o0 el/n
f fa:)dm—hm/ dr = hm [-e T] =f]jm(e/ —e)=—(1—e) =e—1,sothe series >
t—roo 1 t—oo n=1
converges.
; 1 1 1 1 . . . . - . 3
25. The function f(z) = —— = — — — + [by partial fractions] is continuous, positive and decreasing on [1, ca),

2? + 23 2 T x+1

so the Integral Test applies.

o8 | 11 1 ¢
f flz)dz = lim (-—-f—%— )dm—hm [—E—ln:c+]n{:c+1:l
1 J1

t—roo $2 X x+1 t—o0 1
= lim [—l+].nu+1*ln2:| =0+0+1—In2
t—roa t
Th 1 th - '
<] mtegra converges, so the series Z 2 s converges.

(© 2012 Cengage Learning. All Rights Reserved, May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.




SECTION 11.3 THE INTEGRAL TEST AND ESTIMATESOF suMs O &1

27, The function f(z) = m‘j;_m: is neither positive nor decreasing on [1, c0), so the hypotheses of the Integral Test are not
= cosmn
satisfied for the series .
Em .
29. We have already shown (in Exercise 21) that whenp = 1 the series E (11: diverges, so assume that p # 1.
fl@= - is continuous and positive on [2, co), and f'(z) = wcn IR < 0ifz > P, so that f is eventually
z(lnz)r H T 2(lnz)rt )

decreasing and we can use the Integral Test.

e . [(az)*-*]" o [(m#)tP?  (In2)*-P
.[2 x(hlw)”dxmtli%[ 1-p L ol = 0 l1-p l—p]

This limit exists whenever 1 —p <0 < p > 1, so the series converges for p > 1.
31. Clearly the series cannot converge if p > —3, because then lim n(1 +n®)? # 0. So assume p < —2. Then
n—00

f(z) = z(1 + z?)” is continuous, positive, and eventually decreasing on [1, c0), and we can use the Integral Test.

2\p+17¢
limll_(1+a:) ] 1
t—oo | 2 p+1 3 2(p+1)

/m z(1 +a”)Pdr =

1

[{1 4 t2)p+1 2'.D+1]_
This limit exists and is finite < p+1<0 & p< -1, so the series converges whenever p < —1.

33. Since this is a p-series with p = z, {(z) is defined when = > 1. Unless specified otherwise, the domain of a function fisthe
set of real numbers  such that the expression for f(z) makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers z such that the series is convergent.

= AN &b 1 \  ort
35. (a)"gl(ﬁ) =81 ——81(90)-10

n=1 nt b~
(b) ';5 T 2)4 =3_14+4—14+~51—4+'--:L§3k—14=.g—;— (-117+2i4) [subtract a; and az] =%— %;—
37. (a) f(z) = z—lg- is positive and continuous and f'(z) = —3:2—3 is negative for_z > 0, and so the Integral Test applies.
“i:)l‘n—lz A s10 = 1%+2—12+3l2+"'+%02 ~ 1.549768.

R 1 _ -17* 1 1 1
= =1l = = i PRI, ey . . .
10 /; P dr = lim [ ] lim ( n + 10) =75 %° the error is at most 0.1.

o0
(b)31o+f ialm<3<5'm+f —dm > swtg<s<swut+gs =
11

1.549768 + 0.090909 = 1.640677 < s < 1.549768 + 0.1 = 1.649768, so we get s ~ 1.64522 (the average of 1.640677

and 1.649768) with error < 0.005 (the maximum of 1.649768 — 1.64522 and 1.64522 — 1.640677, rounded up).
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62 O CHAPTER11 INFINITE SEQUENCES AND SERIES

(c) The estimate in part (b) is s ~ 1.64522 with error < 0.005. The exact value given in Exercise 34 is 72 /6 =~ 1.644934.
The difference is less than 0.0003.

(d)RnSf '—dx—— SoRn<00011f <1000 < n > 1000.

39. f(z) =1/(2z + 1) is continuous, positive, and decreasing on [1, 00), so the Integral Test applies. Using (3),

= o -1 ‘ 1
Ba 2 2z+1)"%dr = lim = . i
< [: (2z+1)"" dx Jm [10(% T 1)5] T0(Zn 7 17 To be correct to five decimal places, we want

1 5
10090 + 116 < 106 > l p e ~ =
02 + 1 = 109 & (2n+1)°>20,000 « n> (/20,000 1)~ 312 s0usen =4.
- 1 1.1 .1, 1
84 = n}; Gnrip =3 +35 + 75 + g ~ 0.001446 ~ 0.00145.

oQ o0
4. ) p200 - nxlnm is a convergent p-series with p = 1.001 > 1. Using (2), we get
n=1

n=1
_1000( 1 )= 1000

—0.001 720-001 n0.001"

(=<
R,.Sf 271 dz = lim
" t—o0

a,:fo.nm t
[ ] :_100011m[ml]

2000 54100 o nooor, 1000

We want R, < 0.000000005 < nU 001 W

2 (3% 100) 0% = 21000 5 TG00 o 1 67 x 10PPH o 10M1I00 = 107 ¢ 1ORHSE,
43, (a) From the figure, ag +as + -+ + an < [ f(z) dz, so with ¥
. 1
e N O 1 'y Y=%
wmaly = — 2y R - = "
f@)=Sig+g+gt +n_f1 ~dz=lnn
1 1
Thus,sn—1+;+%+Z+---+—Sl+hn. |
, B a | a| a a,
(b) By part (a), 8106 < 14 In10° ~ 14.82 < 15 and of 1 2 3 4. %

8100 <14 1n10° =~ 21.72 < 22.

45, b = (el“ b)ln" — (e'“")lnb =n"t = ﬁ This is a p-series, which converges for all bsuchthat —Inb > 1 <&

mb<—1 & b<e™' & b<l/e [withd>0]

11.4 The Comparison Tests

1. (a) We cannot say anything about 3 a,. If @, > b, for all n and 3 b,, is convergent, then ¥ a,, could be convergent or

divergent. (See the note after Example 2.)

(b) If an < by forall n, then 3 ax is convergent. [This is part (i) of the Comparison Test.]

id 2 L —; foralln > 1, s0 E converges by comparison with Z 5. which converges

T
YO PO
B+l 2 2mE 211 5

_because it is a p-series withp =2 > 1.
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1. T3 .
M n — forallmn > 1, so § diverges by comparison with 3~ —=, which diverges because it is a
n ﬁ n n n=lMNVN n=1l V1N

p-series with p = % <L

gﬂ 9“ 9 P e 9 \n . . . " 9 Lol .9"'
—_— L == e 1. = t tr g PO
7. 310" < 107 (10) foralln > ‘ El (L) is a convergent geometric series (|r| = & < 1), s0 ﬂ};l ST
converges by the Comparison Test.
9. Ir;ck — forallk > 3 [since Ink > 1 for & > 3], so 2 —k diverges by comparison with E » which diverges because it

" : P X Ink . ; ;
is a p-series with p = 1 < 1 (the harmonic series). Thus, 37 = diverges since a finite number of terms doesn’t affect the
| k=1

convergence or divergence of a series.

vk VE_ K2 _ 1 = U
N TG SR R T iR AL e e e ) COBpetiL With E kT/ﬁ’
-which converges because it is a p-series withp = £ > 1.
arctann 'rr/2f b > arctann b i ih T = 1 ; s 5
13. T < iz oralln > 1, so n§1 —,1z converges by comparison wit 3 RE=:1 i3 which converges because it is a
constant times a p-series withp = 1.2 > 1.
15 e >4—£—4 4ﬂforal|n>1 24 n—4§ Enisadive ent geometri i =4>1 |
B 3 5 2L X =43.13 rgent geometric series (|r| = 3 > 1), so
oo 4ﬂ.+1
b3 T diverges by the Comparison Test.
na=1 .
4 e . ; i 1
17. Use the Limit Comparison Test with a, = ———= and b, = —
i n - 1 n
lim a._,, = lim lim L — 1 > 0. Since the harmonic series i 2 diverges, so does
o =2 s < L T ' amn O
<] 1
nz=:1 VnZ+1
" : L 144" a4
19. Use the Limit Comparison Test with a.' = 13 and bn, = 3n -
144" '
B j LB g 1b4% B L 144 B L 1 1
nh—»m;hb“—n.hﬁ ar _nl—u»l:olol+3n 4“_11.11—{2.0 4n 1+3"_n1—]{Iolo 4"+1 X =1>0
= i =+1
3» 3n
Since the geometric series 3" b, = 3~ (3)" diverges, so does Z i:" . Alternatively, use the Comparison Test with
11"-1

144" 1447 o 14N .
T+ - 31 3n > 3G 2 (3) or use the Test for Divergence.
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21,

23.

25,

27.

29,

-3

33.

O CHAPTER11 INFINITE SEQUENCES AND SERIES
Vn+2 1

Use the Limit Comparison Test with an = [ Srae and b, = —7"
n

fm @ = i PoVAE2 g P VRFT) (V) L VIR VI 1,
TL— 00 bn n—oa 2ﬂ,2+n+1 n—od (2n9+n+1)/n2 ﬁn—'002+1/n+1/‘n2 - 2 - 2 ’

SO - ; . & nF2 |
Since T?_:: —577 18 a convergent p-series [p =3 > 1], the series n§1 @-j%“ also converges.
Use the Limit Comparison Test with a,, = % and b, = i’a:

" 7
3 3 4 1 5 ‘

. n .. n°(542n) . 5n®+2n 1/n , T2 , 55 1B,

'n.l—-lmoo ke ﬂli’u;o W = Jﬂo T )2 : /(22 = nlglolc (?_LIE + 1)2 =2 > 0. Since ngl —gisa convergent
G A 2

p-series [p = 3 > 1], the series 112::1 (15_;_'_—“;1)2 also converges.

vVt +1 Vnt n2 1 < Vvnt+1 . . .
. > Antl) Bt D  ntl forl alln > 1, so ngl gy diverges by comparison with

4 oo B
¥ 1 > i, which diverges because it is a p-series withp =1 < 1. ‘ :
n=1T n=2 "

2 - 2
e : ; 1 . . 1 :
Use the Limit Comparison Test with a, = (1 + E) e"and b, =™ lim -2 = lim (1 + —) =1 > 0. Since
n—oo fn n—+00 n 5
oo % ] . ) . i . o= 1)\?
Y. e™™ = Y — isaconvergent geometric series [|r| = + < 1], theseries 3 ( 1+ e e™™ also converges.
n=1 n=1€ n=1

. 1 = 1
Clarlyn!=n(n—1)(n—2).---(3)(2) >2-2-2-....2.2=2 1,50—15211_1.,&2 -

2, o= 1s a convergent geometric

s

; | -
series [|r| = 3 < 1], s0 > —; converges by the Comparison Test.
n=1 T

Use the Limit Comparison Test with a, = sin (—) and b, = l Then Y an, and 5 by, are series with positive terms and
n n

sin(1 . sind ; s g ; T
In = Jim sil/n) = 1lim 222 =1 > 0. Since > by is the divergent harmonic series,

n—oo Up n—00 ]./Tb T 0—=0 HEY

o0
>~ sin(1/n) also diverges. [Note that we could also use I’Hospital’s Rule to evaluate the limit:

lim M 2 lim gonll/m)- (—I/xﬂ) = lim Cosl =cos0=1.]

r—ro0 T T—00 —1/3;2 T—o0 &x

20 1 1 1 1 1 1 1 1
—_— ==t =+t =+ + ——= = 1.24856. Now —— < = —, so the error is
ﬂgl Vnt 41 NG 17 82 /10,001 ni+1 ot n2

= 1 T 1,1 1 ’
< < — = li — = li =2 T ) = =D
R1[}_T1u_f dz ’]]I[l [ :b‘} T—Irrono( Z —|—10> 10 0.1
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0 cos?l  cos?2  cos?3 cos® 10 cos’n _ 1 .
35, ﬂgjs "costn = T g * s Fon b a2 0.07393. Now W < 5—n,sotheerr0rts
oo -zt t =10
1 i 5 o 57 5 1 _8
Rio <To < /;u = dz = f]ixgo 105 de= hm [ 5]10 _tliglo( o5 +_ln5 = 50ms < 6.4 3107,
dy 9 9 = dn
37. Since —(F < — T for each n, and since Z: is a convergent geometric series (|r| = 1), 0.didads...= 3 T
n—l n=1
will always converge by the Comparison Test.
39, Since ¥ a,, converges, lim a, = 0, so there exists N such that |a, — 0] < 1foralln >N = 0<a, <1for
alln >N = 0<a?<a,. Since 3" an converges, so does ) a2 by the Comparison Test.
41. (a) Since lim % = 00, there is an integer /V such that g—" > 1 whenever n > N. (Take M = 1 in Definition 11.1.5.)
n—oc n n .
Then a., > b, whenever n > N and since > by, is divergent, " ay, is also divergent by the Comparison Test.
1 an . n ; T H 1
i = = = > _— —_— _— — = i =
(b) (i) fan = — and b, for n 2 2, then lim ) Jim e = lim o = lim S T Jim 2 = oo,
so by part (a), Z is divergent.
n==2 In
Inn n : .
(i) [fa, = — and bp = — then E by, is the divergent harmonic series and lim — = lim Inn = lim Inz = oo,
n=1 n—00 OUp =00 z— 00
so 5 an diverges by part (a).
n=1
1
43. lim na, = lim -1/— , s0 we apply the Limit Comparison Test with b, = o Since lim ma, > 0 we know that either both
— 00 TL—s OO n—oo

series converge or both series diverge, and we also know that Z ; diverges [p-series with p = 1]. Therefore, 3 a. must be

n=1

divergent.

45. Yes. Since 3 an is a convergent series with positive terms, lim a, = 0 by Theorem 11.2.6,and 3 b, = Y _sin(a,) isa
n—oo

oy . bﬂ . i i ‘
series with positive terms (for large enough n). We have lim — = lim sin(an) =1 > 0 by Theorem 2.4.2

co @n n—oo  (In

[ET Theorem 3.3.2]. Thus, 3_ b, is also convergent by the Limit Comparison Test.

11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

oo oo
(b) An alternating series 3 an = 3 (—1)" by, where b, = |a..|, converges if 0 < b,.41 < by, forallnand lim b, =
n=1 n=1 T— 00

(This is the Alternating Series Test.)

(c) The error involved in using the partial sum s, as an approximation to the total sum s is the remainder R,, = s — s,, and the

size of the error is smaller than by, 41; that is, | Ry | < bp4.1. (This is the Alternating Series Estimation Theorem.)
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1.

13.

15.

17.

19.

21,
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2 4 6 8 10 o0 2n 2n 2
- . e 3 i Now lim b, = i
gk P T e B Sl e Ko v #0 since
nlinge an # 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.
T = o Gt e BB (), N B S 0 ) i renatiog i Thit == A0
n=1 n=1 2n+l1 =5 2n+1 T n—oo ’
series converges by the Alternating Series Test.
P en= 5 (0" B=1 _ (1) bu. Now lim b, = By SN0 ;é 0. Since lim an # 0
n=1 n—l 27’1 T 1 n=1 e 'n%m 2+ 1/ =

(in fact the limit does not exist), the series diverges by the Test for Divergence.

; Z i = ( 1)"e™ = Z( —1)"bp. Now by, = — > 0, {bn} is decreasing, and hm bn = 0, so the series converges
=1

n=1 7

by the Alternating Series Test.

712

By = = e > Oforn > 1. {ba} is decreasing for n > 2 since

2\ (2®44)(2z) — 2*(32%)  z(2c®+8-32%) x(8-z%)
(:c-" +4) = (a3 + 4)2 = @ 1) B ETD < 0forx > 2. Also,
i

1/n
= = 0. Thus, th —1)»+t
.- “e“es,,;,( n+4

converges by the Alternating Series Test.

lim b, = lim e*/™ =¢” = 1,50 lim (—1)""e*™ does not exist. Thus, the series 3 (—1)"~*e*/™ diverges by the

n—oo n—rod n— oo =1

Test for Divergence.

st P (1)
T 14+4vmn T 1+4/n

oo sm(n—f- )

ngﬂ 1+\/_

ow bn = > 0forn > 0, {b,} is decreasing, and lim b, = 0, so the series

1
1+vn =5 nvos

converges by the Alternating Series Test.

n—oo

,'21(—1)“ sin(%). bp = sin(%) > 0forn > 2and sin(%) > ain(nj_l), and lim sin(%) =gin0 = 0, so the

series converges by the Alternating Series Test.

nt_ meneeee- n™ —1)"n
—_—— > n = lim —=00 = lim e does not exist. Sﬁ the series E (- 1)“— diverges
nl 1:2:c004m n—oo nl n—+oo n! n=1

by the Test for Divergence.

L : — The graph gives us an estimate for the sum of the series
z il of —0.55.
. n=1 n!
{2}
+ + 9
bg = (088') =z 0.000 004, so
. {sa}
\_ J
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(=0.8)"

, 7
~ 87 = z
=1
7z —0.8 + 0.32 — 0.0853 4 0.01706 — 0.002 731 -+ 0.000 364 — 0.000 042 =~ —0.5507
Adding bg to s7 does not change the fourth decimal place of sv, so the sum of the series, correct to four decimal places,

is —0.5507.

= )”‘+1

The series Z — satisfies (i) of the Altematmg Series Test because ﬁ < = 1 = and (if)’ hm iﬁ = 0, so the
n=1 oo T

1 1
series is convergent. Now bs = i = 0.000064 > 0.00005 and bg"= 5 = 0.00002 < 0.00005, so by the Alternating Series

Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to a,d-d the first 5 terms to get the

sum to the desired accuracy.)

and (i) lim —— . :D,

o Do (=10 . ; . x 1 1
tisfi f the Alternating S Test b
The series nZ::O 07l satisfies (i) of the Alternating Series Test because 10" (n 1)1 £ 0°n Jim 1 e

/2 0.000 167 > 0.000005 and by = = 0.000 004 < 0.000 005, so by

.
10441

1
ies i t. Now by = ——
so the series is convergent. Now b3 Tk

the Alternating Series Estimation Theorem, n = 4 (since the series starts with n = 0, not n. = 1). (That is, since the 5th term

is less than the desired error, we need to add the first 4 terms to get the sum to the desired accuracy.)

1 1
by = o = m = 0.000 025, so

N G ) U W o ) I S SRS SO
2 @n) BT néil @n) — 23 7ap T 049972

Adding by to 53 does not change the fourth decimal place of s3, so by the Alternating Series Estimation Theorem, the sum of

' the series, correct to four decimal places, is —0.4597.

29,

.

33.

i :
bT = r.,r = 0.000004 9, 50
( n" 'n? N G ) i 4 9 16 25 36 :
Zl 0™ 6 = WZ—“:I 107 =15 ~ 706 | To06 10,000 | 00,000 — T,000,000 — 0.067614

Adding b7 to s¢ does not change the fourth decimal place of sg, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is 0.0676.

n—1 1
) PR T |

1 ]
49 50

= + ---. The 50th partial sum of this series is an

poee

=1

1
g

Qo =
] =

1
=1—-=
2+

natesince 2D (1 1Y, (1 1Y . 0 y
underestimate, since ngl . S50 + 55 -+ 53 54 + - -+, and the terms in parentheses are all positive.

The result can be seen geometrically in Figure 1.

Clearly b, = =

— 0

is decreasing and eventually positive and lim b, = 0 for any p. So the series converges (by the
P n ‘

Alternating Series Test) for any p for which every b,, is defined, that is, n +p = 0 for n > 1, or p is not a negative integer,
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S baa = 3°1/(2n)? clearly converges (by comparison with the p-series for p = 2). So suppose that 3, (1) bs

i E 1 “
converges. Then by Theorem 11.2.8(ii), so does 37 [(=1)""bn +ba] = 2(1+ 3 +3 +++) = 2 5— Butthis

diverges by comparison with the harmonic series, a contradiction. Therefore, 3 (—-1)“*l b, must diverge. The Alternating

Series Test does not apply since {b, } is not decreasing.

11.6 Absolute Convergence and the Ratio and Root Tests

1.

1.

(a) Sifce lim % — 8 > 1, part (b) of the Ratio Test tells us that the series 3" a,, is divergent.
— 00 n ) :
(b) Since lim % = 0.8 < 1, part (4) of the Ratio Test tells us that the series 3 a,, is absolutely convergent (and
n—00 n
therefore convergent).
(c) Since lim % = 1, the Ratio Test fails and the series }  a,, might converge or it might diverge.
n—oo " . .
o |Gngr]| g [mL F[ 1 n4l| 1. 141/m 1
- lim o e Jim el b n_m|5 =z Jim e (1) <. 1, so the series n¥1
absolutely convergent by the Ratio Test.
2 > 0forn > 0, {b.} is decreasing for n > 0, and 11m b, =0, s0 E i converges by the Alternatin
¥ an+1 & B= n=pon+1 e &

; i y 1
Series Test. To determine absolute convergence, choose an = o to get

- :
,}Eﬂo %.; . ,}LH;O 1/(517:7:_ N nl_m 5n ,: oL 5> 0,s0 2 B + I diverges by the Limit Comparison Test with the
harmonic series. Thus, the series 2 5( 2 1 is conditionally convergent.
n=>0
k+1 1
Q41| (k+1)(§) T k+1 /(2 _2 ” 1 _ 2 2 .
dm === lim W2 =l ——=[35) =5 lm 1+k = (1) = £ < 1, so the series

Z L( ) is absolutely convergent by the Ratio Test. Smce the terms of this series are positive, absolute convergence is the

same as convergence.

TN R R } o fLUnt l)n 1

lim [——|= lim |———. = lim 1. — 1.1) lim ———r

n—oo | @n n— oo [(n+ 1)4 (11)'”' nlrao (n ( )n—tcc (n+ 1) ( )ﬂl}}go ( -+ l/ﬂ)d
nd

=(L1)(1)=11>1,

= 1.3
so the series ¥ (—1)“(n—14} diverges by the Ratio Test.

. n=1
l/n e 1 N | d g oo el/ﬂ.
Since 0 < == e(—s) and 3 — is a convergent p-series [p = 3 > 1], 3 —5- converges, and so
n TV n=1 T n=1
oo ( l)n 1/n
P is absolutely convergent.
n=1
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o |antr] _ 10" (n+1)4H _ 0 nbl)_5_, .= 10"
nli.néa an —nl_]".l;lg [(n+2)42n+3 T10m n—oo\ 42 mn 42 _8< ,sot.hesenesngl (n + 1)42n+1

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

(—1)" arctann
2

o 1 ‘ x© (-1)*
'ff/ , 50 since E n/ 2 g T . converges (p = 2 > 1), the given series 3 -0 oodtonn ::cta:nn
n=1 n=1 n=1

converges absolutely by the Comparison Test.

§ (=1) converges by the Altematmg Series Test since 11.m e 0 and { —1—} is decreasing. Now Inn < n, so

i=h lInn oo Inn Inn
ﬁ > % and since 2 H is the divergent (partial) harmonic series, z 1 dwerges by the Comparison Test. Thus,
n=2
E = is conditionally convergent.
n=2 Inn
M St and Z — converges (use the Ratio Test), so the series COS(:T/ 3) converges absolutely by the
2 =l
Comparison Test.
N w4l 141eR A ey AW
lu'n Vlan| = n_m I 1 nlgxglg W = < 1, so the series 21 (2%2—“) is absolutely convergent by the
Root Test.

2

n IX* ) - | .
nlgr;.o Ylan| = an%c (1 + 'ﬁ) = lim (l + %) =e > 1 [by Equation 7.4.9 (or 7.4*.9) [ET 3.6.6] ],

n—oo

n2
so the series 3 (1 + ;11—) diverges by the Root Test.

n=1

100 -n+1 | ] 100 100
tim 2242 | = tim (n+1)*°100 __n oy 28 100 /n+1 - 100 14 1
n—oo| Qn n—oo (n-+1) nl00100n n—oon+1 n n—oo N+ 1 n
o0 nlﬂoln '
so the series 3 = is absolutely convergent by the Ratio Test.
n=1
Use the Ratio Test with the series
18 188 185-7 'l B B i (2n — 1) o _11:83:5:-.(2n—1)
y e s ST o —1)y=1
TR (=D @n 1)1 L ™ (@n —1)!
lim |8t (— 1)“ 1-3:5...-. (2n—1)[2(n+1)—1] (2n—1)!
im |— .
n—oo | Qn nﬂoo [ (n+ 1) = 1]! (—1)“‘1 -1-3:5----. (2?‘1 - l)
s =Y
(-1)(2n+1)(2n—1)!| lim X o<1,

T nmee | @n+1)(2n)(2n — 1)1 | ~ n—w 20

so the given series is a‘bsolutely convergent and therefore convergent.
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© 9.4.6-----(2n o (2.1)-(2-2).(2-3)---.- 2. = 9"l
29 3 ' (2n) =3 (2-1) 43-3) 42-8) (2-n) = ¥ :1 = 3 2", which diverges by the Test for
n=1 n n=1 nl n=1 M n=1

Dlvcrgence since lim 2™ = co.

7— 00

; i ; n 5 1 )
31. By the recursive definition, lim Sl e s E > 1, so the series diverges by the Ratio Test.
_ n—oo | dAn n—oo [4n + 3 4
2 oo b:’, cOS NI o0 wDn 1
33. The series Z = 3 (-1) i ,whereb, > 0forn > 1 and lim b, = 5
n=1 n=1 n—oo
. e .| (=1 tpntt n . -n 1 1 by cosnw |
Jim . nILIICI.Q - = n‘l_r'ngcb e 2(1) 3 < 1, so the series nz_:1 ” is
absolutely convergent by the Ratio Test.
1 3 3 '
35. (a) lim /(H—Jrsl) = lim n—d = lim —1—3 = 1. Inconclusive
n—00 l/n n—00 (ﬂ + ]_) n—oo (]_ + ]_/n)
. |+1) 2% . a4l 1 1y 1 .
(b) nhjlolo CRE=} | = nlﬂ:gg e ,}LIEO 2 -+ ml =3 Conclusive (convergent)
- (=3)" N
c) 1 . =3 lim = 3. Conclusive (divergent
( )nl‘rmoo \/n+1 ( 3)n 1 n—oo ( g )
. . ;
(d) lim _n+12_1+n = lim 1+1 Un®+1 5| = 1. Inconclusive
n—oo |14 (n+1)°  vn n=oa |V ' n 1/n? 4 (1+1/n)
37. (a) lim Enipx L-H i m |[— = |z| Lm —Im|-0;0<lsob the Ratio Test the
) n—oo an - n—00 (’,'1 + 1)' Hiii - n—oo | 1 + ]_ =i n—oo 1 + 1 - - ’ y
series Y m_ converges for all x.
n=0 7 !
(b) Since the series of part (a) always converges, we must have Jim % = 0 by Theorem 11.2.6.

5.1 1 1 1 1 1 661
39. (a) 55 = ngl il + 3 + 7 -+ ) -+ 50 =980~ 0.68854. Now the ratios

Po =22t o B = L form an increasing sequence, since
Gn (n+1)2n+1  2(n-+1) ‘
Tl = Tn = 2(””4;12) _ Q(nﬂ:}- 5= (nz-(&-nlf 1—)(?1(2 %2-)2) ~ohE 1%(” ey > 0. So'by Exercise 34(b)., the error
in using s is Ry < 7— iiﬂ —= 1{(51?2) = ﬁ ~ 0,00521.
(b) The errolr in using s, as an approximation to the sum is R, = o . 2 ; Wc want R, < 0.00005 <

1— % (T?; + 1)2n+1

m < 0.00005 < (n+ 1)2™ > 20,000. To find such an n we can use trial and error or a graph. We calculate
11

(11 +1)2™ = 24,576,580 s11. = 3 % =2 0.693109 is within 0.00005 of the actual sum.
n=1
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41, (i) Following the hint, we get that |an| < r™ forn > N, and so since the geometric series Y o~ ; r™ converges [0 < 7 < 1]

the series 3 _°2 ,; |ax| converges as well by the Comparison Test and hence so does 3 -, |an|, 50 3 57 | ax is absolutely

convergent.

(i) If lim %/]an| = L > 1, then there is an integer IV such that {/]a.| >.1foralln > N,so|a,| > 1 forn > N. Thus

lim an # 0,50 3 oo, an, diverges by the Test for Divergence.

(iii) Consider E — [diverges] and E 5 [converges]. For each sum, hm ¥/|an| = 1, so the Root Test is inconclusive.
n=1T

43, (a) Since 3" ax is absolutely convergent, and since |a;}| < |an| and lan | < |an| (because a;t and a;, each equal

either an or 0), we conclude by the Comparison Test that both 3~ a;f and 3~ a;; must be absolutely convergent
Or: Use Theorem 11.2.8.

b) We will show by contradiction that both 3" a;} and 5" a;, must diverge. For suppose that 3" a;f converged. Then so
(b) ¥ ‘ g

would 5™ (a;f — Zan) by Theorem 11.2.8. But 3> (at — §an) =37 [ (@n + |an]) — Lan] = £ 37 |an|, which

diverges because Y an, is only conditionally convergent. Hence, ) a;} can’t converge. Similarly, neither can 3" a

45. Suppose that ¥ an is conditionally convergent.
@3 n2a,, is divergent: Suppose 5 n2a”-converges. Then lim n2a, =0 by Theorem 6 in Section 11.2, so there is an

1
1nteger N > Osuchthatn > N = n?|as| < 1. Forn > N, we have |an| < —5,50 E |an| converges by
n

comparison with the convergent p-series Y. — -3 . In other words, 3 a,. converges absolutely, contradicting the
n>N
assumption that 3" a.. is conditionally convergent. This contradiction shows that 3" na,, diverges,

Remark: The same argument shows that 3 n”a,, diverges for any p > 1.

P =rt

is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely
n=2=2

-[by the Integral Test, since the function f(z) =

is continuous, positive, and decreasing on [2, co) and
x

< dz tode . (—1)™
= = In — oo|. Setting an = forn > 2,
fz o t]irglo L el iR [ (111:.*.)]2 oo] etting a g orn 2 2, we find that

oo 13"
3 nan = }: ( ) converges by the Alternating Series Test.

oo (_1\n—1
It is easy to find conditionally convergent series 3 a, suchthat 3 na, diverges. Two examples are 3 & and
' n=1 n

n—1
Z (= \1/)# , both of which converge by the Alternating Series Test and fail to converge absolutely because 3 |an] isa

p-series with p < 1. In both cases, > | na, diverges by the Test for Divergence.
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11.7 Strategy for Testing Series

n.

13.

15.

. hm |an| = lim

1 <l_ }.nforaun>1 io: lﬂisaa.com/ferc:ntc tri ies [|r| =% <1 .
oo Tl > 1. 2 gent geometric series | |r| = 5 < ],SOZ

n=1T s 3"

n=1

converges by the Comparison Test.

=1,50 lim a, = hm ( 1)"—— does not exist. Thus, the series Z( 1)" — dwerges by

n— con+2 n=1

the Test for Divergence.

o |ang (n+1%2" (=5)"|_ . 2An+1)? 2. T S B ,
LA .“n_.w’ o W eie - B \!Th) TgH=§ <1 soteseres
oo n2 211.—1
S —— converges by the Ratio Test.
n=1 (_5)

. Let f(z) = ; Then f is positive, continuous, and decreasing on [2, 00), so we can apply the Integral Test.
zvinz

Sincef;\/ln_dn: [[“':‘?] f w2 du =2u"? + C = 2VInz + C, we find
T T au = & ol e

®  d ¢ dx 2 ;
=li 2vIn 2vInt —2vIn2 ) = co. Since the integral diverges, the
L sie B, s ] = gl %) Ak

oo .
given series Y diverges.

n=2 N

2

. i et f: -::—5. Using the Ratio Test, we get

k=1

(k+1)* €

hui 1 P8 Al
ekl 2

Qg

lim
k—oo

k—oo0

 §
= lim [(E_"—l) . 1] =12. . = L < 1, so the series converges.
k—oo k e e e

00 -] 00 i
e (,%E + %) = Yy % + X (%) . The first series converges since it is a p-series with p = 3 > 1 and the second
n=1 n=1 n=1

series converges since it is geometric with || = 3 < 1. The sum of two convergent series is convergent.

o |3 (n+1)® nl 3(n+1)2 . n+1 = 3"n?
= . = —_ 7 =31 =0 < 1,sothe senes
nll-ﬂgo On. | .8 (n+1)! 3rn2|  n-oo (n+ 1)n? S n? ¥ n;l

converges by the Ratio Test.

k—1qk+1 kog—1qkql _ank &
ak=2 k:: :2 2k’°33 =g(2—k3-) .BytheRootTest,klim ¥ (-g—) li %ﬁ0<1,sothescries
w /6 k gk=1gk+1 = 3/6 k
1.§1 (E) converges. It follows from Theorem 8(i) in Section 11.2 that the given series, 21 — = 'cgl 3 (E) ,

also converges.
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tim 22| = tim 1-3-5----- (2n—1)(2n+1) 2-5-8---.. (Bn—1)| .. 2n+1
noto| an | n—oo|2-5-8-----(3n—1)(3n+2) 1-3:5---+(2n—1)| n—oo3n+2
. 24+1/n 2
= =<1
s el Rl
so the series El ; gg g: : 3 converges by t.he Ratio Test.
Inx 2—Inz o lin . : 2
Let f(z) = —\/7_; Then f'(z) = W < Owhen Inz >2o0rz > e, s0 _'\/i is decreasing for n > e*.
By I’'Hospital’s Rule, hm 1/ = = lim = 0, so the series i (=" i converges by the
¥ = ~1)' ==
e Vva) .- Y -

Alternating Series Test.

lim |an| = lim |(—1)"cos(1/n®)| = lim |cos(1/n*)| = cos0 = 1, so the series 3 (—1)" cos(1/n®) diverges by the
n—oo oo RFOQ : . n=1

Test for Divergence.

1
Using the Limit Comparison Test with a, = tan(%) and b, = e have
. an _ .. tan(l/n) . tan(l/z) u ,  sec’(l/z)-(-1/z%) 5 ea )
Bl T n e Lo e ekt (/a)=17=1>0. Since

): by is the divergent harmonic series, Z ar is also divergent.

n=1 n=1
’ s G| (n+ 1) e (n+nt-e” . nt+l = nl

Hse the Riatlo Test. i ‘— = T A W = o e =0 LB ¥, o
converges.

*® Inx Inz 1]° " ; H > Inn . ,
. /2 ?da: = tl_l.nc:’lo e ;] : [using integration by parts] = 1. So ngl = converges by the Integral Test, and since

klnk klnk Ink : . =2 klnk ;
——— < ——— = —, the given series converges by the Comparison Test.

C(k+1)* K k? . kz=:'1 k+1)° . £

> $> (—1)" S (~1)" bu. Now by = ——— > 0, {bn} is decreasing, and 1i ;
.gla B E 4 cosh-n, "21(* )" bu. Now by = —=— > 0, {bn} is decreasing, and lim b, = 0, so the series
converges by the Alternating Series Test.
Or: Write fw 4 < -2— and z i is a convergent geometric series, so Z - is convergent by th

: coshn ~ er +e-n e g g P = coshn CHYSEREEE 2
Comparison Test. So 3 (—1)“& is absolutely convergent and therefore convergent.

n=1
5* 2 (5/4)" . m BN . 5"
Lll‘ngoak = hm T = [divide by 4%] an:oW— oo since ;.lgl;c i =0 and klin; i) =
A.

Thus, Z + diverges by the Test for Divergence.

+4
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2

n?/ n
n 1 1 _1 n
n n =1 = 1 = - 1
3. lim 3/la| ni‘.léo(nﬂ) niss [+ 1) /] Tm (1+1/n)" e = hyminsena Z (n+1)

converges by the Root Test.

I T 1 - : 8w L1
35. a, = TR ol s0 let b, = o and use the Limit Comparison Test. nlgr;q = nl]_]fr;g e 1>0

[see Exercise 4.4.61], so the series Z

n=1"

1 . . . . " .
T diverges by comparison with the divergent harmonic series.

37. lim Y/|aa|= 1im (21/" —1)=1—-1=0 < 1, so the series E (V2-— 1)" converges by the Root Test.

T—r0a n=1

11.8 Power Series

1. A power series is a series of the form En—ﬂ enz™ = co + c1z + caz® + e3z® + - - -, where z is a variable and the ¢, s are
constants called the coefficients of the series.
" More generally, a series of the form 3°°°  cn(z — a)™ = co + e1(z — a) + e2(z — a)® + - -+ is called a power series in

{(z — a) or a power series centered at a or a power series about e, where a is a constant.
3. Ifa,, = (—1)"nz", then

= Jig (_1)n+1(n+ I)In-l-l
e (—1)“ e

Q-1

3 n+1
=1 -1
i im_|(-1)

n—oo n

lim

n—oo

T

n—oo

= lim [(1 + %) |m|] = |z|. By the Ratio Test, the
series 3 (—1)"na™ converges when || < 1, so the radius of convergence R = 1. Now we’ll check the endpoints, that is,

x = +1. Both series i (—D)"n(£1)™ = 2 (=1)"n diverge by the Test for Divergence since lim |(F1)"n| = oo. Thus,
n=1 n—+00

n=1
the interval of convergence is I = (—1, 1).

ﬂ.

5. lfan,:— then lim

2n — n—00

n41
x 2n—1 2n—1 1/n

—— =1l = = |z|. B
Il l i (2n+1 |$l) i (2+1/n Iri) Iz|. By

the Ratio Test, the series 3 5, ] converges when |z| < 1, s0 R = 1. When o = 1, the series z o
n=1 n=1

I!In,-ﬁ-l
Qn,

n—o0

dlverges by

; oy 2201 1. 1 lLoos I . T 5 ; s
comparison with 1;::1 3, Since o— > on and 3 ?..21 = diverges since it is a constant multiple of the harmonic series.
{=1° ' ; : ; -
When 2 = —1, the series ): 5 ] converges by the Alternating Series Test. Thus, the interval of convergence is [—1, 1).
n=1 -
(3 A1 ; -
7. Ifa, = il ,then lim it = L 1 = lim == | L |.‘I.'I -0 =0 < 1 for all real z.
n—oo | an n—oo (T?.. -+ 1)' i n—oo | T+ n—oo 1t 1
So, by the Ratio Test, R = co and I = (—o0, 00).
2, .1
n'w
9 Ifa, = (-1)" TR then '
: Gn41 (n+1)? gt v - z(n + 1)* || 1 (8] ovm 4
1 _— . = = 7= = — = = |zl h
oo an n—wc 20+l nAgn nl—ufgo 2n? rLl—L-IvI;o 2 1 + 2 (1) 3 |2, By the
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5. 129 o nizt
Ratio Test, the series 3, (—1)™. 3

n=1

converges when 3 |z| <1 <« |z| < 2, so the radius of convergence is R = 2.

When z.= +2, both series E S = (:i:2) Z (F1)"n? diverge by the Test for Divergence since

n=1 n=1

lim |(F1)™ n®| = co. Thus, the interval of convergence is I = (—2,2).
TN— 00

( )TL n
Ifan — ——3/2— then
n e 3/2 3/2
2 An+1 (_3) +1:E i ﬂ3/2 li n . 1
'nllIbEc Qo n—oo (ﬂ. =4 1)3/2 (_3)"::‘:“ Ti-l'n;@ % n -+ ]- . |x| ’}Lngc i l/n )
i
=3|z|(1) = 3|2
: =" 1 1 1 :
By the Ratio Test, the series > —\/7_1— z" converges when 3 fz| <1 <« |z| < 3,50 R = 3. When z = 3, the series
n=1
I i . - )
> —5/7 comverges by the Alternating Series Test. When o = —3, the series z is a convergent p-series
n=1

(p= £ > 1). Thus, the interval of convergence is [—3, 5.

z" g 4"lnn| |z Inn ||
=(— ,then lim = lim il Yy e S o (90
Ifan. ( 1) 47\ Vo cn SR a-n n—voo | 47+1 ln(n + 1) n A nl_]_].jgc 1n(n T 1) ] 1

[by I’'Hospital’s Rule] = I%l By the Ratio Test, the series converges when |_Z_| <1l & |z|<4,50R =4 When

= —4, E( 1" i ZE—M—Z .Sincelnn < nforn > 2, —1->landz is the

4vlnn nzh 4™lnn Sk Inn In n j=an

divergent harmonic series (without the n = 1 term), 2 oo lS dlvergent by the Comparison Test. When z = 4,

n=2
22(—1)" 4“$lnn = 7{22(_1)“ ﬁ, which converges by the Alternating Series Test. Thus, I = (—4, 4].
(z—2)" Ant1 (z—2)""1 n?+1 : n® 41
n = ———, then lim = 3 =lz—2 T = | — 2.
Ifa n? 3o en n—oo| Qn n—oo (n -+ 1)2 +1 (.'L' _ 2)n |.'.C Iﬂ—'w (ﬂ 3 1)2 FE] |$ 2! By the

g . o —2)"
Ratio Test, the series >, % converges when |z — 2| <1 [R=1] & —-1<z-2<1 <« 1<z<3 When
=0

o0
x = 1, the series 2 -1 —5 7 converges by the Alternating Series Test; when = = 3, the series =y
n=0 n=0

converges by

oo
comparison with the p-series % [p = 2 > 1]. Thus, the interval of convergence is I = [1, 3].
A=l

3n+1($ + 4)n+1 \/R

3z +4)" : Qnt1 . .
Ifa, = —————, then lim = lim . =3 |z + 4] lim =3 4
= \/T; n—oo| an n—o00 \/ﬂ +1 3“(3 + 4)“' [ I n— 00 II + '
. . 28 3 A)" 1 1
By the Ratio Test, the series ) e converges when 3|z +4| <1 & |z+4/<3 [R=31] &
n=1 n )
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21.

23.

25.

27,

29,
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= 1
—1<z+d4<i & —L<az<—-L Whenz=—22, the series 21(‘1)“ o converges by the Alternating Series
n=
Test; when ¢ = — 1L, the series 3° —= di — 1 < 1]. Thus, the interval of i 18 1
est; when z = —41, the series X__‘,l W iverges [p = 3 < 1]. Thus, the interval of convergence is I = [—42, —11).

—2)" . . T—12 ;
Ifa, = %, then im %/|a,| = lim [ = | = 0, so the series converges for all z (by the Root Test).

—+00

R =ooand I = (—o0,00).

Gy = —T%(:c —a)”, where b > 0.

b
. anpt| . o+ 1) |z—a[*? b . 1\ |le—a| _Jz—a| .
nllr»lgc an | nlingo pr+l nlz —al" - ﬂhﬂo 1+ n, b b
By the Ratio Test, the series converges when @ <1l & Jz—a|<b [s0oR=b] & -b<z—-a<b &

a—b<z<a+b When|z—a| =05 lim |a,|= lim n = oo, so the series diverges. Thus, I = (a — b,a +b).

— oo

(n+ 1)1 (2e — 1)**!
nl(2x — 1)»

Ifa, =n!(2z — 1)", then lim

M—200

= lim

n—0oo

= lim (n+1)|2z — 1| — coasn — oo
Qn h— 00 "

forall z # 3. Since the series diverges for all - # 1L, R=0and I = {%}

Ifa, = M, then
T

3 3
. (52 — 4)™+! . n® & _ n I _ 1
ﬂlinc}o ‘ (n+1)3 (5z —4)m | HIEEO 5~ 4 n+1) nl—uogo |z — 4| 1+1/n

|5z — 4| -1 = |5z — 4]

41
Qan

lim

NT— 00

. = (bz —4)" i
By the Ratio Test, 3 % converges when |52 — 4| < 1 & |z— 3| <
n=1

e
|
=
A
8
|
o
A
=

(118

<z<l,soR= % When 2 = 1, the series 5 —; is a convergent p-series (p = 3 > 1). When o = %, the series
n=1 T

oo e n

3 ( 13) converges by the Alternating Series Test. Thus, the interval of convergence is [ = [%, 1]
n=1 n

w'ﬂ,
Ifan, = , then -
™ T B[00 — 17
-1 =

. Qntl ) T 1:3:5:---(2n—1) . |z|

lim [——| = - = lim =0 < 1. Thus, b
n—oe | an n—co ’ 1-3:5- -« - (2n—-1)(2n+1) an n—oo 2n + 1 y

oo ‘ m'ﬂ
the Ratio Test, the series - converges for all real & and we have R = co and I = (—00, 00).
i=11-3:5----(2n—1)

(a) We are given that the power series > .., a2 is convergent for ¢ = 4. So by Theorem 3, it must converge for at least

—4 <z < 4. In particular, it converges when = = —2; that is, 3™ c.(—2)" is convergent.
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SECTION11.8 POWERSERES O 77
(b) It does not follow that 3o ; cn(—4)™ is necessarily convergent. [See the comments after Theorem 3 about convergence at
the endpoint of an interval. An example is ¢, = (—1)"/(n4").]

1 k
3, Tty = Sl

(kn)! z"™, then
lim 2] = lim [(n+ 1)!]" (kn)!
n—oo | An

n—oo (n)* [k(n + 1)]!

I [(n+1) (n+1) |
= neveo | (kn+ 1) (kn + 2)

. n+1 . n+1 5 n+1
= lim [kn—{-l] Jm. [kn+2] E.. 1 [kn+k} &

e
(%) lz{ <1 <« |z| < k* for convergence, and the radius of convergence is R = k*.

ool = e,

(n+.1)k

|z

TRt EfntE—1) - n+0n+ 1)
(n+1) ] 2]
(kn + k)

- I'n 2n4-1
35, () ifa = — B

of convergence, then its interval of convergence must be (—o0, 00), not [0, oc).
nl(n + 1)!22n+1°

then
lim

n—oo

33. No. If a power series is centered at a, its interval of convergence is symmetric about a. If a power series has an infinite radius

On41

lim gt nl{n+ 112240
an n—oo | (n+ 1)!(n + 2)! 227+3
So Ji (z) converges for all = and its domain is (—oo0, c0).

.’L'2 n+1

=(§)2n§_‘?§°( :

._TE,QZ::

and a5 =

503

T

z°

3w/ =

11

T 176,947,200°

(b), (c) The initial terms of J1(x) upton =5areap = =,

i

18,432’ 1

~
mB

1,474,560 ;

n+1)(n+ 2)

= 0 for all .

The partial sums seem to

approximate J1 (z) well near the origin, but as |z| increases,

we need to take a large number of terms to get a good
approximation.

L
3. S =14+2z4+2> +22% + 2 + 225+ 4 2?7 4 27T

I

-2 5

= 1(1 4 22) + 2(1 +2z) + 2 (1 + 22) + - - + 22 2(1 + 22) = (1 + 22)(1 + 22 + 2% + - - + 2?~2)
1-—

5
2n
= (1+22)~ T Dby (l23)withr =27 — 1”“
Also 82, = 83n—1 + 22" —

—x2

5 since 2"
i

142z
approach —— as

asn — oo by (11.2.4), when |z| < 1.
1 — a2

— 0 for |z| < 1. Therefore, s, —

5 Since s2n and s2,,—1 both
" . 142z
n — oo. Thus, the interval of convergence is (—1, 1) and f(z) =

T 1—x2
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39. We use the Root Test on the series 3 caz™. Weneed lim 3/|caz™| = |z| lim %/|en| = ¢|z| < 1 for convergence, or
n—00 n—00
lz] <1/e,soR=1/c.

4. For2 <z < 3,3 cnz"™ diverges and 3 d,x™ converges. By Exercise 11.2.69, 3 (cn + dn) =™ diverges. Since both series

converge for || < 2, the radius of convergence of ¥ (¢, +dn) @™ is 2.

11.9 Representations of Functions as Power Series

1 If f(z) = 2 ¢nx™ has radius of convergence 10, then f'(z) = z neaz™* also has radius of convergence 10 by
=0 n=1 '

Theorem 2.

3. Our goal is to write the function in the form Tl_r’ and then use Equation (1) to represent the function as a sum of a power

series. f(z) = lj—z = t 7 nz_jo(—m)" 7f;_io(—l)"rz:" with|-z| <1 & |z|<1l,so R=1and=(-1,1).

5 f(z)= E"E_z = g(l_—l:s?) = %Eﬂ (%) or, equivalently, 2 Z 3n+1 z™. The series converges when I 3I i

that is, when |z| < 3,50 R = 3and I = (-3, 3).

1 pntl

Rl 9+x2:§[1+($/3)2] =%[1——T—t—m/3)_2ﬂ =55 [’@z] =g L0 = o S

-5)

2
T
<1 & %<1 o 2P <9 & |z| <350

. ) oo T L a t
The geometric series » [— (5) ] converges when
n=0

R=3and I = (-3,3).

9.f(z)=i+$ (1+:r)( 2 ): 1+:c)2:t: —Em +E$ +§:r"+§lm"=l+2§m“.

n=0 n=0 n=0 n=1

The series converges when |z| < 1,s0 R =1land I = (—1,1).

' —(1— 2 1 =, =
A second approach: f(z) = it: (11 _$i+ =-1 +2(m) =—1+2)Y z"=1+2% 2™

A third approach:

14z

Fg)=s—=0+ )( x)=(1+x)(l+x+:r2+x3+---)

=(l+z+z*+28 4+ )+ @+t +’+at + ) =1+20+ 2207 + 228+ =142 Zla:“.
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SECTION 119 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES O
3 3 A B
M. f(z) o Gl P Ry v e o (z+1)+ Bz —2). Letz = 2toget A = 1 and

x = —1toget B = —1. Thus

79

z?—i—zzxifz mqlq_—iz( $/2)) 1_(,,) —%i(%)n—i(—m)“
>

£ -

[ - e

We represented f as the sum of two geometric series; the first converges for z € (-2, 2) and the second converges for (—1,1)

R

Thus, the sum converges for € (—1,1) =

n=0

13. (a) f(z) = ffi_xf =% (1;—112) = — [z( )"z "] [from Exercise 3]

= f} (—1)"*'nz™~' [from Theorem 2(i)] =
n=1

E( 1)"(n+1)z" with R = 1.

n=0

In the last step, note that we decreased the initial value of the summation variable n by 1, and then increased each
occurrence of n in the term by 1 [also note that (—1)"*% = (—1)"].

1 1d 1 (. 3488 i
(b) f(z) = Trar = - [m)—g] T [Eﬂ(—l) (n+1)z ] [from part (a)]

= -3 S ()t Drart = (-1

n= =0

(=

"(n+2)(n+ 1)z™ with R = 1.

-

R N CE %2 1)™(n+2)(n+ 1)a™  [from part (b)]
=5 S U+ D+
n=0

5 " . 2 . . -
To write the power series with ™ rather ghan-a:”*' , we will decrease each occurrence of n in the term by 2 and increase

‘00
the initial value of the summation variable by 2. This gives us % > (-1)*"(n)(n—1)z" withR=1

dx 1 1 = mﬂ‘l"l o pn
15. f(z) = In(5 — z) = — i o S R .
)= lalh—z) 5—z 5J 1— :c/o 5 _[ [n—o ] = 5 ,;gg 5"(n+1) g ,gl n5

|z| < 5,50 R=25.

B

Putting = = 0, we get C' = In5. The series converges for |z/5| <1 <

1 1 oo
17. We know that e e > (—4a)". Differentiating, we get
A n=>0
-4 _ 20 4" =T _ o0 i i -
AT aa)y = 29" = 30 (=4)" (n+ 1)a", s0
@)= i = e =

= S (—™(n+ 1)z = 5 (-1 (n+ D2

n=0

for|—4z| <1 <«
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19. By .Example 5; ﬁ = ﬂi::o(n + 1)z™. Thus,
flz)= {111-;)2 — 0 _lz),l -+ @ _mm)z n; (n+1)2™ + Z (n+1)z™tt

00 o0
= 3 +1Dz"+ ) na® [make the starting values equal]

n=>0 n=1

=1+ il[(n-t-l)-i-n}:r:" =1+ §(2n+ 1)z™ = §(2n+1)z“ withR:l.-

n=1 n=0

T T 1 z X 2\" g = 1 oo
21. —_—— A —1\n 2n _ ™ 2n41
=™ 16(1 —(—:c2/16)) 16 2 ( 16) 16 ,,20( AT .E( 2 16“‘“ W

n=0

The series converges when |—2%/16| <1 4 27 <16 < |z| <4,s0 R = 4. The partial sums are s, = %,
z° z° z z’ infin
82 = 81 — =k 83 = 82 + 16’ 84 = 83 — TR 85 = 84 + TR Note that s1 corresponds to the first term of the infinite

sum, regardless of the value of the summation variable and the value of the exponent.

§.
0.25 i
-
5 s,
f
S5
—4 | 4
Y
8
5N
!
S5 5
J
\
8 -0.25

As n increases, s, (z) approximates f better on the interval of convergence, which is (—4,4).

2, f(a;):l_u(itz) In(1+z) —In(l —z) = ldfm lﬂf:" =[1ud($_m)+ 1d_w,,

:[[ 1)“z"+22:] =/[(1—3;+:c2—m3—|-:r'1—w-)+(1+:r:+a:2+:z3+:c"+---)]d::
n=0

n=0

2$2n+l

= [@+2%+22% +.. dz = 2" dx =
f(+;r:+:c+ e ngom ” c+"gu2n+l

o0 2n41

— - = ] = i = =
But f(0) =In = 0, s0 C' = 0 and we have f(z) HZ=:D | with R = 1. If z = =1, then f(z) = +2 Z 2n+ T

which both diverge by the Limit Comparison Test with b,, = %
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SECTION 11.9  REPRESENTATIONS OF FUNCTIONS AS POWER SERIES [ 81

52
5 . %

5 2z 222 2z° 3 ; 5,
ThepamaISurnsares]=—1—,39=81+—3-,53=s2+ 5 - ; f\;/ e
As n increases, s, (z) approximates f better on the interval of : -2 2
convergence, which is (—1,1).

\ .’d.‘ J
-3
L = f: () = i o / - =0+ f} g Thie series ot —— conw

1—%8 1_t84 = = 18 na 1% erges

when [t8| <1 < [t| < 1,50 R = 1 for that series and also the series for ¢/(1 — t%). By Theorem 2, the series for

fl dfalsohasR—l

i o0
From Example 6, In(1 +2) = 5° (—1)" %= forfa| < 1,05 In(1+ ) = 3% (1)1 £ — ang
n=l n=1
oo lmﬂ+3 )
/32 In(l4+z)dz=C+ ¥ {—1)“m. R =1 for the series for In(1 + ), so R = 1 for the series representing
n=1

z? In(1 + x) as well. By Theorem 2, the series for / z” In(1 + z) dz also has R = 1.

1 . 1 ;
14 a8 T 11— (715) n=0 E n=0

1 " oo n‘)nd o ‘L5’l+l Th
f1+$5da:—./z( 1) p = +Z m us,

n=0 n=0
pm [Pl g ot ] en - 0RO | o et i ateenstiog so
= . 1+ L= |T 6 1 . = 0. 6 I e series is a ternatm_g, S0 I we use

the first two terms, the error is at most (0.2)'/11 &2 1.9 x 107, So I & 0.2 — (0.2)%/6 = 0.199 989 to six decimal places.

We substitute 3 for 2 in Example 7, and find that

; (3$)2n+1 & g2l pant2 o L 32l 203
jmarctan(Sm) do = HZU( " e dz = Tgﬂ(—l) N v dr =C+ :L:'o(_l) GniDEnTd)
So foo'l xarctan(3z) dr = [%% = 3:1:: + :;5?7 :f: : +oeee :1
_ 1 9 . 243 2187 _
103 5x 105 35 x 107 63 x 10°
2187

The series is alternating, so if we use three terms, the error is at most ~~ 3.5 x 1078, So

63 x 109

1 9 - 243
108 5 x10% 35 x 107

0.1
f xarctan(3z) dr ~ =z 0.000 983 to six decimal places.
0

(©) 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted 1o a publicly accessible website, in whole or in part.



82 0O CHAPTER11 INFINITE SEQUENCES AND SERIES

3 5 7 3 5 7
33. By Example 7, arctanz = z — %— - % - % +--+,s0arctan0.2 = 0.2 — (032) + (052) = (072) +

i ; . ; 0.2)7
The series is alternating, so if we use three terms, the error is at most ( 7) ~ 0.000002.

3 5
Thus, to five decimal places, arctan 0.2 ~ 0.2 — @ + (0'52) ~ 0.197 40.

3. (a) Jo(z) = ngﬂ (221); ;,. Jo(a) = nijj (__15)_;‘_7%:%;‘_-1 and J m)-_-ﬂi =1 2;‘2(3&521)”2“-2,:;0
75 (@) +20i(@) +57o(o) = 5 ST i g (i‘f; + 81 212):(;;“
- SR B By
B L, S 8 A

- : s ' _ 92,2
=nz=:1(_1)n [27?.(2 2:3(-;'2)‘;1 o :|:B2n

== . [4n® — 2n + 2n — 4n? B
= “Z=:1( 1) [ 2 ()2 ot =0

(b) fulJu(m)dz=jo [}:;D (22},,)(73 ,;n]d- =f1(1—%2+§—: 2“3’;4 )dz

3 5 7 1
& T T ’ 1 1 1
- ["’_'372+5-64_7-2304+"']0_1_1_2'+ﬁ_16,128

Since —5= = 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,

18, 1‘23

[3 Jo(z)dz ~ 1 — & + 555 ~ 0.920.

nl,n—l 0o n—l oo
-S gL

N @f@=Y 5 = fl@)=3
n=0 T n=1
(b) By Theorem 9.4.2, the only solution to the differential equation d f(z) /dz = f(z) is f(z) = Ke”, but f(0) =1, so

K =1land f(z) = e”.

Or: We could solve the equation df(z) /dz = f(x) as a separable differential equation.

i 2 \
= |z| lim (nil) = |z| < 1 for

o0
=%, n; which is a convergent p-series (p = 2 > 1), so the interval of

n=1

mﬂ+1 nz

O+l P, | 8
n+1)2 an

= lim

nH—00

39, If an = ';”1—2 then by the Ratio Test, lim

Qn

(1

o0
convergence, so R = 1, Whenz =41, }_ |—
n=1

convergence for f is [—1, 1]. By Theorem 2, the radii of convergence of f’ and f” are both 1, so we need only check the

oo mﬂ oo nmn—l o n ) g
endpoints. f(z) = 21 - filz)= 21 - ke Eo proprng and this series diverges for z = 1 (harmonic series)
n= n= n=
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and converges for z = —1 (Alternating Series Test), so the interval of convergence is [—1,1). f"(z) = )cf = -1 diverges
n=1
at both 1 and —1 (Test for Divergence) since hm T =1 # 0, so its interval of cdnvergence is (—1,1).
’ n+1 1
41, By Example 7, tan™' z = E( 1)"2 1 for |z| < 1. In particular, for z = %, we
2n+1 n
x Y w8 Em, LIV 1
L -, = AP (S e
have 5 tan (\/5) ngn( 1) e ‘ngﬂ( ) 3) BT 50
_6 & _ (=" (=" '
L ,EO (2n +1)3" =2v3 ,,20 (@n+ )3
11.10 Taylor and Maclaurin Series
(n) (8)
1. Using Theorem 5 with }: bn(z —5)", b = ! (a) ,s0bg = f—SQ
n=0 .
3. Since f(™(0) = (n + 1), Equation 7 gives the Maclaurin series
(n) 0 1 o0
Z f ( ) o= E (n+ ) = ) (n+1)z". Applying the Ratio Test with a, = (n + 1)z" gives us
n=0 n=0 n=0
. |ansa (n+2)z"| _ . n+2
nli.tﬁa | il e | ,}l{%c Y e = |z| - 1 = |z|. For convergence, we must have |z| < 1, so the
radius of convergence R = 1.
' pH et (4)
5 (=)= 7(0) + £+ L0 4 L0 2O
n f(n) (Iﬂ) f('n.) (0) 2! 3! 4!
0 {1 —2) 5 =1+2z+ 35z +24$3+1£]:1:4+
— Y3 oo
1 2(l-2) 4 =1+2z+32 +42° + 52t +--- = 3 (n+ 1)z"
2 | 6(1—=)"* 6 n=0
3| 241-x)°° 24 2 (n + 2)z™+ 9
lim [%ott| = ARSI | o] Yy B =
412001 —-2)"°| 120 nooo| an | n—eo| (n+1)zn I a1 = el =g <1
for convergence, so R = 1.
173 IH
7. : sinma: = f(0) + f'(0)z + f—(ro)a:2 -+ EO) B
n| @ | £ »
0 sinmx 0 f(”(O) ot 4+ F(0) 4.
4l 51
1 T COS T T 3 -
2 | —n?sinnz 0 —0+7rm+0-—-§i-n: +0+—’v +-
3 | —7mcosma —n? 3 8
w® 25 m .
4| wtsinnz 0 ‘ —W—ym +EF —HE T
5 7° cos % ,H,i
1\ 211-{-1
nEO( 3 (2 * 1)'
2043 2n+3 2 2
. |anta ™ T (2n+1)! i
]_lm — = . = —_—_— =
o A [TBrray  mnig nl_.m EnT3)@EntD) =0<1 forallz, so R = oco.
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1.

13.

15.

CHAPTER 11,

n| [ | 0

0 2% 1

1| 2*°(In2) In 2

2 | 2°(ln2)? | (In2)?

3| 2*(In2)* | (In2)?

4 [ 2°(In2)* | (In2)*
n [, f%%) | F™(0)
0 | sinhz 0

1| coshz 1
2 | sinhz 0
3 | coshz 1
4 | sinhz 0
n| M@ |0
0| a*—32%2+1 —1
1 4z — 6z -2
2 122 -6 6

3 24z 24
4 24 24
5
6

n | f™) | £92)

0 Inx In2

1 1/x 1/2

2| —1/z% | —1/2°

3| 2/ 2/23

4| —6/z* | —6/2*

5 | 24/z% | 24/2°

INFINITE SEQUENCES AND SERIES

o f(“’(U) (In2)"
23: — T
ngl) n! né:o ﬂ! Bia
n+l,_n+1l 1
L e e
n—oo | pn n—oo (‘n + ]_)! (ln 2)".’5"‘
= ﬂl"_a,D (lg ? ] =0<1 forallz,soR=co.
.f(”)(ﬂ) 0 ifniseven ol i pintl
= so sinhx = —_—
1 ifnisodd =0 (2n +1)!
2n+1

T

— . th
(2n+1)z" =

g @D o 1
(2n+3)!  gnil | n—oco (2n + 3)(2n+ 2)

Use the Ratio Test to find R. If a, =

On+1
Qn

lim

Tt—00

n—oo

=0<1 foralla, soR=occ.

F)(z) =0 forn > 5, so f has a finite series expansion about a = 1.

fl@)=2*—32%+1= i _f(”)(l) (w—1)"
n=>0 n!

—1 ; -2 6,
=gV re-Dtge-1

24 ., 24
+§1‘($—1)3+E($—1)4

=—1-2(z—1)+3(z—12+4(x -1+ (z—1)*

A finite series converges for all z, so R = co.

(n)
f@) =ma= 3 LB -2y
1 2 1 - 2 .
e+ E -0 g E- D g -
s e
= & n (?’1.—1)' n
_1n2+n§1(—1) +1W(m—2)

=l 3ol 1)"“—12; (@—2)"

n=1
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R L-EVE DO | o i o) S i |EDE=n| L w22
e it ‘ mrDH (e | meD2 | Ai%inxi) 2
= E—;-ll <1 forconvergence, so |z —2| < 2and R = 2.
oo f(n) 3)
1. fay=ee= 5 LB gy
n | f7@ | 17@) ‘ -
2z 6 6 268 Ca
0 :2 :a . =5 &8 +5- -3+ S =-3°
1 e* e ;
6
9 02,2 468 & 83_' _3) 4 lﬁe ( - 3)4 +
3 | 2%* 8eb ‘ 4
27] '
A gty 16¢° = 2_:0 (z—3)"
. |any1| _ ontlegh(g — 3)n+! ) n! - o 20z-3] ) _
HIEEQ o | CEmY] Ted(z —3)n _nl—u-!c}o—n+1 =0<1 forallz soR=o0.
19. f(z) =cosz = Z i k)(ﬂ) Lt (z—m*
n f(")(:c) £ () k=0
0| cosz -1 ‘ =_1+{:v—7r)2_(w—ﬂ)“_f_(m—vr)si
1| —sinz 0 2! 4l 6!
) | | g pelezal
3| sinz 0 o=t
4| cosz -1 lim |22 ] Z |z — m|*+2 ~__(2n)!
n—eo an — 00 (271, + 2)! I:L' —_ 71'12“
NG ... N SO R
= RO T rall z, so R = oo.
2. If f(z) = sinz, then "+ (z) = +a™ sin mx or £7"+* cos 7z. In each case, ’f‘“"’”(:c)’ < 7™*1, so by Formula 9
witha =0and M = 7r“"'1-, 1Iitn(x)| < (;r+ o lz|* ! = |(sz_ ik Thus, |Ra(z)| — 0as n — oo by Equation 10.

So .lim R, (z) = 0 and, by Theorem 8, the series in Exercise 7 represents sin wx for all .
n—oo -

23. If f(z) = sinh z, then for all n, f**V)(z) = cosh z or sinh z. Since [sinh z| < |cosh z| = cosh x for all z, we have

Jlati) (a:)l < cosh z for all n. If d is any positive number and |z| < d, then If(“*”‘}(:c)' < coshz < coshd, so by

cosh d

1 = — - <
Formula 9 with @ = 0 and M = cosh d, we have | R, (z)| < T )

|| ™. 1t follows that | R, (2)| — 0 as n — oo for

|z| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents sinh z for all .
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25, m_ [1 + )]1/4 Z (1/4)( m) - 1+%(_$)+ é (_%) (_m)z + % (_%) (_

n=0 21

g 3 (S g it v [

n=2 4'1.”'
= 1 o 37(4”‘—5) n
= Za:_“gg 4n . nl "

and|-z| <1 & |z|]<lsoR=1

1 1 1 x\ -3 1 & " Y i .
(2+:c)3 = [2(1+m/2)]3 = -8-(1+ 5) =z g( )(-2-) . The binomial coefficient is

|

( ) (=3)(=4)(=5) -+ (-3—n+1) _ (=8)(—4)(=5) - [~(n+2)]

27.

n!

~1)"-2.3.4:5- - (n+1)(n+2) _ (~1)"(n+1)(n+2)

2.nl 2
1 1&(=1)"n+)n+2)z" = (-1)*(n+1)(n+2)2" lE' _
us, 21 —gnz::() 5 w2l e for 5 gl & |z|<2,s0R=2.
. oo o m2n+1 . oo - (11';]:)2”+1 o0 = ,R-.Z'n+1 _—
3 = == ———————— = = — — = A e——— s T,
29. sinx ngo{ 1) Zn O = f(z) = sin(wmz) ngo( 1) Gn 11 :Eo( ) (2n+1)!$ "L R=00
&, mn 2z __ = (zm)n — & 2n$n SR 2x oo 1 n e 2n no__ & 2"+1
H.e T?_}U-E = e —FE ﬂ' 7n§=:07’50f(z)_e +e —ngﬂaz +7§0m$ _ﬂ2=30 T
R=oc0
72" : oo (327 )2“ in
eoor = B Gy = ) = L0 g = ZOV

T — z — z =£(1+£)-1/2=£§ _% (m_i’)“
vi+z? 41+ 2%/4) 2./1+2%2/4 2 4 2.\ n 4

2 b § 3 24 2 1 3 5 2y 3
_z (3R a7 . R 7Y L
S t-P X ) * 3l i)t
-l T o O (2n—1) on
=zt 2 2. 4" .l o
_z nl:3:5---@2n=1) 5.,  a* || ' B
=3 g( 1) 2ot T ancl4 <1l & 3 <1l & |z|1<2 soR=2.

oo (1) 2n o oo (_1\nt+ln2n—1_2n
?T.szm:%(1—cos23:)=%[1~§0(—-1%%1|:%[1—17Z(__l)_(ﬂ:\=n_1————( 1) (2i)! -2

R=o0
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) 22 1.5
(16) &= 3 . ’ &
39. cosz = =1)" =
n2=:0( ) (2n)! . h=T,=T,=T,
_ 2y & (1) (z2)*" = (=1)"z*" / \
f(x) = COS(-'B ) - nz=:fl (2_“)' nz_:ﬁ (2n 15 /‘r ‘. L5
=1- %ﬂ’:'i + %.’L‘B — %61312 b ;l." %\T;=T9=T|n=nl
The series for cos @ converges for all , so the same is true of the series for f ",.
k. J
(z), that is, R = oo. Notice that, as n increases, T, (z) becomes a better =7 T,=T;=T,=T,
approximation to f(z).
@ P o= 2L R -1y 2 . : .
n=0 T =0 n=0 ‘ T.
o 1
f(I) —ge % = Z: (_1)11, H mn—ﬁ-l . ; Tl
n=0 *
SO U R b 1.5 =3 = / ! 4
=z—z +352° — 5T + 5332 55¢ + ; X 3 A
1
t13
- § (_1)n—11'—-' T\NTNT,
=1 (n—1)! T, /f ;
The series for e converges for all z, so the same is true of the series et T ~ ~/
for f(z); that is, R = co. From the graphs of f and the first few Taylor T, T, T,
polynomials, we see that T}, (z) provides a closer fit to f(z) near 0 as n increases.
oo 2n o | A 6
of_T : — S o A S Y T
8. 5° = 5° (3555) = 35 dians and cosz = 57 (1) Bl = w g Ty ™
™ (m/36)* | (r/36)" _ (m/36)° (m/36)" . (w/36)
i = e, 1 — =2 _ ~(. ALY fiel ST —68
cos ¢ 1- BT ] & + Now 21 0.99619 and adding o 24x10
does not affect the fifth decimal place, so cos 5° == 0.99619 by the Alternating Series Estimation Theorem.

1 .5

45, (a) 1/\/@: [1+(—:E2)]—1/2=1+(—%)(—E ) ( 2)( 2)( ) (_5)(;!5)(ﬁ§ (—m2)3+---
1

3

=1+E =L on . (zn_l) 2n
n=1 -
g 1 1:3:5-+--(2n—=1) onp1
= dr =
(b)sin" "z f o r=C+az+ 721 (2n + 1)2n .nl -
1-3:5----- (2?‘&*1) 220+l g T
==+ X i eetealiiole:
{E) & —_1\n x?’l N - = —1\" (w3)2“ = - - nn.'[,‘s_"'
47. cosz = TEO( 1) )] =>‘ cos(z )_,Eo( 1) (2n)! —EO( ) @n)
ZOn+1 ‘ . oo gined
zcos(z?) = '?__:0( 1) @t = f:ccos(:r )dx=C+’§n(—l) —_(6n+2)(2n)!’w'thR:°°'
2'1 Tl 2n—1
as) . e B o cosz—1 &, &
Bocons u};o(_ ) (2n)l + omp-i=2 ey = = =5 Gy
cosz — 1 - @ : .
[ =0 BV g Ty vith R =

@ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



88 [ CHAPTER11 INFINITE SEQUENCES AND SERIES

M. arctanz = S {-UZ g 1,502 2 (i
. arctanz = ﬂgn(—- ) a1 o |z| <1,s0z”arctanz = TED(—I) 1 for |z| < 1 and
5 o0 - m2n+5 ) § )
/.’L‘ arctanxdz = C + ngo(—l) (z_n_m Since e 1, we have
1/2 245 5 i 9 1
3 =y (1/2) @/2r /2" 1/2° _ (1/2)
: ct dz = -1 = - = ewe,
/0 e 2 (1) @n+1)@n+5 1.5 3.7 T 5.9 7.1 T - Now
1/2°  (1/2)" | (1/2)° i (12
(1/ 5) 2 3/‘ 7), o+ ( 5/. 3 ~ (.0059 and subtracting %-/—g-llr ~ 6.3 x 107° does not affect the fourth decimal place,

S0 fol /% 23 arctan  dz = 0.0059 by the Alternating Series Estimation Theorem.

(=] oo dn4-1
8. VIitai=(1+a")/2= Y (1’/12) (=)™, so[ l1+ztde=C+ Y (1/2) . and hence, since 0.4 < 1,

n=0 « n=o\ n J4n+1
we have
- [ 5 )2
@2 3008 3EH 000 JEDED 0o AEHEDED @07,
—oa+ - O G - M+

0 ' 5
Now -(O,Ti; A 3.6 x 107% < 5 x 1078, so by the Alternating Series Estimation Theorem, I ~ 0.4 + (01;‘6) ~ 0.40102

(correct to five decimal places).

 E—W(l4z L oz—(z—3i22 418 -1t 15— i 18410 154
5511111#211111 ( 2 3 E 4 5 )=11m2 3 42 5
=0 T —0 €T o—0 T
o U 1.2 _ 1,84 . .y=1
—il_r%(g—ga:+4w g8 ) =g
since power series are continuous functions.
: 1.3 ¢ O O AR O 1.3
sinz — + iz (x—gz® + 52° - Ha"+--) —z+ 32
7. 13 8% _ Tim 3l 51 7l [
9 al-l—IPO x5 z—0 0
—lim%xs_%x’hr“‘—lim $2+$4 =
= zh T z—o\Bl 71T 9l TR 120
since power series are continuous functions.
2 4 (i 2 4
g = T x T &
59. From Equation 11, we have e z? =1— =4 = _E...;_... and we know thatcosz. =1 — — + — — -+« from
: o2 3l 2t 4l
. —a2 - vt
Equation 16. Therefore, e™* cosz = (1 — 2 + 32* — ... ) (1 — $2° + 52" — -+ ). Writing only the terms with
d —a? _ 1,3 ;1.4 L S LN O - 3,2 4 26,4
egree < 4, wegete ™ cosz=1—3z"+ 52"~ + g+ 5+ =l-5 [t 40
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o, a2 =
"sinz T z—tad+ ggEt—
1+ %:1:2—}-3?703:4-;-...
@—32° + ghga® — e | &
:E—%ma—}-ﬁlﬂ,r‘r’_...
%:1:3 — lé—nxs e
jo - ke
%ms dE. =5
FTO:L-‘F’ 4o
From the long division above, —— = 1+ a? Lt e
: ! SII:.(E 5
= ()
& 3 (- =3 g =e, by,
S EF ~1(3/5)" 3 ' 8
i i O S 1 1 - 1 i vt g
65 ng( L) il ﬂgl( ) = In{1+7 ) [from Table 1] =In
n 2n+1
oo (_l)n ‘."I'2n+1 B oo (_1) (14‘..) v
O Y Trins D)l @at Dl oni = bydd)
9 27 81 .8 B 8. L = 3
69. 3+§+§'+E+"'—f'fa'l’ﬁ*l‘a-i--"—ngl—l—ngum.—lae -1, by (11).
; n i)
71, If p is an nth-degree polynomial, then p*) (z) = 0 for i > n, so its Taylor series at a is p(z) = 3. 2 _'(“') (z — a)'.
i=0 2!
" pt(a)
Putz —a=1,sothatz =a+ 1. Thenp(a+1) = 3 = i
1=0 .
——— n p(‘)(a:)
This is true for any a, so replace a by z: p(z+1) =3 A
=0 .
73. Assume that | f"'(x)| < M, so0 f"(z) < M fora <z <a+d Now [T f"(t)dt < [T Mdt =

f'(z) = f'(a) < M(z—a) = f"(z) < f"(a)+ M(z —a). Thus, [T f"(t)dt < [T [f"(a) + M(t — a)) dt
f'@)—f'(a) < f'(a)(z—a) + §M(z—a)® = f(2)<f'(a)+f"(a)(c—a)+3M(z—a)® =
[Zr@adt < [7[f(a)+f"(a)(t—a) + 3 M(t—a)’]dt =

f(z) = f(a) < f'(a)(z — a) + 3f"(a)(z — a)® + §M(z — a)®. So

f(z) = f(a) - f'(a)(z — a) — 3f"(a)(z —a)* < $M(z — a)’. But

Ra(z) = f(z) — Ta(z) = f(z) — f(a) - f'(a)(z — a) — 3f"(a)(z — a)*, s0 Ra(z) < § M(z — a)®.

A similar argument using /() > —M shows that Ra(z) > —3 M (z — a)®. So |Ra(z2)| < §M |z — af*.

Although we have assumed that = > a, a similar calculation shows that this inequality is also true if z < a.
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75. (a) g(z) = i (:) " = g¢'(z)= i (k) nz"", so
n=0

n=1 \N
(14+2)g'(z) = (1 +z) il (::) nz"~l = il (:) na™1 4+ il (::) nz"

= k n ={k n Replace n withn + 1
= ,,,Z_.:g (n + 1) (- 1)2" ngo (n) . [ in the first series

- néo(n 4 pyEE=D - 2)(;;;((#;)!— nt k=) . ,20 [(n) k(k — 1)(k — 211[. (=24 T)
;,gn o DR o B n ) e )l
- ’“20 k(k —1)(k — 211!. c(k—nt1) . _ ",fz; (ﬁ) 5 = hgle) |
Thus, ¢'(x) = %(_%
®) he) = (1 +2) ™ g(z) =
K (@) = —k(1+2)* (@) + (1 +2) " ¢'(x) [Product Rule]

gl = k
=K1+ 2) @) + (1 +2) ™ S fhom part @)
= —k(1+ )" g(z) + k(1 +z)**g(z) =0
() From part (b) we see that h(z) must be constant for z € (—1, 1), so h(z) = h(0) = 1 forz € (-1,1).

Thus, h{z) = 1= (1+2z) "g(z) & g(z)=1+z)* forze(-1,1).

11.11  Applications of Taylor Poiynomials

] :C“

1.
i ey ) T

n | f(z) | £(0) n(z) T,=Ty 2

0 cosT 1 1 i 4 i \,.Tn= T,

1| —sinz 0 1 "‘ ‘." /

2| —cosx -1 1-—1z? ! .': y
2 -2 7 27

3| sinz 0 |1-43z? I\

4| cosz 1 1-32% + Fat Y%

5 | —sinz 0 1-32% + a2t ] 3 \ J
1.0 Lok 1.6 -2 h=h

6 | —cosz -1 — 5% + 338" — 75T
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APPLICATIONS OF TAYLOR POLYNOMIALS O 91

z ¥ To=Th Ta=Ts Ty=Ts Ty
£ 0.7071 1 0.6916 0.7074 0.7071
= 0 1 —0.2337 0.0200 —0.0009
T = 1 —3.9348 0.1239 —1.2114

(c) As n increases, T, (z) is a good approximation to f(z) on a larger and larger interval.

n | f™M(z) | F™(2)
0 1/z 1
1| —1/2* -3
2 2/x? 1
3| —6/z* -3
3 f(m)
T@= 3 L2 (g gy
1 1 1
= &—%(m—2)+§(mw2)2
=4-3@z-2)+i=z-2°-L(z-2)°
n | fP(2) | ™ (r/2)
0 cos T 0
1] —sinz -1
2 | —coszx 0
3 sinz '
3 gln) 2 -
1) = 3 L (o 5)
=—@-3)+iC-3)
n | f™) | F™(Q)
0 Inaz 0
1| 1/z 1
2| —1/z? -1
3| 2/2° 2
: (n)
Ty = 33 LB gyn
n=0 n:

PN | = 2. 2 .
=0+ql@e-D+5r(@—1)" + 5(z-1)

=(@-1)—3(e-1)*+3@@-1)

-1.1
2
P
Ty
|

-1

N

—4

wy
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9. 3
n| M@ | ™0 (
0 ze 2" 0
1| (1-2z)e " 1 - i ) i
2| 4z—-1)e* —4 ‘ /-'
3 | 43—2z)e™ ™ 12 / )

T f —4
Ty(z) = Zaj f(n)(o)m" =2.14+ 12" + F2? + Bo® =z — 227 + 248

n=0 n!

11. You may be able to simply find the Taylor polynomials for

f(x) = cot z using your CAS. We will list the values of f™ (m/4)

forn =0ton = 5.

n g 1 [2]| 3 4 5
Fr/a) || 1] -2 | 4| —16 | 80 | —512
;r : :—.____\2
5, F/d) (e ’ )
Ts(z)= Y ——=(z- %) L T \\J3

n=0 n!
13- )42~ 3P Yo 1+ Rl - B 3

Forn = 2ton =5, Th(z) is the polynomial consisting of all the terms up to and including the (= — %)” term.

1 1/32

1. , @ (&) = VERTa(a) =2+ 3(e —4) ~ L2 (z — 4
- n] @) | ™9
- 1 2
- B P _2+3(x—4)—a(m—4)
-1/2
1| jaV i (b) |Ra(2)| < % |z — 4%, where | £ ()| < M.Nowd < 2 < 42 =
R — )
34 o o |z —4/ <02 = |z—4)* <0.008. Since f"(z) is decreasing

3| sz on [4,4.2], we can take M = |f"(4)| = 247%/2 = 32, 50

|Ra(2)| < 3/ 3/256 0.008) = & 228 — 0.000015625.
(c) 000002
From the graph of |Re(z)| = |v/z — Ta(z)|, it seems that the
=Rl error is less than 1.52 x 107°% on [4,4.2].
4 4.2
0
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15 @ f(@) =2 mTa(m) = 1+ 3@ — 1) - L (e - 12 + B2 (o _ 10
(n) (n) 3!
n| @ [0 . L
0 2213 1 =14 3e-1)-}=-1) +5(z-1)
1 2,-1/3 2 4 (4)¢..
3 3 (b) |Ra(z)| < 4[ —1|%, where | f*¥(z)| < M. Now08<z<12 =
2 —"9'.'13_4/3 —%
. =il ! lt—1/ <02 = |z—1/*<0.0016. Since If(‘" (:r)l is decreasing
3 =E o
27 27
4 | —B8gm203 ' on [0.8,1.2], we can take M = | f(4>(o.8)| = 28(0.8)719/3, 50
56 (0,.8)~10/3
|Ra(z)| < 8L 50 (0.0016) = 0.000 096 97,
(©) 0.00006
From the graph of | R3(z)| = |m2/3 = Tg(a:)r, it seems that the
=Ry , '
error is less than 0.000 053 3 on [0.8, 1.2].
0.8 12
0 1
17. (@) f(z) =secz = Ty(z) = 1+ 12?
n ™ () £(0)
0 sec T
1 secz tanz 0
2 secz (2sec’ z — 1)
3 | secz ta.nm(ﬁsecz z—1)
(b) |Ra(2)] < 5 L] where|f(3) | <M.Now—02<2<02 = |2]<02 = |zf° < (0.2)°
f®)(z) is an odd function and it is increasing on [0, 0.2] since sec z and tan z are increasing on [0, 0.2],
@) © F(0.2) 3
so | £ (3:)' < £(0.2) ~ 1.085158892. Thus, |Ra(a)| < 7 (0.2)° =~ 0.001447.
(c) 0.0004
y=|Ryfx)| _ ;
From the graph of | Rz(z)| = |sec x — T2 (z)|, it seems that the
error is less than 0.000 339 on [—0.2, 0.2].
-0.2 0.2
. 2
19. : (@) f(z) = mf[‘s(m)=1+§m2 =14z
n () 1(0) '
=2 M
b= . 3 (b) [Ra(z)| SE[w\‘i,where |f(‘i)(m)| <M. Now0<z<01 =
1| e* (22) 0 2 p ’ _
g | o (@ + 422) 5 z" < (0.1)%, and letting x = 0.1 gives
001 (12 +0.48 + 0.
3 | (122 + 82%) 0 sty < 8 148+ 0.0016) (9.1)+ ~ 0.00006.
4| e (12 + 482 4 16z*)
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(©)  0.00008
From the graph of |Rs(z)| = |e"2 — Ty(z) | it appears that the
¥ =|Rs(x)| .
error is less than 0.000 051 on [0, 0.1].
0.1
: 2 g . a_.2_14
21, (a) f(m)'::usm:cwﬂ(m):E(a;—D) +T($_O) = = g
n FARIC)) F™(0) ' '
0 rsinz 0 M
M. s () -
1 T - 0 (b) |Ra(z)| < A || ,where’f (m)‘ﬁM’.Now I1dpsl =
2 | 2cosz—gzsinz 2 |z| < 1, and a graph of £ (z) shows thax‘f(s}(;c)| <5for-1<z<1.
3 | —3sinz —xcosz 0 5 1
Thus, take M = 5 and get < = .1% = — =0.0416.
4 | —4cosx + xsinz —4 b get | Ru(z)| < 5! 24
5| Ssinz+xcosx

(©) 0.009

From the graph of |[R4(z)| = |z sinz — Ti(z)|, it seems that the
¥ =|Ryx)|
error is less than 0.0082 on [—1, 1].

-1 0 1

: M ;
23, From Exercise 5, cos¢ = — (z — &) + (¢ — £)° + Ra(x), where |Rs(z)| < T |z —z|* with
‘f(4)(z)| = |cosz| < M = 1. Now z = 80° = (90° — 10°) = (£ — &) = *Z radians, so the error is
|Rs(%5)| < = (-11‘§)4 a2 0.000 039, which means our estimate would not be accurate to five decimal places. However,

T3 = Ty, so we can use |R4(4E)| < %5 (%)5 7= 0.000 001. Therefore, to five decimal places,

c0s80° & — (—&) + 1 (— &)’ ~ 0.17365.

25. All derivatives of * are €”, so |Rn(z)| < (nj_ i 2", where 0 < & < 0.1. Letting z = 0.1,

E’(].II.

R,(0.1) < m(ﬂ.l)““ < 0.00001, and by trial and error we find that n. = 3 satisfies this inequality since

R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for e® corresponding to n = 0, 1, 2, and 3,

we can estimate €”* to within 0.00001. (In fact, this sum is 1.10516 and e®* ~ 1.10517.)
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sing =g — —1-:1:3 + l:cs — - --. By the Alternating Series 09
3! 5! & / 7 )
Estimation Theorem, the error in the approximation
; 1 5. 1
sinz =z — 5:8 is less than Tk <0.01 <

2°| <120(0.01) ¢ |z| < (1.2)"/° ~ 1.037. The curves

Y=z — %ma and y = sinz — 0.01 intersect at z ~ 1.043, so

09 N~
the graph confirms our estimate. Since both the sine function s

and the given approximation are odd functions, we need to check the estimate only for & > 0. Thus, the desired range of

. values for @ is —1.037 < = < 1.037.

.76‘3 5

-1

arctanz = T — 3 + % = % + -+ -. By the Alternating Series - ' 1

Estimation Theorem, the error is less than |—1z7| < 0.05 « y =arctan x + 0.05~\" e
|z7| <0.35 & |z < (0.35)"/7 ~ 0.8607. The curves - / &
y =z — 32% + 12° and y = arctan z + 0.05 intersect at /

= =~ 0.9245, so the graph confirms our estimate. Since both the 4 \“ y = arctan x — 0.05
arctangent function and the given approximation are odd functions, (*\ - .
we need to check the estimate only for & > 0. Thus, the desired y=x— % P+ é %

range of values for z is —0.86 < = < 0.86.

Let 5(t) be the position function of the car, and for convenience set 5(0) = 0. The velocity of the car is v(£) = s(t) and the

acceleration is a(t) = s” (), so the second degree Taylor bolynomial is Ta(t) = s(0) + v(0)t + 3(292152 = 20t + 2. We

estimate the distance traveled during the next second to be s(1) = T2(1) = 20 + 1 = 21 m. The function T%(t) would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 m/s? for that long (if it did, its final

speed would be 140 m/s = 313 mi/ht!).

_9 __ ¢ _a____a __af;_(;,4Y
" E=Ds " D+ap D D2(1+d/D)2_D9[1 (1+D) }

We use the Binomial Series to expand (1 + d/D)~%:
g d\ 2-3/d\* 2.3.4/d\ @ Lifd d\?  (d)
R 2 Ela ) STeis R T . R = ey [
o D?[ ( (D)+2! (D) s \p) " D7 | A\ D 3D)+4(D)‘
il of &Y Liaie
when D is much larger than d; that is, when P is far away from the dipolé.
(a) If the water is deep, then 27d/L is large, and we know that tanhz — 1 as z — co. So we can approximate

tanh(2rd/L) =~ 1,and sov* = gL/(2x) < v~ +/gL/(2).
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(b) From the table, the first term in the Maclaurin series of

et . . - n f(x) ()
tanh x is z, so if the water is shallow, we can approximate
0 tanhz 0
tamh2ﬂi 2—E(izemd Ng—Lg—? & vry/gd 1 sech’ z 1
¥
2 —2sech® ztanhx 0
3 | 2sech? z (3tanh® z — 1) -2

" (c) Since tanh x is an odd function, its Maclaurin series is alternating, so the error in the approximation

ord _ 2nd . 1£7(0)] (2md\* _ 1 (2nd\?
t'th TIS less than the first neglected term, which is 3l - ) =37 )

If L > 10d thenl 2 3<l 2m L S—Ls so the error in the approximation v* = gd is |
1 3\ & 3 0/ ~ 375 ri pproximation v = gd is less

gL w3

tha -
AN or 375

7~ 0.0132gL.
37. (a) L is the length of the arc subtended by the angle ¢, s0 L = R =
0 =L/R. Nowsecl = (R+C)/R = Rsec§=R+C =

C = Rsec — R = Rsec(L/R) —

(b) First we’ll find a Taylor polynomial T4(x) for f(z) = seca at z = 0.

" () F™(0)

secx 1
secrtanz 0
secz(2tan’z + 1) 1

0
5

sec x tan z(6 tanz 4 5)

W e o= o3

sec z(24tanz + 28 tan®z + 5)

Thus, f(z) = secz = Ty(z) = 1 + 2 (z — 0)* + Z(z — 0)* =1+ 32° + Fa*. By part (a),

17LN* s 4LY? ¥ 5. I* I* I®
CNR\:1+§(§> +2—4(E) —R=R+ ¢ R R2+ =R E—R—ﬁWLW.

(c) Taking L = 100 km and R = 6370 km, the formula in pﬁrt {a) says that
C = Rsec(L/R) — R = 6370 sec(100/6370) — 6370 ~ 0.785 009 965 44 km.

- 12 . 5Lt 1007 5 - 100* '
h N — = = (. ;
The formula in part (b) says that C ¥ + 2AE3 — 7.6370 - 54 63708 0.785009957 36 km

The difference between these two results is only 0.000 000 008 08 km, or 0.000 008 08 m!

39. Using f(z) = Tn(z) + Rn(z) withn = 1 and = = r, we have f(r) = Ti(r) + Ru(r), where T} is the first-degree Taylor
polynomial of f at a. Because @ = zn, f(r) = f(2x) + F'(zn)(r — zx) + Ra(r). Butr isa root of £, s0 f(r) =0

and we have 0 = f(xn) + f'(2n)(r — 2n) + Ra(r). Taking the first two terms to the left side gives us
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f(zn) — Ry(r)
f’(‘l?n) f’(xn) ’

f'(@n)(xn — ) — f(za) = Ra(r). Dividing by f'(zn), we getzn — 1 — By the formula for Newton’s

T R o
method, the left side of the preceding equation is z,4+1 — 7,80 [ZTn41 — 7| = —f,éﬂ) . Taylor’s Inequality gives us
|£7(r)] 2 o . s ” . ;
|Ry(r)| < 3l |r — z.|*. Combining this inequality with the facts | f"(z)| < M and |f'(z)| > K gives us

M 2
—r| € = |zn—7%.
Mxn-!-l T‘l = 9K IE ﬂ

11 Review
CONCEPT CHECK

1. (a) See Definition 11.1.1.

(b) See Definition 11.2.2.

(c) The terms of the sequence {a.} approach 3 as n becomes large.‘

(d) By adding sufficiently many terms of the series, we can make the partial sums as close to 3 as we like.
2. (a) Sec the definition on page 721 [ET page 697].

(b) A sequence is monotonic if it is either increasing or decreasing.

(c) By Theorem 11.1.12, every bounded, monotonic sequence is convergent.
3. (a) See (4) in Section 11.2.

(b) The p-series 5 ;1; is convergeﬁt ifp > 1.

n=1 ¥

4. 1fY an = 3, then lim an =Oand lim s, = 3.
5

. (a) Test for Divergence: If lim a,, does notexist or if lim a, # 0, then the series 3 > | a,, is divergent.
n—oo -

(b) Integral Test: Suppose f is a continuous, positive, decreasing function on [1, co) and let a, = f(n). Then the series
5.5 | an is convergent if and only if the improper integral [ f(z) dz is convergent. In other words:
(@) If [ f(z) dz is convergent, then 377 | a, is convergent.
n=1

(i) If [ f(x) d= is divergent, then 327 | a. is divergent.

(c) Comparison Test: Suppose that 3 an and 3 b, are series with positive terms.
(i) If 3_ by, is convergent and a, < by, for all n, then ¥ ay, is also convergent.

(ii) If 3 by, is divergent and an > by, for all n, then 3 a,, is also divergent,
(d) Limit Comparison Test: Suppose that 3 a,, and 3 b, are series with positive terms. If lim (a./bn) = ¢, where cis a
n—oo
finite number and ¢ > 0, then either both series converge or both diverge.

(e) Alternating Series Test: If the alternating series 3o (1) by =bi —bo 4+ bz — by +bs —bg + - - - [bn > 0]

=1

satisfies (i) bp+1 < b, forall n and (ii) lim b, = 0, then the series is convergent.
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(f) Ratio Test:
(i) If lim =T« 1, then the series 3~ a. is absolutely convergent (and therefore convergent).

Tn— 00 an a=1

On+1

o0
= 00, then the series 3 a, is divergent.

n=1

(i) If lim (22X =L > 1or lim
n—oo

an n—o0

n

v An+1 ¢ . . . .
(iii) If lim Z— = 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or
oo i

divergence of " a,

(g) Root Test: .
) If lim 3/]an| = L < 1, then the series Y o, an is absolutely convergent (and therefore convergent).
n—0o0

(i) If im %/|an| =L > lor lim %/|an|= oo, then the series 3 >, a, is divergent.

(iii) If lim %/|an| = 1, the Root Test is inconclusive.

6. (a) A series 3 an is called absolutely convergent if the series of absolute values Y |a.| is convergent.
(b) If e series ) a., is absolutely convergent, then it is convergent. -

(c) A series Y ay, is called conditionally convergent if it is convergent but not absolutely convergent.

7. (a) Use (3) in Section 11.3.
(b) See Example 5 in Section 11.4.

(c) By adding terms until you reach the desired accuracy given by the Alternating Series Estimation Theorem.

8. (a) io: en(z—a)”

n=0

(b) Given the power series Y ¢n(x — @)™, the radius of convergence is:

n=0

(i) 0 if the series converges only when z = a
(ii) oo if the series converges for all z, or
(iii) a positive number R such that the series converges if |z — a| < R and diverges if |z — a| > R.
(c) The interval of convergence of a power series is the interval that consists of all values of = for which the series converges.
Corresponding to the cases in part (b), the interval of convergence is: (i) the single point {a}, (ii) all real numbers, that is,

the real number line (—oo, 00), or (iii) an interval with endpoints @ — R and @ + R which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

9. (a), (b) See Theorem 11.9.2.

F9(a)

0 2l

10. (a) Tn(z) = (z —a)*

o

T

(m)
® 5 L8 ear

licated, or posted 10 a publicly accessible website, in whole or in part.
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CHAPTER 11 REVIEW

oo (n)
© 220 (o= 0inpan )
n=0 n

(d) See Theorem 11.10.8.

(e) See Taylor’s Inequality (11.10.9).
(a)—(f) See Table 1 on page 786 [ ET 762].

See the binomial series (11.10.17) for the expansion. The radius of convergence for the binomial series is 1.

O o

TRUE-FALSE QUIZ
1. False.  See Note 2 after Theorem. 11.2.6.
3. True. lfﬂli‘n;lo an = L,thenas n — oo, 2n + ll—» 00, S0 Agn+1 — L.
5. False.  For example, take ¢, = (—1)"/(n6").
7. False, since lim |27 | = _1_3"_3 - ___qa_d_l_/n_j: Tisii 1
n—oo| an n—oo|(n4+1)° 1| n=eo|(n+1) 1/n3| n—eo (1+41/n)°

1.

13.

15.

17.

19.

21,

. False.  See the note after Example 2 in Section 11.4.
True. See (9) in Section 11.1.
: 3. f7(0)
True. By Theorem 11.10.5 the coefficient of 2° is g =g = 0 =2

Or: Use Theorem 11.9.2 to differentiate f three times.

= 1 by the formula

False.  For example, let a,, = b, = (—1)". Then {an} and {b.} are divergent, but anb. = 1, s0 {@.b.} is convergent.
True by Theorem 11.6.3. [} (—1)" an is absolutely convergent and hence convergent. |
Troe.  0.99999...=09+0.0(0.1) +09(0.1)2 +0.9(0.1)° +--- = 3 (0.9)(0.)" " = 5 0.3 -
n=1 — U,
for the sum of a geometric series [S = a1 /(1 —r)] with ratio r satisfying |r| < 1.
True. A finite number of terms doesn’t affect convergence or divergence of a series.

EXERCISES
24+n2 ; . 240 . 2/l 1
1. —— - = d N B
{1 + 2n3} Gl bl n]inéo 14+2n3 noeel/n3+2 2
3. lim a, = lim n’ = lim - . = 00, so the sequence diverges.
' oo nfn—»ml-’—n?'gnﬂwl/nz-}lm S q 8es.
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nsinn
n?4+1

n
—n2+1

3 dn 3 4w
1. { (1 H H) is convergent. Let y = (1 - E) . Then

1 5 "
5. [as] = < —, 50 |an| — D asn — oo. Thus, lim a, = 0. The sequence {a } is convergent.
T n—00 4 8

1 3
; . . In(1+3/z)uw .. 1+3/z ("?2) :
1§ Iny = lim 4 1 = lm —————£ = =t N BT B -
g fun delal v Bm) = 0 —ve T LT L vl
3 an
1imy=h'm(l+-—) =2,
&—+00 n—oo n

9. We use induction, hypothesizing that an 1 < an < 2. Notefirstthat 1 < ag = 3 (1+4) = § < 2,50 the hypothesis holds
for n = 2. Now assume that ax—1 < ax < 2. Then ax = 3(ar—1 +4) < 3(ar +4) < 3(2+4) = 2. Soar < ar41 <2,
and the induction is complete. To find the limit of the sequence, we note that L = lim a, = lim an+1 =

. n—oo

Tn—00

L=3(L+4) = L=2

n n 1 2 7 2 . . 422 il
1. | < B = ‘El = v converges by the Comparison Test with the convergent p-series ngj o [p=2>1]
n 3 3
. Nangr] o [(n4+1)2 5] I 1 1 = 0 : : )
13. nh_‘n:o g T}Ll'go [W gl = nll{lgo 1+ =1 2= <1,s0 El B COMVerges by the Ratio Test.
15. Let f(z) = : . Then f is continuous, positive, and decreasing on [2, co), so the Integral Test applies.
zvinz

oo t Int lnt
/ f(z)dz= lim i dx [u =lInz, du = dm] = lim w % du = lim [2 \/‘1:] !
2 T

t—oo 2 X Inz t—o0 [l o t—+00 In2

= Jim (2«/1:1_—2\/15) = o0,

so the series > diverges.
n=2 nVInn
17. |an| = 556 0 . & - ) 50 f} |« | converges by comparison with the convergent geometric
il TR I0) T S P ) L SV I U A~ kb e

series 3 (£)" [r= % < 1]. Itfollowsthat 3" an converges (by Theorem 3 in Section 11.6).

n=1 n=]
. itk . 1:8:5.--(2n—1)(2n+1) 5" nl . Gyl 2 '
) 1 ; = lim 2T — 2 <1 501h
W e | AR ) T A B n=T)  sewBntd), 5 - aooekeds

converges by the Ratio Test.

2 ba= n‘-/fl > 0, {bn} is decreasing, and nli_.méc b, = 0, so the series nijl (—1)’""171'—\:_7_?'1 converges by the Alternating

Series Test.
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23. Consider the series of absolute values: 5 n~Y3isa p-series with p = % < 1 and is therefore divergent. But if we apply the

25.

3.

33.

g 1
Alternating Series Test, we see that b, = \/_

converges. Thus, 2( 1)* 1n

n=

n-1/3

n=1

is conditionally convergent.

> 0, {ba} is decreasing, and Jim by =0, so the series Z( —1)"~

n—1/3

n=1

1 2
2[(1+I+ o +€

(@ 2012 Cengage Leamning. All Rights Reserved. May not be

+

$4 1 IZ
erimantl £ B A ST

3r

ang1| _ [(=1)" (n+2)3"H" ikl _n+2 3 _1+(2/n) 3 3 _
a= |iE ‘ 02n+3 (-7 (n+1)3"| n+ 12 1% (1/n) 4 1 < 1. a8 . — 0o, 50 by the Ratio
oa (_1\" n
Test, El ﬂ{gﬁi is absolutely convergent.
) (—3)"_1 " § (_3)1'1—1 _ oo (_3)?1—1 _l i (_3)11—1 l io: _§ n—1 l 2}
n=1 23" n=1l (23)" =1 81‘1 8n=1 81':—1 81»'.;=1 8 8 1—(—3/8)
-3 8. .1
T
& -1 T T (e
. Y [tan™'(n+ 1) —tan" ' n] = lim s,
n=1 n—00
= nﬁ_{&[(tan‘l 2—tan™' 1)+ (tan™' 3 — tan™'2) + -+ + (tan™'(n + 1) — tan~* n)]
= lim [ftan~'(n+1) —tan '] =F - =%
2 3 4 oo 1) oo n n
— 6__6_ G__ — e__... (—G) o —e _-r_wCL'
l—etgr—5ta L =00 g, S = sl d™ = 3, “r Tnalla
P P T T i
coshz = "2-(6 +e7 ) = Q(ﬂg = +n£=:o_n_!_)

3 .‘154
+u

T

d, copied, or dupli

—1la42 £+2 “’—4+ =142 &5 2ﬂ>1+12 for all
=3 2 2 27 T 2 En) grc LR
. B (=1)F o ¥ . X 1 1 1 1 1
W ,1;1 w5 1733V 323 o021 T3 76 16,807 32768
i 1 _ 1 o) ( 1)w+l 7 ( l)n+1
Since by = =7 = 32768 < 0.000031, nz=)1 nz=)1 ~ 0.9721.
37 i L =] i _ - 0.18976224. To estimate the error, note that . h ind i
P n ¥ g T . s B 5_"’So,t e remainder term is
Re=PR_1l pl_ 15 =6.4%10~7 [geometric series with @ = & and r = 1
8_n=92+5n "=95n_1_1/5_ 8 4 C SEerics wi ﬂ'.—gg—ﬂn ‘T’—E].
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i 2 5 (n : )ﬂ" % n+1
39. Use the Limit Comparison Test. lim % = lim = lim (1 + =120,
n—0C n n=—00 Ti=—00

41.

Since 3 |an| is convergent, sois 3 ‘ (n , by the Limit Comparison Test.

o5 1)
An

= iy Ja - 22 _n4™ 1 _ lim n Jz4+2]] _ |z+2|
T oo [(R+1)4rH |z 2% | T moee |41 4 | 4

An+1
an

lim
L= OO

<l & |z+2|/<4s0R=4.

271
lz+2/<4 & -4<z+2<4 & —6<z<2Ifz=-6, thcnthesenesz:T)becomes
n=1

oo - n
= b ( ;) , the alternating harmonic series, which converges by the Alternating Series Test. When z = 2, the
n=1

2
[}
-

series becomes the harmonic series —:i, which diverges. Thus, I = [—6, 2).

n=1

o ewa] o 2@ =8 VB | o e nt3 . e
.nh_{rgo o —nlirgo = Tz —3)" = 2% 3|nan(1” +4—2|:.r: 3|<1 & |z-3|<3,

‘ ' ":1:—3"
soR=1.|z-3|<3 & .—%<a:—3<% & 2<z<iForz =%thesenesz ( ) becomes

n=1 VAl

f: 1 = i L, which diverges [p = 7_1,- < 1], .but forxz = -g-, we get f: =4 , which is a convergent
n=0 VTL+3 n=3 nl/2 . n=0 vV +3
alternating series, so I = [§, 1).

n f(n) (z) £ (%)

0| sinz =

1 cosT 32@

2| —sinx —%

3| —cosz —ﬁgﬁ

4 sinz %

sne= )+ (5) e~ 5) +

.6 2

o (O T P (R (e

1 = | \2n \/3_, o n 1 m\2n+l
=35V Gay (x“E) +5 LV G (”’"E) '

(x_z)%,%( vf)uim_@( 25 o

Ll SRR ()<l 5 2= S () e witiR=1
o 7 o e e e P R - '

1+$ n=0
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49, ] dz = —In{4 — ) + C and
44—z
1 1 1 1 :c 1B a
[eme-i[rme-1 [ E@ «=1/EF -4,§0m+0~50
1 e Iﬂ+1 . oo m’"-"‘l
h(4_x)=~2,§um+c=_r§om v§1 +C' Puttingz = 0, we get C' = In4.
_Thus, f(z) =In(4—2z) =Ind — E ——. The series converges for |z/4| <1 & |z <4,s0 R=4.
Another solution:
In(4 — ) = In[4(1 —2/4)] =In4 + In(1 — z/4) = In4 + In[1 + (—z/4)]
—ind+ 3 (-1 [omTable 1] =lnd+ 3 (<1 T _ g 2 E
n=1 n n=1 n4n n=1 n4n
( I)n 2n+1 ) i co (_l)n ($4)2“+1 oo (*1)" $8ﬂ+4 )
— A = = e h I SR
51. sinz = ngo @nt 1) sin{z*) 3;;0 G 1)1 X nr for all z, s0 the radius of
convergence is co.
1 1 1 1 1, —1/4
8. f(z) = - = = -—(lg——-:z:)
Vi6—z  {16(1-2/16) Y16(1— %a2)/* 27 1
_1 N oy, gy oy (D ERy 29
=3 H( 4)( i %) * 3l (o) *
1, =159 (4n-38) , 1, 6 &1.59-(4n—3) ,
=3t S mae °- 37X o ]
for|—-1—|<1 & |z| < 16,50 R=16
e x 7 n—1 n—1 n—1
. oo e___ f.l'?_ _ o g " T _-]—_ oo 3
e nz=:0 l’so - nZ—:()n n=0 n! - +r§1 n! _m+nz=:1 n!- e
/—dm—C+MImI+§1n —
S7. (@) VoD@ =1+ 22 e-1)- L1+ 3/3 (@ —1Y3
n| @ | 10
0 z1/2 1 :1+5(m71)—§(m—1)2+ﬁ(m—1)3
1| 3272 3
2 | —3z7%2 -3 \
3| 8x5* E
4 | B2 18
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M y
(b) (c) |Rs (z)) < e 1|*, where ‘f{*) (m)| < M with
fN2) = —L2 2 Now09<z <11 =
-01<z-1<01 = (z-1)*<(0.1)"%
" and letting z = 0.9 gives M = 15 s
= = 16(0.9)72° *°
| Ra(2)] < ——o— (0.1)" ~ 0.000 005 648
= T6(0.9)72 41
72 0.000 006 = 6 x 10~°
(d) 5% 107" \
From the graph of | R3(z)| = |/= — Ts(x), it appears that
the error is less than 5 x 10 on [0.9, 1.1].
= |Ry(x)|
09 11
0
B o il 3% i ; Con? o el
Rsmz= 2 W Gariyp = @ tg @t oesms-s=—gity-mt o

sinz — 1 22 gt . sinz—a2 1 2? z* 1
T3 _-.+_4_.+”"Thus}:]—%T_.hm(—§+l_2—67m+m) 6

B f@) = 3 ena® = f(=2) = 3 eal—a)" = 3 (<) cua”

n=0 n=0 n=0

n={0 n=0

= =] o0
(a) If f is an odd function, then f(—z) = —f(z) = Y (—1)"e.a™ = 3 —caz™. The coefficients of any power series

are uniquely determined (by Theorem 11.10.5), so (—1)" ¢, = —¢q.

Ifniseven, then (—1)" = 1,50¢c, = —ca . = 2¢, =0 = ¢, = 0. Thus, all even coefficients are 0, that is,
g =tg=eg=+»=1{k '
(b) If f is even, then f(—z) = f(x) = Z (- Z cat” = (~1)"ei =10x:
' n=0

If nisodd, then (—1)" = —1,50 —¢ch, = ¢n = 2¢, =0 = ¢, = 0. Thus, all odd coefficients are 0,

thati5,01=C3=C5=---=0_
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1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that f ("](0) occurs in the

3 5
coefficient of ™ in the Maclaurin series of f. We start with the Maclaurin series for sin: sinz =z — %]- 4 % =

é ) 16 (15)
e Ay o8 B & Foni ig .. £ (0)_l 3

Then sin(z”) = z 3 4 =] , and so the coefficient of =™ is T Therefore,
!

Fé80) = 15—51 =6-7-8-9-10-11-12-13- 14 - 15 = 10,897,286,400.

— tan?
3. (a) From Formula 14a in Appendix D, with z = y = 0, we get tan 26 = 1—3%, so cot 26 = 12—;:;179
1- tanQ 6 o 1 1 1
2cot 20 = S — cot @ — tanf. Replacing # by 52, we get 2 cot = cot 5z — tan 3, or

tan 2z = cot 32 — 2cot z.

; z . ; T z T ; = 1 T .
(b) From part (a) with gnT i place of z, tan == cot o 2cot 1?50 the nth partial sum of %~ o tan o 1S
n=1 :
fauiic tan(z/2) % tan(z/4) + tan(z/8) e tan(z/2")
- 2 4 8 2w
_ cot(x/2) Y () cot(z/4)  cot(z/2) 4 cot(z/8)  cot(z/4) T
2 4 2 8 4
ot gn t (1 2n—1 ) - i

s [m (zmn/ - (27:1/_1 )] = —cotz+ % [telescoping sum]

cot(x/2")  cos(z/2") _ cos(z/2") z/2" 1 .on 1 , "

Now o = Frsin(z/27) - Sin(z/27) - ifp — asn — oo since z/2" = 0

for z # 0. Therefore, if z # 0 and = # kw where k is any integer, then

' >, it'.an£“= lim s, = lim (—cotm—i—icoti) =—ccot:t;+l
T

—2n 2 n—oo n—00 PAL o

If # = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

Sp = 3 én =1
L of the side length at the ding stage. Writi d £, for the
3 of the side length a preceding stage. Writing sg and £o PRp——— 0 =1/3
number of sides and the length of the side of the initial triangle, we gy =Fd® | o= 1/32
generate the table at right. In general, we have s, = 3 - 4" and s3=3-4% | &5 = 1/33
£y = (3)", so the length of the perimeter at the nth stage of construction

iS P = 8nln =347 ()" =3 (&)™
qn AN
(b)p,‘:ﬁ::i 3 3 Smce§>1,pﬂ—'ooasn—-»oo.

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let a be the area of the original triangle. Then the area a,, of each of the small triangles added at stage n is
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Un =@ - Qin = gin Since a small triangle is added to each side at every stage, it follows that the total area A,, added to the
. nei @ 41t

figure at the nth stage is Ap, = $n—1-an =3-4"7" . 7 =% 3 Then the total area enclosed by the snowflake
o 1 4 42 $ -

curveis A=a+ A1+ A2+ As+- - =a+ta- §+a-3—3+a-§§+a--,D—;.;+---.Aﬁertheﬁrstterm,thnsnsa

geometric series with common ratio %, so A= a+ la/ 34 =a+ % . g = 8?0,' But the area of the original equilateral

—4 :
triangle with side 1 is a = % -1 sin% = ? So the area enclosed by the snowflake curve is g . ? = 2—‘5/§

7. (a) Let a = arctan z and b = arctany. Then, fro_m Formula 14b in Appendix D,

o tana — tanb tan(arctan z) — tan(arctan y) T—y
a— = = —_
1+ tana tanb 1+ tan{arctanz)tan(arctany) 1+ zy
Now arctan x — arctany = a — b = arctan(tan(e — b)) = arctan lx-lj Y since S <a-b< 3%
Ty
(b) From part (a) we have
120 1 28,561
arctan 15 — arctan 53z = arctan . +9w 231 = arctan 5355 = arctanl = I
119 " 239 28,441
. . x4y
(c) Replacing y by —y in the formula of part (a), we get arctan x + arctany = arctan l_f-'n_y So
L gD
darctan 3 = 2(arctan § + arctan ) = 2arctan i 5_ 1 "é = 2arctan & = arctan 3 + arctan
! 55
—_ t % A % t 120
= arctan m = arctan 119
1z " 12
Thus, from part (b), we have 4 arctan + — arctan 2%9 = arctan }fg arctan 5-153 =I.
g 5 2 2 27 2% M
(d) From Example 7 in Section 11.9 we have arctanz =2 — —+ — ——+ ———=——++--,50
3 5 7 9 11
1 1 1 1 1

+

11
i e " =
ML= TR B B o ILaE

5
This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between g5 and Ss,l that is, 0.1973955660 < arctan-é— < 0.197395562.

(e) From the series in part (d) we get arctan ﬁ = % - ﬁ + 5—;'393 — ---. The third term is less than

2.6 x 10713, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan ﬁ /2 52 = 0.004184076. Thus, 0.004184075 < arctan m < 0.004184077.

(f) From part (c) we have = = 16 arctan - — 4arctan 555 239 , S0 from parts (d) and (e) we have

. 16(0.197395560) — 4(0.004184077) < w < 16(0.197395562) —4(0.004184075) =
3.141592652 < 7 < 3.141592692. So, to 7 decimal places, m = 3.1415927.
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= 1
9. We start with the geometric series 3, z" = I

, |z| < 1, and differentiate:
n=0 -I

n=0 11—z =1 n=1

St £ f:a:“ = b . = 1 forlz| <1 = iﬂ"_ io: o SN .
" & T dz e ik it

for |z| < 1. Differentiate again:

© ,.._d _z _(1-gf-z-21-g)(-1) _ z+1 = 4. P4z

P e T-ap ST T AT T Umep

i nign—1 — d 24z 3= 2)3(2z 4 1) — (2? + 2)3(1 — 2)*(-1) _ z? +4z+1

n=1 dz (1 - a")a (1 - "‘U)ﬁ d (1 - m)d

o0 3 2

¥ izt = m_(—{-timT)j—w, || < 1. The radius of convergence is 1 because that is the radius of convergence for the
n=1 .

geometric series we started with. If - = k1, the series is 3 n®(£1)", which diverges by the Test For Divergence, so the

interval of convergence is (—1, 1).

1. ln(l - %) = 1:(%) ;m%‘;ﬂ =[(n+1)(n — 1)] — Inn?

=In(n+1)+In(n—1)—2Inn =In(n —1) —lnn—lnn+ln(n+1)-

n—l_ n
n+1"

=1nnT_1—[lnn—1n(n+ 1)] = In

n—1 n
—In
mn

Let sy = iln(lw 1): Zk: (ln

n=2 n? n=2

1) for k > 2. Then

1 2 2 3 -1 k 1 k
== —_—— —_ ]_ﬂ—— _ e --—-——--1[‘1—- == —_—— —_—
Sk (].n2 ].u3>+( 3 ln4)+ +<1n E k—}—l) 1n2 lnk+1,so

L 1 y " al k 1
z Ln(l—;i) _kl—lELOSk_k]iIEo (lni—lnk—_‘_l) —1115—]111—]_01—].112—].[1].:#11'12.

13. (a) 1 The x-intercepts of the curve occur wheresinz =0 < = = nr,

n an integer. So using the formula for disks (and either a CAS or
0 40 sin®2 = (1 — cos2z) and Formula 99 to evaluate the integral),

the volume of the nth bead is

—2/10

-1 Ve=m (';_"_1),,(3 sing)?dz =7 (':ii), e */5sin’ r dz

s 25[?]# (e—(n—l}'rr/.S — c—nvr/ﬁ)

(b) The total volume is

o0 . o0
m [ e /% sin zdz = 21 Vi = 280n E] [e=(-Dm/8 _ g=nm/5) = BIx  [ielescoping sum].
n= n=

Another method: If the volume in part (a) has been written as V,, = Z3%e—""/5(¢™/5 _ 1) then we recognize f: Vi

101
- n=1

as a geometric series witha = 202 (1 —e~™/%) and r = e "/5.
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15. 1 L is the length of a side of the equilateral triangle, then the areais A= 3L - 2L = ¥31? and so L? = %A,

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that

L
L=v3r+r+n-2)2r)+r+V3r=r(2n—-2+2v3),s0r = —————— .
= ( ) 2(n++v3-1)
The number of circlesis 1 + 2+ -+ n = @, dnd so the total area of the circles is
2

A, =n(n+1)m_2=n(n+1)w L .

2 2 4(n++/3-1)

n(n+1) . 4A//3 _ nn+1) 7wA

2 4(n+\/§-1)2 (n+\/§—1)22\/§

An . n(n+1) ™
A (n+v3-1)"2V3
_ 1 + 1/n T T asm— 00
1+ (V3-1)/n]" 2 V3 2V3
17. As in Section 11.9 we have to integrate the function 2“ by integrating series. Writing 2™ = (&' *)® = ¢*'™7 and using the
oo (- n 0o it n
Maclaurin series for €%, we have z° = (¢ *)* = ¢*"* = ¥ M =3 % As with power series, we can
n=0 ® n=0

Yoo 3 & 1 2™(ln w)

integrate this series term-by-term: / 2t idn = E —_ Z z"(lnz)" dz. We integrate by parts
0 n=0 . n=0T0
n—1 1
withu = (Inz)", dv = z" dz, so du = z’—J'Lln—a:)—a!mand'u = :'+ 77 «
: b

1_n' - 1 " " ) 1 " 1 1 5
fo % lan) da= U, ), vl de= Al {n-u(l”) ]t_glﬂﬂﬂ n+1

1
/ z"(Inz)" " da
0

(where I’'Hospital’s Rule was used to help evaluate the first limit). Further integration by parts gives

z"(Inz)" " da

=0—

n
n+1

1 . 1
f z"(Inx)* do = e 2™ (In2)* " dz and, combining these steps, we get
0 n+1/

ki ng_ (=1)a 1o, (=1)"nl
/l; z"(Inz) dz__—(n-i-l)“j(; & dm———(n+1)n+1

1 @ o n i | (_1)nnl . — (_l)n o = (fl)n_l
fy o= B [ o dx—EaW—ZW—E—'

=0 n=0

+1
19. By Table 1 in Section 11.10, tan~' 2z = E (—1 )’1 T 1 for |z| < 1. In particular, for z =
=0

" _ ont (L N R
e = (35) = B0 = £ () Jemee
6

e B & 1 & _ (=N it L o_x_=) 7
Lo 3n§0(2n+1)3"'2‘/?—’,?;0(2n+1)3n 2‘/_(H,:;l(2n+1)3ﬂ) i n§1(2n+1)3ﬂ"'2\/§ %

sl
=
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z ¢ & 2t

Let f(x) denote the left-hand side of the equation 1 + + =5+ +---=0.1fz >0, then f(z) > 1 and there are

AT te T E

no solutions of the equation. Note that f(—z?) =1 — ﬁ -t % - + BT =cosz. The solutions of cosz = 0 for

2
x < Oare givenby z = % — wk, where k is a positive integer. Thus, the solutions of f(z) =0 are z = — (-725 = wk) , where
k is a positive integer.

Call the series S. We group the terms according to the number of digits in their denominators:

S= (F+3+--+i+s) + [+t + (F@rtocta@) +oo

g1 g2 g3
Now in the group gn, since we have 9 choices for each of the n digits in the denominator, there are 9™ terms.

Furthermore, each term in gn is less than st [except for the first term in g1]. So g» < 9" - =T = 9(%)“"1,

o0
Now 3 9(%)"-1 is a geometric series with @ = 9 and r = {5 < 1. Therefore, by the Comparison Test,

n=1
o = n—1 )
S=3 9n< L 9(%)" = 1=om =90.
3 8 9 4 7 10 2 5 8
T xT T T T T €T T T
’LL—1+E+'6—!+ﬁ+"',v—$+1Tfﬁ+m+"',w—i+ﬁ+§+"'

Use the Ratio Test to show that the series for v, v, and w have positive radii of convergence (co in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate cach of these series:

du  3z° 62° 978 ¢ 25 2B

& 8 TeTwresgtgtgto=y
o d'U $3 zﬁ I9 dw 2’.'4 174'7 mlO
Simllar]y,—dm—.-1+—3l+—6!+—91+---—‘u,8nd—d:z—$+—4!+—7!+TO!+'--=U.

So u' = w, v' = u, and w’ = v. Now differentiate the left-hand side of the desired equation:
%(u3 +07 + uw® = Buvw) = 3ulu’ + 3?0’ + 3w’ — 3(u'vw + w'w + uvw')
= 3uw + 3v’u + 3w — 3(vw® + w4+ w?) =0 =

u® +v* + w® — 3uvw = C. To find the value of the constant C, we put = = 0 in the last equation and get

1P4+0°4+0°-31-0-00=C = C=1,s0u*+0*+w® —3uww=1.
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121 Three-Dimensional Coordinate Systems

1. We start at the origin, which has coordinates (0, 0, 0). First we move 4 units along the positive z-axis, affecting only the
z-coordinate, bringing us to the point (4, 0, 0). We then move 3 units straight downward, in the negative z-direction. Thus

only the z-coordinate is affected, and we arrive at (4,0, —3).

3. The distance from a point to the yz-plane is the absolute value of the z-coordinate of the point. C(2, 4, 6) has the z-coordinate
with the smallest absolute value, so C'is the point closest to the yz-plane. A(—4, 0, —1) must lie in the zz-plane since the

distance from A to the xz-plane, given by the y-coordinate of A, is 0.

5. The equation = + y = 2 represents the set of all points in z
——-—’"'—f’—’::-——y =2—x
R? whose z- and y-coordinates have a sum of 2, or
equivalently where y = 2 — z. This is the set L5 y=2—x2=0
Bt 4
{(z,2 — z,2) | z € R, z € R} which is a vertical plane 7;;‘/—'-“2-<..;
2
that intersects the zy-plane in the liney = 2 — z, 2 = 0. x#] V/J
T

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

IPQI =T3P +[0 - (2P +[1 - (3P =vI6+4+16=6
QR = A7+ (20 + (1 -1)2=+/36+4+0=+40 = 2/10
|RP| = /(83—-1)2+(-2-22+(-3-12=V4+16+16=6

The longest side is QR, but the Pythagorean Theorem is not satisfied: |P@Q|* + |RP|* # |QR|*. Thus PQR is not a right

triangle. PQR is isosceles, as two sides have the same length.

9. (a) First we find the distances between points:

|AB| = /(3-2)* +(7T—-4)*+(-2-2)?=v26
IBC|=/I-3+@B-12+B-(—2P=v4=3V5
[AC| =/(1-22+(3—-4)2+(3-2)2=+3

In order for the points to lie on a straight line, the sum of the two shortest distances'must be equal to the longest distance.

Since V26 + /3 # 3+/5, the three points do not lie on a straight line.
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(b) First we find the distances between points:

|DE| = /1 -0 +[-2— (-5)F + (4 -5 = V1T
|BF| = VB-1F T - (2P + G- 4F =V =2vTI

|DF| = /B=02+[d— (-5 +(2-5)2 = V89 =311
Since |DE| + |EF| = | DF)|, the three points lie on a straight line.

11. An equation of the sphere with center (—3,2, 5) and radius 4 is [z — (—3)]* + (y = 2)> + (z = 5)* = 4% or
(z+3)% + (y — 2)* + (z — 5)* = 16. The intersection of this sphere with the yz-plane is the set of points on the sphere
whose -coordinate is 0. Putting = = 0 into the equation, we have 9 + (y — 2)* + (z — 5)° = 16,z = O or

(y —2)* + (z — 5)* = 7, = 0, which represents a circle in the yz-plane with center (0, 2, 5) and radius /7.

* 13. The radius of the sphere is the distance between (4,3, —1) and (3,8,1): 7 = \/(3—4)2 + (8 — 3)2 + [L — (— 1) = /30.

Thus, an equation of the sphere is (& — 3)* + (y — 8)* + (z — 1)* = 30.

15. Completing squares in the equation 22 + 4% + 2% — 2z — 4y + 8z = 15 gives
(2 =2+ 1)+ () —dy+4)+ (22 +82+16) =15+1+4+16 = (z—1)>+(y—2)> + (2 +4)* = 36, which we
recognize as an equation of a sphere with center (1, 2, —4) and radius 6.

17. Completing squares in the equation 2z — 8z + 2/® + 22% + 24z = 1 gives
2z® —dz+4)+2° +2(z* +122436)=1+8+72 = 2z-2+27+2(z+6)*=81 =

(z—2)® + 4 + (2 + 6)* = 8, which we recognize as an equation of a sphere with center (2,0, —6) and

radius /3 = 9//2.

19. (a) If the midpoint of the line segment from Pi(z1,y1,21) to Pa(z2,y2,22) s Q = (ml T2 ity itz ),

g 2 v B
then the distances | P, Q| and | P»| are equal, and each is half of | P, P;|. We verify that this is the case:

|PLPs| = /(22 — @1)" + (g2 — 12)? + (22 — 21)?

P1Ql = y/[3 (@1 +22) — 22" + [$n +v2) — 1] + [3(1 + ) — ]

= /(322 — £21)* + (3uz — 411)* + (322 — §2)?

- \/(%)2[(:22 —z1)’ + (W2 — 1) + (22— 21)2] = %\/(Iz —z1)* + (v2 —11)* + (22 — 21)*
=3 |P.Py| '

'
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IQP2| =3 x/{mz — %(331 +$2)]2 + ['yz — i+ yz)]2 +[z2— 3(= -t-22)]:2

=4/ (32 - %m)z + (32 — %‘L’l)g + (322 — %::1)2 = \/(%)2 [(z2 —21)* + (y2 —11)* + (22 — z1)%]

=3y (@2—21)* + (g2 - n) +(z22—2) =3 |PP|
So @ is indeed the midpoint of Py P,.

(b) By part (a), the midpoints of sides AB, BC and CA are Py (—3,1,4), P2(1, 3,5) and P3(£, 2,4). (Recall that a median

of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths of the medians are:

APy = /02 + (3-2)" +(5-3)" = /3 +4= /2 = §

BRI = (3427 + (3 + 457 = /B +T+1= /% = 400

|ICPh| = \/(—%—4)2+(1‘—1)9+(4—5)2 =/8+1=3/8
21, (a) Since the sphere touches the zy-plane, its raaius is the distance from its center, (2, —3, 6), to the 2y-plane, namely 6.
Therefore r = 6 and an equation of the sphere is (z — 2)* + (y +3)* + (z — 6)? = 6% = 36.
(b) The radius of this sphere is the distance from i.ts center (2, —3, 6) to the yz-plane, which is 2. Therefore, an equation is
(z—22+@w+3)>2+(z—6)° =4
(c) Here the radius is the distance from the center (2, —3, 6) to the zz-plane, which is 3. Therefore, an equation is
(-2 +(u+3)"+(z-6)"=09.
23. The equation z = 5 represents a plane parallel to the yz-plane and 5 units in front of it.
25, The inequality ¥ < 8 represents a half-space consisting of all points to the left of the plane y = 8.

27. The inequality 0 < z < 6 represents all points on or between the horizontal planes z = 0 (the zy-plane) and z = 6.

29. Because z = —1, all points in the region must lie in the horizontal plane z=-LIn addition, 2% + y* = 4, so the region

consists of all points that lie on a circle with radius 2 and center on the z-axis that is contained in the plane z = —1.

3

4

. The inequality z° + y* 4+ 2® < 3 is equivalent to \/z2 + y2 + 22 < /3, so the region consists of those points whose distance

from the origin is at most /3. This is the set of all points on or inside the sphere with radius +/3 and center (0, 0, 0).

33, Here 22 + 22 < 9 or equivalently v/z2 + 2% < 3 which describes the set of all points in B? whose distance from the y-axis is
at most 3. Thus, the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with

axis the y-axis.
35. This describes all points whose z-coordinate is between 0 and 5, that is, 0 < & < 5.

37. This describes a region all of whose points have a distance to the origin which is greater than r, but smaller than R. So

inequalities describing the region are 7 < /22 + y2 + 22 < R, orv? < z? +y* + 2% < R%.
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39. (a) To find the - and y-coordinates of thcf point P, we project it onto Lz
and project the resulting point (Q onto the z- and y-axes. To find the
z-coordinate, we project P onto either the zz-plane or the yz-plane
(using our knowledge of its z- or y-coordinate) and then project the
resulting point onto the z-axis. (Or, we could draw a line parallel to

QO from P to the z-axis.) The coordinates of P are (2,1,4).

(b) A is the intersection of Ly and Lo, B is directly below the

y-intercept of La, and C is directly above the z-intercept of La.

41, We need to find a set of points { P(z,y, z ||AP| |BP|}.

Vie+1)2+(y—-52+(z—-3)2 = \/(1: 6)2+(y 224+ (z2+2)2 =

+1P+y-5)+(2—32 = (-6 +¥—-27+(2+2)?® =

e+ 2414y 10y +26+22 —624+9=22~120 4+ 36+ 4> —4y+4+22+42+4 = 14z —6y—10z=09.
Thus the set of points is a plane perpendicular to the line segment joining A and B (since this plane must contain the

perpendicular bisector of the line segment AB).

43. The sphere 2 + 3 + 2 = 4 has center (0, 0, 0) and radius 2. Completing squares in z> — 4z + 3 — 4y + 2* — 4z = —11
gives (2 —dz+4) + (VP —dy+ ) + (" —4dz+4) = -11+4+4+4 = (-2 +(y—-22+(z-2)%=1,
so this is the sphere with center (2, 2, 2) and radius 1. The (shortest) distance between the spheres is measured along

the line segment connecting their centers. The distance between (0,0,0) and .(2, 2,2) is

V(2 =002+ (2-0)2 + (2— 0)2 = V12 = 2/3, and subtracting thé radius of each circle, the distance between the

spheresis 2v/3 -2 —1=2+/3 —3.

12.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given
location.
(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.
(d) The population of the world is a scalar, because it has only magnitude.
3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry, of the

—_ — — — — —

parallelogram as a guide, we see that AB DC,DA=CB,DE = EB, und EA CE
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. —
7. Because the tail of d is the midpoint of QR we have QR = 2d, and by the Triangle Law,

a+2d=b = 2d=b-a

c=b-—d=b- (b~ 1a) = la+ib.

9.a=(3—(-1),2-1)=(4,1)

13. a=1{2-0,3-3,-1—1) =(2,0,—2)

Al0,3,1)

17. (3,0,1) + (0,8,0) = (3+ 0,0+ 8,1+ 0)
= (3,8,1)

(@ 2012 Cengage Leamning. All Rights Reserved. May not be

d, copied, or dupli

M.a=(2—(~1),2—-3) = (3,-1)

¥
A(-1,3) |
\3(2'.2)
0 X
a

15. (=1,4) + (6,—2) = (—1 + 6,4 + (—2)) = (5,2)

y

(6,—2)

(7lr 4)
(5,2)

d. or posted to a publicly accessible website, in whole or in part.

O

= d=(b—a) = 3b— 1a. Again by the Triangle Law we have ¢ + d = b so
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19. a+b = (5+(—3),—12+ (—6)) = (2,—18)
%2a + 3b = (10, —24) + (—9, —18) = (1, —42)
la| = /BT F (—12)7 = /169 = 13
la—b|=[{5 = (=3),—12 — (—6))| = |(8,—6)| = /8% + (—6)* = V100 =10

N at+b=(>(1+2j-3k) +(—2i-j+5k)=—i+j+2k
2a+3b=2(i+2j-3k)+3(-2i—-j+5k)=2i+4j—6k—6i—3j+15k=—4i+j+9k

la| = /T2 +2% + (=3)% = V14
la—b|=|(i+2j—8k) — (~2i—j+5k)| =[3i+3j—8k| = /37 + 32 + (-8)% = /B2
23. The vector —3 1 + 7j has length |—-3i+ 7j| = \/(=3)% + 72 = /58, so by Equation 4 the unit vector with the same

direction is = (—3i+73) =

V58

25, The vector 81 — j + 4k has length |81 — j +4k| = /8% + (—1)? + 4% = /81 = 9, so by Equation 4 the unit vector with

3 . y A
V58 8)

the same direction is (81 —j+4k)=3i— i+ 3k

2. Y From the figure, we see that tan ) = \/T;'?; =3 = = 60°.
i+3)
V3
! o
0 1 x
29. From the figure, we see that the z-component of v is g
vy = |v|cos(m/3) = 4. 3 = 2 and the y-component is
vz = |v|sin(w/3) =4 H‘gj = 2+/3. Thus o/ 1
U
v = (u1, ) = (2,2V3). ‘ ol
5 4
0 vy X
31. The velocity vector v makes an angle of 40° with the horizontal and
has magnitude equal to the speed at which the football was thrown, o E
From the figure, we see that the horizontal component of v is i
40° d

|v| cos40° = 60 cos 40° ~ 45.96 ft/s and the vertical component

is |v| sin 40° = 60sin 40° ~ 38.57 fi/s.

(©) 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or dupticated, or posted to a publicly accessible website, in whole or in part.
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33. The given force vectors can be expressed in terms of their horizontal and vertical components as —300 i and
200 cos 60° i + 200sin 60° j = 200(3) i+ 200 (%—T) j =100i+ 100 v/3j. The resultant force F is the sum of

these two vectors: F = (=300 + 100) i+ (04 100+/3 ) j = —200i + 100v/3 j. Then we have

|F| = \/(—200)2 + (100 \/5)2 = /70,000 = 100 /7 ~ 264.6 N. Let 6 be the angle F makes with the

positive z-axis. Then tanfl = 12‘;8{? = —--—? and the terminal point of F' lies in the second quadrant, so
6 =tan™* (—%) + 180° ~ —40.9° 4 180° = 139.1°.

35. With respect to the water’s surface, the woman’s velocity is the vector sum of the velocity of the ship with respect

to the water, and the woman’s velocity with respect to the ship. If we let north be the positive y-direction, then
v = (0,22) + (—3,0) = (-3, 22). The woman’s speed is |v| = /9 + 484 ~ 22.2 mi/h. The vector v makes an angle

with the east, where § = tan ™" (%) ~ 98°. Therefore, the woman’s direction is about N(98 — 90)°W = N8°W.

37. Let T and T'; represent the tension vectors in each side of the ' 8m

clothesline as shown in the figure. T; and Tz have equal vertical

components and opposite horizontal components, so we can write

8 ; : P ; b 0.0
Ti=—ai+bjand T2 = ai+bj [a,b > 0]. By similar triangles, e TB = a = 50b. The force due to gravity

acting on the shirt has magnitude 0.8¢g ~ (0.8)(9.8) = 7.84 N, hence we have w = —7.84 j. The resultant T + T
of the tensile forces counterbalances w,s0 T; +To = —w = (—ai+bj)+ (ai+bj) =784 =
(—50bi+bj) + (50bi+bj) =20 =784 = b= 3‘2—84 = 3.92 and a = 50b = 196. Thus the tensions are
T, = —ai+bj=—196i + 3.92jand T2 = ai + bj = 1961+ 3.92j.

Alternatively, we can find the value of # and proceed as in Example 7.

39..(a) Set up coordinate axes so that the boatman is at the origin, the canal is ¥4

bordered by the y-axis and the line x = 3, and the current flows in the direction

of steering
negative y-direction. The boatman wants to reach the point (3, 2). Let 6 be 3.2
the angle, measured from the positive y-axis, in the direction he should ~ 5

true
steer. (See the figure.) - , course
0 3 x

In still water, the boat has velocity v, = (13sin#, 13 cos #) and the velocity of the current is v, (0, —3.5), so the true path
of the boat is determined by the velocity vector v = v; + v. = (13sin 8, 13 cos § — 3.5). Let ¢ be the time (in hours)

after the boat departs; then the position of the boat at time ¢ is given by ¢tv and the boat crosses the canal when

tv = (13sinf,13cos0 — 3.5} t = (3, 2). Thus 13(sinf)t =3 = and (13cosf — 3.5)t = 2.

t= —
13sin @
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41,

47,

Substituting gives (13 cosf — 3.5) E—gin—e =2 = 39cosf —10.5=26sind (1). Squaring both sides, we have

1521 cos® @ — 819 cosf +110.25 = 676sin” 6 = 676 (1 — cos” 6)
2197 cos® 0 — 819 cos 6 — 565.75 =0

The quadratic formula gives

819 + /(—819)% — 4(2197)(—565.75)
N -2(2197)

os 0

819+ /5642572
- 4394

The acute value for  is approximately cos™ (0.72699) = 43.4°. Thus the boatman should steer in the direction that is

= 0.72699 or — 0.35421

43.4° from the bank, toward upstream.

Alternate solution: We could solve (1) graphically by plotting ¥y = 39 cos @ — 10.5 and y = 26 sin @ on a graphing device

and finding the appoximate intersection point (0.757, 17.85). Thus 6 =~ 0.757 radians or equivalently 43.4°.

(b) From part (a) we know the trip is completed when ¢t = -B_:ﬂ But 8 = 43.4°, so the time required is approximately
.

1B3sind3.4° =2 0.336 hours or 20.2 minutes.

The slope of the tangent line to the graph of y = @ at the point (2, 4) is

dy

dr =i

x=2

=4

=2
and a parallel vector is i + 4 j which has length |i + 4 j| = +/12 = 42 = /17, so unit vectors parallel to the tangent line
are £—= (i +4j).

—_  — — L — — — —_— — _— — — —_
. By the Triangle Law, AB + BC = AC. Then AB + BC' + CA = AC + CA,but AC+ CA = AC + (—AC) =0.

—_—F — —
So AB+BC+CA=0.

@), Ty T T T (c) From the sketch, we estimate that s ~13andt~ 1.6.

(dc=sa+th & 7=3s+2tand1l =2s—1t.

: g ; 9 1
Solving these equations gives s = = and t = <.

|r — rg| is the distance between the points (z, y, 2} and (zo, yo, 20), so the set of points is a sphere with radius 1 and

center (xo, Yo, z0).

Alternate method: [r —vo| =1 & /(z—z0)?+ W —w)®+(z—2) =1 &

(z — w0)® + (y — y0)* + (2 — 20)* = 1, which is the equation of a sphere with radius 1 and center (zo, Yo, z0).
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49, a+ (b +c) = (a1,a2) + ({b1,b2) + (c1,e2)) = (ar, a2) + (b1 +c1,b2 + c2)

(a1 + by + €1, a2 + b2 + ¢2) = ((a1 + b1) + c1, (a2 + b2) + ¢2)
(a1 + by, az +ba) + (e1, e2) = ({a1, az) + (b1, b2)) + {c1, c2)
(

=(a+b)+e

—_— = —

51. Consider triangle ABC, where D and E are the midpoints of AB and BC'. We know that AB + BC = AC (1) and
—_— R, —_— i —_— — — — s — —F
DB+ BE = DE (2). However, DB = $AB, and BE = 1 BC. Substituting these expressions for DB and BE into

. — e — . . . . s ey g ==
(2) gives 3 AB + 3 BC = DE. Comparing this with (1) gives DE = 3 AC. Therefore AC and DE are parallel and

57 =4[}

12.3 The Dot Product

1. (a) a - b is a scalar, and the dot product is dcﬁned only for vectors, so (a - b) - ¢ has no meaning.
(b) (a- b) c is a scalar multiple of a vector, so it does have meaning.
(c) Both |a| and b - ¢ are scalars, so |a| (b ¢) is an ordinary product of real numbers, and has meaning:
(d) Both a and b + c are vectors, so the dot product a - (b + ¢) has meaning,.
(e) a - b is a scalar, but c is a vector, and so the two quantities car;not be added and a - b + ¢ has no meaning.

(f) |a| is a scalar, and the dot product is defined only for vectors, so [a| - (b + ¢) has no meaning.

(2]

a-b=(-2,1)(-5,12) = (-2)(-5) + (4)(12) = 10 + 4 = 14

o

.a-b=(4,1,1)(6,-3,—-8) = (4)(6) + (1)(-3) + (3) (-8) =19

T.a-b=(2i+j) - (i-j+k) = (2)(})j(1)(—1) +(0)(1) =1

9. By Theorem 3, a- b = |a| |b| cos§ = (6)(5) cos & = 30 (—3) = —15.
1. u, v, and w are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60° and
u-v =|u||v|/cos60° = (1)(1) (%) = % If w is moved so it has the same initial point as 1, we can see that the angle

between them is 120° and we have u - w = |u| |w|cos 120° = (1)(1)(—3) = —3.

13. (@) i-j=(1,0,0)-(0,1,0) = (1)(0) + (0)(1) + (0)(D) = 0. Similarly, j - k = (0)(0) + (1)}{(0) + (0)(1) = 0and
k-i=(0)(1) + (0)(0) + (1)(0) = 0. .
Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)

iscos§ =0.
(b) By Préperty 1 of the dot product, i - i = |i|*> = 12 = 1 since i is a unit vector. Similarly, j - j = |j|* = 1 and

k-k=k?=1
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15. |a| = /A2 + 3% =5, |b| = /22 + (—-1)2 = V5,and a- b = (4)(2) + (3)(—-1) = 5. From Corollary 6, we have

a-b 5 1 {1 ’
cosf) = —— = ——— = —, So the an, lebehveenaandb156=cos‘1(——) ~ 63°.
allb] ~ 5.+ b . 5
17. |a| = /32 +(—1)2 + 52 = /35, |b| = /(—2)? + 42 + 32 = v/29,anda - b = - (3)(—2) + (~1)(4) + (5)(3) = 5. Then
a-b 5 5
cosB:laHbl:m‘\/z_g:\/ﬁandmeanglebelweenaandblse_cos (W)NBI

19 Ja| = \/42+( 3)2+17 = /26, |b| = /22 + 02 + (-1)2 = v/b,and a- b = (4)(2) + (—8)(0) + (1)(-1) = 7.
a-b 7

7 and&—dos_l(L)"-‘W"
[allb] ~ V26 v5 /130 - Vi,

Then cos 8 =

21. Let p, q, and r be the angles at vertices P, @), and R respectively.
— ——
Then p is the angle between vectors P@ and PR, q is the angle

—_ _— .
between vectors @ P and @R, and r is the angle between vectors

—_— —
RP and RQ. R
PQ-PR (=2,3) - (1,4) 2412 10 i —
Thuscosp = ———~ = = — =——andp= ——— | = 48°, Similarly,
‘ PQI ‘ P RI \/(—2)2 +RVIT+E VBT 221 V221

QP-QR. _ (2-3) (31) __6-3 (3N
QPHQR} VAT0/0+1 VI3vIo \/FS"‘I ('—\/ﬁ)ru?’a and

cosq =

r 7 180° — (48°+ T75°) = 57°.

e e

Alternate solution: Apply the Law of Cosines three times as follows: cosp = - ————
2|PQ| |PE|

P - P&
lPRHQR

P - 7o - o]
.
2[pd] [ex

cos ,and cosr =

23. (@) a-b = (—5)(6) + (3)(—8) + (7)(2) = —40 # 0, so a and b are not orthogonal. Also, since a is not a scalar multiple

of b, a and b are not parallel.
(b) a- b = (4)(—3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).
(©)a-b=(—1)(3)+ (2)(4) + (5)(—1) = 0,so aand b are ofthogonal (and not parallel).
(d) Because a = —% b, aand b are ﬁarallei.

— —t —_— — —=¥ .
25. QP = (—1,-3,2), QR = (4,—2,—1),and QP - QR = —4 4+ 6 — 2 = 0. Thus QP and QR are orthogonal, so the angle of

the triangle at vertex @ is a right angle.
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Leta = a1 i + a2 j + a3 k be a vector orthogonal to bothi+ jandi+k, Thena:(i+j)=0 < a1 +a2=0and
a-(i+k)=0 < a1+as=0,50 a1 = —az = —aa. Furthermore a is to be a unit vector, so 1 = ai + a3 + a3 = 34}
implies a1 = +Jz. Thisa = Jzi— = j— Jskanda = —Z5 i+ J=j+ 5 kare two such unit vectors.
Theline2z —y =3 < y'= 2z — 3 hasslope 2, so a vector parallel to the line isa = (1,2). The line3z +y =7 <
y = —3x + 7 has slope —3, so a vector parallel to the line is b = (1, —3). The angle between the lines is the same as the
angle 0 between the vectors. Here we have a - b = (1)(1) + (2)(—3) = -5, |a| = /17 + 2% = /5, and
a-b —5 -5 1 V2
= /12 4+ (—3)2 = /10,50 cos @ = = = . Thus § = 135°, and the
Ak 0 LalBl =5V 5vE VAo 2
acute angle between the lines is 180° — 135° = 45°.
Thecurvesy =z andy = z° meet whenz® = 2° & 2% —2’=0 & 2%(x—-1)=0 & =z=0,2=1 Wehave
Ed—mz = 2z and %ms = 322, so the tangent lines of both curves have slope 0 at = = 0. Thus the angle between the curves is
::: .
o d d . :
0° at the point (0,0). Forz =1, e = 2and T © = 3 so the tangent lines at the point (1, 1) have slopes 2 and
= o=1
3. Vectors parallel to the tangent lines are (1, 2) and (1, 3), and the angle 6 between them is given by
osg = (LD (L) _ 146 _ 7
I(L,2)] 1(1,3)] V510 5v2
Thus § = cos™* (—7—) ~8.1°
= 5 A
. Since |(2,1,2)] = 4+ 1+ 4 = /9 = 3, using Equations 8 and 9 we have cosa = %, cos # = }, and cosy = 2. The
direction angles are given by o = cos™* () ~ 48°, 8 = cos ' (}) & 71°,and v = cos™! (2) = 48°.
. Since |i—2j — 3k| = v/T+4+9 = /14, Equations 8 and 9 give cos @ = —=, cos § = &, and cosy = \/17‘_4, while
= cos ! (711—4) /2 74°, 8 =cos™! (—%) /R 122°, and ¥ = cos ™! (—-‘—7'31?) =~ 143°,
(e, e, ¢}l = VeZ + % + % = /3¢ [since ¢ > 0], so‘cosa =cosf3 = cosy = B nd
V3 V3
R= =g = cos™! (713) == 55°.
|a] = +/(—5)? + 122 = /169 = 13. The scalar projection of b onto a is comp, b = a‘- [b = 41_'3: a8 4 and the
vector projection of b onto a is proj, b = (%;l—b) % - (-5,12) = (-3, -£).
a'b
|a] = +/9 + 36 + 4 = 7 so the scalar projection of b onto a is compab = " 1(3+12—6) = 2. The vector
projection of b onto a is projab = g\'_:T =2.4(3,6,-2) =% (3.6,-2) = (%, 3%, - %)
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45,

47.

43. |a| = /A 1+ 16 = /21 so the scalar projection of b onto a is comp, b = a‘;T'b sk \/1_ w8 -& while the vector
projectionofbomoaisproj,b=‘/Lz_l%=\/%--ﬁ—_—\)i-z_}-—‘uc=21(21—_]+4k) Zi-Li+4k
(orth,b)-a=(b—projab)-azb-av(proj,b)a:b-a— A |2 ara=b.-a— | |2 |a{ =b-a—a-b=0.
So they are orthogonal by (7).
compab=%=2 < a-b=2|a|=2+10.Ifb = (by,bs, b3), then we need 3b; + 0bz — 1bs = 2+/10.

49,

51.

53.

57.

One possible solution is obtained by taking b1 = 0, b = 0, b3 = —2/10. In general, b = (s,t,3s — 2/10), s,t € R.

The displacement vector is D = (6 — 0)i+ (12 — 10) j -+ (20 — 8) k = 6i + 2 j + 12 k so, by Equation 12, the work done is
W=F D=8i—6j+9k) - (6i+2j+12k) =48 — 12+ 108 = 144 joules. '

Here |D| = 80 fi, |[F| = 30 Ib, and 6 = 40°. Thus
W =TF-D = |F||D|cos & = (30)(80) cos 40° = 2400 cos 40° =~ 1839 ft-b.

First note that n = {a, b) is perpendicular to the line, because if @1 = (a1, b1) and Q2 = (a2, b2) lie on the line, then

—_

n-Q1Q2 = aaz — aar + bba — bby = 0, since aaz + bba = —¢ = aa; + bb; from the equation of the line.
Let P» = (x2,2) lie on the line. Then the distance from P to the line is the absolute value of the scalar projection

- (T2 —z1,y2 — )| _ |awe —ami +bye —bya| _ |azi +byn + ¢

—_—
of PLP; onton. comp,, (P1 Py )

[n] - Va? + b2 T Ve i
since azs + by = —c. The required distance is 1 o [ L }E
VERCE 5

. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1, 1, 1) has vector representation (1,1, 1).
The angle 0 between this vector and the vector of the edge which also begins at the origin and runs along the z-axis [that is,

(1111 1) A (130,[)) e 1

(1,0,0)] is given by cos @ = LD 0.0 — E

= f= cos_1(715) ~~ 55°.

Consider the H—C—H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1,0, 0) and

(0,1, 0) (or any H— C —H combination, for that matter). Vector representations of the line segments emanating from the
carbon atom and extending to these two hydrogen atoms are (1 — 2,0 — 2,0 — 1) = (3,—3,—%) and

(0—3,1-3,0—3) = (—3%,3,—3)- The bond angle, 0, is therefore given by

l’_l‘_l i ___1.,.]_-,_.1. _l_l+_1. 1 .
cos 0 = |éi _i _i;l |((_i i _i§| =4 - 4 = 4 =3 = §=cos ' (—3) ~109.5°
3 T3 T3 313173 3./3
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59. Let a = (a1, a2, as) and = (by, by, by).
Property 2: a- b= (a.1.,(1.2,a.3) . (b], ba, ba) = a1by + azbs + aabs

= bia; + baaz + baaz = (b1, b2, b3) - (a1,a2,a3) =b-a

Property 4: (ca) - b = (ca1,cas, cas) - (b1, b2, bs) = (caa)b1 + (caz)bz + (cas)bs
I — C(G.lb] + asbs + 03b3) = C(a' b) =a1 (Cbl) + a2(Cb2) +a'3(Cb3)
= (al,az,as) £ (Cbl,f-'meb:!) =a- (Cb)

Property 5: 0-a = (0,0,0) - (a1, a2,a3) = (0)(a1) + (0)(az) + (0)(as) =0

61. |]a-b| =||a] |b| cos 6] = |a| |b| |cos §]. Since |cos ]| < 1, |a - b| = |a| |b] |cos 8] < |a] |b].

Note: We have equality in the case of cos @ = =41, s0 @ = 0 or § = T, thus equality when a and b are parallel.

63. (a) The Parallelogram Law states that the sum of the squares of the
lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

(b) |]a+b|*=(a+b)-(a+b)=l|a*+2(a-b)+ |bf*and |a—b|* = (a—b) - (a—b) = |a|> — 2(a- b) + |b[%.

Adding these two equations gives |a + b|? + |a — b|> = 2|a|® + 2 |b|*.

12.4 The Cross Product

123

ij k
0 —2 6 —2| |60
f.axb=([6 0 -2|= = J -+ k
8 0 0 0 D 8

08 O

=[0—(—16)]i— (0—0)j+ (48 —0)k = 16i + 48k

Now (a x b) - a = (16,0,48) - (6,0,—-2) =96 +0—96 =0and (a x b) - b = (16,0,48) - (0,8,0) =0+0+0 =0, so

a x b is orthogonal to both a and b.

ij k
3 -2 1 -2 13
axb=| 13 =2|=|" . |i- 4| s Kk
0 5 -1 5 “1 0

-10 5

=(15-0)i—(5—2)j+[0— (-3)]k=15i —3j+ 3k
Since(axb)-a=(15i—3j+3k)-(i+3j—2k)=15~9—6=0,axbisorthogonal-toa.

Since (ax b) b= (16i—3j+3k)-(—i+5k) =—-15+0+ 15 =0, a x b is orthogonal to b.
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i j k
-1 -1 1 -1], 1 =1
S5.axb=|1 -1 -1|= i ll—l l‘]+.l_ 1k
1 1 1 2 2 2 2

T.

9.

1.

13.

15.

Now(axb)-a:(%i—j+%k)-(i—j—k)=%+1—%'=(]and

(axb)-b=(3i-j+3k) (3i+j+3k)=3%—1+3 =0,s0a x b is orthogonal to both a and b.

i j
axb=|t 1 1/t|=
2 2 g
=1-i—-(Et-)i+E - k=0-D)i+ -k

1/t
2 1

t 1/t
# 1

t o1
= 42

‘i

Since (ax b)-a=(1—1¢,0,t> —¢*) - (£,1,1/t) =t —t> + 0+ t* — t = 0, a X b is orthogonal to a.

Since (a x b) - b =(1—1¢,0,t> — %) - (#*,¢*,1) = 1> =t + 0+ ¢* — ¢* = 0, a x b is orthogonal to b.
According to the discussion preceding Theorem 11,ixj=k,so(ix j) x k=k x k=0 [by Example 2].

(j—-k)x(k—i):(j-—k}xk+(j—k).x(—i) I by Property 3 of Theorem 11
=jxk+ (k) xk+jx (i) + (k) x (—i) by Property 4 of Theorem 11
=G xk)+ (—1)(kxk)+ (=1)(xi)+(=1)*(k xi) by Property 2 of Theorem 11

=i+ (-1)0+(-(-k)+i=i+j+k by Example 2 and
the discussion preceeding Theorem 11

(a) Since b x ¢ is a vector, the dot product a - (b x ¢) is meaningful and is a scalar.

(b) b cisascalar, s0 a x (b - ¢) is meaningless, as the cross product is defined only for two vectors.

(c) Since b x c is a vector, the cross product a x (b x ¢) is meaningful and results in another vector.

(d) b - c is a scalar, so the dot product a - (b - €) is meaningless, as the dot product is defined only for two vectors.
(e) Since (a- b) and (c - d) are both scz;lars, the cross product (a - b) x (c - d) is meaningless.

(f) a x b and ¢ x d are both vectors, so the dot product (a x b) - (¢ x d) is meaningful and is a scalar,

If we sketch u and v starting from the same initial point, we see that the

angle between them is 60°. Using Theorem 9, we have

lu x v| = [u] |v|sin @ = (12)(16) sin 60° = 192 - \/Té = 96/3.

By the right-hand rule, u x v is directed into the page. .
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-
i etk i a8 2 T e (c1-6)i—(2=12)j+ A= (—4)] k = —71+10+ 8K
: =|2 -1 8|= i — i+ = (-1-6)i—(2— —(—4)| k= —7i+10j+
17. axb=|2 s 18 la 13 F |2 3 7 j ( J
4 2
i k g
2 e O e T e [6—(-1)]i—(12—2)j+(—4—4)k =7i—10j—8k
— 1= — =b6—(— 1— — —4 — =Ti1— -
e sl T 2T 2 4 : ’ A
=1 3

Notice a x b = —b x a here, as we know is always true by Property 1 of Theorem 11.

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

i 3 k
$ B 4 2 1 3 1 3 2 " -
2,1y x (—-1,1,0) = = i— 13+ =—i—j+5k
(3,2,1) x ( ) i @ P e I i
-1 1 0
" (_13‘_135) - <_11_'115) . 1 1 5
So two unit vectors orthogonal to both are iml =5 & W that is, <_W§’ —37 '3T/'§>

and (ﬁg ﬁ'ﬁ 755).

21. Let a = (a1, a2, as). Then

i jk
0 0], 0 0], 0 0
Oxa=|0 0 0|= i- j+ k=0,
az as ay as ay az
ay az as
i j k
a2z as " a; ag . a1 az
ax0=|a a2 az|= i— Jj k=0
0 0 0 0 0 0
0 0 0

23. a x b = (asb3 — asbs, azby — arbs, a1bz — azby) ‘
= ((—1)(b2as — bsaz) , (—1)(bsa1 — bias), (—1)(braz — b2a1))

= — (bpag — bzag, bza; — bras, bras — o) = —b x a

25. ax (b+c)=ax (bi+ci,b2 +ca2,bs +c3)
= (aa(bs + ca) — aa(ba + c2), aa(br + c1) — a1 (bs + c3), a1 (b2 + c2) — az(by + ¢1))
= (ﬁzba + agca — asbs — asey, aaby +ascr — arby — aics, arbz + a1z — azhy — azen)
= ((a2bs — asb) + (azes — asez), (ashy — a1bs) + (aser — axes), (arbe — azbi) + (a1c2 — azcy))

= {azbs — asba, asby — aibs, a1bz — az2b1) + (azes — ascz, ascy — aics, a1 — azer)

=(axb)+(axc)
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21. By plotting the vertices, we can see that the parallelogram is determined by the

—s —_
vectors AB = (2,3) and AD = (4, —2). We know that the area of the parallelogram

determined by two vectors is equal to the length of the cross product of these vectors,

' —
In order to compute the cross product, we consider the vector AB as the three-

—_—
dimensional vector (2, 3,0) (and similarly for AD), and then the area of

parallelogram ABCD is

i ok .
‘ABXAD|: 2 3 0| =[(0)i-(0)j+(—4—12)k| =|-16k| = 16
4 -2 0

— —
29, (a) Because the plane through P, @, and R contains the vectors PQ and PR, a vector orthogonal to both of these vectors

.

— —
(such as their cross product) is also orthogonal to the plane. Here PQ = (—3,1,2) and PR = (3,2, 4), so

PQ x PR = ((1)(4) - (2)(2), (2)(3) — (-3)(4), (-3)(2) - (1)(3)) = (0,18, -9)
Therefore, (0, 18,-—9) (or any nonzero scalar multiple thereof, such as (0, 2, —1)) is orthogonal to the plane through P, @,
and R. '
(b) Note that the area of the triangle determined by P, @, and R is equal to half of the area of the
parallelogram determined by the three points. From part (a), the area of the parallelogram is

V5.

o

_ —
|PQ X PR‘ = [(0,18, —9)| = +/O 324 7 81 = +/405 = 9v/5, so the area of the triangle is - 9v/5 =

31. (a) P_Q’ = (4,3,—2) and P_I)i = (5,5, 1), so a vector orthogonal to the plane through P, @, and R is
P_Q} X ITR = {(3)(1) — (—=2)(5), (—2)(5) — (4)(1), (4)(5) — (3)(5)) = (13, —14,5) [or any scalar mutiple thereof].

— —
(b) The area of the parallelogram determined by P} and PR is

—y —f
‘PQ x PR‘ = |(13, —14,5)| = /137 + (—14)? + 52 = /300, so the area of triangle PQR is 1/390.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and ¢ is the magnitude of their scalar triple product,

123
12 ~i 3 = 4§
whichisa-(bx¢)=|-1 1 2/=1 |- 2 4| t3 =1(4-2)—2(—4—4)+3(-1-2)=9.
21 4

Thus the volume of the parallelepiped is 9 cubic units.

— — —
35, a=PQ=(4,2,2),b=PR=(3,3,—1),andc = PS = (5,5,1).
42 2
3 -1
a-(bxc)=|3 3 —1|=4
5 1
55 1

3 -1
5 1

3]
=32-1640 =186,
5 b

so the volume of the parallelepiped is 16 cubic units.
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1 5 -2 '
-1 0 3 0 8 =1 _ .
M. u-(vxw)= 2—; 2 = Nl P + (—2) & & :f1+60v64:0,wh|chsaysthatthevol‘ume

of the parallelepiped determined by u, v and w is 0, and thus these three vectors are coplanar.
39, The magnitude of the torque is |7| = |r X F| = |r| |F|sin 8 = (0.18 m)(60 N) sin(70 + 10)° = 10.8sin 80° ~ 10.6 N-m.

41, Using the notation of the text, r = (0, 0.3, 0} and F' has direction (0, 3, —4). The angle & between them can be determined by

{0,0.3,0) - {0,3, —4)" 09 g o . .
RSl ] T e P e e e S eI D= v e =

cosf =

100 = 0.3|F|sin53.1° = |F|~417N.

43, From Theorem 9 we have |a x b| = |a| |b|sin 8, where @ is the angle between a and b, and from Theorem 12.3.3 we have

a-b=|a||blcosfé = |a||b|= ::)-T(:?' Substituting the second equation into the first gives |a x b| = = l; sin f, so
08
BB i s s bl {00 =TT A= St B8 B B o e
~a'b a-b 3 '
45. (a) The distance between a point and a line is the length of the perpendicular

-
from the point to the line, here ‘PS l = d. But referring to triangle PQS,

— — —
d= |PS| = ’QP} sin 0 = |b| sin 6. But 8 is the angle between QP = b

»s R —_—
and QR = a, Thus by Theorem 9, sin§ = lax bl
‘ : [a] bl
" [bllax b] |axb|
and so d = |b|sinf = =
& @l Tl

(®)a=QR = (-1,—-2,—1) and b = QP = (1,5, —7). Then
ax b= ((=2)(=7) = (=1)(=5), (~1)(1) = (=1)(=7), (=1)(=5) — (~2)(1)) = (9, ~8,7).

|a x b|

Thus the distance is d = a]

=:1E\/81+64+4 =,/ = f20

47. From Theorem 9 we have |a x b| = |a| |b|sinf so
la x b]® = |a]* |b|*sin® § = [a|” [b]* (1 — cos® §)
= |a]* |b|* — (la| [b| cos§)* = |a|* |b|* — (a - b)®

by Theorem 12.3.3.
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49. (a—b)x (a+b)=(a—b)xa+(a—b)xb by Property 3 of Theorem 11
=axa+(-b)xa+axb+(-b)xb by Property 4 of Theorem 11
=(axa)—(bxa)+(axb)—(bxb) by Property 2 of Theorem 11 (with ¢ = —1)

=0—(bxa)+(axb)—0 by Example 2
=(axb)+(axb) by Property 1 of Theorem 11
=2(ax b)

5. ax(bxc)+bx(cxa)+ecx(axb)
=[(a-c)b— (a-b)c]+[(b-a)e— (b-c)a] +[(c-b)a—(c:a)b] by Exercise 50
=(a-c)b—(a-b)jc+(a-b)jc—(b-cla+(b-cla—(a-c)b=0
53. (a) No. Ifa-b =a - c, then'a- (b —¢) = 0, so a is perpendicular to b — ¢, which can happen if b £ c. For example,
leta=(1,1,1), b = (1,0,0) and c = {0, 1,0).
(b) No. Ifa x b = a x c then a x (b — ¢) = 0, which implies that a is parallel to b — ¢; which of course can happen
ifb £ e. ' '

(c) Yes. Since a- ¢ = a - b, a is perpendicular to b — ¢, by part (a). From part (b), a is also parallel to b — ¢. Thus since

a # 0 but is both parallel and perpendicularto b — ¢, we have b — ¢ = 0,50 b = ¢c.

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are
each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.
(b) False; for example, the z- and y-axes are both perpendicular to the z-axis, yet the z- and y-axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.
(d) False; for example, the zy- and yz-planes are not parallel, yet they are both perpendicular to the zz-plane.
(e) False; the - and y-axes are not parallel, yet they are both parallel to the plane z = 1.

(f) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.
(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the z-axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.
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(j) False; they can be skew, as in Example 3.
(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular
to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle 6, 0° < 8 < 90°, and the

line will intersect the plane at an angle 90° — 4.

. For this line, we have rg = 2i+2.4j + 3.5k and v = 3i+ 2j — k, so a vector equation is

r=rg+tv=(2i+24j+35k)+£(3i+2j—k)=(2+3t)i+ (2.4+2¢)j+ (3.5 — ) k and parametric equations are
z=2+3t,y=24+2t,2=35—-1.

. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = (1,3,1). Sorg =i+ 6k, and we can take v = i + 3 + k. Then a vector equation is

r=(i+6k)+t({i+3j+k)=(1+1t)i+3tj+ (6+1)k, and parametric equationsarex = 1 + t,y = 3t, z = 6 +¢.

. The vector v = (2 —0,1— 3, -3 — 1) = (2, 4, —4) is parallel to the line. Letting Ps = (2, 1, —3), parametric equations

arex = 2+ 2t,y = | + 3¢, 2 = —3 — 4t, while symmetric equations are = ; S y1721 = +43 or

3:—2:23,_2:2-#-3‘

. v={(3—(-8),-2—-1,4—4) = (11,-3,0), and letting P, = (—8, 1,4), parametric equations are z = —8 + 11¢,

. . . 8 -1
y =1—3t, z = 4+ 0t = 4, while symmetric equations are % = y—3 , z = 4. Notice here that the direction number

z—4

¢ = 0, so rather than writing in the symmetric equation we must write the equation z = 4 separately.

The line has directionv = (1, 2, 1). Letting Pp = (1, —1, 1), parametric equationsare z = 1 +t,y = —1 +2f, z = 1 + ¢

g+l

) z—1.

and symmetric equationsare t — 1 =

Direction vectors of the lines are vi = (—2 — (—4),0 — (—6),—-3 — 1) = (2,6, —4) and
ve = (5—10,3 — 18,14 — 4) = (-5, —15, 10), and since va = _.%vl’ the direction vectors and thus the lines are parallel.

(a) The line passes through the point (1, —5,6) and a direction vector for the line is (—1, 2, —3), so symmetric equations for

thelinearemﬂl :y+5 2= £—3

-1 2 -3
(b) The line intersects the zy-plane when z = 0, so we need z _11 =¥ —; g = 4 _36 orZ _11 =2 = z£=-],
y;;—_5 =2 = y = —L Thus the point of intersection with the zy-plane is (—1, —1, 0). Similarly for the y2-plane,
y+5 =z-—-6 . S
weneedz =0 = 1= S Mg = y = —3, 2 = 3. Thus the line intersects the yz-plane at (0, —3, 3). For
z—1 _5 - ' ‘
the zz-plane, weneed y =0 = ’L_l =g ZTJ—S = 2= —3,z=—2. Sothe line intersects the z-plane
at (-3,0,—3)
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\17./From Equation 4, the line segment.fromrg = 2i—j+4ktor; =4i+6j+kis

r(t) = (1 —t)ro+tri = (1 —£)(2i —j+4k) + t(4i + 6]+ k) = (2i —j+4k) + t(2i+7j —3k),0 < t < 1.

| 19. Since the direction vectors (2, —1, 3} and (4, —2, 5) are not scalar multiples of each other, the lines aren’t parallel. For the
\ , e S oot

lines to intersect, we must be able to find one value of ¢ and OIII}C'Y_alue of s ttjgg_p._rgduce the same point from the respective

—_—

parametric equations. Thus we need to satisfy the following three equations: 3 + 2t =1+ 45,4 —t = 3 — 2s,
gt L Sl B
1 + 3t = 4+ 5s. Solving the last two equations we get t = 1, s = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

! 21. Since the direction vectors (1,—2, —3) and (1, 3, —7) aren’t scalar multiples of each other, the lines aren’t parallel. Parametric

equations of the linesare L1: t =2+ ¢, y=3—-2f,z=1—3tand Lo: £ =3 + 5,y = —4 + 3s, z = 2 — Ts. Thus, for the

. lines to intersect, the three equations 2 ;I—t =3+s5,3—2t=—4+3s,and 1 — 3t = 2 — Ts must be satisfied simultaneously.
Solving the first two equations gives ¢t = 2, s = 1 and chccking,‘ we see that these values do satisfy the £hird equation, so the

lines intersect when ¢ = 2 and s = 1, that is, at the point (4, —1, —5).
23. Since the plane is perpendicular to the vector (1, —2, 5), we can take {1, —2, 5) as a normal vector to the plane.
(0,0, 0) is a point on the plane, sosettinga =1,b=—2,¢=5and zp = 0, yo = 0, zo = 0 in Equation 7 gives

1{z - 0) + (—2)(y — 0) + 5(z — 0) = O or z — 2y + 5z = 0 as an equation of the plane.

25. i+4j+k = (1,4,1) is a normal vector to the plane and (—1, 3, 3) is a point on the plane, so settinga = 1,b=4,¢ =1,
zo = —1, 40 = 3, 20 = 3 in Equation 7 gives 1[z — (—=1)] +4 (y — 3) + 1(z — 3) = 0 or & + 4y + z = 4 as an equation of

the plane.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = (5, —1, —1), and an equation of
the plane is 5(z — 1) — 1fy — (=1)] = [z = (=1)] =O0orbz —y —2 =T.

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = (1, 1, 1), and an equation of the
planeis1(z—1)+1(y—3) +1(z—3) =0orz+y+ 2= or bz + 6y + 62 = 11. |

31. Herethe vectorsa=(1-0,0—-1,1+-1) =(1,-1,0)andb = (1 —0,1 - 1,0 — 1) = (1,0, —1) lie in the plane, so
a x b is a normal vector to the plane. Thus, we cantaken =a x b= (1 -0,0+ 1,0+ 1) = (1,1, 1). If P is the point
(0,1, 1), an equation of the plane is 1(::: —-0)+1(y—-1)+1z—1)=00rz+y+2=2

33. Here the vectorsa = (8 — 3,2 — (—1),4 —2) = (5,3,2) and b = (—1 — 3; =2 — (—1),—3 — 2) = (—4, —1,—5) lie in
the plane, so a normal vector to the plane isn = a x b = (—15+ 2, —8 4 25, —5 + 12) = (—13, 17, 7) and an equation of
the plane is —13(z — 3) + 17[y — (—1)] + 7(z — 2) = 0 or —13z + 1Ty + Tz = —42.

35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = {—2, 5, 4) is one vector in the plane. We can verify that the given point (6,0, —2) .
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does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and
find a vector connecting the points. If we put ¢ = 0, we see that (4, 3, 7) is ‘'on the line, so

b=(6—4,0-3-2-7) =(2,-3,—9 andn =ax b= (—45+ 12,8 — 18,6 — 10) = (—33, —10, —4). Thus, an
equation of the plane is —33(z — 6) — 10(y — 0) — 4[z — (—2)] = 0 or 33z + 10y + 4z = 190.

37. A direction vector for the line of intersection is a = ny x n2 = (1,1, —1) x {2, —1,3) = (2, -5, —3), and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given
point (—1, 2, 1) in the plane. Setting z = 0, the equations of the planes reduce to y — z = 2 and —y + 3z = 1 with

simultaneous solution y = % and z = 3. So a point on the line is (0, £, £) and another vector parallel to the plane is

(—1,—%,—3). Then a normal vector to the plane is n = (2, -5, —3) x (—1,—%, —1) = (2,4, —8) and an equation of

the planeis —2(z + 1) +4(y —2) — 8(z — 1) =0orz — 2y + 4z = —1.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.
Thus (2,1,-2) x (1,0,3) = (3 - 0,-2—6,0 — 1) = (3, —8, —1) is a normal vector to the desired plane. The point
(1,5, 1) lies on the plane, so an equationis 3(z — 1) —8(y —5) —(z— 1) =0or3z — 8y — z = —38.

41, To find the z-intercept we set y =7 =0inthe equation 2z + 5y + z = 10 %

and obtain 2z = 10 = =z = 5 so the z-intercept is (5,0, 0). When
z=z=0wepgethy =10 = y =2, sothe y-intercept is (0,2, 0).
Setting z = y = 0 gives z = 10, so the z-intercept is (0,0, 10) and we ~+

graph the portion of the plane that lies in the first octant.

43. Setting y = 2 = 0 in the equation 6z — 3y + 4z =6 givesbz =6 =
z=1,whenz=z=0wehave -3y =6 = y=-2andz=y=0
implies4z =6 = z = £, so the intercepts are (1, 0,0), (0, —2,0), and

(0,0, 2). The figure shows the portion of the plane cut off by the coordinate

planes.

X

( @ubstitute the parametric equations of the line into the equation of the plane: (3 —#) — (2 ¢) - 2(5¢) =9 =
- 8 =8 = ¢= 1. Therefore, the point of intersection of the line and the plane is givenby z =3 -1 =2,y =241 =3,
and z = 5(1) = b, that is, the point (2, 3, 5).

47. Parametric equations for the linearez = t,y =1 +t, 2 = %t and substituting into the equation of the plane gives
4) - (1+t)+3(3t) =8 = $t=9 = t=2Thusz=2,y=1+2=3,2z=2(2) = 1and the point of

intersection is (2, 3, 1).
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Setting = = 0, we see that (0, 1, 0) satisfies the équntions of both planes, so that they do in fact have a line of intersection.
v=m xnp = (1,1,1}) x (1,0,1) = (1,0, —1) is the direction of this line. Therefore, direction numbers of the intersecting

line are 1, 0, —1.

Normal vectors for the planes are n; = (1,4, —3) and nz = {(—3, 6, 7), so the normals (and thus the planes) aren’t parallel.

Butn; - n2 = —3 + 24 — 21 = 0, so the normals (and thus the planes) are perpendicular.

Normal vectors for the planes are ny = (1, 1, 1) and nz = (1, —1, 1). The normals are not parallel, so neither are the planes.
Furthermore, n; - ng = 1 — 1+ 1 = 1 5 0, so the planes aren’t perpendicular. The angle between them is given by-

ni ' ng 1 1

Il nz] ~ V3v3 3

cosf = = f=cos™}(3) ~ 70.5°

The normals are n; = (1, —4,2) and ny = (2, —8,4). Since ny = 2n;, the normals (and thus the planes) are parallel.

(a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will fail if the line of
intersection does not cross the zy-plane; in that case, try setting = or y equal to 0.) The equations of the two planes reduce
toz +y = 1and = + 2y = 1. Solving these two equations gives z = ‘1, y = 0. Thus a point on the line is (1, 0,0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take
v=mng xna=(1,1,1) x (1,2,2) = (2 -2,1 - 2,2 - 1) = (0, —1, 1). By Equations 2, parametric equations for the

linearez=1,y=—t,z2=1t.

i . =
(b) The angle between the planes satisfies cos f = L Tl Therefore 8 = cos™ (i) /2 15.8%,

Ini|[ng| = V3vO 343 33

Setting z = 0, the equations of the two planes become 5z — 2y = 1 and 4z 4+ y = 6. Solving these two equations gives
@ = 1, y = 2 so a point on the line of intersection is (1, 2, 0). A vector v in the direction of this intersecting line is
perpendicular to the normal vectors of both planes. So we can use v =mn; X nz = (5, -2, —2) x (4,1,1) = (0, —13,13) or

. ; , —2 '
equivalently we can take v = (0, —1, 1}, and symmetric equations for the line are z = 1, e LLy—2=-z.

=1 "1

The distance from a point (z, v, z) to (1,0, —2) isd1 = y/(z — 1)Z + y* + (z + 2)? and the distance from (z,y, z) to

(3,4,0) is da = /(x — 3)2 + (y — 4)2 + z2. The plane consists of all points (z,y,z) wheredy =d2 = df =df &
-1+ + (242’2 =(z-3)2+(¥—4)*+2° &

2 =2+ + 22 s+ 5=a? -6z +y® —8y+22+25 < 4da+ 8y -+ 4z = 20 so an equation for the plane is
4z + 8y + 4z = 20 or equivalently = -+ 2y + z = 5.

Alternatively, you can argue that the segment joining points (1, 0, —2) and (3, 4, 0) is perpendicular to the plane and the plane

includes the midpoint of the segmeht.

The plane contains the points (a, 0,0), (0,b,0) and (0,0, ¢). Thus the vectors a = (—a, b,0) and b = (—a, 0, ¢) lie in the

plane, and n = a x b = (bc — 0,0 + ac, 0 + ab) = (bc, ac, ab) is a normal vector to the plane. The equation of the plane is

{© 2012 Cengage Leaming. All Rights Reserved. May not be J, copied, or duplicated, or posted 1o a publicly accessible websile, in whole or in part.



67.

7.

73.

75.

7.

SECTION 12.5 EQUATIONS OF LINES AND PLANES O 133

therefore bex + acy + abz = abe + 0 + 0 or bex + acy + abz = abe. Notice that if a # 0, b # 0 and ¢ % 0 then we can

rewrite the equation as E + % + % = 1. This is a good equation to remember!

. Two vectors which are perpendicular to the required line are the normal of the given plane, (1, 1, 1), and a direction vector for

the given line, (1, —1, 2). So a direction vector for the required line is (1, i, 1) x (1,-1,2) = (3,—1,—2). Thus L is given
by {z,9, z) = {0,1,2) + t(3, —1, —2), or in parametric form, z = 3t,y =1 — ¢,z =2 — 2¢.

Let P; have normal vector n;. Thenm = (3,6, —3), n2 = (4, —12,8), n3 = (3, —9,6), ny = (1,2, —1). Now n; = 3ny,
so n and ny are parallel, and hence Py and P are parallel; similarly P> and P; are parallel because ny = “2* nz. However, n;
and ng2 are not parallel (so not all four planes are parallel). Notice that the point (2, 0, 0) lies on both P, and P4, so these two

planes are identical. The point ($,0,0) lies on P; but not on Ps, so these are different planes.

. Let @ = (1,3,4) and R = (2,1, 1), points on the line corresponding to t = O and £ = 1. Let

—_— —
P = (4,1,-2). Thena = QR = (1,-2,-3), b = QP = (3, —2, —6). The distance is

g laxbl _1(1,-2,-3)x(3,-2,-6)| _ |(6,-3,4)| _ VL3P L VT \/ﬁ_l
n |a| - |(1: 72r 73” - |(ls _2v "'3)| \/12 + (—2)2 = = {—3)2 - 14 - 14

By Equation 9, the distance is D = |amy +bys + ey +4] = [3(1) +2(-2) + 6(4) — 5| = L =

8|
Va2 +82+2 . V3T+ 27T+ 67 V49

18
7

Put 4 = z = 0 in the equation of the first plane to get the point (2, 0, 0) on the plane. Because the planes are parallel, the

distance D between them is the distance from (2, 0, 0) to the second plane. By Equation 9,

_ |4(2)—-6(0)+2(0)—=3] 5 5 514

T OVEr(6E+@F Ve 2Vid 28

The distance between two parallel planes i5 the same as the distance between a point on one of the planes and the other plane.
Let Fo = (zo, Yo, 2z0) be a point on the plane given by az + by + ¢z -+ d1 = 0. Then azo + byo + c29 + d1 = 0 and the

distance between Py and the plane given by az + by + cz + d2 = 0 is, from Equation 9,

D= lazo + byo + czo + da| _ |—di + da| _ |di — da|
VaZ+ 02+ & Va2 +82 4+ VaR b+
Litz=y=2 = z=y 1). Lac+l=y/2=2/3 = x-+1=y/2 (2). Thesolution of (1) and (2) is

z =y = —2. However, whenz = -2,z =2 = z=-2,butz+1=2/3 = z= —3,acontradiction. Hence the
lines do not intersect. For L;, vl. =(1,1,1), and for L3, va = (1,'2, 3), so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines
would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both (1,1, 1) and (1, 2, 3), the direction vectors of the two lines. So set
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79.

81.

n=(1,1,1) x (1,2,3) = (3 - 2,-3+1,2 — 1) = (1, -2, 1). From above, we know that (—2, —2, —2) and (-2, =2, —3)
are points of Ly and L» respectively. So in the notation of Equation 8, 1(—2) —2(—2) +1(—2)+d1 =0 = d;=0and
1(-2) —2(-2) + 1(-3) +d2a =0 = da=1.

By Exercise 75, the distance between these two skew lines is D = e .

Vitirl /6

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n=(1,1,1) x (1,2,3) = (1,—2, 1). Pick any point on each of the lines, say (—2, —2, —2) and (-2, —2, —3), and form the
vector b = (0,0, 1) connecting the two points. The distance between the two skew lines is the absolute value of the scalar

A " ‘bl |1:0—-2.041-1] 1
rojection of b along n, that is, D = jm = = —.
v Ho% |n] VI+4A+1 V6

A direction vector for Ly is vi = (2,0, —1) and a direction vector for L is vo = (3,2, 2). These vectors are not parallel so
neither are the lines. Parametric equations for the lines are Ly: ¢ = 2,y =0,z = —t,and Lo: z = 1+ 35,y = —1 + 2s,
z = 1+ 2s. No values of t and s satisfy these equations simultaneously, so the lines don’t intersect and hence are skew. We
can view the lines as lying in two parallel planes; a common normal vector to the planes is n = v; X va = (2, —7,4). Line
L passes through the origin, so (0, 0, 0) lies on one of the planes, and.(1, —1, 1) is a point on L2 and therefore on the other
plane. Equations of the planes then are 2z — 7Ty + 4z = 0 and 2z — Ty + 4z — 13 = 0, and by Exercise 75, the distalnce

oo 0—(-13 13
between the two skew lines is D = Jﬁ = \/—6=9
Alternate solution (without reference to planes): Direction vectors of the two lines are vy = (2,0, —1) and vo = (3,2, 2).
Thenn = vy x v = (2, —7,4) is perpendicular to both lines. Pick any point on each of the lines, say (0,0,0) and (1, -1, 1),
and form the vector b = (1, —1, 1) connecting the two points. Then the distance between the two skew lines is the absolute

In-b| _ [24+7+4 _ 13

value of the scalar projection of b along n, that is, D = = = :
e - [n] VA+49+16 /69

Ifa# 0,thenaz +by+cz+d=0 = a(z+d/a)+ bly—0)+ e(z— 0) = 0 which by (7) is the scalar equation of the
plane through the point (—d/a, 0, 0) with normal vector (a, b, ¢). Similarly, if b % 0 (or if ¢ # 0) the equation of the plane can
be rewritten as a(z — 0) + b(y + d/b) + ¢(z — 0) = 0 [or as a(z — 0) + b(y — 0) + ¢(z + d/c) = 0] which by (7) is the

scalar equation of a plane through the point (0, —d/b, 0) [or the point (0, 0, —d/c)] with normal vector (a, b, ¢).
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12.6 Cylinders and Quadric Surfaces

135

1. (a) In R?, the equation y = a” represents a parabola.

(b) In R?, the equation y = z* doesn’t involve z, so any A

horizontal plane with equation z = k intersects the graph
in a curve with equation y = z*. Thus, the'surface is a
parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the z-axis.

~ (¢) InR?, the equation z = 3 also represents a parabolic ‘ z
cylinder. Since = doesn’t appear, the graph is formed by
moving the parabola z = % in the direction of the z-axis.

Thus, the rulings of the cylinder are parallel to the z-axis.

LT

& y
3. Since y is missing from the equation, the vertical traces 5. Since x is missing, each vertical trace z = 1 — 3/?,
z? + 2% = 1, y = k, are copies of the same circle in @ =k, is a copy of the same parabola in the plane
the plane y = k. Thus the surface z° + 2° = lisa 2 = k. Thus the surface z = 1 — 32 is a parabolic

circular cylinder with rulings parallel to the y-axis. cylinder with rulings parallel to the z-axis.
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7. Since z is missing, each horizontal trace zy = 1,
z =k, is a copy of the same hyperbola in the plane
z = k. Thus the surface zy = 1isa hypefbolic

cylinder with rulings parallel to the z-axis.

9. (a) The traces of z* 4 y* — 2% = lina = kare y? — 2% = 1 — k?, a family of hyperbolas. (Note that the hyperbolas are
oriented differently for —1 < k < 1thanfork < —lork > 1.) The traces iny = k are x° — z° = 1 — k2, a similar
family ofhyperbb]as. The traces in z = k are 2° +y* = 1 + k%, a family of circles. For k = 0, the trace in the
wy-plane, the circle is of radius 1. As || increases, so does the radius of the circle. This behavior, combined with the.

hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is
rotated so that its axis is the y-axis. Traces in y = k are circles,

while traces in # = k and z = k are hyperbolas.

(c) Completing the square in y gives z° + (y + 1)* — 2> = 1. The
surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative y-direction.

1. Forz = y% + 422, the traces in z = k are 4° + 42° = k. When k > 0 we
have a family of ellipses. When & = 0 we have just a point at the origin, and
the trace is empty for k& < 0. The traces iny = k are & = 42% + k*, a
family of parabolas opening in the positive z-direction. Similarly, the traces

inz =k are & = y* + 4k, a family of parabolas opening in the positive

z-direction, We recognize the graph as an elliptic paraboloid with axis the

z-axis and vertex the origin.
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z

22 = y® + 42%. The traces in = = k are the ellipses y* + 42% = k%, The
traces in y = k are z* — 427 = k?, hyperbolas for k # 0 and two
intersecting lines if & = 0. Similarly, the traces in z = k are

z® — y? = 4k?, hyperbolas for k # 0 and two intersecting lines if k = 0.
We recognize the graph as an elliptic cone with axis the z-axis and vertex

the origin. .

—2% + 4y* — 2° = 4. The traces in ¢ = k are the hyperbolas

4y® — 2* = 44 k*. The traces iny = k are z° + 2% = 4k” — 4, a family of
circles for |k| > 1, and the traces in z = k are 4y® — 22 = 4 + k?, a family
of hyperbolas. Thus the surface is a hyperboloid of two sheets with

axis the y-axis.

362> + ¢ + 362 = 36. The traces in = = k are y* + 362 = 36(1 — k?),
a family of ellipses for |k| < 1. (The traces are a single point for k| = 1

and are empty for |k| > 1.) The traces in y = k are the circles

3627 +3622 =36 -k & 2P4+27=1-Li% |k

< 6, and the

traces in z = k are the ellipses 36z +y* = 36(1 — k?), |k| < 1. The
graph is an ellipsoid centered at the origin with intercepts x = =£1, y = =6,
z ==kl

2

y = z? — . The traces in = = k are the parabolas y = z* — k% %

the traces in y = k are k = z2 — =%, which are hyperbolas (note the hyperbolas

are oriented differently for & > 0 than for & < 0); and the traces in z = k are

2 2

the parabolas y = k* — z*. Thus, % = % — % is a hyperbolic paraboloid.”

2 2
(1?;2)2 +—2— = 1, with a-intercepts +1, y-intercepts =3

(1/3)*

and z-intercepts :1:31-. So the major axis is the @-axis and the only possible graph is VII.

This is the equation of an ellipsoid: @® + 4y% + 922 = z° +

. This is the equation of a hyperboloid of one sheet, with @ = b = ¢ = 1. Since the coefficient of 3/? is negative, the axis of the

hyperboloid is the y-axis, hence the correct graph is II.
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25. There are no real values of = and z that satisfy this equation for y < 0, so this surface does not extend to the left of the
xz-plane. The surface intersects the plane y = & > 0 in an ellipse. Notice that y occurs to the first power whereas z and z

occur to the second power. So the surface is an elliptic paraboloid with axis the y-axis. Its graph is VL.

© 27. This surface is a cylinder because the variable y is missing from the equation. The intersection of the surface and the zz-plane

is an ellipse. So the graph is VIII.

. 2 “ 2
2 =2+l =2+ % represents an elliptic M2+ 2y —222 =00r2y =222 —2%ory = 2% — 5?2—
cone with vertex (0, 0, 0) and axis the y-axis. represents a hyperbolic paraboloid with center (0, 0, 0).

33. Completing squares in y and 2z gives 35. Completing squares in all three variables gives
42 + (y—2) +4(z —3)* =4or _ (z—2?%—(y+1)*+(z=1)>*=00r
—2)* ' 1)? = (z — 2)® + (z — 1), acireul ith
z? + -2 + (z —3)% = 1, an ellipsoid with (y+1)" = (@—2)"+ (# —~ 1), acircular cone wi
4 center (2, —1, 1) and axis the horizontal line z = 2,

center (0, 2, 3).

F=s

2.-L1) t*

37. Solving the equation for z we get z = £+/1 + 42 + y2, so we plot separately z = /1 + 422 + 3?2 and

z=—/1+42? + 2.
— R

P i

o111

e
"’-uun,{{l’.‘
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To restrict the z-range as in the second graph, we can use the option view=-4. .4 in Maple’s plot 3d command, or

PlotRange —-> {-4, 4} in Mathematica’s P1ot 3D command.

39. Solving the equation for z we get z = £+/42? + 42, so we plot separately z = /422 + y2 and z = — /42?2 + 2.

41, 43, The surface is a paraboloid of revolution (circular paraboloid) with vertex at
the origin, axis the y-axis and opens to the right. Thus the trace in the

yz-plane is also a parabola: y = 2%, z = 0. The equation is y = 22 + 22.

z The parabola

45. Let P = (=, y, ) be an arbitrary point equidistant from (—1, 0, 0) and the plane = 1. Then the distance from P to

(=1,0,0) is /{z + 1)2 + y® + 22 and the distance from P to the plane z = 1is [z — 1| A/12 = |z — 1

(by Equation 12.5.9). So [z — 1| = /(z +1)2+32 +22 & (z—-1)0 =(z+1)*+4°+2* &
P —2z+1=2+2c+1+1°+22 & —4z =y> + 2% Thus the collection of all such points P is a circular
paraboloid with vertex at the origin, axis the z-axis, which opens in the negative direction.

2 2 2
47. (a) An equation for an ellipsoid centered at the origin with intercepts * = £a, y = +b,and 2 = +cis % + g—z + z_ﬁ =1.

Here the poles of the model intersect the z-axis at > = £6356.523 and the equator intersects the x- and y-axes at
z = +6378.137, y = +6378.137, so an equation is
2 2 2

x Y z

x "
G378.137)% | ¥

(6378.137)7 ' (6356.523)2

) : 2 o K
(b) Traces in z = k are the circles (63781377 + (6378 137)F 1 (6356.523)

6378.137\? 12
6356.523 )

z® +y* = (6378.137)% — (
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(c) To identify the traces in y = rnxz we substitute y = ma into the equation of the ellipsoid:

z? (ma)? oz

(6378.1372 © (6378.137)F T (6356.503)7 -

2

(1 +m*z? L 2 —1
(6378.137)2 ' (6356.523)2
2 2

T 2
(6378.137)2/(1 + ) | (6356.523)F  ©

As expected, this is a family of ellipses.

49. If (a, b, c) satisfies z = y* — 2%, thene=0" —a®. Litz =a + ty=b+t,z =c+2(b—a)t,
Ly:z=a+ty=>b—t 2z=c—2(b+ a)t. Substifute the parametric equations of L, into the equation
of the hyperbolic paraboloid in order to find the points of intersection: z = y? — ‘.7:2 =
\
ct+2b—at=0b+t)2—(a+t) =0 —a®+2(b—a)t = c=0>b>—a’. Asthisis true forall values of ¢,
Ly lies on z = 3* — 22, Performing similar operations with Lz gives: z = y* — 22 =
c—2b+a)t=0b—-1t)?—(a+t)*=b>—a*—2(b+a)t = c=>b*>—a’. Thistellsus that all of L also lies on
2=1 —2®
51. The curve of intersection looks like a bent ellipse. The projection
of this curve onto the zy-plane is the set of points (z, v, 0) which
2 satisfy z° +2 =1—3® & 2+2%°=1 &
z1 '
0 .3“3 :\ 9 y2 . . .
T RTISs eSS x° + ——— = 1. This is an equation of an ellipse.
o T (an2)* - ! ’
0 R
b 1 1 x
12 Review
CONCEPT CHECK

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

2. To add two vectors geometrically, we can use either.the Triangle Law or the Parallelogram Law, as illustrated in Figures 3
and 4 in'Section 12.2. Algebraically, we add the corresponding components of the vectors.

3. For ¢ > 0, ca is a vector with- the same direction as a and length ¢ times the length of a. If ¢ < 0, ca points in the opposite
direction as a and has length |c| times the length of a. (See Figures 7 and 15 in Section 12.2.) Algebraically, to find ca we
multiply each component of a by c.

4. See (1) in Section 12.2.

5. See Theorem 12.3.3 and Definition 12.3.1.
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6. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In

particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used to determine the

work done moving an object given the force and displacement vectors.

. See the boxed equations as well as Figures 4 and 5 and the accompanying discussion on page 828 [ET 804].

See Theorem 12.4.9 and the preceding discussion; use either (4) or (7) in Section 12.4,

. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are

10.

1.

12

13.

14.

15.

16.

parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the
cross product can be used to determine torque if the force and position vectors are known.

L)
(a) The area of the parallelogram determined by a and b is the length of the cross product: |a x b|.

(b) The volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product: |a - (b x ¢)|.

If an equation of the plane is known, it can be written as az + by + cz + d = 0. A normal vector, which is perpendicular to the
plane, is (a, b, ¢) (or any scalar multiple of (a, b, ¢)). If an equation is not known, we can use points on the plane to find two

non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle

using Corollary 12.3.6.

See (1), (2), and (3) in Section 12.5.

See (5), (6), and (7) in Section 12.5.

(a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are
parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel.

e —
(a) Determine the vectors PQ = (a1, a2, as) and PR = (b, b, bz). If there is a scalar ¢ such that _

{ai,as,as) =t (b1, ba, ba), then the vectors are parallel and the points must all lic on the same line.

—_ — — —
Alternatively, if PQ x PR = 0, then PQ and PR are parallel, so P, Q, and R are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or

not the third point satisfies this equation.

— — —

(b) Find the vectors PQQ = a, PR = b, PS = c. a x b is normal to the plane formed by P, () and R, and so S lies on this
plane if a X b and ¢ are orthogonal, that is, if (a x b) - ¢ = 0. (Or use the reasoning in Example 5 in Section 12.4.)
Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point

satisfies this equation.
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17. (a) See Exercise 12.4.45.
(b) See Example 8 in Section 12.5.
(c) See Example 10 in Section 12.5. 1
18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find
the trace in the plane = = k (parallel to the yz-plane) by setting z = & and determining the curve represented by the resulting
equation. Traces in the planes iy = k (parallel to the zz-plane) and z = k (parallel to the z:y-plane) are found similarly.
19. See Table 1 in Section 12.6.
TRUE-FALSE QUIZ
1. This is false, as the dot product of two vectors is a scalar, not a vector.
3. False. For example, if u = iand v = j then |u- v| = |0] = 0 but |ul [v| =1-1=1.In fact, by Theorem 12.3.3,
[u-v|=||u| [v|cos 8|
5. True, by Theorem 12.3.2, property 2.
7. True. If § is the angle between u and v, then by Theorem 12.4.9, |u x v| = |u| |v|sinf = |v||u|sin 8 = |v x ul.
(Or, by Theorem 12411, lux v|=|-vxu|=|-1||[v xu| = |v x u].) .
9. Theorem 12.4.11, property 2 tells us that this is true.
"1, This is true by Theorem 12.4.11, property 5.
13. This is true bécause u x v is orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.
15. This is false. A normal vector to the plane is n = (6, —2,4). Because (3, —1,2) = %n, the vector is parallel to n and hence
perpendicular to the plane.
17. This is false. In R?, 2 4 3% = 1 represents a circle, but {(:n, y,2) | 2? +y? = 1} rebresents a three-dimensional surface,
namely, a circular cylinder with axis the z-axis.
19. False. For example,i-j = 0buti s 0andj +# 0. .
21. This is true. If u and v are both nonzero, then by (7) in Section 12.3, u - v = 0 implies that u and v are orthogonal. But

u X v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can’t be both parallel and

orthogonal, so at least one of u, v must be 0.
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EXERCISES

1".

13.

. (a) The radius of the sphere is the distance between the points (—1,2, 1) and (6, —2, 3), namely,

V- (D +(—2-22+(3-1)2= v/69. By the formula for an equation of a sphere (see page 813 [ET 789]),
an equa;ion of the sphere with center (—1,2, 1) and radius v69 is (z + 1)* + (y — 2)* + (z — 1)? = 690.

(b) The intersection of this sphere with the yz-plane is the set of points on the sphere whose z-coordinate is 0. Putting x = 0
into the equation, we have (y — 2)* + (z — 1)* = 68,z = 0 which represents a circle in the yz-plane with center (0, 2, 1)
and radius v/68.

(c) Completing squares gives (z — 4)% + (y +1)? + (2 +3)® = —1 + 16 + 1 + 9 = 25. Thus the sphere is centered at
(4,—1, —3) and has radius 5.

cuev = [u] [v]cosd5° = (2)(3) L =3V2. [ux v| = |ul|vsind5® = (2)(3)L =32,

By the right-hand rule, u x v is directed out of the page.

. For the two vectors to be orthogonal, we need (3,2,z) - (2z,4,2z) =0 & (3)(2z)+ (2)4) + (z)(z) =0 &

22 4+6z+8=0 & (z+2)(z+4)=0 & z=-2orz=—4

L@ uxv)-w=u-(vxw)=2

Bu-(wxv)=u [-(vxw)]=—-u (vxw)=-2
(c)v-(uxw)=(v><'u)ow:—(uxlv)-w=_2

@uxv)-v=u-(vxv)=u-0=0

. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0,0,0) to (1,1,1) and (1,0,0) to (0,1,1) are (1,1,1) and (—1,1,1). Let & be the angle between these
two vectors. (1,1,1)-(—1,1,1) = —1414+1=1=|(1,1,1)]|(~1,1,1)|cosf = 3cosf = cosf = i =

6 =cos™'(3) = T1°.

— —
AB = (1: 0,-1), AC = (0,4, 3}, so
5 —_— —
(a) a vector perpendicular to the plane is AB x AC = (0+4,—(340),4—0) = (4,-3,4).
—_— — '
() } [4B x AC| = }vI6F9+ 16 = L.

Let F; be the magnitude of the force directed 20° away from the direction of shore, and let F» be the magnitude of the other
force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

sin 30°
sin 20°

into (1) gives Fa(sin 30° cot 20° + cos30°) = 255 = Fa = 114 N. Substituting this into (2) gives F; =~ 166 N.

F1cos20° + Fhcos30° =255 (1), and F1sin20° — Fpsin30° =0 = Fi=F

(2). Substituting (2)
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185.

17.

19.

21,

23,

25,

21

The line has direction v = (-3, 2, 3). Letting Py = (4, —1, 2), parametric equations; are

c=4—3t y=-14+2t, z=2+4 3¢t

A direction vector for the line is a normal vector for the plane, n = (2, —1, 5), and parametric equations for the line are

v=—-242t, y=2—-1, z=4+ 5t
Here the vectorsa = (4 — 3,0 — (-1),2—-1) = (1,1,1)and b= (6 — 3,3 — (-1),1 — 1) = (3,4, 0) lie in the plane,
son =ax b= (—4,3,1) is a normal vector to the plane and an equation of the plane is

4z —3) +3(y — (1)) +1(z— 1) = Oor —dz + 3y + 2 = —14.

Substitution of the parametric equations into the equation of the plane gives 2z —y+2=2(2 —¢) — (1 +3t) + 4t =2 =
—t+3=2 = t=1 Whent= 1,&19pammeMcequationsgivem= 2—1=1,y=1+ 3 =4and z = 4. Therefore,

the point of intersection is (1,4, 4).

Since the direction vectors (2, 3,4) and (6, —1,2) aren’t parallel, neither are the lines. For the lines to intersect, the three
equations 1+ 2t = —1 4+ 65, 2 + 3t = 3 — 8, 3 + 4t = —5 + 2s must be satisfied simultaneously. Solving the first two
equations gives t = % 8= % and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

ni = (1,0,-1) and n = (0,1, 2}. Setting z =0, it is easy to see that (1,3,0) isa p;)int on the line of intersection of
z — z = 1and y + 2z = 3. The direction of this line is vi = n; x nz = (1, -2, 1). A second vector parallel to the desired
plane is v = (1,1, —2), since it is perpendicular to = + y — 2z = 1. Therefore, the normal of the plane in question is
n=vixvy={4-1,1+21+2)=3(1,1,1). Taking (zo, yo, z0) = (1, 3, 0), the equation we are looking for is

(z—1)+@w-3)+2z=0 & z+y+z=4

a-(2q _ 22

By Exercise 12.5.75, D = ————— = 3
: 37 +12+(—4)? V26
. The equation x = z represents a plane perpendicular to . 31, The equation z° = 3* + 4z* represents a (right elliptical)
the xz-plane and intersecting the xz-plane in the line cone with vertex at the origin and axis the z-axis.
z=2z1=0
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§ | .
33, An equivalent equation is —z 4 % —22=1,a 35. Completing the squate in y gives
' 2
hyperboloid of two sheets with axis the y-axis. For 422 +4(y— 1P+ 22 =dorz? + (y - 1)2 + :"’Z =1,
ly| > 2, traces parallel to the zz-plane are circles. an ellipsoid centered at (0, 1, 0).
z
(0,1,2)
{1, 1%
X
2 y2 . 2 ye 22
37. 42° + y2 =16 < T + 6= 1. The equation of the ellipsoid is T + % -+ ¥ 1, since the horizontal trace in the
plane z = 0 must be the original ellipse. The traces of the ellipsoid in the yz-plane must be circles since the surface is obtained
2 p 2P
by rotation about the z-axis. Therefore, ¢ = 16 and the equation of the ellipsoid is T 4 16 - 6= 1 &

422 4+ 4 + 22 = 16.
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1. Since three-dimensional situations are often difficult to visualize and work with, let /

us first try to find an analogous problem in two dimensions. The analogue of a cube
is a square and the analogue of a sphere is a circle. Thus a similar problem in two I,

dimensions is the following: if five circles with the same radius r are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find r.
The diagonal of the square is v/2. The diagonal is also 4r + 2. But z is the diagonal of a smaller square of side r. Therefore
z2=+2r = V2=dr42z=4r+22r= (4+2\/§)'r = = ﬁ%;.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is /12 + 12 + 12 = /3.

The diagonal of the cube is also 4r -+ 2z where w is the diagonal of a smaller cube with edge r. Therefore

e=vVr+ri+r2=y3r = \/§:4T+2m=4r+2'\/§r:(4+2\/§)T.'I'liusr=4 \/23.\/§=2\/§‘2—3
+

The radius of each ball is (v/3 — £) m.

3. (a) We find the line of intersection L as in Example 12.5.7(b). Observe that the point (—1, ¢, ¢) lies on both planes. Now since

L lies in both planes, it is perpendicular to both of the normal vectors n; and ng, and thus parallel to their cross product

i jk
mxng=|c 1 1|=(2c,—c*+1,—c*—1). Sosymmetric equations of L can be written as
l——c ¢

g+l y—e z—e
-2 2-1 +1

, provided that ¢ # 0, £1.

If ¢ = 0, then the two planes are given by ¥ + z = 0 and z = —1, so symmetric-equations of Lare ¢ = —1,y = —z. If
¢ = —1, then the two planes are given by —x + ¢ + z = —1 and & + y + z = —1, and they intersect in the line = = 0,
y = —z — 1. If ¢ = 1, then the two p]ane_s are givenby z +y + 2z =land z — y + z = 1, and they i;'ltersect in the line
y=0z=1-—2z

(b) If we set z = t in the symmetric equations and solve for z and y separately, we get z+1 = f=ciiche _c2cl(-_120) L

(t—e)(c® —1) - m74a+@%4) (@ =1t+2¢
c2+1 - c2+1 = 2 +1

have z? + y? = ¢? + 1. So the curve traced out by L in the plane z = t is a circle with center at (0,0, ¢) and

radius /12 + 1.

y—e=

. Eliminating c from these equations, we
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(c) The area of a horizontal cross-section of the solid is A(z) = m(2* +1),50 V = [ A(z)dz = m[$2° + z]; =4,

K v =k va = A =—5—v so|v|=—|v|=§
. V3 =PI0jJv; V2 = |v1|2 5 8 22 1 3 22 1 2)
PRI, = T, i . (vi-va)va = & = |va| = . |va| = 2
TPV = T T T e N T g Vi =g =y
5 . B2 2 3
Vs = EiG i =k, — ST TR é-v —5—(v-v)vf5—v =
5 =Projvy V4 = JVS‘Q 3= (%)2 22 1 =213 1°Va 1—24_32 1
5 5 .. 5 5® n g4 gxi=a
[vs| = CT] [vi| = CERETR Similarly, |ve| = TR |vr| = T and in general, |v,| = = o 3(3)" .
Thus
Y val=val+lval+ X 3(3)" 7 =2+3+ % 3(3)"
n=1 n=3 n=1 %
=5+ (&))" =5+ : 2 _  [sum of a geometric series] =5 + 15 =20
n=1 -8
7. (a) When 8 = 6, the block is not moving, so the sum of the forces on the block
must be 0, thus N + F + W = 0. This relationship is illustrated 6\ N
geometrically in the figure. Since the vectors form a right triangle, we have w
F TN ) ’ F
tan(d, =—‘—l= £ =u..
(64) W= n B 5

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force
H, with initial points at the origin. We then rotate this system so that F lies along the positive z-axis and the inclined plane

is parallel to the z-axis. (See the following figure.)

N
F N
[} .l F=
H 9
w
W giH

|F| is maximal, so |F| = u,n for @ > @,. Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are
N=nj F = (p,n)i

W = (—mgsin#)i+ (—mgcosf)j H = (hmin cos8) i+ (—hmin sinf) j
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Equating components, we have

pent — mgsin® + hmincos0 =0 =  hmincost + p.n =mgsinf (1)

n—mgcost — hminsind =0 = hginsind +mgcosff =n )

(c) Since (2) is solved for n, we substitute into (1):

Panin €08 0 + f1,(Rmin 8in 6 + mgcosf) =mgsinf =

hmin €08 @ + Aminjt, sin@ = mgsin@ — mgu_cosf =

heo = sinf — p, cos? - tanf —
i =N cos@+ p,sinf ) 8 1+ p, tand

tanf — tan .

From part (a) we know p, = tan ,, so this becomes himin = Mg (———I . g

) and using a trigonometric identity,

this is mg tan(f — #,) as desired. ,

Note for = 05, Amin = mgtan0 = 0, which makes sense since the block is at rest for f,, thus no additional force H
is necessary to prevent it from moving. As 6 increases, the factor ta—n(ﬂ — 6,), and hence the value of hmin, increases
slowly for smail values of # — 6., but much more rapidly as & — ¢, becomes significant. This seems reasonable, as the
steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we
would need a much larger magnitude of horizontal force to keep the block motionless. If we allow § — 90°, corresponding
to the inclined plane being placed vertically, the value of hmin is quite large; this is to be expected, as it takes a great
amount of horizontal force to keep an object from moving vertically. In fact, without friction (so 8, = 0), we would have

® — 90° = Rmin — 00, and it would be impossible to keep the block from slipping,
(d) Since hmax is the largest value of h that keeps the block from slipping, the force of friction is keeping the block from
moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = —(u,n) i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we

equate components:
—p,1n— mgsing + hmaxcost =0 = hmaxcosf — p,n = mgsind
n—mgcosl — hmax SiNA =0 = hmaxsind + mgcosd =n
Then substituting, |
Rmax €088 — pt (Rmax sin @ + mgcos @) = mgsind =

hmax €08 0 — Amax b, Sin 6 = mgsin @ + mgu, cosf =
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_ sinf +p,cos0 [ tanf+p,
hmu_mg(cosﬁ—,u.ssine)_mg(l—,ustanﬁ
(tan3+ta.n63

1 —tan@, tanﬂ) =gianf 4 95)

We would expect hmax to increase as @ increases, with similar behavior as we established for hpyip, but with hmax values
always larger than Amin. We can see that this is the case if we graph hmax as a function of 6, as the curve is the graph of
hmin translated 26, to the left, so the equation does seem reasonable. Notice that the equation predicts hAmax — 00 as

6 — (90° — @,). In fact, as hmax increases, the normal force increases as well. When (90° — 6,) < 6 < 90°, the
horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.
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13.1 Vector Functions and Space Curves

1. The component functions v/4 — ¢2, e, and In(¢ + 1) are all defined when4 —t* >0 = -2<t < 2and

t+1>0 = t> —1,sothedomainofris(—1,2].

? 1 1 1 1
3 lime ¥ =¢"=1, lim = lim = = ===,
s o t—0gint. t—0 sin’t . sin’t ( . sin t)2 12
m
t—0

2 t—0 2

and }11‘% cos 2t = cos0 = 1. Thus

# £
z W " ) _ [y —at] - " . " s
Pﬂ’(e 1+Sin2t,]+cm.2tk) [Lmoe ]1-!—[}15‘% sinzt]‘]+[:ll—%(:052t]k i+j+k

1+¢ . (1/)+1 _0+1 , 4 Lo l—e® 1 1
; — = = =-—1; 1 =2, lim ——— = ———=0-0=
ST e T AR -1 01 SIS s By~ =90 =0 Ts
: 1 + tz = 1 = ﬁ_zt e

Jim <I_—t=’“‘“ g =L
7. The corresponding parametric equations for this curve are z = sint, y =t. ¥4/

We can make a table of values, or we can eliminate the parameter: t =y = <

z =siny, withy € R. By cdmparing different values of £, we find the direction in %

which t increases as indicated in the graph.

/1
9. The corresponding parametric equations are z = ¢, y = 2 — t, z = 2t, which are *
parametric equations of a line through the point (0, 2, 0) and with direction vector \
(1,-1,2).

7 0,2,0)
x 5 &
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11. The corresponding parametric equations are z = 1, y = cos t z = 2sint.
Eliminating the parameter in y and z gives y* + (2 /2)2 = cos®t +sin’¢t =1
ory® + 2% /4 = 1. Since = = 1, the curve is an ellipse centered at (1,0,0) in

the plane z = 1. %

13. The parametric equations are = = ¢, y = ¢*, z = °. These are positive z
for t # 0 and 0 when t = 0. So the curve lies entirely in the first octant.
The projection of the graph onto the zy-plane is y = 2%, y > 0, a half parabola.

Onto the zz-plane z = z®, z > 0, a half cubic, and the yz-plane, * = 22,

15, The projection of the curve onto the zy-plane is given by r(t) = (£,sint,0) [we use 0 for the z-component] whose graph
is the curve y = sinz, z = 0. Similarly, the projection onto the zz-plane is r(t) = (£, 0, 2 cos t), whose graph is the cosine
wave z = 2cos®, § = 0, and the projection onto the yz-plane is r(¢) = (0, sint, 2 cos t) whose graph is the ellipse

y2+1}z'“’=1,.1:=0.

e ey AN ST
f_fz,,/\\/wl ¢ \/_2— \/ 2% = i

zy-plane xz-plane

From the projection onto the yz-plane we see that the curve lies on an elliptical
cylinder with axis the z-axis. The other two projections show that the curve
oscillates both vertically and horizontally as we move in the .r-direction,

'suggesting that the curve is an elliptical helix that spirals along the cylinder.

17. Taking ro = (2,0,0) and r1 = (6, 2, —2), we have from Equation 12.5.4
r(t) = (1 —t)ro+trs = (1 —£)(2,0,0) +1(6,2,—2),0 <t <1 or r(t) = (2 + 4¢,2t, —2);0 < £ < 1.

Parametric equationsarex =2 4+ 4t, y =2, 2 =-2t, 0 <t < 1.
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21,

23.

25.

27,

29,

M.

‘curve.
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Taking rg = (0,—1,1) andry = (3, 3, }), we have
r) =1 -t)ro+iri=(1—-1){0,—-1L, 1) +¢(3,5,5),0<t<1or r(t)=(3¢t, -1+ 3,1 -3t),0<t <1,

Parametric equationsare ¢ = 3¢, y = -1+ 4¢, z=1-3+, 0<t < 1.

z =tcost, y =t, z=tsjnt, t > 0. Atany point (x,y, z) on the curve, 2 + 2% =12 cos® t + t2sin? t = ¢2 = y° so the

curve lies on the circular cone =% + 2% = 3? with axis the y-axis. Also notice that y > 0; the graph is I1.

z=1t yg= 1K1+ t’), z =12, Atany point on the curve we have z = :r:"’, so the curve lies on a parabolic cylinder parallel
to the y-axis. Notice that 0 < y < 1 and z > 0. Also the curve passes through (0,1,0) whent = 0and y — 0, z — oo as

t — oo, so the graph must be V.

z=cos8 y=sin8t, z=¢e"% t>0. 2°+4° = cos® 8t + sin® 8t = 1, so the curve lies on a circular cylinder with
axis the z-axis. A point (z,y, z) on the curve lies directly above the point (z, ¥, 0), which moves counterclockwise around the
unit circle in the zy-plane as ¢ increases. The curve starts at (1,0, 1), when ¢t = 0, and = — co (at an increasing rate) as

t — o0, so the graph is IV,

Ifz =tcost, y=tsint, z =1t thenz? +9? = t*cos®t + t*sin’ t = 1* = 22,
so the curve lies on the cone 2* = z* + y°. Since z = £, the curve is a spiral on

this cone.

Parametric equations for the curve are = = ¢, y = 0, z = 2t — t*. Substituting into the equation of the paraboloid
gives 2t —t? =t = 2t=2t" = ¢=0,1. Sincer(0) = 0andr(1) = i+ k, the points of intersection
are (0,0,0) and (1,0,1).

r(t) = (cost sin 2¢,sint sin 2t, cos 2t).

We include both a regular plot and a plot

showing a tube of radius 0.08 around the -

z 0

=1

(@© 2012 Cengage Learning, All Rights Reserved. May not be d, copied, or dupli d, or posted to a publicly accessible website, in whole or in part.




154 [ CHAPTER13 VECTOR FUNCTIONS

33. r(t) = (t,tsint, tcost) 35. r(t) = {cos 2, cos 3t, cos 4t)

2= (1+cos16t)cost,y = (1 + cos 16t) sint, z = 1 + cos 16t. At any
point on the graph, .
z? 4+ y* = (1 4 cos 16t)* cos” t + (1 + cos 16t)* sin® ¢

= (1 + cos 16t)? = 22, so the graph lies on the cone 2> + y* = z%.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone. '

39. Ift = —1,thenz = 1, y = 4, z =0, so the curve passes through the point (1,4,0). Ift = 3, thenz = 9, y = -8, z = 28,
so the curve passes through the point (9, —8, 28). For the point (4, 7, —6) to be on the curve, we requirey =1 -3t =7 =

t = —2, Butthen z = 1 + (—2)® = =7 # —6, so (4,7, —6) is not on the curve.

#1. Both equations are solved for z, so we can substitute to eliminate z: \/z2 + 2 = 1+y = «*43°=1+2+y> =
2?=14+2% = y= -;:(:1:2 — 1). We can form parametric equations for the curve C of intersection by choosing a
parameter z = t, theny = 3(t* —1)and 2 = 1 +y = 1 + £ (¢* — 1) = 1 (¢ + 1). Thus a vector function representing C'
isr(t) =ti+i(t*-1)j+i(*+1)k .

43. The projection of the curve C of intersection onto the zy-plane is the circle z? +4* = 1, z = 0, s0 we can write z = cost,”
y =sint, 0 <t < 2m. Since C also lies on the surface z = z° — 3%, we have z = @ — y? = cos? ¢ — sin? ¢ or cos 2t.

Thus parametric equations for C' are z = cost, y = sint, 2 = cos 2t, 0 <t < 2w, and the corresponding vector function

isr(t) =costi+sintj-+cos2tk,0<t < 2m.

45, z The projection of the curve C of intersection onto the

xy-plane is the circle 2% + y? = 4, 2 = 0. Then we can write
T =2cost, y = 2sint, 0 <t < 2. Since C also lies on

the surface z = 22, we have z = a® = (2cost)? = 4cos’ t.

LT

TPy
|

n Then parametric equations for C are x = 2cost, y = 2sint,

0 2 x z=4dcos’t, 0 <t < 27.
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47. For the particles to collide, we require ry () = ra(t) < (t*,7t —12,¢%) = (4t — 3,¢*,5¢ — 6). Equating components
gives t* = 4t — 3, 7t — 12 = ¢*, and ¢? = 5¢ — 6. From the first equation, t* —4t+3=0 & (t—3)(t—1)=0sot=1
ort = 3. £ = 1 does not satisfy the other two equations, but ¢ = 3 does. The particles collide when ¢ = 3, at the
point (9,9, 9).

49, Let u(t) = (ua(t),ua(t), ua(t)) and v(t) = (v1(¢), v2(t), va(t)). In each part of this problem the basic procedure is to use
Equation 1 and then analyze the individual component functions using the limit properties we have already developed for
real-valued functions. .

() lim u(t) + lim v(t) = ( lim w1 (¢), lim us (£), lim us(t)> % (tli_rjr‘xl vi (1), lim v (t), lim bg(t)> and the limits of these
component functions must each exist since the vector functions both possess limits as ¢ — a. Then adding the two vectors
and using the addition property of limits for real-valued functions, we have that

lim u(t) + Jim v(t) = (tli_ﬂ wi (t) + Jim 1 (t), lim ua () + lim va(t), lim us(t) + lim vg(t)>
= (lim [ua (&) + w1 (6)], him fua(t) + va ()], Jim [ (t) +va(e)])
= lim (us(t) + va(8), wa(t) + va(t), us(t) + vs(t)) [using (1) backward]
= tlim [u(t) + v(2)]
(b) lim cu(t) = lim (cus (£), cua(t), cus(8)) = ( Jim cur (2), lim cus(t), lim cug(t)>
= (clim ua (£), ¢ lim ua(t), e lim us () ) = ¢ (lim ws (¢), lim uz(2), lim ua(t)>

= clim (w1 (£), ua(t), ua(t)) = ¢ lim u(t)
(©) lim u(t) - Jim v(t) = (lim us (¢), lim ua(t), lim ua(t)) - (Jim v1 (2), lim v2(t), Jim wa () )

- [im 0] [ on ] + i) 0] + ] [imosc)]

= tll_I.I: ug(B)v1(t) + tlg!: uz(t)va(t) + 'll_l:llll ua(t)vs(t)

. = lim [ua (£)v1(t) + ua(t)va(t) +us(t)vs(t)] = lim [u(t) - v(t)]
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(@ Jimy u(e)  fm ) =l s 0 fm e fm o))  (fim ) Jm 00, i 0s(6)
= ([l wa0] [mws0] - [pmue)] [fmeate]
[z 20(6)] [t 0] ~ [t 9] [3mmoste]
im0 [t va(6)] — [im (4] [ n )]
= <}5ﬂa [ua(t)va(t) — ua(t)va(t)], im [ua(t)vr(€) — wa(t)va(t)],
tim (e (o (6) — ua(B)a ()]
= lim (uz(t)vs(t) — ua(tyva(t), us () va(t) — wa(t)vs(t), ua(t)v2(t) — ua(t)or(t))

= lim [u(t) x v(t)]

t—a

51. Letr(t) = (f (t), g (t),h(t)) and b = (b, bz, b3). Iftlinl r(t) = b, then it!im r(t) exists, so by (1),

b = lim r(t) = <3if.‘.‘, £(2), lim g(2), lim h(t)). By the definition of equal I lim f(£) = by, lim g(t) = b
and P-E:cln h(t) = bs. But these are limits of real-val.ued functions, so by the definition of limits, for every £ > 0 there exists
81> 0,02 > 0,03 > 0sothatif 0 < [t —a| < d1 then [f(¢) — b1| < £/3,if0 < |t — a| < d2 then |g(t) — b2| < £/3, and
if 0 < [t — a| < 33 then |h{t) — bs| < €/3. Letting § = minimum of {§1,d2,d3}, thenif 0 < [t — a| < & we have

|F () = b1| + |g(t) — be| + |h(t) — bs| < &/3+¢/3+¢/3 =¢. But

Ir() = bl = [(f(t) — b1, 9(t) — b2, h(t) — ba)| = /(f(t) — b2)* + (g(t) — b2)* + (h(t) — ba)?
< VIF®) = b + Vg (®) — b2? + /() = bs]? = | f(£) — ba| + lg(t) — ba| + |A(t) — b

Thus for every & > 0 there exists § > 0 such that if 0 < |t — a| < & then
|e(t) —b| < |f(2) — b1| + |g(t) — b2| + |h(t) — ba| < £. Conversely, suppose for every € > 0, there exists § > 0 such
thatif0 < |t —a| < dthen|r(t)—b| <e < |{Ff(t) = bi,g(t) —b2,h(t)—b3)| <e <«

VIFE) =0 +[g(®) = b2P + [h(t) —=bsP <& & [f(t) — ba]* + [g(t) = ba]* + [(t) — bs]* < €*. But each term
on the left side of the last inequality is positive, so if 0 < |t — a| < &, then [f(t) — b1]® < €2, [g(t) — b2]* < & and
[R(t) — b3]* < €* or, taking the square root of both sides in cach of the abave, |f(t) — b1| < &, |g(t) — ba2| < & and

[h(¢) — bs| < . And by definition of limits of real-valued functions we have tlim I = b, Pm g(t) = bz and

flg‘r; h(t) = ba. But by (1), rlix:.'n. r(t) = <}im F(t), g.l;m g(t), gim h(t)), 50 t1im r(t) = (b1, b2, ba) = b.
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13.2 Derivatives and Integrals of Vector Functions

1. (a) y

r(4.5)—r(4)

/ r(4.2) — r(4)

®) %ﬂ = 2[r(4.5) — r(4)], so we draw a vector in the same
direction but with twice the length of the vector r(4.5) — r(4).
r(L{));r_(é_) = 5[r(4.2) — r(4)], so we draw a vector in the same

direction but with 5 times the length of the vector r(4.2) — r(4).

r'(4)
(@)l

r(4+h) —r(4
h

(c) By Definition 1, r'(4) = lim ), T(4) =

h—0

(d) T(4) is a unit vector in the same direction as r’(4), that is, parallel to the

tangent line to the curve at r(4) with length 1.

3 Since (z+2)*=t'=y—-1 = (a), (c) by

y=(z+2)?+1,thecurveisa

parabola. -3,2)

T
of =x

5. z =sint, y = 2costso (a), (c) A (Q,\/z)

z? + (/2)? = 1 and the curve is e

an ellipse. S ¥ '(T)

(}(%) d

£{4.2) — r(4)
02

r(4.5) — r(4)
0.5

(b) r'(t) = (1,2t),
r'(-1) =(1,-2)

(b) r'(t) = costi— 2sintj,

*(3) - F1-va
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(b) '(t) = 2e* i+ e'j,
r)=2i+j -

7. Since z = e = (¢*)? =, the (a), (c)
curve is part of a parabola. Note
that here z > 0,y > 0.

9. r(t)= <% [tsint], % [£] ‘, % [t cos 2t]> = (tcost + sin #, 2t,t(— sin 2t) - 2 4 cos 2t)
= (tcost + sint, 2t, cos 2t — 2¢ sin 2¢)

" r(t) =ti+j+2/tk = r’(t):1i+0j+2(%t‘”2)k=i+%k

_ g’-._. It - 12 . 3
B.rt)=e"i—j+In(l1+3t)k = r'(t) =2t l+_1+3tk

15. r'(t) = 0 + b + 2t c = b + 2t ¢ by Formulas 1 and 3 of Theorem 3.
A Y(t) = (—te™ +e7h,2/(1+2),2¢") = r'(0)=(1,2,2). So|r'(0)| = vVIZ+ 27+ 22 = /9 =3 and

T0) = g = 1022 =(h 33

19, r'(t) = —sinti+3j+4cos2tk = r'(0) = 3j+4k. Thus

r'(0) _ 1
IP(0)] V0?7 +37+42

)= (3j+4k) =4@Bj+4k) = {i+3k

2. x(t) = (4,8%,¢°) = r'(t) = (1,2t,3¢%). Thenr'(1) = (1, 2,3) and [r'(1)] = VI? + 2% + 3% = V/14, 50
r'(1)

1) — . | _ 2_ _3 _
T(l) o Ir,(l)l = Y1l (1123 3) = <711—4; Ws?ﬁ) l'”(t) = (0,2,6t>,50
i
=1 o 2 8| 1 3 - 12t
r Xr = = i — j
6t 0 6t 0 2
0 2 6t

= (12t — 6t%)i — (6t — 0)j + (2 — 0) k = (6%, —6t,2)

23. The vector equation for the curve is r(t) = (142 V%, t* — t,#* + t), so r'(t) = (1/v/%,3¢> — 1,3t* + 1). The point
(3,0,2) corresponds to t = 1, so the tangent vector there is r'(1) = (1, 2, 4). Thus, the tangent line goes through the point
(8,0, 2) and is parallel to the vector (1,2, 4). Parametric equationsare x = 3 +t,y = 2t, z = 2 + 4¢.

25. The vector ;equation for the curve is r(t) = (e " cost,e "sint,e "), s0

r'(t) = (e‘t(; sint) + (cost)(—e™"), e *cost -+ (sint)(—e %), (—e™*))
= (—e"(cost +sint),e *(cost —sint), —e™")
The point (1,0, 1) corresponds to ¢ = 0, so the tangent vector there is
r'(0) = (—€%(cos 0 + sin 0), e°(cos 0 — sin 0), —e”) = (—1,1, —1). Thus, the tangent line is parallel to the vector

(—1,1,—1) and parametric equationsarez =1+ (—1)t=1—t,y=0+1-t =t z=1+ (1)t =1—t.
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27. First we parametrize the curve C of intersection. The projection of C onto the zy-plane is contained in the circle’

z? 4 9® = 25, z = 0, 50 we can write = = 5cost, y = 5sint. C also lies on the cylinder y* + 2% = 20,and z > 0

near the point (3,4, 2), so we can write 2 = /20 — y2 = \/20 — 25sin® . A vector equation then for C is

r(t) = <5cdst, 5sint, v/20 — 25sin? t> = ()= <—5sint, 5 cost, 1(20 — 25sin? ) ~Y/2(~50sin tcost)>.
The point (3,4,2) corresponds to ¢ = cos ™ (£), so the tangent vector there is

v (con (3)) = (-5(8)5@) 4 (-3 (3*) " (-0 @) = (-4.8,-6)

The tangent line is baral]e] to this vector and passes through (3,4, 2), so a vector equation for the line

~1/2

isr(t) = (3 — 48)i + (4 + 30)j + (2 — 6t)k.

29, r(t) = (t,e",2t—*) = r'(t)=(1,-e"2-2t). At(0,1,0),

t = 0and r'(0) = {1, —1,2). Thus, parametric equations of the tangent 5
linearez =%, y=1—1,z=2L z0
-2

y 5 2 0 -2

3. r(t) = (tcost,t,tsint) = r'(t) = (cost—tsint,1,tcost+ sint).
At (—m,m,0),t = mand r'(r) = (-1, 1, —x). Thus, parametric equations

of the tangent linearez = —v —t,y =7+ 1, z = —wt.

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of
intersection. Since r}(t) = (1,2¢,3t*) and t = 0 at (0,0,0), r} (0) = (1,0, 0) is a tangent vector to ry at (0, 0,0). Similarly,
ra(t) = (cost, 2 cos 2¢, 1) and since r2(0) = (0,0, 0), vy (0) = (1,2, 1) is a tangent vector to T2 at (0,0, 0). If @ is the angle

between these two tangent vectors, then cos § = 7976- {1,0,0) - (1,2,1) = 2= and # = cos™* ('\%a') = 66°.

3. [2 (ti-t2j+3t°K)dt = (fj tdt)_i— (foz tﬂdt)j+ (flf 3t5dt)k

2., 2. 2
= (300 - 303+ 3o
(4-0)i—2(16-0)j+3(64-0)k=2i—4j+32k

I

3=
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3. f"ﬂ 3sin®t costi+ 3sint cos® tj+ 2sint costk)dt
= (f"f23sm tcostdt) i+ (fw/ 3sint cos tdt) -+ (f0“/225int costdt) k
= [sin® )5/ i+ [~ cos® ¢]5/% jo+ [sin? £] 7% k= (1 - 0)i+ (0 + 1)j+ (1 —0)k=i+j+k

3. [(sec®ti+t(t*+1)°j+t*Intk)dt= ([sec’tat)i+ ([t +1)°dt) j+ ([t Intdt) k
=tanti+ $(t* +1)*j+ (3* Int — 3¢*)k + C,
where C is a vector constant of integration. [For the z-component, integrate by parts with v = Int, dv = 2 dt.]
M. r'(t) =2ti+32j+vtk = r(t)=t2i+j+ 2t3%?k+ C, where C is a constant vector.

Buti+j=r(l)=i+j+ fk+C. Thus C = —Zkandr(t) =t i+ ¢*j+ (%t"‘/?f -’;f) k.

For Exercises 43—46, let u(t) = (u1(t), uz(t), ua(t)) and v() = (v1(t), va(£), va(t)). In each of these exercises, the procedure is to apply

Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.
d d '
4. = [u(t) +v(B)] = = (uat) +va(8), ua(t) + va(t), ua(t) + v (t))

= (4 10+ 0 0], 5 [0a®) + 0], 5 us(t) + (0] )

= (ua(t) +vi(t), ua(t) +va(t), us(t) +vi(t))
= (W (6),u5 (1) b (6)) + (0A(8), (1), v4(6)) = w'(8) +V'(8)
;t (ua()va(t) — ua(H)va(t), ua(t)va (t) — wa()va(2), wa (Bva(t) — ua(t)va(t))
= (uzvs(t) + ua(t)vs(t) — ua(t)va(t) — us(t)va(t),
(o) +ua(t)oh () — u (tus (£) — ua (t)ohH),
ui (F)va(t) + wa (E)va(t) — ua(t)or (t) — ua(t)va(t))
= (uz(t)va(t) — wa(t)va (£) , us(E)va (2) — wa (B)va(t), v (B)va () — wa(t)or(t))
+ (ua(t)va(t) — ua(t)va(t), ua(t)vr (£) — ua ()va(t), va (£)va(t) — ua(E)vi(t))
=w'(t) x v(t) +u(t) x v'(t)
- Alternate solution: Let r(t) = u(t) x v(t). Then
r(t+h) — r(t) = [ut +h) x v{t + h)] — [u(t) x v(t)]
= [t + h) x v{t -+ h)] = [u(t) x v(t)] + [a(t+ ) x V()] = fult + h) x V()]
=u(t+h) x [v(t+h) — v()] + [u(t + h) —u(?)] x v(t)
(Be careful of the order of the cross product.) Dividing through by h and taking the limit as h — 0 we have

¥ (1) = lim i B+ R) x [vf(lt +h) —v(®)] + lim [u(t + h) 7;(,:)] % v (t)

by Exercise 13.1.49(a) and Definition 1.

. 2 [u(t) x v(t)] =

= u(t) x v'{t) +u'(t) x v(t)
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53.
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% [u(t) - v(t)] = u'(t) - v(t) +ult) - v'(t) [by Formula 4 of Theorem 3]
= {cost,—sint, 1) - (,cost,sint) + (sint,cost,t) - (1, —sint, cost)
=tcost —cost sint + sint + sint — cost sint 4 tcost

= 2tcost + 2sint — 2cost sint

. By Formula 4 of Theorem 3, f'(t) = u’'(t) - v(t) + u(t) - v/(t), and v'(¢) = (1,2t,3¢%), so

f(2) =1u'(2) - v(2) +u(2) - v'(2) = (3,0,4) - (2,4,8) +(1,2,-1) - (1,4,12) =6 +0+32+ 1 + 8 — 12 = 35,

% [v(t) x r'(£)] = r'(t) % r'(t) +r(t) x »"(t) by Formula 5 of Theorem 3. But r'(t) x‘r’(t) =0 (by Example 2 in

Section 124). ThUS, -‘f—t [r(t) X r’(t)] — r(t) X r”(t).

2 IR0 = 5 [r) - T = $lre) - O]/ 20(2) (1)) = [ v(6) -2

Since u(t) = r(t) - [v'(£) x £ {#)],
w(t) = 2(8) - I (6) X ()] 4 7(0) - S 1 (8) x (1)

=0+r(t) - [r"(2) x () +r'(t) x x"(t)] [since r'(t) L r'(t) x v”(8)]
=r(t) - [v'(t) x "' ()] [since r(t) x r”(t) = 0]

13.3 Arc Length and Curvature

1.

r(t) = (t,3cost,3sint) = r'(t) = (1,—3sint,3cost) =

¥’ ()| = /12 + (—3sint)? + (Bcost)? = /1 + 9(sin® t + cos? t) = /10.

Then using Formula 3, we have L = [°, [v/(t)|dt = [, 10dt = mt]iﬁ =10 V10.

cr(t) =V2ti+efj+e )k = ft)=V2itelj-ek =

v’ ()] = \/(\/5)2 +(e)2+(—et)P2=vV2+eFtte 2= /let+et)2=¢"+e* [sincee’+e*>0]

Then L = [} |v'(¢)|dt = [5(e* + e *)dt = [ — et]y=e—e.

Lr(t) =i+ 2j+t3k = YY) =2tj+3°k = |[¢'(t)| = VET + 985 =t /4 + 02 [since t > 0].

4 ;¢
Then L = [ [r'(t)|dt = [ t A+ 98 dt = & - 2(d+ stﬂ)"“]o = (1332 — 43/2) = L (13%/2 _3g).

L) =0 00 = i) =G 4" = Pi)= \/(21:)2 + (3t2)2 + (4£2)? = /412 £ 97 + 165, so

L= [2 ') dt = [} VAT +0tF + 1620 dt =~ 18.6833.
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9. r(t) = (sint,cost,tant) = r'(t) = (cost,—sint,sec’t)

[¥'(t)] = y/cos?t + (—sint)? + (sec?t)? = /1 +secifand L = f"“ (t)|dt= ;/d\/1+sec4tdtm1.2780.

11. The projection of the curve C onto the zy-plane is the clirve 2% = 2yory = %a:z, z = 0. Then we can choose the parameter
z=t = y= 3t Since C also lies on the surface 3z = zy, we have z = $zy = 1(¢)(3t*) = 3°. Then parametric
equations for C are z = ¢,y = 3t°, z = ;t* and the corresponding vector equation is r(t) = (t, 1t*, £¢*). The origin

corresponds to £ = 0 and the point (6, 18, 36) corresponds to £ = 6, so

L= [ ') dt = [y [(1,6, 62| dt = [5 /12 + 62+ (362)7dt = [T /1+12 + Lttt
= [F/A+32)2dt = [P+ %) dt = [t + 3t°]; =6+ 36 = 42
13 r(t) =2ti+(1-3t)j+ (5+4H)k = r'(t)=2i—3j+4kand L =|r'(t)| = A+ 9+ 16 = v20. Then

s=s(t) = fot v’ (w)| du = j: V29 du = +/29t. Therefore, t = 7}2-9-5. and substituting for ¢ in the original equation, we

have r(t(s)) = %z si + (1 i 7'fﬁs)j Y (5 + 7‘5-53) K

15, Here r(t) = (3sint,4t, 3cost), sor'(t) = (3cost, 4, —3sint) and |r'(£)| = v/9cos? £ + 16 + 9sin? ¢ = v/25 = 5.
The point (0,0, 3) corresponds to ¢ = 0, so the arc length function beginning at (0, 0, 3) and measuring in the positive
direction is given by s(t) = f, |r'(u)| du = [} 5du = 5t. s'(t) =5 = b5t=05.= t=1,thus your location after

moving 5 units along the curve is (3sin1,4,3cos 1).

17. (a) r(t) = (t,3cost,3sint) = r'(t) = (1,—3sint,3cost) = |r'(t)| = v/1+ 9sin®t + 9cos?t = +/10.

: r'(t) g 1 8 3
Then T(t) = o 7155 (1,—3sint, 3cost) or <71'6’_7ﬁ sint, —= cost).

T'(t) = <5 (0,—3cost,—3sint) = |T'(t)| = Fgv/0+9cos?t + 9sin’t = —A5. Thus
T’(t) _1/Y10 '

N(t) = )]~ 3/vi0 {0, —3cost, —3sint) = (0, — cost, —sint).
o s = (SO _ 3V _ 3

IF®)  vio 10

19. (a) r(t) = (\/it,et,e“t) = r'{t)= (\/ﬁ,e*,fe"t) = K@) =vV2Ztet te = /let+e ) =c+e

Then

; ¢
T(t) = ;'_ggl S + o (V2,e',—e7*) = T (V2e' e*,~1) |after multiplying by %] and
T'(t) = oo} (V2e*,2e*,0) — ( @ (V2e',e*, —1)

[(e*+1) (\/_e 2¢%,0) — 263t (V2e', e, — 1)] = (e'“+1)2 (V2e* (1= e*t) , 26", 24M)

= (ezz +1)2
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Then
1 1
T ()| = W\he?*(l — 2e2t + edt) + 4eft - 4ett = WJ%”H + 2e2¢ + eit)
-1 9€3t (1 4 e3t)? = V2e'(1+€*) _ V2e
(ezt + 1)2 (82‘ 4= 1)2 €2t + 1
Therefore
T'(t) _e*+1 ¢ 3t 520
2e"(1— 2
N(t) = T ()] V2et (e + 1)? (\/_e (1 — &%), 26", 26™)
1 2 2% o2ty _ 1
= —W_:-l—) ('\/E(’,t(l - t),28 *,Qe t) = —e?t 3 | <1 = 82£, \/§€t, \/§€t>
|Tf(t)| _ \/iet, . 1 _ \/ﬁet _ \/2-62? ﬁcﬂ

(b) w(t) = [(t)] ~ e +1 et+et e 42etfet el t1 (eﬂt +1)2

r(t) =2 j+ 2k = r()=32j+2k r’(t)=6tj+2k |r(t) =07+ (GRY + (20 = VOR T4,

: T e — g2 [e'(e) x x"(@)] _ 6t _ 6t
r'(t) x v(t) = =671, |r'(t) x v ()| = 6t>. Then x(t) = POF - (Ve | R aEa

r(t) = 3ti+4sintj+4costk = r'(f) =3i+4costj—4sintk, r”’(t) = —4sintj—4costk,

Ir'(t)| = V9+ 16cos? ¢ + 16sin®t = O+ 16 = 5, r'(t) x r”(t) = —16i + 12costj — 12sintk,

¢ (£) X £ (2)] = v/256 + 144cos? £ & 14dsin? = +/400 = 20. Then w(t) = LA X' _ 20 _ 4
T WP %

r(t) = (t,t*,t*) = r'(t) =(1,2t,3t*). The point (1,1,1) corresponds to ¢ = 1, and n/(1) = (1,2,3) =

[F'(1)] = vIFE4+9=VI4 r'(t)=(0,2,6t) = r"(1)=(0,2,6). r'(1) xr"(1)=(6,—6,2),s0
(1) x £"(1)) = VIS F T F T = V7B, Then (1) = [ ()] ﬁ -1 \/g

(1)

— 7] =, 1" 2 - |f”($)| . l12:r:2| o 1222
flz) =2 f'(z)=42% f"(z)=122% «(z)= I+ (F(@)°P? ~ [T+ (42272 ~ (1 + 1625372

. f(z) = ze®, f'(z) =z + €%, f'(x) = xe” + 267,

| £ ()] |ze® + 2e| _ lz4+2| e

T+ (F@VF7 ~ [+ (e +e) P72 [+ (we= +e PP

K(z) =

v @) B g B
T ()P~ ey =A™

To find the maximum curvature, we first find the critical numbers of x(z):

Since y' = " = €, the curvature is k() =

2 o 1+e'2:‘: 362:1: . 1_262:1:
K (z) = e*(1+€¥®)7%/2 e° - 2)(1 + €2%)~5/2(2¢2%) = ¢* Trempr = G ey

K'(z) = 0when1—2e** — 0,50 = jorz = —}In2. Andsince 1 —2¢** > Oforz < —3In2and 1 — 2** < 0
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for z > —3 In2, the maximum curvature is attained at the point (f% In2, e(_l“r")/g) = (—% In2, LQ)

Since lim e*(1 4 e**)"*/? = 0, r(z) approaches 0 as = — oo.

=0

33. (a) C appears to be changing direction more quickly at P than (), so we would expect the curvature to be greal’ér at P.

35.

37.

(b) First we sketch approximate osculating circles at P and (). Using the

¥
axes scale as a guide, we measure the radius of the osculating circle
at P to be approximately 0.8 units, thus p = % = N~
e T
K= E s 06 a2 1.3. Similarly, we estimate the radius of the
. ' , 1 1 0
osculating circle at @ to be 1.4 units, so k = 5 a kit 0.7.
-2 P -3 "o__ —4
y==z = y =-22"° y'=6z7" and
] Wl |67 _ 6
L+ 1+ (-20-92% @t (1+4a-0)""

The appearance of the two humps in this graph is perhaps a little surprising, but it is

explained by the fact that y = =2 increases asymptotically at the origin from both

directions, and so its graph has very little bend there. [Note that r;(O) is undefined.]

—4

r(t) = (te', e, V2t) = }-’(t) = {(t+1)e",—e~*,v/2), r"(t) = ((t+2)e’,e™",0). Then

r'(t) x v (1) = {(—v2e7, V2(t + 2)e*, 2t + 3), " |r'(t) x £"(¢)] = /2e72 + 2(t + 2)%e* + (2t + 3)?,

[’ (£)] = +/(t + ljzezt +e 2t +2, and k(f)=

) x 2" (@) /2e72 +2(t 4 2)%e2t + (2t + 3)2

We plot the space curve and its curvature function for —5 < ¢ < 5 below.

Kty
061
5
z 0
e 0
0 00"
50160 : s 0

e/ (t) [t 1)%e% a4

¥

5 ¢

From the graph of (t) we see that curvature is maximized for ¢ = 0, so the curve bends most sharply at the point (0, 1, 0).

The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature

graph, where x(t) becomes nearly 0 as |¢| increases. g

39. Notice that the curve b has two inflection points at which the graph appears almost straight. We would expect the curvature to

be 0 or nearly 0 at these values, but the curve a isn’t near 0 there. Thus, @ must be the graph of y = f(z) rather than the graph

of curvature, and b is the graph of y = k().

2012 Cengage Learning. All Rights Reserved, May not be scanned, copicd, or duplicated, or posted to a publicly accessible website, in whole or in part,
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Using a CAS, we find (after simplifying) ’ i ki) A

(t)_ﬁxfécosgtf12cost+13
MY = T A7 —12cost)??

. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct (a, b)

command; in Mathematica, use Cross [a, b].) Curvature is 0 27 e 6 ¢

largest at integer multiples of 2.

z=t = =2 = =2 y=t2 = §=3% = =6t
Then ity — T3 _ |G —H@)] _ e 6] e
[ 2 +y2]3/2 - [(2t)9’+ (3t2)2]3/2 . (4152 +9t4)3/2 a (4t2 +9t4)3/2'
.z =¢c'cost = &=e'(cost—sint) = F=e(—sint—cost)+e'(cost—sint) =—2¢"sint,

y=-¢e'sint = y=¢e'(cost+sint) = §j=e’(—sint+cost)+ e’(cost+sint) = 2! cost. Then

) |&j — gi| _ |e°(cost —sint)(2e cost) — e’ (cost + sint)(—2e’ sint)|
K(t) = -
[#2 + g2 (let(cost — sint)]? + [et(cost + sint)]2)*/>
- |2¢*(cos® t — sint cost + sint cost + sin” £)| o 2e () 262t 1

[e2t(cos?t — 2costsint + sin® ¢ + cos? t + 2costsint +sin2t)]3/2 - [e2t(141)]*/2 T et (2372 T V2et

v (22,1 2t,28%,1
(1,2,1) corresponds to t = 1. T(t) = Q) van ’+4t4 _>|_ == { 5% 1 1 >, so T(1) = (%,

T/(t) = —4t(26* +1)7* (2¢,26%,1) + (2¢* +1)7* (2,4¢,0)  [by Formula 3 of Theorem 13.2.3]

COJ!O
mll-l
~

= (2t + 1) 7 (-88> + 4* + 2, —8¢> + 8> + 4t, —4t) = 2(2¢% + 1)72 (1 — 2¢%, 2¢, —2t)

N = () 2247+ 1)7%(1—26%,2¢,-2) _ (1222, -2t)  (1-2e2,2t,-2t)
IT'(6)] ~ 2(262 + 1)-2,/(1 - 2202 + (20)% + (-20)? 1-48 748 1822 1+ 22
N(1) = (4,3, 3)ad B() =T xNO) = (-5 - § - (-5 +5). § +1 = (-5 3. 3)-

. (0,7, —2) corresponds to t = . r(t) = (2sin3¢,¢,2cos3t) =

() = r'(t)  (6cos3t,1,—6sin3t)
()] \/36cos?3t+ 1+ 36sin?3t /37

T(7) = 5 {—6,1,0) is a normal vector for the normal plane, and so (—6, 1, 0) is also normal. Thus an equation for the

{6 cos 3t, 1, —6sin 3t).

planeis —6 (z — 0) + 1(y — m) + 0(z + 2) =0ory— 6z = .

V/18%5in? 3t + 182 cos? 3t _ 18
V37 Y

= (—sin3t,0, — cos 3t). So N(x) = (0,0, 1) and B(7) = —= (—6,1,0) x (0,0,1) = 7 (1,6,0).

T'(t) = 5= (~18sin3¢,0,~18cos 3t) = |T'(t)| =

T'(t)

N = g

Since B(7) is a normal to the osculating plane, so is (1, 6, 0).

An equation for the plane is 1(z — 0) + 6(y — 7) + 0(2 + 2) = 0 or = -+ 6y = 67.
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The ellipse is given by the parametric equations & = 2cost, y = 3sin, so using the result from Exercise 42,

K= |&fj — &y| _ |(—2sint)(—3sint) — (3cost)(—2cost) 6
T e 4232 T (4sin® t 4 9 cos? t)3/2 "~ (4sin®t + 9cos? £)3/2’
At (2,0), £ = 0. Now (0) = £ = 2, 50 the radius of the osculating circle is , -
1/x(0) = 2 and its center is (—3,0). Its equation is therefore (z + §)* + 3 = &L, : /<>\
At (0,3),t = 7,and k(%) = § = §. So the radius of the osculating circle is § and -175 \ 2.5
its center is (0, 3). Hence its equation is z* + (y — %)2 =i /
\\ S
-5

The tangent vector is normal to the normal plane, and the vector (6, 6, —8) is normal to the given plane.
But T(t) || ©'(¢) and (6, 6, —8) || (3,3, —4}, so we need to find ¢ such that ' () || (3, 3, —4).

r(t) = (£3,3t,1%) = r'(t) = (3£%,3,4t%) || (3,3,—4) when t = —1. So the planes are parallel at the point (—1, —3, 1).

. First we parametrize the curve of intersection. We can choose y = ¢; then z = y* = ¢ and z = z° = t*, and the curve is

given by r(t) = (t2,,t*). r'(t) = (2¢,1,4¢>) and the point (1,1, 1) corresponds to ¢ = 1, so r’(1) = (2,1,4) is a normal
vector for the normal plane. Thus an equation of the normal plane is

r'(t) 1
|v'(t)] — /&t F 1+ 16£0

T'(t) = —3(4t% + 1 + 16t°)~3/3(8t 4 961°) (2¢,1,4£%) + (4t* + 1 + 16¢%) /2 (2,0, 12¢%). A normal vector for

Az—1)+1y—1)+4(z—1)=0or2r+y+4z=7. T(t)= (2t,1,4¢*) and

the osculating plane is B(1) = T(1) x N(1), butr'(1) = (2, 1,4} is parallel to T(1) and
T'(1) = —%(21)-3(2(104)&, 1,4) + (21)7/3(2,0,12) = 5725 (—31,-26,22) is parallel to N(1) as is (31, ~26,22),
so (2,1,4) x (-31,—26,22) = (126, —168, —21) is normal to the osculating plane. Thus an équation for the osculating

plane is 126(z — 1) —168(y — 1) —21(z—1) =0 or 6z —8y—z=-3.

g T
_ |dT| _|dT/dt| _ |dT/dt) _ dT/dt dt _ dT/dt _
k=TT ds/dtl_ g N = p el = d,’T = dsjdt ds 5 by the Chain Rule
dt
@B|=1 = B-B=1 = (B Bl s 350 Bl o S0 W
ds ds
GB=TxN =
dB d i o1
o= —(T x N) = ('r B /dt 12(’1‘><N)|,ml (T x N) + (T x N) s

=[(xm) -] = ar + w e
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©)B=TxN = TLN,B.L TandB L N. SoB, T and N form an orthogonal set of vectors in the three-
dimensional space B®. From parts (a) and (b), dB/ds is perpendicular to both B and T, so dB/ds is parallel to N.
Therefore, dB/ds = —7(s)N, where 7(s) is a scalar.
‘ (d) Since B="T x N, T L N and both T and N are unit vectors, B is a unit vector mutually perpendicular to both T and
N. For a plane curve, T and IN always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus dB/ds = 0, but dB/ds = —7(s)N and N # 0, so 7(s) = 0.

6. () r'=6'T = '=5"T+sT =5"T+4¢ d—Ts" = 5" T + w(s')* N by the first Serret-Frenet formula.
( ds
(b) Using part (a), we have
' xr’"=(sT) x [s" T +«(s')*N]
=[(s' T) x (8" T)] + [(s"T) x (s(s")*N)] - [by Property 3 of Theorem 12.4.11 ]
= (") (T x T)+ (s )P(TxN)=0+x(s)’B =«(s')*B
(¢) Using part (a), we have
rm - [s"T+ E(SI)Q N]I = smT 4 S" Tr .+ Er(sf)z N o 2RSISHN 4 E(SI)Z Nr
= smT 3 S"% .5" ‘I‘ K'.r(sl)z N + 2!\'.5’3”N+ K,(S’)z E 3:'
=8"T+5"s's N+ (s)* N+ 2x8's" N+ £(s')* (=« T + 7 B) [by the second formula]
o [Sm = EZ(S’)S] T + [355.'3” + Pﬂ’(a’)z] N + K.’."(Sr)a B
(d) Using parts (b) and (c) and the facts that B- T =0,B-N =0,and B - B = 1, we get

(r' xr")-r"" x(s')’B- {[s" - r?(s")°] T + [Brs's” + &'(s")*| N + k7(s')’ B} _ k(&)1 kT(s')? _
o x e |(s')® BI* T [k

6. r=(t, 3% 3% = =(,42), ¢ =(0,1,2t), ¥" ={0,0,2) = xr'"=(?-2,1) =>

(e xr’).r” ($%,-24,1)-(0,0,2) 2
T xrP T B4+l 44241

65. For one helix, the vector equation is r(t) = (10 cos?, 10sin ¢, 34t/(27)) (measuring in angstroms), because the radius of each
helix is 10 angstroms, and z increases by 34 angstroms for each increase of 27 in t. Using the arc length formula, letting ¢ go

from 0 to 2.9 x 10® x 27, we find the approximate length of each helix to be

sz:.gxloaxmrlrf(t)ldt: :.Dxluﬁxzw \/(vlﬂsint)z—l—(lOcost)ZJr (%)2 = f100+(g_:)2t]

= 2.9 x 10® x 27 /100 + (3—;‘()2 ~ 2.07 x 10'°® A — more than two meters!

2.9%10% x 27

0
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13.4 Motion in Space: Velocity and Acceleration

1. (a) Ifr(t) = 2(¢) i+ y (£) j -+ 2(¢) k is the position vector of the particle at time #, then the average velocity over the time
Jinterval [0, 1] is

(1) —r(0)  (4.5i+6.0j+3.0k) — (2.7i+9.8j+3.7k) _ i

-0 1 8i— 3.8j — 0.7 k. Similarly, over the other

Vave =

intervals we have

r(1) —r(0.5) _ (4.5i+6.0j+3.0k) — (3.5i+7.2j+3.3k)

[0.5,1]: Vayve= 1=05 08 =20i—24j—-06k
L3 Ve r(2; = 1;(1) _ (1314785 +27k) = (455 +60J430K) _poi1oi (g
[L,15]: Veve= r(lfi; : rl'(l) _ (5.9i+6.4j+2.8 k)0—5(4.51 +6.0j+ 3..0 k) 2.8i40.8j— 0.4k

(b) We can estimate the velocity at t = 1 by averaging the average velocities over the time intervals [0.5, 1] and [1, 1.5]:

v(l) ~ 3[(2i—2.4j—0.6k) + (2.81+0.8) — 0.4k)] = 2.4i — 0.8j — 0.5 k. Then the speed is

v(1)| = /247 F (08 ¥ (<057 ~ 2.58.

‘ v(2) 7
3. r(t) = (—3t",t) = Att=12: ~2,2)
‘ 2
vit) =v'(t) = (~t,1) v(2) = (-2,1) “
a(t) = r'(t) = (~1,0) a(2) = (-1,0) s
V()] = VB 1
5 r(t) = 3costi+ 2sintj = Att=m/3:
v(t) = —3sinti| 2costj v(?—_;):—%@i+j

a(t) = —3costi— 2sintj

a(s) = —$i-Va]

|v(t)| = v/9sin®t + 4cos? t = 1/4 + 5sin?¢

Notice that 2% /9 + y%/4 = sin® t + cos® t = 1, so the path is an ellipse.

Tr(t)=ti+t2j+2k =
v(t) =i+ 2tj
a(t) =2j

lv(t)| = vI+ a2

Herez =t,y=t* = y=z"and z = 2, so the path of the particle is a

parabola in the plane z = 2.
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r(t) = (& +1,8 —,1°) s v(t) =r'(t) = (2t + 1,2t — 1,3?), a(t) =v'(t) = (2,2,6¢),

[v(t)| = (2t +1)% + (2t — 1)2 + (3t2)2 = V9t* + 8t* + 2.

r(t) = V2ti+etj+etk = v(t)=r'(t)=V2it+e'j—e 'k a(t)=v()=€j+etk,

V(O] = VIF P Fe T = T e = e +e.

r(t) = e'{cost,sint,t) =

v(t) = r'(t) = e'(cost,sint, t) + e’ (—sint,cost, 1) = e'(cost — sint,sint + cost, ¢ + 1)

a(t) = v’_(t) ='e’{cost —sint —sint — cost,sint 4 cost + cost —sint, £ + 1+ 1)
= e’ (—2sint, 2cost, t + 2)

|v(t)| = e'v/cos? t +sin® t — 2costsint + sin® ¢ -+ cos? ¢ + 2sint cost + 12 + 2¢ + 1

=e'\i2+2t+3

a(t)=i+2j = v{t)=[fa(t)dt= [(i+2j)dt=ti+2tj+ Candk =v(0)=C,

soC=kandv(t)=ti+2tj+k r(t)=[v(t)dt=[(@i+2j+k)dt=3t"i+t*j+tk+D.

Buti=r(0) =D,soD =iandr(t) = (3* +1)i+*j+tk

(a) a(t) = 2ti+sintj+cos2tk = - (b)
v(t) = [(2ti+sintj+cos2tk)dt = t*i — costj+ sin2tk + C
andi=v(0)=—-j+C,s0C=i+4j

0.6
and v(t) = (* + 1) i+ (1 —cost)j+ $sin2tk. S
0
r(t) = [[(t* +1) i+ (1 —cost)j+ 4§ sin 2t k]dt -
200 0
0 ¥
= (3t +t) i+ (t—sint)j— Tcos2tk + D X =200 10

Butj=r(0)=—-3k+D,soD=j+ tkandr(t) = (5t° +1)i+ (t —sint + 1)j+ (3 — 1 cos2t) k.

r(t) = (t?,5¢,¢> — 16t) = v(t) = (2t,5,2t — 16), [v(t)| = V4t? + 25 + 4t — 64t + 256 = /8t — 64t + 281
and % [v(t)| = 1(8t*> — 64t + 281)~*/2(16t — 64). This is zero if and only if the numerator is zero, that is,
16t — 64 = O or t = 4. Since % |v(t)| < 0fort < 4 and % |v(t)| > 0 for t > 4, the minimum speed of v/153 is attained

at t = 4 units of time.

|F(£)| = 20 N in the direction of the positive z-axis, so F(t) = 20k. Also m = 4 kg, r(0) = 0 and v(0) =i — j.
Since 20k = F(t) = 4a(t), a(t) = 5k. Then v(t) = 5tk + c; where ey =i— jsov(t) =i —j + 5tk and the

speed is [v(t)| = V1 +1+25¢2 = /252 + 2. Alsor(t) =ti—tj+ 3t°k + cz and 0 = r(0),s0c2 = 0

andr(t) =ti—tj+ 2’k
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23. [v(0)] = 200 m/s and, since the angle of elevation is 60°, a unit vector in the direction of the velocity is

(cos 60°)i + (sin 60°)j = 3i + %2 j. Thus v(0) = 200(%i + 43 j) = 1001+ 100 /3 j and if we set up the axes so that the

projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the only force is that due to gravity, so

F(t) = ma(t) = —mgj where g ~ 9.8 m/s*. Thus a(t) = —9.8j and, integrating, we have v(t) = —9.8tj + C. But

100i + 100+/3j = v(0) = C, so v(t) = 100i + (100 /3 — 9.8¢) j and then (integrating again)

r(t) = 100¢i+ (100 V3t — 4.9t%) j + D where 0 = r(0) = D. Tl;us the position function of the projectile is

r(t) = 100¢i+ (100 /3¢ — 4.96%) j.

(a) Parametric equations for the projectile are z(¢) = 100¢, y(t) = 100+/3t — 4.9t?. The projectile reaches the ground when
y(t) =0(and¢ > 0) = 100+/3¢—4.9t> =¢(100v/3 - 4.9t) =0 = ¢= 1008 ~ 3535, So the range is
z(224%) = 100( 143 ~ 3535 m.

(b) The maximum height is reached when y(t) has a critical number (or equivalently, when the vertical component

of velocity is 0): ¥'(t) =0 = 100/3—-98t=0 = t= 1““” 72 17.7 s. Thus the maximum height is
2
y(188) =100 V3 (1%5%) - 4.9(2%92) ~ 1531 m.
(c) From part (a), impact occurs at t = Uﬁfi s. Thus, the velocity at impact is

© v(325) = 1001+ [100 V3 - 9.8(2%%3) | j = 100i — 100v/3] and the speed is

[v (X8| = /10,000 + 30,000 = 200 m/s.

25. As in Example 5, r(t) = (vo cos45°)¢i + [(vosind5°)t — 1gt*] j = & [vov/2ti+ (vov/2t — gt*) j]. The ball lands when

Uo\/_ 0\/_
g

or vg = 90g and the initial

s. Now since it lands 90 m away, WN=xz= —'u \/"

y=0(andt>0) = =

velocity is vg = /90g = 30 m/s.
27. Let « be the angle of elevation. Then vp = 150 m /s and from Example 3, the horizontal distance traveled by the projectile is

2 . 2 - "
R ﬂ;'—ngﬁ —800 = sin2a=2009 103484 = 2a~ 20.4° or 180 — 20.4 = 150.6°.

K 1502

Two angles of elevation then are o = 10.2° and & = 79.8°.

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100, 0)

and (600, 0). The initial speed is vo = 80 m/s and let @ be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r (£) = (80 cos 0)¢i + [(80sin 0)t — 4.94] j. The top of the near city wall is at (100, 15),

which the rock will hit when (80cos8)t =100 = t= ﬁ and (80sin @)t — 4.9t> =15 =
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2
80sin® - 5 _ 4.9 g =15 = 100tané — 7.65625sec” @ = 15. Replacing sec” # with tan® @ + 1 gives
4cosl 4dcosf

7.65625 tan® § — 100 tan 8 + 22.65625 = 0. Using the quadratic formula, we have tan 6 ~ 0.230635, 12.8306 =
# = 13.0°, 85.5°. So for 13.0° < # < 85.5°, the rock will land beyond the near city wall. The base of the far wall is

located at (600, 0) which the rock hits if (80 cos )t =600 = t= 2c1c)55 7 and (80sinf)t — 4.9t =0 =
. 15 15\’ 5
80sind - —4.9 =0 = 600tanf — 275.625sec” 0 =0 =
2cos b 2cosl :

275.625 tan® 0 — 600 tan 6 + 275.625 = 0. Solutions are tan @ ~ 0.658678, 1.51819 = 0 = 33.4°, 56.6°. Thus the
rock lands beyond the enclosed éity ground for 33.4° < § < 56.6°, and the angles that allow the rock to land on city ground
are 13.0° < 0 < 33.4°, 56.6° < @ < 85.5°. If you consider that the rock can hit the far wall and bounce back into the city, we

15
2cosf

(80sin O)t —4.98> =15 = 600tan6 —275.625sec®0 = 15 = 275.625tan® § — 600 tan 0 -+ 290.625 = 0.

calculate the angles that cause the rock to hit the top of the wall at (600, 15): (80cos#)t =600 = t= and

Solutions are tan @ = 0.727506, 1.44936 = 6 ~ 36.0°, 55.4°, so the catapult should be set with angle # where
13.0° < 8 < 36.0°, 55.4° < # < 85.5°.

31, Herea(t) = —4j—32ksov(t) = —4tj— 32tk + vo = -4t j— 32tk + 50i + 80k = 501 — 4t j + (80 — 32t)k and
r(t) = 50ti— 2t j + (80t — 16¢>) k (note that ro = 0). The ball lands when the 2-component of v(t) is zero
and ¢t > 0: 80t — 16t> = 16¢(5 —t) =0 = ¢ = 5. The position of the ball then is

r(5) = 50(5) i — 2(5)? j + [80(5) — 16(5)*] k = 2501 — 50 or equivalently the point (250, —50, 0). This is a distance of

/2502 + (—50)2 + 0% = /65,000 ~ 255 ft from the origin at an angle of tan ' (%) a2 11.3° from the eastern direction

toward the south. The speed of the ball is |v(5)| = |50i — 20j — 80 k| = \/502 + (—20)? + (—80)2 = /9300 =~ 96.4 fi/s.

33. (a) After ¢ seconds, the boat will be 5t meters west of point A. The velocity 20

of the water at that location is 135 (5t)(40 — 5t) j. The velocity of the

boat in still water is 51, so the resultant velocity of the boat is

v(t) = 5i+ 535(5£)(40 — 5t) j = 5i + (2¢ — 24?) j. Integrating, we obtain 0

J40

r(t) = 5ti+ (2¢* — %) j + C. If we place the origin at A (and consider j —4
to coincide with the northern direction) thenr(0) =0 = C = 0 and we have r(t) = 5¢i +l (3t* — &+¢*) j. The boat
reaches the east bank after 8 s, and it is located at r(8) = 5(8)i + (3(8)% — % (8)®) j = 40i + 16 j. Thus the boat is 16 m
downstream.

(b) Let o be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by
5(cos @) i + 5(sin @) j. Att seconds, the boat is 5(cos a:)t meters from the \';fest bank, at which point the velocity

of the water is 35 [5(cos @)t][40 — 5(cos a)¢] j. The resultant velocity of the boat is given by
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v(t) =5(cos )i+ [5sina + 535 (5t cos ) (40 — Bicosa) | j = (5cosa)i+ (5sina + 3tcosa — 242 cos® a) .
Integrating, r(t) = (5tcos &) i + (5tsinc + 3¢ cosa — £ cos® ) j (where we have again placed

40 8

the origin at A). The boat will reach the east bank when bt cosa =40 = t= —— = ——.
Scosa  cosc

In order to land at point B(40, 0) we need Stsina + $t° cosa — &t? cos®a =0 =

(=
cosa

40sina+16=0 = sina=—% Thusa =sin"'(—2) ~ —23.6°, so the boat should head 23.6° south of

2 3
)sina—l—%( 8 )cosa—%( = ).c052a=0 = : (40sina+48 —32)=0 =
cosc cosa cos &

east (upstream). The path does seem realistic. The boat initially heads 2

upstream to counteract the effect of the current. Near the center of the river,
the current is stronger and the boat is pushed downstream. When the boat 0 40

nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point 5. ey

35, Ifv'(t) = ¢ x r(t) then r'(t) is perpendicular to both ¢ and r(¢). Remember that r'(t) points in the direction of motion, so if
r'(t) is always perpendicular to é, the path of the particle must lie in a plane perpendicular to c. But r'(t) is also perpendicular
to the position vector r(t) which confines the path to a sphere centered at the origin. Considering both restrictions, the path

must be contained in a circle that lies in a plane perpendicular to ¢, and the circle is centered on a line through the origin in the

direction of c.

T r(t) = (3t —tHi43t2] = r'(t) = (3 —3t})i+ 6t],

I (t)] = +/(3 — 3t2)% + (6£)2 = O+ 1822 + 9t7 = /(3 — 312)? = 3 + 312,

r’'(t) = —6ti+ 6], v'(t) x r'(t) = (18 + 18*) k. Then Equation 9 gives

Cr()-r"() _ (3—3t%)(=6t) + (6t)(6) 18t +18° 1841 +1t*) _ .
UETOl 3+ 362 = Tavse Cauem O [or by Equation s,
d ; ; |r'(#) x e”(t)| 18418 18(1+1¢%)
= = — 2 — o/ = = — a—
ar =v'=— [3+ 3t ﬁt} and Equation 10 gives ay EIo] CERTS 31+ )

39

r(t) =costi+sintj-+tk = r'(t)=—sinti+costj+k, |r'(t)]=/sin®t+cos?t+ =3,

r(t) = —costi—sintj, r'(t) x r’(t) =sinti—costj+k.

r'(t) -r'"(t) sint cost—sint cost [ (t) = v”(2)] Vsin®t+costt+1 /2
T = = = = = : =L =
hen a.zlﬂ i ’(t)t - \/_ 0and ay 1 '(t)| \/_ \/_.

4. r(t) =e'i+2tj+etk = rt)=eit+V2j—e'k [r@t)=vert2+e = /et +e )2 =€ +e,

EZt _ G—Zt _ (et -I-E_t)(ct _e—t)

r'’(t) = e*i+e 'k Thenar = =e' — e = 2sinht

et +e-t et 4 e—*
Beti—2j— Vie'k| Ae FFILeR ty gt
andaN:!\/_e i—2j—+v2e |: (e +7+e):\/§e+eu _
G!‘-’re_!‘ e“'+et et+et
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43. .The tangential component of a is the length of the projection of a onto T, so we sketch ",
the scalar projection of a in the tangential direction to the curve and estimate its length to /</ ‘\;\\\
be 4.5 (using the fact that a has length iO as a guide). Similarly, the normal component of “;N [7
a is the length of the projection of a onto N, so we sketch the scalar projection of a in the : "(ar
0 X

normal direction to the curve and estimate its length to be 9.0. Thus ar ~ 4.5 cm/s? and
an ~ 9.0 cm/s%.

45. If the engines are turned off at time %, then the spacecraft will continue to travel in the direction of v(t), so we need a ¢ such

that for some scalar s > 0, r(t) + s v(t) = (6,4,9). v(t)=r'(t) =i+ %j 4 @ _8:1)2 b
r(t) +sv(t) = (3+t+52+mt+ 2,7 = + L = 3+t+s=6 =3
B ] ' 241 (2 41)? St B B S
4 8Bt Ut~ 197 =4 _ P B
ol-aatErpE - ¢ @i~ ¢ tHe-1+3=0

Ttis casily seen that ¢ = 1 is a root of this polynomial. Also 2 +Inl+ B_Tl =4, s0t =1 is the desired solution.

13 Review
CONCEPT CHECK

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

or integral, we can differentiate or integrate each component of the vector function.
2. The tip of the moving vector r(t) of a continuous vector function traces out a space curve.

3. The tangent vector to a smooth curve at a point P with position vector r(¢) is the vector r'(t). The tangent line at P'is the line

through P parallel to the tangent vector v’ (¢). The unit tangent vector is T(t) = %
4. (a) (a)—(f) See Theorem 13.2.3.
5. Use Formula 13.3.2, or equivalently, 13.3.3.
; dT : i
6. (a) The curvature of a curve is x = ’Fs—( where T is the unit tangent vector.
T’(t)‘ |r'(t) x r"(2)] (=)
b) k(t) = | —= ‘ i(t) = ——g—= d =
( ) fﬂ( ) ~ r;(t) (G) h( ) ‘!"‘(t)la ( ) E(m) [1 + (f,(m))g]:;/g
/
7. (a) The unit normal vector: N(t) = ;—r% The binormal vector: B(t) = T(t) x N(z).

(b) See the discussion preceding Example 7 in Section 13.3.

8. (a) If r(t) is the position vector of the particle on the space curve, the velocity v(t) = r'(t), the speed is given by |v(t)|,

and the acceleration a(t) = v'() = ¢’ (¢).
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174 O CHAPTER13 VECTOR FUNCTIONS

(b) a=arT +ayN where ar = v and ay = kv’

9. See the statement of Kepler’s Laws on page 892 [ET 868].

TRUE-FALSE QuIZ

1. True. If we reparametrize the curve by replacing u = ¢, we have r(u) = ui + 2u j + 3u k, which is a line through the origin

with direction vectori + 2j + 3 k.
3. False. The vector function represents a line, but the line does not pass through the origin; the z-component is 0 only for ¢ = 0
which corresponds to the point (0, 3, 0) not (0, 0, 0).

5. False. By Formula 5 of Theorem 13.2.3, % [u(t) x v(t)] =u'(¢) x v(t) +u(t) x v'(t).

7. False. & is the magnitude of the rate of change of the unit tangent vector T with respect to arc length s, not with respect to t.

9. True. At an inflection point where f is twice continuously differentiable we must have f(z) = 0, and by Equation 13.3.11,

the curvature is 0 there.

11. False. If r(t) is the position of a moving particle at time ¢ and |r{t)| = 1 then the particle lies on the unit circle or the unit

sphere, but this does not mean that the speed |r(t)| must be constant. As a counterexample, let r(t) = (t, V1 —12), then

r'(t) = (1,—t/vI— %) and |r(t)] = V2 + 1 -t = L but [p'(t)| = /1 4 £2/(1 — £2) = 1/+/1 — i? which is not

constant.

13. True. See the discussion preceding Example 7 in Section 13.3.

EXERCISES

-

(a) The corresponding parametric equations for the curve are x = t,
y = cos mt, z = sin 7t. Since 42 + z* = 1, the curve is contained in a
circular cylinder with axis the z-axis. Since z = ¢, the curve is a helix.
(b) r(t) =ti+cos wtj+sin mtk =

r'(t)=i—mwsin wtj+mwcos ntk =

r"(t) = —w®cos wtj — w’sin wt k

3. The projection of the curve C of intersection onto the zy-plane is the circle z2 + »* = 16, z = 0. So we can write
z =4cost, y =4sint, 0 < ¢ < 27, From the equation of the plane, we have z =5 — 7 = 5 — 4 cos t, so parametric
equations for C' are ¢ = 4cost, y = 4sint, 2 =5 —4cost, 0 < { < 27, and the corresponding vector function is

r(t) =4costi+4sintj+ (5 —4eost) k, 0 <t < 2.
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5. [} (t*i+tcos wtj+sin mtk)dt = folt2dt)i+ (fultcos '”tdt)j+ (I()lﬁin Wtdt)k

[36%]5 i+ (£ sin nt]y — [ £ sin mede) § + [~2 cos nt] ) k

=

i+ [Zreosmt] j+ik=3i-Fj+2k

where we integrated by parts in the y-component.

Tr(t) = (2,2,6%) = r'@)=(2,34°) = [|¢'(t) = V& + 0 + 165 and
v D= f;’ [e'(t)| dt = fg V4tZ + 9t + 16¢° dt. Using Simpson’s Rule with f(t) = /4t2 + 9% + 16£° and n = 6 we
have At = £22 = 1 and
L=~ 8 [f(0)+47(3) +2F(1) +4f(3) +2f(2) +47(§) + F(3)]
— 3 [VOFOFO+4- AT + 9+ 16G) + 2 VAT I 60

+4-4/43Y +9(3) +16(2)° + 2. AR)Z + 92" + 16(2)°

+4-1/4(8F +9(3)" +16(3)° + \/AB)? 93 T 16(3)° ]

=~ 86.631
9. The angle of intersection of the two curves, 6, is the angle between their respective tangents at the point of intersection.
For both curves the point (1, 0, 0) occurs when ¢t = 0. _
ri(t) = —sinti+costj+k = ri(0)=j+kandri(t)=i+2j+3°k = rh(0)=1i

ry(0) - r5(0) = (j + k) -i=0. Therefore, the curves intersect in a right angle, that is, § = Z.

vy a1y o {(#41)
@ 6D Ve

() T/(t) = —2(¢* + 2 + 1)73/2(48® + 2t) (2,£,1) + (¢* + 7 + 1)~/2(2¢,1,0)

1. (@) T(t) =

—H3 1

e ¢ 2 I
Tttt +1)3/2 (it 1)+ (4 +12 4 1)1/2 (24,1,0)

R i e i 2, -2t — ) + (2° +2° + 26, 4* + £ +1,0) (P42, -t +1,-2t° —¢)

(t“ + 12 + 1)3/2 (tti +12 4 1)3/2
lTl(t)’ - VI8 4t 412 118 — 24 + 1 4 416 4 44 + t2 _ V18 + 516 + 618 + 522 + 1 3
- (t4 +12 + 1)3/2 - (t4 +12 4 1)3/2

pofey= BT L)

T V560 + 52 +1

_|T'@)| _ VBB F5 6t + 5 +1 VETIEFT

(e} &(t) = e @ CET e o GITE LI
1" 2
A3 M — 2 _ ly"| _ l12$ | 12
13. y =42°,y" = 122% and k(z) = T+ )P~ (14162032 w(1) = 775+
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15, r(t) = (sin2t,t,cos2t) = r'(f) = (2cos2t, 1, -2sin2t) = T(t) = 715 {2 cos 2t,.1, —2sin2t) =
T = -\71;5 (—4;in 2t,0,—4cos2t) = N(t) = (—sin2¢,0,—cos2t). So N = N(x) = (0,0,—1) and
B=TxN= :}g {—1,2,0). So a normal to the osculating plane is (—1, 2, 0) and an equation is
—Yz—-0)+2(y—m)+0(z—1)=00rz—2y+27r =0. '

7. r(t) =tlnti+tj+e 'k, vit)=r'(t)=(1+nt)i+j—e "k,

v(t) = /(1 +Int)2+12+ (—e~%)2 = /2+2Int + (Int)> + e %, a(t)=v/(t)=1i+e’k

19. We set up the axes so that the shot leaves the athlete’s hand 7 fi above the origin. Then we are given r(0) = 7j,
|v(0)| = 43 ft/s, and v(0) has direction given by a 45° angle of elevation. Then a unit vector in the direction of v(0) is
:‘jﬁ(i +j) = v(0)= %{i + j). Assuming air resistance is negligible, the only external force is due to gravity, so as in
Example 13.4.5 we have a = —g j where here g ~~ 32 fi/s?. Since v/(t) = a(t), we integrate, giving v(t) = —gtj+ C

where C = v(0) = Z(i+j) = v(t)= % i+ (% - gt) J. Since r'(t) = v(t) we integrate again, so.

v(t) = Sti+ (G- %gtz)j—i-D. BuD=r(0)=7j = r(t)=%ti+ (%t— Lgt? +7)j.

() At 2 seconds, the shot is at r(2) = 2£(2)i + (%(2) —19(2% + 7) j = 60.8i+ 3.8, so the shot is about 3.8 ft above

the ground, at a horizonital distance of 60.8 ft from the athlete.
(b) The shot reaches its maximum height when the vertical component of velocity is 0: % —gt=0 =

b= kA 2 0.95 s. Then r(0.95) ~ 28.91 + 21.4 j, so the maximum height is approximately 21.4 fi.

V2g

(c) The shot hits the ground when the vertical component of r(t) is 0, so 23t — 3gt* +7=0 =
—16t% + %t +7=0 = t=211s. r(2.11)~ 64.2i — 0.08 ], thus the shot lands approximately 64.2 fi from the
athlete.

21. (a) Instead of isroceeding directly, we use Formula 3 of Theorem i3.2.3: r(t) =tR(t) =

v=r'(t)=R(t) +tR'(t) = coswti+sinwtj+tva.

(b) Using the same method as in part (a) and starting with v = R(t) + ¢t R'(t), we have
a=v =R/(t) + R'() + tR"(t) = 2R'(t) + t R" () = 2va + t aa.

(c) Here we have r(t) = e * coswti+ e *sinwtj = e~ R(t). So, as in parts (a) and (b),
v=r(t)=e'R'(t) —e*R(t) = e *[R'(t) —R(t)] =
a=v =e'[R"(t) - R/(t)] — eT'[R'(t) - R(t)] = e~ [R"(¢) - 2R’(t) + R(t)]

=efa;—2etva+e 'R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a4) is —2e~*va + e * R.
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23. (a) r(t) = Rcoswti+ Rsinwtj = v=r/(t) = —wRsinwti+wRcoswtj,sor = R(coswti + sinwt j) and

v = wR(—sinwti+ coswtj). v-r = wR?*(— coswtsinwt + sinwt coswt) = 0,s0 v L r. Since r points along a

radius of the circle, and v L r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form w R u, where u is the unit vector —sinwt i+ coswtj. Clearly |[v| = wR Ju| = wR. At

speed wR, the particle completes one revolution, a distance 27 R, in time 7" = % = 2—”
wR w

d ; ; P i o 3
(c)a= ~w?Reoswti— w’Rsinwt j = —w’R(coswt i+ sinwt j), so a = —w®r. This shows that a is proportional

v —
dt
to r and points in the opposite direction (toward the origin). Also, |a] = w? |r| = w’R.

mwR)?® _ m|v|?

(d) By Newton’s Second Law (see Section 13.4), F = ma, so |[F| =m |a| = mRw? = 5 =
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. . ; dy
1. (a) The projectile reaches maximum height when 0 = E dt (vosina)t — 1gt*] = vosina — gt; that is, when

) ; ; 2 2 . 9
t = Eﬂfﬁ and y = (vosina) (vos;na) - %g(vos;na) =20 3213 2 This is the maximum height attained when

the projectile is fired with an angle of elevation . This maximum height is largest when o = J. In that case, sina = 1

2
and the maximum height is %‘;—

(b) Let R = v /g. We are asked to consider the parabola @® + 2Ry — R® = 0 which can be rewritten as Y= —2—1§ z° + J;z

The points on or inside this parabola are those for which —-R <z < Rand0 <y < ;—é 2?4 % When the projectile is

fired at angle of elevation , the points (z, ) along its path satisfy the relations = = (v cos @) t and

y = (vosina)t — 1gt*, where 0 < ¢ < (2vpsina)/g (as in Example 13.4.5). Thus

2
5 = |R|. This shows that —-R < z < R.

sin2a‘ < |—

lo| < ZUgsina)} _

g

Vg COS &¥ (

For ¢ in the specified range, we also have y = t(vp sina — gt) = %gt(zvuﬂ - t) > 0and
: : g

2
2 4 - - i s il
B= (vo el vgcosa 2 ('Uo cosa) Shase i 203 cos? a® T "2Rcos?a” T an e The
R\__-1 ., 1 R
V- (m"’ +2)_2Rc052a +3g” +(ena)z -3
2 2 2
_xf 1 _ R _2°(1 —sec*a)+ 2R (tana)z — R?
= 2R(1 ooszo:) + (tana)z g = . 2R
_ —(tan®’a)a® + 2R (tana) z — R2 ' —[(tane)z — R]
- 2R 2R =
We have shown that every target that can be hit by the projectile lies on or inside the parabola y = _Elﬁ z° + R.
; o 1 2, R 1 R
Now let (a, b) be any point on or inside the parabola y = —3R% g Then—R <a< Rand0 < b < ~3R a® + 5

\

We seek an angle « such that (a, b) lies in the path of the projectile; that is, we wish to find an angle « such that

b= S T a® + (tan o) @ or equivalently b =

2R cos? o (t*m o+ 1)a* + (tan @) a. Rearranging this equation we get

2R

a

Y73 tan® o — atan o -+ ( + b) = 0ora’(tana)® — 2aR(tan &) + (a® 4+ 2bR) = 0 (%) . This quadratic equation

2R
for tan « has real solutions exactly when the discriminant is nonnegative. Now B2 — 4AC >0 &
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(—2aR)* —4a*(@® +2bR) >0 & 4a*(R*—a’—20R)>0 & —a®~2R+R*>0 &

b< ﬁ (R*-d®) & b< % a® + % This condition is satisfied since (a, b) is on or inside the parabola
Y= —% z* + % It follows that (a, b) lies in the path of the projectile when tan « satisfies (x), that is, when
2aR + \/4a?(R?* —a? —2bR) R+ +/R? —2bR—a?
tana = = .
2a?
(c) If the gun is pointed at a target with height h at a distance D downrange, then
. tan a = h/D. When the projectile reaches a distance 2 downrange (remember
a we are assuming that it doesn’t hit the ground first), we have D = z = (vg cos a)t,
D 2
D ; gD
S0 e and y = (vosina)t — 5gt an o o

Meanwhile, the target, whose z-coordinate is also D, has fallen from height & to height

h— %gn:2 =Dtana — i e’ Thus the projectile hits the target.

gD?
202 cos
. (a)a=—gj] = v=vo—gtj=2i—gt] = s=sp+2ti—- %gtzj =35j+2ti— %gtzj =
s = 2ti+ (3.5 — Jgt*) j. Therefore y = 0 when ¢ = /7/g seconds. At that instant, the ball is 2 \/7/g = 0.94 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (0.94,0). At

impact, the velocity is v = 21 — /Tg j, so the speed is |v| = /4 + Tg = 15 ft/s.

(b) The slope of the curve when t = ‘/Zis dy = dy/dt TR _ 9 V2 /9 = 7\55_11-,,.,5 cotf = @

and 6 = 7.6°.
(c) From (a), |v| = +/4 + 7g. So the ball rebounds with speed 0.8 /4 + 7g ~ 12.08 ft/s at angle of inclination

v3 sin 20

90° — # =~ 82.3886°. By Example 13.4.5, the horizontal distance traveled between bounces is d = , where

vp = 12.08 ft/s and o =~ 82.3886°. Therefore, d = 1.197 ft. So the ball strikes the floor at about

2+/7/g+ 1.197 =~ 2.13 ft to the right of the table’s edge.

5. The trajectory of the projectile is given by r(t) = (vcosa)ti + [(vsina)t — 4g¢%] §, so

v(t) =r'(t) =vcosai+ (vsina — gt) jand

2
[v(t)| = /(vecosa)? + (vsina — gt)? = \/v? — (2ugsina)t + g?t? = \/92 (t2 - 27'0 (sina)t + %)
2 2 2 : 2 g
s v v .9 G v
=g t——smoe) + = — =sin*a= (t—~sma) + — cos
\/( g ¢ g g\/ g 9
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The projectile hits the ground when (vsina)t — $g¢* =0 = t = 2% sina, so the distance traveled by the projectile is

2

(2v/g)sina (2v/g) sin & v . '02
Lia) = f [v(t)| dt = f g (i — —sgin a) o cos? cedt
0 4 0 g g

—g[—~—t _(Ulzg)ma\/(t— gsma)2+ (%cosa)z
¥ [(L/g)f’i“—]zln - gsina+\/(t—-§sina)2+ (‘—;cosay

[using Formula 21 in the Table of Integrals]

2 2 2 ' 2 )
sina (Hsina) - (Ecosa) +(Ecoso.f) In Esi11o:+ (Esina) + (Ecosa)
g g g g g g g
v v 2 (o e 7 v v 3 v 3
+ —sina (—sina) 4 (—coso:) - (ﬁcosa) In|{ ——sina 4+ (— sina) + (—cosa)
g g g g g g g

! 2 2
= 2[£sina-£+v—2c052a]n(gsina+2) +23i11a-E —v—zcoszaln(—zsina+2)]
2\|g g g g g g g g g g

(2v/g) sin o

[T~

2 2 : 2 2 ;
=1-sina+v—cosga1n (v/g)sina +v/g ):v—sina-l-E-COSQClen —1+5Tna
g 29 g 29 1—sina

—(v/g)sina+uv/g

We want to maximize L{a) for0 < e < /2.

2 2 : i
T v° 2 l—sina  2cosa . 1+ sine
L'(a)=—cosa+ % [cos L ey 1 —sina)? 2cosa sina hl_(___l—sina

2 2 _
:U—COSQ‘FU—[COSQQ- 2 —2cosa sin o m(__l—l—sgno:)j'
g 29 cosa T e

2 2 ¢ 2 ) )
:-v—cosa+£—cosa 1—sinaln _ﬂ‘} :v_wsa 9 —sina In 1+5}na
g g 1—sina g [

1+ sina

= sina) =0 [since cos & # 0].

L(c) has critical points for 0 < @ < w/2when L'(a) =0 = 2—sina ln(
Solving by graphing (or using a CAS) gives o ~ 0.9855. Compare values at the critical point and the endpoints:
L(0) = 0, L(7/2) = v*/g, and L(0.9855) =~ 1.201:2/9. Thus the distance traveled by the projectile is maximized
for o =~ 0.9855 or = 56°.

. We can write the vector equation as r(t) = at” + bt + ¢ where a = (a1, a2, as), b = (b1, b2, b3}, and ¢ = (e1, €2, €3).
Then r'(t) = 2t a + b which says that each tangent vector is the sum of a scalar multiple of a and the vector b. Thus the
tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume

that a and b are nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal
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vector for the plane is a x b = {az2bs — asbz, azby — a1bs, a1ba — azb1). The point (c1, ¢z, 3) lies on the plane (when
t = 0), so an equation of the plane is 7

(azbs — asba)(z —e1) + (@aby — a1bs)(y — c2) + (a1b2 — agh }(z —e3) =0
or

(az2bsz — asb2)x + (asby — a1bs)y + (a1bs — azb1)z = asbaci — asbaer + asbica — a1baca + ar1baca — asbics
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141 Functions of Several Variables

1. (a) From Table 1, f(—15,40) = —27, which means that if the temperature is —15°C and the wind speed is 40 km /h, then the

air would feel equivalent to approximately —27°C without wind.

(b) The question is asking: when the temperature is —20°C, what wind speed gives a wind-chill index of —30°C? From

Table 1, the speed is 20 km/h.

(c) The question is asking: when the wind speed is 20 km/h, what temperature gives a wind-chill index of —49°C? From

Table 1, the temperature is —35°C.

(d) The function W = f(—5,v) means that we fix 7" at —5 and allow v 1o vary, resulting in a function of one variable. In
other words, the function gives wind-chill index values for different wind speeds when the temperature is —5°C. From
Table 1 (look at the row corresponding to T" = —5), the function decreases and appears to approach a constant value as »
increases. '

(e) The function W = f(T, 50) means that we fix v at 50 and allow T to vary, again giving a function of one variable. In
other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km/h . From

Table 1 (look at the column corresponding to v = 50), the function increases almost linearly as T increases.

3. P(120,20) = 1.47(120)%%(20)%® ~ 94.2, so when the manufacturer invests $20 million in capital and 120,000 hours of

labor are completed yearly, the monetary value of the production is about $94.2 million.

5. (a) £(160,70) = 0.1091(160)%*25(70)% 725 ~ 20.5, which means that the surface area of a person 70 inches (5 feet 10
inches) tall who weighs 160 pounds is approximately 20.5 square feet.

(b) Answers will vary depending on the height and weight of the reader.

7. (a) According to Table 4, f(40, 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) h = f(30,t) means we fix v at 30 and allow ¢ to vary, resulting in a function of one variable: Thus here, h = f(30,1t)
gives the wave heights produced by 30-knot winds blowing for ¢ hours. From the table (look at the row corresponding to
v = 30), the function increases but at a declining rate as ¢ increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(¢} A = f(v,30) means we fix ¢ at 30, again giving a function of one variable. So, h = f(v, 30) gives the wave heights
produced by winds of speed v blowing for 30 hours. From the table (look at the column corresponding to ¢ = 30), the
function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.
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9. (a) g(2,—1) = cos(2 +2(—1)) = cos(0) =1
(b)  + 2y is defined for all choices of values for  and y and the cosine function is defined for all input values, so the domain
of g is B2
(¢) The range of the cosine function is [— 1,'1]' and & + 2y generates all possible input values for the cosine function, so the

range of cos(z + 2y) is [—1,1].

" @ fLL)=vVI+vi+vVI+h@-12-12-1%)=3+In1=3
(b) v/Z, /5, /7 are defined only when > 0,4 > 0, z > 0, and In(4 — 2? — y* — 2?) is defined when
4—22 -y —22>0 < 2®+y®+ 2% < 4, thus the domain is
{(;t:, y,2) | @® +y* + 2% <4, >0, y >0, 2 > 0}, the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

13. /2z — y is defined only when 2z — y > 0, or y < 2z. 15. In(9 — z? — 9y%) is defined only when
So the domain of f is {(z,y) | y < 2z2}. 9 — 2% — 9y > 0, or $2° + y* < 1. So the domain of f
y i is {(z,y) | %wg +9° < 1}, the interior of an ellipse.
y
) B, ST T
0 x X +y'=
y=2x A ' "rl"—-- . SiZma., 3
"L__.- 0 ‘—,l‘ X
17. /1 — 22 is defined only when 1 — z? > 0, or 19. /y —z?is deﬁﬁed only when ¢ — z? > 0,0ry > o°.
<1 & —1<g<1,and /1 —¢? is defined In addition, f is not defined if 1 — 22 =0 <
onlywhenl—g®> > 0,0ry° <1 & —-1<y<1l. - o = *1. Thus the domain of f is
Thus the domain of f is {(my) [¥2" e#H1}
{(zy)]|-1<2<1, —-1<y<L1} ' ]T' |
¥ ! ‘
| y=ax
1 i
= I x 2o 1 x
=]
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21. We need 1 — z* — y2 —-22>0 or z? + yz +22 <1, 23. z = 1 + y, a plane which intersects the yz-plane in the
apy == {(m, y,2) | 2° + P+ < 1} (the points inside line z = 1 + y, @ = 0. The portion of this plane for
or on the sphere of radius 1, center the origin). z 2 0,z > 0 is shown.

25, z = 10 — 4z — 5y or 4z + 5y + z = 10, a plane with 27. z = y* + 1, a parabolic cylinder
intercepts 2.5, 2, and 10, z

F4

29, z = 9 — > — 9y?, an elliptic paraboloid opening MNooz=+/d—4x? —y2s0da’ + 9% + 22 =4dor
downward with vertex at (0,0, 9). 2 2
s z2+%+%=1andzzo,mempha1fofan

ellipsoid.

N 0.2,0)

33. The point (—3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level curve with
z = 60, we estimate that f(—3, 3) & 56. The point (3, —2) appears to be just about halfway between the level curves with
z-values 30 and 40, so we estimate f(3, —2) = 35. The graph rises as we approach the origin, gradually from above, steeply

from below.
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35. The point (160, 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values
of 8 and 12°C. Since the point appears to be located about three-fourths the distance from the 8°C isothermal to the 12°C
isothermal, we estimate the temperature at that pbint to be approximately 11°C. The point (180, 5) lies between the 16 and

20°C isothermals, very close to the 20°C level curve, so we estimate the temperature there to be about 19.5°C.

37. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are much

farther apart, so we would expect the terrain to be much less steep than near A, perhaps almost flat.

39 41.
x y
43, The level curves are (y—2z)® =kory =2z + vk, 45, The level curvesare /z +y =kory = —/z +k, a
k > 0, a family of pairs of parallel lines. family of vertical translations of the graph of the root
function y = —+/z.
4
\\ X
2
: 1
' 0
-1
4321 1234
-2
47. The level curves are ye® = k or y = ke™", a family of 49, The level curves are /32 — 2% = kory® — 2% = k%,
exponential curves. k > 0. When k = 0 the level curve is the pair of lines

y = +x. For k > 0, the level curves are hyperbolas

with axis the y-axis.

— \N

—
-
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51. The contour map consists of the level curves k = zZ + 937, a family of

ellipses with major axis the z-axis. (Or, if & = 0, the origin.)

The graph of f(z,y) is the surface z = z” + 9y, an elliptic paraboloid.
y

If we visualize lifting each ellipse k = 2 4+ 9y of the contour map to the plane
z = k, we have horizontal traces that indicate the shape of the graph of f.

53. The isothermals are given by k = 100/(1 + z* + 2y%) or
x? 4 2y® = (100 — k)/k [0 < k < 100], a family of ellipses.

85. f(z,y) = zy® — 2°

The traces parallel to the yz-plane (such as the lefi-front trace in the graph above) are parabolas; those parallel to the zz-plane
(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface

near the origin has places for both legs and tail to rest.

57. f(z,y) = e~ +)/3 (sin(z?) + cos(y?))

z 0.5
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59, z = sin(zy) (a)C (b) 11
Reasons: This function is periodic in both  and y, and the function is the same when x is interchanged with y, so its graph is

symmetric about the plane y = z. In addition, the function is 0 along the z- and y-axes. These conditions are satisfied oniy by

Cand]IIl
61. z=sin(fz—y) (aF (b)1
Reasons: This function is periodic in both - and y but is constant along the lines y = z + k, a condition satisfied only
by Fand I '
63. z=(1-z(1-93%) (@B (bVl
Reasons: This function is 0 along the lines # = 41 and y = =1. The only contour map in ‘which this could occur is VI. Also

note that the trace in the xz-plane is the parabola z = 1 — = and the trace in the yz-plane is the parabola z = 1 — y/?, so the

graph is B.
65. k = ¢ + 3y + 5z is a family of parallel planes with normal vector (1, 3, 5).
67. Equations for the leve] surfaces are k = y2 + z%. For k > 0, we have a family of circular cylinders with axis the z-axis and
radius vk When k = 0 the level surface is the z-axis. (There are no level surfaces for k < 0.)
69. (a) The graph of g is the graph of f shifted upward 2 units.
(b) The graph of g is the graph of f stretched vertically by a factor of 2.
(c) The graph of g is the graph of f reflected about the zy-plane.

(d) The graph of g(z,y) = —f(z,y) + 2 is the graph of f reflected about the zy-plane and then shifted upward 2 units.

M. f(z,y) = 3z —z* — 4y* — 10zy

Ih ||l 1 i
m“':n\" ll il

1 11t

Yy »
Three-dimensional view Front view .

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the
maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of f
there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.
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T+yY
z2 4+ y?

appear to approach 0, regardless of which direction is considered. As

Jzy)=

. As both z and y become large, the function values

(, y) approaches the origin, the graph exhibits asymptotic behavior.
From some directions, f(z,y) — oo, while in others f(z,y) — —o0.

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that f(z, y) approaches 0

along the line y = —=.

75. f(z,y) = e +u? First, if ¢ = 0, the graph is the cylindrical surface

e (whose level curves are parallel lines). When ¢ > 0, the vertical trace
above the y-axis remains fixed while the sides of the surface in the z-direction
“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

¢ = 0.5 (level curves in increments of 1)

For ¢ = 1 the level curves are circles centered at the origin.

¢ = 1 (level curves in increments of 1)

[continued]
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When ¢ > 1, the level curves are ellipses with major axis the y-axis, and the eccentricity increases as ¢ increases.

1.2

¢ = 2 (level curves in increments of 4)
For values of ¢ < 0, the sides of the surface in the a:-direction curl downward and approach the zy-plane (while the vertical
trace & = 0 remains fixed), giving a saddle-shaped appeaﬁnce to the graph near the point (0, 0, 1). The level curves consist of
a family of hyperbolas. As c decreases, the surface becomes flatter in the z-direction and the surface’s approach to the curve in

the trace © = 0 becomes steeper, as the graphs demonstrate.

¢ = —2 (level curves in increments of 0.25)

7. z = 2% 432 4+ cxy. When ¢ < —2, the surface intersects the plane z = k # 0 in a hyperbola. (See the following graph.)
It intersects the plane = y in the parabola z = (2 + ¢)2?, and the plane & = —y in the parabola z = (2 — ¢)z®. These
parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.
When ¢ = —2 the surface is z = 2% + 3* — 2zy = (z — y)°. So the surface is constant along each line  — y = k. That
is, the surface is a cylinder with axis ¢ — y = 0, 2 = 0. The shape of the cylinder is dete}-mined by its intersection with the

plane z + y = 0, where z = 422, and hence the cylinder is parabolic with minima of 0 on the line y = .
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2
/ 10
=2 2 ’

0
/ T

X

2= 0 2
=2 i 2 ¥y
ce=-52z=2 c=-—2

When —2 < ¢ < 0, z > 0 for all z and y. If z and ¥ have the same sign, then
z? 442 + cxy > 2° +9° — 2zy = (z —y)* > 0. If they have opposite signs, then czy > 0. The intersection with the
surface and the plane z = k > 0 is an ellipse (see graph below). The intersection with the surface and the planes = = 0 and
y = 0 are parabolas z = y® and z = x? respectively, so the surface is an elliptic paraboloid.

When ¢ > 0 the graphs have the same shape, but are reflected in the plane = = 0, because

2 +y? +exy = (—a:)'2 +9* + (—¢)(—x)y. That is, the value of z is the same for c at (z, y) as it is for —c at (—z, y).

4 3
/__ 40
-2 - + 2 £ 0
/ —20
) -2 . : =2 Oy .
e==1 =2 =0 c=10

So the surface is an elliptic paraboloid for 0 < ¢ < 2, a parabolic cylinder for ¢ = 2, and a-hyperbolic paraboloid for ¢ > 2.

1% P L\ P EX®
. a prl—a s o —a = T BTN feneci]
79. (a) P = bL°K > F=bLK™ = 2 b(K) = In ln(b( ) ) =

P L
IHE —lnb+aln(E)

(b) We list the values for In{L/K) and In(P/K) for the years 18991922, (Historically, these values were rounded to

2 decimal places.)

Year | z=In(L/K) | y=In(P/K) Year | z =In(L/K) | y = In(P/K)
1899 0 0 1911 —0.38 —0.34
1900 —0.02 —0.06 1912 —0.38 —0.24
1901 —0.04 —0.02 1913 —0.41 —0.25
1902 —0.04 0 1914 —0.47 -0.37
1903 —0.07 —0.05 1915 —0.53 —0.34
1904 —-0.13 —0.12 1916 —0.49 —0.28
1905 —0.18 —0.04 G 1917 —0.53 -0.39
1906 —0.20 —0.07 1918 —0.60 —0.50
1907 —0.23 —0.15 1919 —0.68 —0.57
1908 —0.41 —0.38 1920 —0.74 —0.57
1909 —-0.33 —0.24 1921 —1.05 —0.85
1910 —0.35 —-0.27 1922 —0.98 —0.59
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After entering the (z, y) pairs into a calculator or CAS, the resulting least squares regression line through the points is
approximately y = 0.75136z 4 0.01053, which we round to y = 0.75z -+ 0.01. '

(c) Comparing the regression line from part (b) to the equation y = In b + az with # = In(L/K) and y = In(P/K), we have
a=075andlnb=0.01 = b=c"" a 101 Thus, the Cobb-Douglas production function is

P=pbL*K** = 1.01L*" K°?5,

14.2 Limits and Continuity

1. In general, we can’t say anything about f(3,1)! ( ])jm(3 " f(z,y) = 6 means that the values of f(z,y) approach 6 as
@,y)— (3,

(z,y) approaches, but is not equal to, (3, 1). If f is continuous, we know that( ])mt i flz,y) = f(a,b), so
) —+la,

i = 1) =6.
ggrrl(a‘l)f($=y) 1(3, )‘ 6

(@,
3. We make a table of values of N | -02 | -0 | -00s 0 0.05 0.1 02
2,3 3,2
f(m,y):wfor a set —0.2 | —2551 | 2525 | —2.513 | —2.500 | —2.488 | —2475 | —2.451
2—xy

—0.1 | —2.525 | —2.513 | —2.506 | —2.500 | —2.494 | —2.488 | —2.475

of (x, y) points near the origin.
—0.05 | —2513 | —2.506 [ —2.503 | —2.500 | —2.497 | —2.494 | —2.488

0 —2.500 | —2.500 | —2.500 —2.500 | —2.500 | —2.500

0.05 | —2.488 | —2.494 | —2.497 | —2,500 | —2.503 [ —2.506 | —2.513

0.1 | —2475 | —2488 | —2.494 | —2.500 | —2.506 | —2.513 | —2.525

0.2 | —2.451 | —2.475 | —2.488 | —2.500 | —2.513 | —2.525 | —2.551

As the table shows, the values of f(x,y) seem to approach —2.5 as (=, y) approaches the origin from a variety of different
directions. This suggests that( %irr%o i f(z,y) = —2.5. Since f is a rational function, it is continuous on its domain. f is
@) —(0,

. - . . : 0%0% 4+ 0°0% — 5 B . .o
defined at (0, 0), so we can use direct substitution to establish that  lim  f(z,y) = —5——F—— = —3 verifying

(my)—(0,0) 2—-0-0

our guess.

5. f(z,y) = 52° — 2y* is a polynomial, and hence continuous, 0 | %irn(1 " flz,y) = £(1,2) =5(1)% — (1)*(2)° = 1.
)=l

4 —

7. flz,y)= i is a rational function and hence continuous on its domain.
! x? + 3y? :

. i . . — 2
(2,1) is in the domain of f, so f is continuous there and (a;.y])JIfJiQ,l) flzy)= f(2,1) = % =z

9. f(z,y) = (z* — 4y%)/(z® + 2y°). Firstapproach (0, 0) along the z-axis. Then f(z,0) = z*/z* = 2 for z # 0, 50
f(z,y) — 0. Now approach (0, 0) along the y-axis. Fory # 0, f(0,y) = —4y*/2y* = —2, so f(z,y) — —2. Since f has

two different limits along two different lines, the limit does not exist. ‘
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1. f(z,y) = (y*sin’ z)/(z* +y*). On the z-axis, f(z,0) = 0 for & # 0, s0 f(z,y) — Oas (z,y) — (0, 0) along the

it : 2
; z°sin“z sin“z 1 (sinz
z-axis. Approaching (0, 0) along the liney = =, f(z,z) = ik G B ( - ) for z # 0 and

sinx

lim = 1,50 f(z,9) — 1. Since f has two different limits along two different lines, the limit does not exist.
0

r—

Ty
13 flz,y) = ——:
F( ) \/m

(0,0) suchas z = y*and y = x*. So we suspect that the limit exists and equals (; we use the Squeeze Theorem to prove our

We can see that the limit along any line through (0, 0) is 0, as well as along other paths through

assertion. 0 < | ———=2—| < |a| since |y| < /22 -I-ﬁ and |z| — Oas (z,y) — (0,0). So  lim  f(z,y) = 0.
VR (2,)—(0,0)
2
15, Let f(z,y) = f—f%—i Then f(x,0) =0 for 2 # 0, so f(z,y) — 0as (z,y) — (0,0) along the z-axis. Approaching

2 2 a2 4 z2 z2

'z’ e™  a'e e
zt +4(22)2 5zt —?for:r;é(),so

(0, 0) along the y-axis or the line y = z also gives a limit of 0. But f (z,z*) =

f(z,y) — €°/5= 1 as (z,y) — (0,0) along the parabola y = z*. Thus the limit doesn’t exist.
2 2 2 2 2 24141
7, lim —2 YV lim M Bk s a
(@)—=00) /22 +92+1—1 (2)=00) /22 +92+1—-1 /z2+y2+1+1

(2 +9) (VA F P FT+1)

1m
(z,4)—(0.0) 2% 4R (I,u)—*(ﬂ 0) (

VETEFT+1) =2

19, e¥" is a composition of continuous functions and hence continuous. 2 is a continuous function and tan ¢ is continuous for

t # § -+ nm (n an integer), so the composition tan(zz) is continuous for zz # 7 + nar. Thus the product
Flz,y,2) = e’ tan(zz) is a continuous function for zz # § + nm. Ifz = wand z = 3 then zz # ¥ + nm, so

oyt B iy T 2) = £ (m0,1/3) = ¢ tan(r - 1/3) = 1 - tan(/3) = V3.

zy +y2° + z2?

i Then f(af, 0,0) = 0/z* = 0 forz # 0,s0 as (z,y,z) — (0,0,0) along the z-axis,
24924z

A f@y2) =
f(z,y,2) — 0. But f(z,2,0) = 2% /(22%) = % fora # 0,s0as (z,y,2) — (0,0,0) along the liney = z, z = 0,
f(z,y,2) — 3. Thus the limit doesn’t exist.

From the ridges on the graph, we see that as (z,y) — (0, 0) along the
lines under the two ridges, f(z,y) approaches different values. So the _

limit does not exist.
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25. h(z,y) = g(f(z,y)) = (2z + 3y — 6)° + /2z + 3y — 6. Since f is a polynomial, it is continuous on R? and g is

- continuous on its domain {t | ¢+ > 0}. Thus h is continuous on its domain.

D = {(z,y) |20 +3y—6 >0} ={(z,y) | y 2 —2z + 2}, which consists of all points on or above the line y = -2z +2.

From the graph, it appears that f is discontinuous along the line y = z.

If we consider f(z,y) = e*/*~¥) as a composition of functions,

g{z,y) = 1/(x — y) is a rational function and therefore continuous except
wherez —y =0 =y = . Since the function h(t) = e is continuous

everywhere, the composition h(g(z,y)) = e/~ = f(z,y) is

continuous except along the line y = x, as we suspected.

ry

e is continuous
=

29. The functions zy and 1+ e®~¥ are continuous everywhere, and 1 + ¢* ¥ is never zero, so F'(z,y) =

on its domain R?.

_1+:z:2+y2

N Flz,y) = R p— is a rational function and thus is continuous on its domain
22—y

{(z.9) | 1-2" -y #£0} = {(=,9) | 2" +9* #1}.

33. G(z,y) = In(z® + 9% — 4) = g(f (=, y)) where f(z,y) = 2° +y* — 4, continuous on R?, and g(t) = Int, continuous on its
domain {t | ¢ > 0}. Thus G is continuous on its domain {(z,y) | 2* + y* — 4 > 0} = {(z,9) | 2* + ¢ > 4}, the exterior

of the circle z* + 3 = 4.

35. f(z,y,2) = h(g(z,y, z)) where g(z,y, z) = =° + 3> + 27, a polynomial that is continuous

everywhere, and h(t) = arcsint, continuous on [—1,1]. Thus f is continuous on its domain
{(m,y,2) | -1 <2* +9* + 2> <1} = {(z,y,2) | 2° +y* + z* < 1}, s0 [ is continuous on the unit ball.

\ ‘

2%y
—— if (=, 0,0
37. flz,y) = { 202+ ¢° ] #(0:0)
1 if (z,y) = (0,0)

The first piece of f is a rational function defined everywhere except at the

origin, so f is continuous on B2 except possibly at the origin. Since z? < 222 + 47, we have {mzy‘q/(Zmz + yz)l £ |y31. We

g4
know that |%| — 0 as (z,y) — (0,0). So, by the Squeeze Theorem,  lim z,y)= lim =
|y l ( y) ( ) y q (z,y)—(0,0) f( 'U) (1) —(0,0} 2z? + y2

But f(0,0) = 1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set {(z,y) | (z,y) # (0,0)}.

3 3 3 vl 3
2ty (rcos 8)° + (rsin6)

39, im = = lim (rcos®@ +rsin®@) =0
(=,)—(0,0) T2 + y? r—0+ re r—»0+( * )
2 2 2 2 . -
. e ™V —1 . e —1 . e T (=2r) . .
.4, = = _ 3 i
(m,y])J—Jiu(u,o) gy 1n1_1‘1(1]1~‘_ 3 rl_lgL o [using I’'Hospital’s Rule]
= lim —e " =—€’=—1

r—0t
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@) i (4,4 £ (0,0)
afey)=4 = -
1 if (z,y) =(0,0)

From the graph, it appears that f is continuous everywhere. We know

ay is continuous on [R? and sin ¢ is continuous everywhere, so

(vy)

. ; sin
sin(zy) is continuous on R? and —

is continuous on B2

except possibly where zy = 0. To show that f is continuous at those points, consider any point (a, b) in R? where ab = 0.

Because xy is continuous, zy — ab == 0 as (z,y) — (a,b). Ifwe lett = zy, thent — 0 as (z,y) — (a, b) and

il-n(—z‘?-j-)-, = lim sin(f) = | by Equation 2.4.2 [ET 3.3.2]. Thus  lim  f(z,¥) = f(a,b) and f is continuous
(z,y)—(a)d) ZTY t—0 1 ‘ (z,1)—(a,b)

on B2,
45. Since |x—al® = |x|2 + La|27— 2 |x| |a| cos8 > |x/* + |a* — 2 \x| la] = (|x| — |a])?, we have |[x| — |a|| < |x — al. Let
€ > 0 be givenand set § = e. Then if 0 < [x —a| < 4, ||x| — |a]| < |x —a| < § = e. Hence limy_.a |X| = |a| and

f (x) = |x| is continuous on R™,

14.3 Partial Derivatives

1. (a) 8T /O represents the rate of change of T' when we fix y and ¢ and consider T as a function of the single variable z, which
describes how quickly the temperature changes when longitude changes but latitude and time are constant. 8T'/dy
represents the rate of change of T when we fix z and ¢ and consider T" as a function of.y, which describes how quickly the
temperature changes when latitude changes but longitude and time are constant. 8T /8t represents the rate of change of T'
when we fix z and y and consider T" as a function of ¢, which describes how quickly the temperature changes over time for

a constant longitude and latitude.

- (b) f=(158,21,9) represents the rate of change of temperature at longitude 158°W, latitude 21°N at 9:00 am when only
longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air
temperature, so we would expect f(158, 21, 9) to be positive. f, (158, 21,9) represents the rate of change of temperature
at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,
increasing latitude results in a decreased air temperature, so we would expect f,, (158, 21, 9) to be negative. f;(158,21,9)
represents the rate of change of temperature at the same time and location when only time varies. Since typically air
temperature increases from the morning to the afternoon as the sun warms it, we would expect f:(158, 21, 9) to be
positive.

f(~15+ h,30) — f(—15,30)
h

3. (a) By Definition 4, fr(—15,30) = &hn% , which we can approximate by considering h = 5

and h = —5 and using the values given in the table:
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196 0O CHAPTER14 PARTIAL DERIVATIVES
f(=10,30) — f(—15,30) _ —20 — (—26)
5 B 5

) —20,30) — f(—15,30 —-33 —(—26 — ;
fr(—15,30) ~ ‘f ( )~/ ) = {-26) = _—; = l.4. Averaging these values, we estimate

fr(~15,30) ~

6
=z=12

-5 -5
fr(—15, 30) to be approximately 1.3. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the
apparent temperature rises by about 1.3°C for every degree that the actual temperature rises.

f(—15,30 4+ h) — f(—15,30)
h

f(—15,40) — f(-15,30) —27—(—26) —1
dh=-10: wl—10, ~ = = — =
an fu(—15,30) 10 0 B
P _ f(=15,20) — f(—15,30) —24—(—26) 2
Fol —~18,80) 7 —10 - -0~ -10

fu(—15,30) to be approximately —0.15. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the

Similarly, f,(—15,30) = “1‘1_1’1% which we can approximate by considering h = 10

-0.1,

= —0.2. Averaging these values, we estimate

apparent temperature decreases by about 0.15°C for every km/h that the wind speed increases.

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature T" increases (look at a column of

ow . i ; . )
the table), so i is positive. For a fixed temperature T', the values of W decrease (or remain constant) as v increases

(look at a row of the table), so %L: is negative (or perhaps 0).

(c) For fixed values of T', the function values f(7',v) appear to become constant (or nearly constant) as v increases, so the

corresponding rate of change is 0 or near 0 as v increases. This suggests that lim (8W/dv) = 0.
V00

5. (a) If we start at (1, 2) and move in the positive z-direction, the graph of f increases. Thus f. (1, 2) is positive.

(b) If we start at (1, 2) and move in the positive y-direction, the graph of f decreases. Thus f, (1, 2) is negative.

7. (@) fou = -;’—I(fz), 50 fue is the rate of change of f, in the z-direction. f is negative at (—1, 2) and if we move in the

positive a-direction, the surface becomes less steep. Thus the values of f, are increasing and f...(—1, 2) is positive.

(b) fyy is the rate of change of f, in the y-direction. f, is negative at (—1, 2) and if we move in the positive y-direction, the

surface becomes steeper. Thus the values of f, are deéreasing, and fyy(—1,2) is negative.

9. First of all, if we start at the point (3, —3) and move in the positive y-direction, we see that both b and ¢ decrease, while a
increases. Both b and ¢ have a low point at about (3, —1.5), while a is 0 at this point. So a is definitely the graph of f,, and
one of b and c is the graph of f. To see which is which, we start at the point (—3, —1.5) and move in the positive z-direction.
b traces out a line with negative slope, while ¢ traces out a parabola opening downward. This tells us that b is the z-derivative

of e. So ¢ is the graph of f, b is the graph of fx, and a is the graph of f,,.
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flz,y) =16—42® —y* = fe(z,y) = —8wand fy(z,y) = -2y = [f(1,2) = —Band f,(1,2) = —4. The graph
of f is the paraboloid z = 16 — 4z — ” and the vertical plane y = 2 intersects it in the parabola z = 12 — 42, y=2

(the curve C1 in the first figure). The slope of the tangent line z

to this parabola at (1, 2,8) is fz(1,2) = —8. Similarly the
plane = = 1 intersects the paraboloid in the parabola

z =12 —y*, = = 1 (the curve C; in the second figure) and

the slope of the tangent line at (1, 2, 8) is f,,(1,2) = —4.

[z =2 = f=2P fH=38%

Note that traces of f in planes parallel to-the zz-plane are parabolas which open downward for y < 0 and upward fory > 0,
and the traces of f; in these planes are straight lines, which have negative slopes for ¥ < 0 and positive slopes for y > 0. The

traces of f in planes parallel to the yz-plane are cubic curves, and the traces of f in these planes are parabolas.
flz,y)=9"—382y = fulz,y)=0-3y=-3y fu(z,y) =5" -3

flz,t) =etcosmz = fo(z,t) = e (—sinnz)(7) = —we tsinwz, fi(z,t) =e H(—1)cosmz = —e "t cosmx

)
z=(2z+3y)*° = a—; =102z + 3y)? - 2 = 20(2z + 3y)°, % =10(2z + 3y)? - 3 = 30(2z + 3y)°

1

fey)=agfy=zy = flzy)=v""=1y flzy) = —ay? = —z/y?

 Hap) =t e . @) (et e (ad-by

cz +dy (ez + dy)? = ez + dy)?’
¥l g = (cz +dy)(b) — (az +by)(d) _ (bc— ad)z
L (cz + dy)? (cz + dy)?
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25.

21.

3.

35.

37.

39,

41.

O CHAPTER 14 PARTIAL DERIVATIVES
g(u,v) = (v —v%)° = gu(u,v) = 5(u’v - v?)* - 2uv = 10uv(u’v — v®)4,

gu(u,v) = 5(u?v — v*)4 (1 — 30?) = 5(u? — 3v?) (u?v —v®)*

= 1 _a 2pq
R y =t . & i = = y : =
(P Q) an (Pq ) = RP(p Q) 1+(Pq2)2 q - 1 +P2q4 R‘?(p Q) 1+( ) 2pq 1+p2q4
F(z,y) = f cos(e’)dt = Fi(z,y)= L] f dt = cos(e”) by the Fundamental Theorem of Calculus, Part 1;
v
(@, y) [ cos( =it [ fy cos(e') dt| = i fy cos(e") dt = —cos(e")
T ay Oy | Je 0 Ja ‘ ‘

fla,y2) =22 =522 = fa(z,y,2) = 2 - 102°2", fy(z,y,2) = —152%y%2%, fe(z,9,2) = = — 202%°2°

Ow 7 1 Jw 2 ow 3
=In(z +2y + 3 o = o= e e
wi=lnfmdByt+dal = 9z z+2y+32° dy <c+2y+32° 9z z+2Y+32

du 1 Ty
- s —1 - -1 s —1 — y= s -1
u=zysin " (yz) = oz ysin~ (yz), 6 =zy- o OBE (2)+sin™*(yz) -z e i + zsin™*(yz),

B oy )= 2
02 V1-(yz)? \/_ Y222

h(z,y,z,t) = 22ycos(z/t) = ha(z,y,2,t) = 2zycos(z/t), hy(z,y,2,t) = x* cos(z/t),
h(z,y, z,t) = —z?ysin(z/t)(1/t) = (—z2y/t)sin(z/t), he(z,y, 2,t) = —z ysin(z/t)(—zt~2) = (z?yz/t*) sin(z/t)

ZTi

u=+/z2 + 22+ +22. Foreachi=1,..,mus,, = 2(z¥+ 23+ .- +22 2 92) = ;
Vi + e " = g+t ) ) Vel +zi 4o +al

f@y) =(s+/T+P) =

1 17,2, ,2y—1/2 1 T
z\T, = 1+_ - 23‘,‘ == 1+ 5
S x“ryZ[ BPe R )] z+ 3:2-%-!)2( \/m)
s;fz(34)= L (1+ 4 )=1(1+ﬁ)=1.
; 3432 442 1/32_|_4_2 8 5 5
I - llz+y+2)—y(l) _ _ z+z
HTEnd) = ey TR < f”(wy’z) +y+2?  (z+y+=?
2+ (—1)

1
s0 fy(2,1,-1) = m =7

. flzy) =z — 2y =

fathy) = f@y) _ o @Ry’ — @+ h)'y — (zy® = 2%y)

fe (@,y) = lun h h—0 h
h(y? — 3x%y — 3zyh — yh?) g "
= lim = = lim (y* — 32%y — 3zyh — yh®) =1* — 32’y
i f@Y ) = @y _ sy +h)? -2ty +h) — (e —aly) _ | h(2ay +zh—2°)
fy (@,y) = lim = = lim 3 = fim B

: =}in})(2my+:z:h—:c3)=2my—m3
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a a
2 2 Z . 2 2 T
4.2 +20° +32° =1 = (3" +2°+32%) = 5= (1)

SECTION 14.3  PARTIAL DERIVATIVES O

= 2m+0+6zg=0 = 62@=—2:c =

Oz ox
8z —2z x 0 2 2 2 a 0z Oz
%~ 62 3z’a"day($ + 2y* + 327) ay(l) = 0+4y+ %5y 0 = Glay 4y =
9 _—4y_ 2
8y~ 6z 3z
z a zZy — a z‘az— .ai . "‘&_ _6_'2—
49. e =xyz = a(e)—am(a:yz) = e Bm_y<$6:c+z 1) = € o e =
§ 0z _ 9z L
(e —:c:y)gzs-—yz,so e g

0 3 9 z@__ .?E .
o e)—‘g’g(myz) = @ ay“”(yam” ‘1)

Oz a "
= ez——zya—::xz = (e“—zy)%=mz,so

dy 8y
9z =z
dy e —umy
. @ 2= 1@ +9) > 2 =@ 5 =d0)
0z _ df d , ,

(b) z = flz+y). Letu:m+y.Thena—:=E£-5;—L=gfa(1)=f(u):f(a:+y),

j g ' '

- Em - mO=fW=rEty.

53, f(z,y) =a%° + 2z = folz,y) = 322y + 823y, fy(z,y) = 52°y* + 22, Then faz(z,¥) = 6zy® + 2427y,

fay(2,y) = 152%9* +82°, fye(z,y) = 152°y* + 82°, and fyy (z, y) = 20295,

—1/2 u

v

55. w = Vi + 02 = wu = s(u?+0? U= ————, wy = 2 (1 + %)% . 2= ———— Then
¥ Lo o e LU e
V@R w36 40T () BT - VB TR w4 - v?

Wyn = (\/m)z - u? + 2 = ('u? +U2)3/2 i (uz +1;2)3/2'
- T 2 oy —3/2 - uv _ . i 2 2y —3/2 _» uv

wuw = u(—3) (¥ +0%) 7" (0) = @ ey W= v( 3) (W +0*) 7 (2u) = T A
. 1-vu? + 0% —v- 3(u? +07)V3(20) _ VBT = NI Wit - w3

v (\/m)z J - u? + 02 — (uz +U2)3_{2 - (uz +:U2)3/2'

57. z = arctan :r:_—l—y
- 1 (WA —zy) — @ +y)(-y) _ 1+y° _ 1+y°
1+ (-——‘Lf:ly)z (1 —ay)? (I-zy)?+(z+y)?  1+z2+42 +a?y?
1432 1

- 1+ 22)(1+92) 1y
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P 1 (WA —zy) - (+y)(==z) _ 1422 _ 14 2 _ 1
" u(gm) (1=ap o +GroP  ATe)iTs)  I+9
=
Then;:m!: —(14+2%)"2%.22= e AL Zay =0, 2ys =0, 2yy =—(1+92) 2. 2y = ——
(1 +.’.C2)2’ g » “Y1 » YUY ' (1+y3)2
59 u =z — ¢yt = we =42%3, wumy =122%% and u, = 3zYy? — 4y°, wye = 122%%
Thus 22y = Uye.
61. w = cos(z’y) = wur = —sin(z’y) - 2oy = —2zysin(z’y),
Ugy = —2wy - cos(z?y) - 2% + sin(z?y) - (—22) = —22%y cos(z?y) — 2z sin(z?y) and
uy, = —sin(z?y) - 2? = —z? sin(z?y), wye = —2° - cos(x?y) - 2y + sin(z?y) - (—2z) = —2x3y cos(z’y) — 2z sin(z?y).

Thus tzy = Uyz.
.

83. f(z,y) =z’ — 2%y = fo =42 — 32, foo = 122%® — 62y, foee = 24zy® — 6y and

foy = 82y — 322, foys = 242y — 6. :

w2 e o ol
65. fz,y,2) = V* = fo =W .y =yte™T, fo, =y (22%) + e=ve L 52 = (zyz* + zz)e“y":’,

foye = (myz* +22) - g™V’ (2zyz) + emv=* . (4zyz® + 22) = (2z%y?2® + 6zy2® + 2z)e;"”z2.

o u=eaind = 22 e ool +sinf-e™ (r) = €™ (cos @ + rsin ),

a6

82'& 0 s s rd 0 l. .
550 =~ ¢ (sin@) + (cos @ + rsinf)e™ (8) = ™ (sinf + §cos§ 4 réisinf),

3
% = ¢ (fsin0) + (sin@ + O cosd + rhsind) - €™ (8) = 6™ (25iné + fcosf + rOsinb).

_ & . -1 B_w . -1 32_%‘ = . —2y —2

W= =ay+22)7 = S-=@+2)7, T (y+22)7°(1) = —(y +22) 77,

637.0 ' -3 -3 4 dw 2 —2
_— 2Y=4 = e —_—= — = = —
520y 0% (—2)(y + 22)7°(2) = 4(y + 22) UESDE and By z(—1)(y + 22)7*(1) z(y +22)7%,
82?1) _ —92 aaw _
oz dy (y+22)7" 928y 2

71. Assuming that the third partial derivatives of f are continuous (easily verified), we can write frzy = fyz=. Then

flz,y,2) = ay?z® + a,rcs'm(m \/E) = fy=2zy2® +0, fyz = 2y2°, and fyzs = 6y2° = fasy.

13, By Definition 4, £,(3,2) = lim L& 2 —f3:2)

fim h which we can approximate by considering h = 0.5 and h = —0.5:
f(3.5,2) — f(3,2) .224—-175 f(2.5,2) — f(3,2) 10.2-175 .
L 2) = = = d. T ~~ : 2 = = .6.
J=(3,2) 05 5E 9.8, f=(3,2) oy O 14.6. Averaging
f(3+ h,2.2) — f(3,2.2)

which

these values, we estimate f..(3, 2) to be approximately 12.2. Similarly, f.(3,2.2) = Ilil_l}] B
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3.5,2.2 2.2 26.1 — 15.
we can approximate by con51der1ng h=0.5and h = —0.5: fI(S 2.2) & i 3) z f(3,2.2) _ 28 10 515 9 _ 20.4,

£(2.5,2.2) — f(3,2.2) 93159

5 = 5E = 13.2. Averaging these values, we have f(3,2.2) ~ 16.8.

f(3,2.2) ~

To estimate fa,(3,2), we first need an estimate for f.(3,1.8):

#(3.5,1.8) — f(3,1.8) _ 20.0—18.1 : £(2:5,1.8) — £(3,1.8) _ 125 —18.1 |

f=(3,1.8) & E = =3.8, f2(3,1.8) ~ e == =112

: ' 8 . _
Averaging these values, we get f.,(3,1.8) = 7.5. Now foy(x,y) = 8_y [fz(z,v)] and fz(xz,v) is itself a function of two

f’c(m,?j + h) = f_z,(CU,’U)

variables, so Definition 4 says that foy (2, 7) = [ f=(z,9)] = 111_+ L ) =
— f2(3,2 _ o . . .
fz4(3,2) = lim A3 4 hg fx(3,2) . We can estimate this value using our previous work with h = 0.2 and h = —0.2:
£.(3,2.2) — £.(3,2)  16.8—12.2 F2(3,18) — fu(3,2) 75—12.2 _
= _23 i, 3 2 == = 5,
fau(3,2) 0.2 0.2 fau( ) —0.2 —0.2 e
Avéraging these values, we estimate f., {3, 2) to be approxnmate!y 23.25.
u=e*tsnks = Ug = ke"“'zkgf‘ cos ke, Uyy = —k%‘“gk% sin kz, and uy = —a2k2e— o k%t sin k.
Thus a2 tze = us.
1 IN/2 L L0 2\—3/2 2 .92, .2\-3/2
U= —— Ug = (=) (" +y " + 2 2z) = —x(z* +y° + 2 and
20?7 — y? — 22
(a2 2, ,2\=3/2 _ ./ 3 =5/2(9,Y — Y
Upe = —(2® + 47+ 27) (-3 (2® +* +2%) (.) @2
B gy = ek e and 1z “#—232_32_1]2
y symmetry, iy, = (22 + 2 + 22)572 (:1;2 e +z2)n/2'
2 =9 =Pt — — 224227 —a? —?
Thus 'L!-:z::z:“i‘ Uyy +Upe = (ﬁg F y- z2)"/0 =0.
_ _ _ Olf(v) +g(w)] _ df(v) Ov | dg(w) dw _
Letv =z +at, w=xz—at. Thenu: = 5 =ty B + e at =af'(v) —ag (w) and
! '
Upy = Olaf (U)at ag ()] =afaf"’ (v) + ag"(w)] = a®[f"(v) + g" (w)]. Similarly, by using the Chain Rule we have
Uy = f'(v) + ¢ (w) and uge = f(v) + g" (w). Thus ve = a* U
dz e’ dz e” Oz Oz e’ e? e* +e¥
— € = P L . — e () — e = —3
#=Talg" 4] =» bz ertev By er+ey’503$+3y e tel ertel  eried L
Bz _ (" +e¥) () _ e Pz _0-e¥e) & and
azz (e® + e¥)? T (er+ev)?’ fz8y (et +ev)? T (e® fev)?’
2 U a® YUY _ ol (ol 4
Q:e(e—l—e) f(e)= = . Thus
dy? (e* +e¥)? (ex + e¥)?
a?z 8225 822‘ 2 e:r-l-y ez+'y e_q:+y 2 (6I+U)2 (em+y)2
a2 0 (&nay) S tror ey (‘ G +ew>2) SlEtey (erent

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted 1o a publicly aceessible website, in whole or in part.



202

83.

85,

87.

89.

91.

93.

95.

97.

99.

101.

3  CHAPTER 14 PARTIAL DERIVATIVES
By the Chain Rule, taking the partial derivative of both sides with respect to Ry gives
OR™' R _ 3[(1/R:1) + (1/Rz) + (1/Rs)] 5 OR o AR R?

BR —"-"‘BRI = aRl or —R B_R,l = _Rl : Thus _6R1 = —_E%_

: . . . . dP P . ; ;

If we fix K = Ko, P(L, Kp) is a function of a single variable L, and JL =T s separable differential equation. Then
dP dL dP dL
5 e = 5 /a o In|P| = aln|L| + C (Ka), where C(Kq) can depend on K. Then

|P| = exImIEl+ CF0) and since P > 0 and L > 0, we have P = " LeClK0) = (CKo)gIn L% — ¢y (K ) L™ where

cl(ﬁ'ﬂ) - e'C(Kn).

(P+ %)(V'—nb) =nRT = T= %(Iu %)(V—nb),sog—i = %(I)W—nb) = V;R”b.

We can also write P + %?-; = % = P= I;ﬂ—%{zb - %:E =nRT(V —nb)~' —n%aV 2, s0

%g = —nRT(V —‘nb)‘z(l) +2n2aV 2 = 2323“ - (an:b)r .

By Exercise 88, PV =mRT = P= m'TM,sog—g = T—T;/ﬁ Also, PV =mRT = | V = mTIET a.ndg—; = mTF
Since T' = %,w&haveTg—i g—; = % . mTR . _"L;ﬁ =mhR.

g% :I-zl-vg, %{)ﬁ = 1mu, %—Z—If = m. Thusl% . %‘g{- = %vzm =K

felzsy)=2+4y = fou(z,y)=4and fy(z,y)=32—y = fye(z,y) =3. Since fi, and f,. are continuous

everywhere but fo, (2, y) # fy=(2,y), Clairaut’s Theorem implies that such a function f(z, y) does not exist.

By the geometry of partial derivatives, the slope of the tangent line is f. (1, 2). By implicit differentiation of

42 + 2% + 2% = 16, we get 8z + 22 (82/03) =0 = 02/8x = —4z/z,so whenz = 1 and z = 2 we have -
8z/0z = —2. So the slope is fz(1,2) = —2. Thus the tangent line is given by 2 — 2 = —2(z — 1), y = 2. Taking the
parameter to be £ = = — 1, we can write parametric equations for this line: z =1+t¢, y =2, 2 =2 — 2¢t.

By Clairaut’s Theorem, fzy, = (fmy)y = (fv:c)y = fusy = (fy)w'u = (f'-‘*)vw = Py

Let g(x) = f(z,0) = z(2?)~3/%e" = 2 |2|~°. But we are using the point (1,0), so near (1,0), g(z) = 2. Then
g'(z) = —2z7% and ¢’ (1) = —2, so using (1) we have f.(1,0) = g'(1) = —2.

(@) (b) For (z,y) # (0,0),
_ B2y —1®) (@ + ) — (2%y — °)(22)
fa(z,y) = (z2 + y2)2
_ oty 442’ — P
N\ T (=2 +7)?

O
ey

z° — 4a®y? — oyt

and by symmetry fy(2,y) = =7y
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2y _
lim (0/h*)—0
h—0 h

f(h,0) — £(0,0) _ _ — i £(0:0) — £(0,0) _
e ik —Oandfy(0,0)—}lblgé—h_——O.

(©) £2(0,0) = lim

5
afﬂ-' = Bim ffﬂ(ov h);f_,;(0,0) — lim (_h‘ —0)/h4 1 while by (2),

(@) By (3), £-4(0,0) = By w0 h—0 h
8y _ v fu(h0)—£,(0,0) _ . KY/RY
f=(0,0) = 3= = lim, = lim =1
(e) For (z,y) # (0,0), we use a CAS to compute
2% + 9zty® — 0x?yt — o
Jzy(z, ) = @2 +4°)° P

Now as (z,3) — (0, 0) along the z-axis, fay(z,y) — 1 while as

(z,y) — (0,0) along the y-axis, fzy(z,y) — —1. Thus fu, isn’t

continuous at (0, 0) and Clairaut’s Theorem doesn’t apply, so there is
no contradiction. The graphs of fz, and f,. are identical except at the

origin, where we observe the discontinuity.

144 Tangent Planes and Linear Approximations

1 z2=flz,y) =32 -2 +z = folz,y)=—4a+1, fy(z,9) =6y, so fo(2,-1) = =7, f,(2,—1) = —6.
By Equation 2, an equation of the tangent plane is z — (—=3) = fz(2,-1)(z — 2) + f,(2,-1)[y - (-1)] =

z2+3=-7(z—2)—6(y+1) or z=—Ta — 6y +5.

Lz=fl@y) =V = f@y)=3)""2 y=5/v/z il y) = 3@) 2 o= 1VEfy 50 f2(1,1) = &
and fy(1,1) = 3. Thus an equation of the tangent plane is 2 — 1 = fx(1,1)(z — 1) + f,(1, 1)(y - 1) =

z—1=3z-1)+3(y—1orz+y—22=0.

5 z = f(z,y) =wsin(z+y) = fo(z,y) =2z cos(z+y)+sin(z+y)- 1=zcos(z+y)+sin(z +y),
fylz,y) = Tcos(z +y), 50 fa(—1,1) = (—1) cos0 +sin0 = —1, f,(—1,1) = (—1) cos 0 = —1 and an equation of the

tangent planeis z — 0 = (—=1)(z + 1) + (—-1)(y — D orz+y+ =z =0.

7.z=f(:c,y):1:2+:cy+3y2,sofx(a:,y)=2a:;+-y = f«(1,1) =3, fy(z,y) =2 +6y = fy(1,1)=Tandan

equation of the tangent plane is 2 — 5 = 3(z — 1) + 7(y — 1) or 2 = 3z + Ty — 5. After zooming in, the surface and the
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tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

$%%
wi%eSe%, ‘
Y {:ﬁ:o:o:gfﬂfz p

N N8y e s
\\\\vq"o:;:-’-},lir"

b Flayg)e zysin (z — y) K CAS gives £, (= ysin (z —ly} Jrzmycgs (z—y) 2m“y81121(;cm23é)
+2? +y (1 +22+1?)

1+@R 2 and

_zsin(z—y) —zycos(z—y) 22y sin (z — y)

W)= = . We the CAS t luate these at (1, 1), and th
fylz, ) T+ 22447 A+22 1) e use the o evaluate these at (1, 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane; z = %.L‘ — %y. The surface and tangent

 plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguisﬁable,
as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

zy

+ In(zy — 5)

oy —5 W Hinlay—8)- 1= o

. f(x,y) = 14+zIn(zy —5). The partial derivatives are fz(z,y) = x-

2

(z) = m—;_—ﬁ, s0 fz(2,3) = 6 and f,(2,3) = 4. Both f, and f, are continuous functions for

dfy(z,y) =2
and fy(z,y) ==z ey

zy > 5, so by Theorem 8, f is differentiable at (2, 3). By Equation 3, the linearization of f at (2, 3) is given'by
(@, y) = £(2,3) + £2(2,3)(@ — 2) + £4(2,3)(y — 3) = 1 + 6(z — 2) +4(y — 3) = 65+ 4y — 23.

13. f(z,y) = mmTy The partial derivatives are fz(z,y) = 1(93—;;%)?7)—;&2

= y/(z +y)? and
Julzy) =2z(-1)(z+y)"? - 1=—z/(x +y)* s0 fz(2,1) = § and f,(2,1) = —2. Both f, and f, aré continuous
functions for y # —z, so f is differentiable at {2, 1) by Theorem 8. The linearization of f at (2, 1) is given by

L(Sﬂ,y) = f(zvl) +f:1.‘(2?1)('7:_2)+f1.f(211)(y_ 1) = % +%($_2)— %(y_ 1) = %:L‘— %y'f'%
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x —zy

f(z,y) = e"*¥ cosy. The partial derivatives are fx(z,Y) —e ¥(—y)cosy = —ye *¥ cos y and

fu(z,y) = e ™¥(—siny) + (cosy)e ¥ (—z) = —e'“(siny + zcosy), so fz(m,0) =0and f,(m,0) = —7.
Both f and £, are continuous functions, so f is differentiable at (7, 0), and the linearization of f at (,0) is
L(z,y) = f(m,0) + fz(m,0)(z — m) + fy(m,0)(y — 0) = 1 + 0(z — ) — m(y — 0) =1 —my.

2z +3 S . - —aey _ —8z—12
4y+1‘Thm fa(z,y) = prv | and fy(z,y) = (2 +3)(-1)(dy +1)*(4) = W Tie

Let f(z,y) = . Both f, and f,

are continuous functions for y # —1, so by Theorem 8, f is differentiable at (0, 0). We have f.(0,0) = 2, f,(0,0) = —12

and the linear approximation of f at (0,0) is f(z,y) = f(0,0) + f=(0,0)(z — 0) + f,(0,0)(y — 0) = 3 + 2z — 12y.
We can estimate f(2.2,4.9) using a linear approximation of f at (2, 5), given by-

f(z,y) = f(2,5) + f2(2,5)(z — 2) + f4(2,5)(y — 5) =6+ L(z — 2) + (-1)(y — 5) =z —y + 9. Thus
f(2.2,4.9) =~22-494+9=6.3.

I 2 2 =;. — _.....—y
f(-'ﬂ,’y,z) — T +y +Z => fm(m?y!z) \/m’ fy(a:,y,z)— m: and

,50 2(3,2,6) = £, £,(3,2,6) = 2, £.(3,2,6) = &. Then the linear approximation of f

b4
fz(z,y, 2) =W

at (3, 2, 6) is given by

fz,y,2) = £(3,2,6) + f(3,2,6)(z — 3) + £,(3,2,6)(y — 2) + £:(3,2,6)(z — 6)
:7+%(w—3)+%(y—2)+-$(zf6) =z+2y+ 5z

Thus 1/(3.02)2 + (1.97)2 + (5.99)% = f(3.02,1.97,5.99) ~

=

(3.02) + 2(1.97) + £(5.99) ~ 6.9914.

. From the table, f(94,80) = 127. To estimate fr(94, 80) and f(94, 80) we follow the procedure used in Section 14.3. Since

fr(94,80) = Jim £(04 44,80 — (54,80

b , we approximate this quantity with i = £2 and use the values given in the

table:

P f(96,80);f(94, 80) _ 135;127 ny  Biladne

£(92,80) — £(94,80) 119 — 127

‘ 4 -
Averaging these values gives fr(94, 80) = 4. Similarly, fu (94, 80) = Fli'in-{] £(94,80 + hfi £(94, 80)

, 50 we use h = £5:

F2r(04,80) = f(94,85) — £(94,80) _ 132127 _ | ooy g JO475) — f(94,80) _ 122127

5 5 -5 -5

1

Averaging these values gives fx {94, 80) = 1. The linear approximation, then, is

F(T, H) ~ £(94,80) + fr(94,80)(T — 94) + fu (94, 80)(H — 80)
A~ 127+ 4(T —94) + 1(H — 80)  [or 4T + H — 329]
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25.

27.

20,

3.

33.

35.

37.

Thus when T' = 95 and H = 78, f(95,78) ~ 127 4- 4(95 — 94) + 1(78 — 80) = 129, so we estimate the heat index to be

approximately 129°F.
z=e Tcos2mt =
oz dz B, E —9 . —2z —2x - ‘
dz = ﬁdz + Edt =e “*(—2)cos2rtdz +e™*"(— sin 2nt)(27) dt = —2e 2" cos 2wt dx — 2me " sin 2art di
o 5
m=p = dm= il dp + ém dq = 5p*q® dp + 3p°¢% dg

ap Oq

R=oafffcosy = dR= g—j:da+ g—?dﬁ-l,- g—f:d’}’ = B%cosyda + 208 cosydf — af® siny dy

de = Az = 0.05, dy = Ay = 0.1, z = 5x* 4y, 2, = 10z, 2z, = 2y. Thus whenz = 1 and y = 2,
dz = z(1,2) dz + 2,(1,2) dy = (10)(0.05) + (4)(0.1) = 0.9 while
Az = f(1.05,2.1) — f(1,2) = 5(1.05)” + (2.1)* — 5 — 4 = 0.9225.

dA = % dz + Z—A dy = ydz + zdy and |Az| < 0.1, |Ay| < 0.1. We use dz = 0.1, dy = 0.1 with z = 30, y = 24; then
Y

the maximum error in the area is about dA = 24(0.1) + 30(0.1) = 5.4 ¢m®.

The volume of a can is V = mr?h and AV = dV is an estimate of the amount of tin. Here dV = 2nrh dr + 71 dh, so put
dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then AV =~ dV = 27(48)(0.04) + 7(16)(0.08) ~ 16.08 cm®.

Thus the amount of tin is about 16 cm®.

mgR

7 = I R so the differential of T is
_or aT ., (2r* 4+ R*)(mg) — mgR(2R) (2r% + R*)(0) — mgR(4r)
iT=pr R+ 5 o= @ + B2 B+ pa+mp ¥
' 2 _ p2
_ mg(2r° — R?) dR — 4dmgRr dr
(2r2 + R?)? (2r2 4+ R2)2

Here we have AR = 0.1 and Ar = 0.1, so we take dR = 0.1, dr = 0.1 with R = 3, r = 0.7. Then the change in the

tension T is approximately

4mg(3)(0.7)
[2(0.7)% + (3)%]

_ mg[2(0.7)% — (3)%]
= "Th0.02 + B2

_ _0.802mg _ 0.84mg _ 1.642 i
T (9.98)2  (9.98)2 T 99.6004

(0.1) — (0.1)

g =~ —0.0165mg

Because the change is negative, tension decreases.
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39. First we find b implicitly by taking partial derivatives of both sides with respect to Ry:

OR
& (1\_0l1/R)+(1/R) +(/Rs)] _ _p28R _ oo  OR R
3—1{1(‘) = OR: = =R 5 Ry el Then by symmetry,
8R R* OR R’ 1 17

_R” = - - AT - 200
ER_z = B 6R3 R2 When Ry = 25, R2 = 40 and Rz = 50, — R 200 R 2. Since the possible error

for each R; is 0.5%, the maximum error of R is attained by setting AR; = 0.005R;. So

dR oR R af 1 1 1

~ = —— AR3 = (0.L005)R*{ — +—+ — ] = (0. =1 =0 :

AR~ dR = FTon ARl-l-a AR2+6R 3= (0 ) (R1+R2+R3) (0.005)R, 7% =~ 0.059 0
A :
41. The errors in measurement are at most 2%, so = < 0.02 and |—| < 0.02. The relative error in the calculated surface
area is
0.425—1430.725 0.425 0.725—1
AS = ds _ 0. 1091(0.425w )i dw + 0.1091w (0.725h Ydh Ll 425d_u_; +0; 725@
g g ) ) 0.109140-425 40.725 ) h

To estimate the maximum relative error, we use %U = ‘ e =0.02and — dh ‘ =002 =
ds

- 0.425 (0.02) + 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.

43. Az = f(a+ Az,b+ Ay) — f(a,b) = (a + Az)® + (b+ Ay)® — (a® + b?)
= a® + 2a Az + (Az)? + b2 + 2b Ay + (Ay)? — a® — b” = 2a Az + (Az)? + 2 Ay + (Ay)?
But fz(a,b) = 2a and fy(a,b) = 2band so Az = fz(a,b) Az + fy(a,b) A?f + Az Az + Ay Ay, which is Definition 7

with e;1 = Az and g2 = Ay. Hence f is differentiable.

45, To show that f is continuous at (@, b) we need to show that hm _f x,y) = f(a,b) or

(z.u)

equivalemly JlI)n f(a + Az, b+ Ay) = f(a,b). Since f is differentiable at (a, b),
Az,Ay)—

fla+ Az, b+ Ay) — f(a,b) = Az = fu(a,b) Az + fy,(a,b) Ay + €1 Az + 2 Ay, where €1 and ez — 0 as
(Az, Ay) — (0,0). Thus f(a+ Az, b+ Ay) = f(a,b) + fz(a,b) Az + fy(a,b) Ay + &1 Az + e2 Ay. Taking the limit of
both sides as (Az, Ay) — (0, 0) gives lim fla+ Az, b+ Ay) = f(a,b). Thus f is continuous at (a, b).

(Az,Ay)—(0,0)

14.5 The Chain Rule

2 dz 0z dxr azdy
2 2 = — ot t
Lz=z4+y" +ay, c=sint, y=¢ = m 6 !t+6 a (2:r:+y)cost+(2y+n:)e

3. z2=+/14+22+4+y% z=Int, y=-cost =

dz Oz dz Oz dy 1 2 2y—1/2 1 1 2 2y —1/2 i 1 z
T =@ oy d =) ) L 4 ) ) i) = — e (T~ yoin
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S w=ge? o=t} y=1—t,z2=1+2t =

dw Odwdr Odwdy Owdz et/= . /= o il T 2y
@t Bzdt+6y dt+a da 2t +ze (—1) + ze ( z)-2—e OF s i el

7. z =2, = = scost, y = ssint =

32_3z5:r Bzay_ 3 2 2 .
T ¥ T + _By B 2zy° cost + 3z°y sm't
0z _ 020z  0Oz0y ; 2 9 _ 3 _. 2,2
TRy o = (2zy®)(—ssint) + (3z%y*)(scost) = —2szy® sint + 3sz*y* cost

9, z=sinfcos, 0=st?, =5t =
0 _0:00 -9
8s 00ds O¢ Os
Lo
at — a9 ot wm

= (cos @ cos ¢)(t*) + (—sin @ sin ¢)(2st) = t* cos @ cos ¢ — 2stsin @ sin ¢

(cos B cos ¢)(2st) + (— sin @ sin $)(s%) = 2st cos @ cos¢h — s*sinf sin ¢

M. z=¢"cosb, r=3st, 0 =+/s2+1 =
dz _Bz0r 0200 . = o e s
55 ~or5s 908 e"cosf-t+e (—sinf) - 3(s* + %) "f2(2s)=telcosf9—e smB-W
. s "
=e (tcosﬂ——ﬁsmﬂ)
%_‘:=g—:-%-}—%%=e”'cos6-s+er(—sin€)'%(Sz-l-tz)_ln(?t)=se‘"cos€—e"sin9-\/;gg_t“{:.ﬁ.

=g" (scos& T - sin@)
Vet +t2
13. Whent = 3, z = g(3) = 2 and y = h(3) = 7. By the Chain Rule (2),

dz _ Of dx af dy

U U 05+ HEIHE) = 6)6) + (-8 =

15. g(u,v) = f(z(u,v), y(u,v)) where z = e* +sinv, y =" +cosv =

6x_u_<'3_z_ By_u@__. . Og 0fdx  8f 0y
e 5, cos v, Bu s B, = S BytheChamRu]e(Z:’),a e a3,'8_.'4!'.'T'hen

9(0,0) = fa((0,0),%(0,0)) 2(0,0) + f, (2(0,0), (0, 0)) %u(0,0) = f2(1,2)(e’) + fi(1,2)(e°) = 2(1) +5(1) = 7.

Similarly, g gi gz g—;gﬂ Then
94(0,0) = fa(2(0,0),(0,0)) 2(0,0) + £, (x(0,0),(0,0)) . (0,0) = fu(1,2)(cos0) + fy (1, 2)(~ sin0)
= 2(1) + 5(0) =2
o u=j@), r=alnst, y=ulnst) =
x/ \y Ou Oudx  Oudy Ou Oudx  Sudy

B OcOr " Oydr" Os OxDs @ Oyods’

Ou _ Budz + ?E 2]
Bt 9z ot dy ot
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w=f(rst), r=rzy), s=sy), t=txy) =

N\ ow_wdr Owds Owdt Ow_duwdr owds  Oudt
t dr Ordr Osdx  Otdz By Ordy  dsdy Ot oy

z=zt4 2%y, c=542t—u, y=stu® =

9z _0z0z  Oz0y \
ds ~ Oz Os + By s (4m + 2ay)(1) + (33 )(tu )s

0z = Eaj 0z ay 3 2 2
Bt THpa = W Y@+ ) ),
Oz _0z0x 920y

%= 520u " 9y ou = (4z® + 22y)(—1) + (z*)(2stu).

-Whens=4,t=2,andu=1wehavex =T7andy = 8§,

& 3— — (1484)(1) + (49)(2) — 1582, 22 a 2 = (1484) (2) + (49)(4) = 3164, %:(1484)(—1)+(49)(16)=-700.

w=zy+yz+zz, c=rcosf, y=rsinb, z=r0 =
6_w_8_wt_3£+3w3y+3w8z
dr Oz dr Adyor 08z or

dw _Owdz Owdy  Owdx . :
50 = 9250 + = By 00 + 35,50 = (y+z)(—rsinf) + (z + 2)(rcos @) + (y + z)(r).

= (y +2)(cos) + (z + 2)(sin0) + (y + z)(6), -

Whenr =2and 0 = 7/2wehavex =0,y = 2,and z = m, s0 -E;—t:- = (2+m)(0) + (04 m)(1) + (2 + 0)(7/2) = 27 and

?91;’ (2 + m)(—2) + (0 + 7)(0) + (2 4+ 0)(2) = —2.
ptq
F’P—u‘*‘vw g=v+uw, r=wt+uww =

ON 6N8p+8N3q 9N ar.
Bu OpOu ' BgOu  Br du

_ 0+NW =0+ ), @0 - 0+0O) () , @10~ b +a)
B 2 I R T R

_r—g+@+nw—(p+qp
(p+7)? ’

ON 8N8p+6N6q+3N6r_ r—gq (w) p+r
Bv  Gpdv ' Bgov  Brdv  (p+r) (p+r)?

—p+q), \_(r—gdw+(p+r)—(p+qu
(1)+ (p+7')2 ('LL)— (p+.,.)2 L

ON _ONdp  ON 8¢ L ON or r—gq (P+q)()_( )v+(p+7‘)u-(p+q)

ptr

dw  Op bw ' Bg dw ' Or ow - (p+r)? W+ (p+r)? ()} + (p+71)2 (p+r)?
Whenu = 2,0=8,andw =4 wehavep = 14,¢ = 11, and r = 10, 50 %1: =2 (242522" F25)(3) ==
ON _ (D@ +24-(25)(2) _ =80 __5 _ ON _(-1)3)+(24)(2)—25 _ 20 _ 5

v (24)2 576 96° aw - (24)2 T 576 144°
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21, ycosx = z* + 4%, so let F(z,y) = ycosz — x> — y* = 0. Then by Equation 6
dy  Fo  —ysinz—2z _ 2z +ysing

de  F,  cosz—2y cosz — 2y

29. tan~(z’y) = x + zy®, so let F(z,y) = tan~*(z’y) — x — 2y® = 0. Then

1 2zy 2zy — (L+37)(1 +$4y2)
AN, L — ), T, (P R R g, P
: ‘ 1 2 - x? z% — 2zy(1 + 2*y?)
ElaYies s P s e iy
Fy(z,y) 1+ (2%p)? () — 2zy 1+ 2oy 2zy 1+ zty?

o dy _ _Fe _ [oy—(+A(+aA)/(+a) _ @ (L4 a'y)

dr  Fy [2? — 2oy(1 + 2%y2)) /(1 + 2%y?) — 2zy(1 + ziy?)

_1+ay? +y 42yt — 20y
N 2 — 2zy — 2x5y3

3. 2 + 2y% 4 322 = 1, 50 let F(z,y, 2) = 2 + 2y* + 32% — 1 = 0. Then by Equations 7

O _ F_ 2w _ @ 0 F_ 4y _ %
8z F. 6z 3z 8y  F- 6z 3z
- adz F, —yz Yz
. B = = eF — = . Th —_—— —_——— = — =
3. e xyz, so let F(z,y,z) = e —zyz = 0. Then E I o g — and
8z By —mz _ _ az

dy F. e —zy e —ay

dI' 8Tdz 8T dy afiss
dt  dz dt | By dt’

dz 1 1 1 dy 1I
; = o/ =4/ =92 y= lt—241(3)=3 == = ==, and = = —,
3 seconds, 1+¢ 14+ L y=2+3t +3(38) =3, & 2 ATL 2viT3 Fria

36. Since  and y are each functions of ¢, T'(x, y) is 4 function of ¢, so by the Chain Rule, —

Then i—f =T.(2,3) ‘ift T,(2,3) Zg 4(1) +3(3%) = 2. Thus the temperature is rising at a rate of 2°C/s.
: < ac . . 8C -
37. C' = 1449.2 + 4.6T — 0.055T7"“ + 0.000297"° + 0.016D, so T - 4.6 — 0.117 + 0.00087T * and 3D = 0.016.

According to the graph, the diver is experiencing a temperature of approximately 12.5°C at ¢ = 20 minutes, so

) gic‘_: =4.6—0.11(12. 5) + 0.00087(12.5)* ~ 3.36. By sketching tangent lines at £ = 20 to the graphs given, we estimate
40 il ®E o 1 éc _ 904l oG dh X - T
5~ 5 and —- & — 7. Then, by the Chain Rule, == = == — + 25— = (3.36) (—35) + (0.018)(3) ~ —0.33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0.33 m/s per minute.

39. (a) V = fwh, so by the Chain Rule,

dVv_ovde oVdw  8Vdh . dl  , dw  , dh R
praial-y) dt-l-au-EJrah dt—fwhdt+£hE+€wEt-f2-2-2+l-2-2+1 2-(—3) =6m’/s.
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(b) S = 2(£w + £h + wh), so by the Chain Rule,

dS 8Sd¢ 8Sdw  8Sdh
= g e = = 2(w +h)—+2(£+h) +2(£+ )—

=2(2+2)2+2(1+2)2+2(1+2)(—3) = 10m?/s

dL de dw dh
© L= +uw'+h* = 2L =2—+2w— +2h— =21)(2) +2()(2) +2()(-3) =0 =
dL/dt = 0m/s.
dpP dT T . dV _ 831dT T dP
M. — =005, —- =015V =831 5 and — = =5=— — 83153 . Thus when P = 20 and T' = 320,
dV _ o, [015 _ (0.05)(320)
= 831[ e L 027L/s

43. Let z be the length of the first side of the triangle and y the length of the second side. The area A of the &imgle is given by

A = zysin 6 where § is the angle between the two sides. Thus A is a function of , y, and 6, and z, y, and 6 are each in turn

functions of time . We are given that init 3, % —2, and because A is constant, % = 0. By the Chain Rule,

dA OAdz OAdy 0AdO dA

dz dy
E=‘5}.7ﬁ-+6y dt+-3§-d—t = = =§ysm6 + 2xsind - —+ 2zycosf - a:8 . Whenz =20,y =

and 0 = 7 /6 we have

x =y 49
= 3(30)(sin %)(3) + 3 (20) (sin %) (—2) + 3(20)(30) (cos &) =
3 do do
=45.1 _90.1 \/____:.2_5 bl
2 3+300- 0= = 2+150J§dt
Solving for (;9 gives z—f = 1_5205‘//:':; = — 121\/5, so the angle between the sides is decreasing at a rate of

1/(12/3) ~ 0.048 rad/s.

45. (a) By the Chain Rule, Gz = O cosf + e sinf, %

‘ ar 0Oz Ay
(b) (%)2 = (%)2 cos? 0 +,2 %g—; cos @ giuﬂ + (3_2)2 sin? 0,
(%)2 = (%)Z r?sin?f — 2 %g—; r? cos 6 sin 6 -+ (%)2 r? cos® 0. Thus
(&) + 2 - &) + G e ormrn= (5 + (5
0z dzOu dz Oz 9z Oz

T mE-&™5 =3 ( 1). Thus 7 + 5 =0.

Oz " 8z
=2 (—rsinf) + By rcos@.

47. Letu = x — y. Then

(© 2012 Cengage Learning. All Rights Reserved. May not be d, copied, or duplicated, or posted (o a publicly accessible website, in whole or in part.




212 O CHAPTER14 PARTIAL DERIVATIVES

4. Letu =2 +at, v =2z — at. Then z = f(u) + g(v), s0 0z/0u = f'(u) and 8z/8v = ¢ (v).
0z _ 0z0u  0z9v

Thus — B =y +%a:a_f'(u)—ag'(v} and

2 a2 (- g - o LG LR _ 2y + a0,

Similarly % = f’(ul) +g'(v) and % = f"(u) + g"(v). Thus g—zf = %
S, -?-)l:- - %ZE 2 + g—; 2r. Then

&z a [0z a 8z
dros  or (3—223) +var (5“2'")

_ P20z a [0z By 9z @ 8%z Oy d (82 8z 8z
~ 92 r s+3: (6:1:) < +3:t:312 +8J23r2 "t o (ay)ﬁz’"“La_yz
322 0%z %z 3 2 rg oz
—41'3a 6 e — = 457 +0-|—4'f':3(9 8:::8:4 +26y
e . 8z 0z 0z 8%z az
By the continuity of the partials, e =drs 6 = 2 pars 22 B + (4r% + 4s )amay +23—y.
8z Oz 8z _ . . 8z
53. Y P 6.1: 6‘-1-5—51119 and% am'rsml‘3+ ayrcos@. Then
&2 9%z 8%z 8%z
52 = cosf (3 2cos€+(9 o smB) + sin @ (6 7 sin 9+3 aycos@)
9%z 8z Bz
— 292 < ; ==
= cos 96m2+2m598m93m3y+ 37}
and
_2_ch0590_+( —rsinf) ( rsinf) + ——— rcosf
09> 8z 3 0z 6 3
8z 8z 8z
—rsm93y+rcosﬂ(a 2'rcostg-l-a By (— 'rsmﬂ))
= —rcos8 P — rein8 % 4126020 52 _ 207 cos 0 sind L2 412 cos?0 L2
= Tcoseazr: rsm98y+r sin _03.1:2 27 cas&smﬂamay+r cos Gayz
Thus
8z 16%°2 10z 8z &z
gomes -T—za?-l-—a = (cos® 6 + sin® ()))—+(~31n 0 + cos® 9)7 |
0z 1 1 Oz Oz
98——;51119—+F(c0595~+ mB—aTJ>

Bzz 8z
89:2 ot — o as desired.

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and

fltz, ty) = (tz)*(ty) + 2(tz)(ty)? + 5(ty)® = 22y + 26%zy® + 5t°y° = t3(a%y + 22 + 59°) = 3 f (z,v).
Thus, f is homogeneous of degree 3.
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(b) Differentiating both sides of f(tz, ty) = t" f(z, y) with respect to £ using the Chain Rule, we get

2 fttmty) = b fla)) @
dltz) , O Aty) _ 0 9 ey
mf(tw,ty) ot o) flzty) =5~ == F) fltz, ty) +y ) fltz, ty) = nt" 2 f(z, ).

Settingt = 1: z — g

3 | @ ,y)+J6—f:cy)—nf(w,y)

57. Diﬂ'erentiating both sides of f(tz,ty) = t™ f(x, y) with respect to x using the Chain Rule, we get

f(tx,ty) a 5 [ f@)] ©
a—g’;)f.(tz,ty) a§t$)+—~(—7f(t ) I =0 D fay) @ thaltnty) = Lae)

Thus fo(tz, ty) = " fa(z, y).

59. Given a function deﬁned implicitly by F(z,y) = 0, where F is differentiable and F), # 0, we know that % — —%—’ Let
: v
F, dy i o i . ; y ’ ;
Glz,y) = —F S0 = G(z,y). Differentiating both sides with respect to z and using the Chain Rule gives
i

d_zg _0Gdz 0Gdy ki O 0G _ 8 ( F\_ FFp—FF, 0G_ 98 ( F\ _ FFy-FF,
dz? ~ 9z dz ' Oy dx oz Oz Fy F? 8y oy \ F,) F2 ’
Thus

@: ﬁE:Fm'_Fszz (I)Jr __Fmeu ‘FmEJw _Em_

dz? F} F? By,

_ FuF? — FpuFuFy - FoyFyFe + Fyy F2
F
But F" has continuous second derivatives, so by Clauraut’s Theorem, Fy,> = F,, and we have
2, n 2 ; Fz

&y Fealy — 2oy Fuly + Py By as desired.
do? 3 ;

14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately

996 — 1000
50

—0.08 millibar/km.

3. Dy f(—20,30) = Vf(-20,30) - u = fr(—20,30) (7‘5) + fu(—20, 30)(—55).

£(=20 + h, 30) — £(—20,30)

f(~20,30) = Jim, :

(© 2012 Cengage Learning. All Rights Reserved. May not be
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f(=15,30) — f(-20,30) _ —26 — (—33)
5 - 5

using the values given in the table: fr(—20,30) ~ — .

fn(—20,30) s £(25:80) — £(-20,30) _ -39 — (~33)

= 1.2. Averaging these values gives fr(—20,30) = 1.3.

-5 —5
Similarly, f,(~20,30) = lim s hfz, o 20, 50 we can approximate f,(—20,30) with h = +10:
y _ f(=20,40) - £(-20,30) _ —34—(-33)
fv( 20130) e 10 == 10 = 0.1,
Ju(—20,30) =~ (=20, 20)_—1 [')f (=20,30) _ _30_ 1(0 ) = —0.3. Averaging these values gives f,(—20,30) ~ —

Then D f(—20, 30) = 1.3(715) 4 (70.2)(%) ~ 0.778.

5 flz,y)=ye™ = fu(z,y) = —ye * and fy(z,y) = e . If u is a unit vector in the direction of § = 27/3, then
from Equation 6, Dy £(0,4) = f2(0,4) cos(%) + £,(0,4) sin(%) = —4- (-3) + 1. L =2+ L.

7. f(z,y) = sin(2z + 3y). ‘ J
(@) Vf(z,y) = 8_f i + By J = [cos(2z + 3y) - 2]i + [cos(2z + 3y) - 3]j = 2co§(2m +3y)i+3cos(2z+3y)j
(b)Vf(—6,4)=(2cos(J)1 (3cos0)j = 2i+3j
(c) By Equation 9, Dy f(—6,4) = Vf(—6,4) -u= (2i+3j) - 1(vV3i—j) =31 (2v3-3)=v3- 4.

9. f(z,y,2) = 2?yz — zy®

@) Vf(2,y,2) = (f=(2,9, 2), ful2,9, 2), fo(2,9,2)) = (2zyz — y2, 2%z — w2’ 2y — Baya®)
(b) Vf(2, -1, 1) = (_4 2} 174 = 21 -4+ 6) = (g37 2, 2)

(c) By Equation 14, Dy f(2,-1,1) = V£(2,-1,1) - u = (-3,2,2) - (0,2, -8) =0+ 8 - § = 2.

M. f(z,y) = €siny = Vf(z,y) = (e*siny,e” cosy), VF(0,7/3) = <-‘é‘§, %>, and a

unit vector in the direction of v is u = 7?'—_;)?5 (-6,8) = 15 (- 6 8) = (—£,1), 50

Du £(0,7/3) = V(O,m/3) - u=(F,3) (-5, 8 =-5F + L =434,

13. g(p,q) =p* —p°¢® = Vg(p, q) = (4p® — 2pg®) i+ (—3p2q2)j, Vg(2,1) = 28i— 12}, and a unit

vector in the direction of visu = T——(l +3j) = 7:-(1 +3j), s

1232
Dug(2,1) =Vg(2,1) - u= (281— 12j) - -‘7—(1+3_|) = 7— (28 — 36) = —781—0 or — 18,

15. f(z,y,z) = ze¥ +ye* +ze* = Vf(z,y,2z)=(e"+ 2e",ze¥ + €7, ye” +e®), VF(0,0,0) = (1,1, 1), and a unit

vector in the direction of v is 1 = —geber (5,1, ~2) = —£= (5,1,-2), so

Dy £(0,0,0) = V£(0,0,0) - u = (1,1,1) - == (5,1,~2) = 5.
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h(r,s,t) = In(3r + 65 +9t) = Vh(r,s,t) = (3/(3r + 65+ 9¢),6/(3r + 6s + 9t), 9/(3r + 65 + 9t)),
Vh(1,1,1) = (%, 3, 3> and a unit vector in the direction of v =4i+12j+ 6k
0= 716+114'4+’s§ (4i+12j+6k) = Fi+7j+ '?Fk' 50

Duh(L,L,1)=Vh(L, L) u= (853 G Hi) =atitu=1

f@y)=Vay = Vf(m,y)=(%(my)-‘/‘*’(y),%(xyr”z(a:))=< =5 \j@),sowzs) {3

—
The unit vector in the direction of PQ = (5 —2,4 —8) = (3,—4) isu = (£, -2}, s0

Dllf(z’s) =Vf(2.8)u= (1’%> 2 (%1—%) — %

fow) =G = Vi@y) = (- 3o%4/5) = (2u/vE,4V5).

"V f(4,1) = (1,8) is the direction of maximum rate of change, and the maximum rate is [V f(4, 1)| = /T + 64 = v/65.

flz,y) =sin(zy) = Vf(z,y) = (ycos(zy),zcos(zy)), VF(1,0) = (0,1). Thus the maximum rate of change is

[V f(1,0)] = 1 in the direction {0,1).

.f(x,y,z):va:2+y2+z2 =

Vi@ u,2) = (3a® +47 + 2272 20, 32 +97 + 207 2y, Ja? o7 + 272 2)

Y z
<\/:cz+y 2122 a4 2 2 R +z2>

V£(3,6,-2) = (7:;—9, 5 \/;4—2:5> = (2,%,—2). Thus the maximum rate of change is

[V£(3,6,—2)] = 4/ (%)2 + (%)2 + (—‘27")2 = \/&gg—'"—“ = 1 in the direction (£, 2, —2) or equivalently (3, 6, —2).

(a) As in the proof of Theorem 15, Dy, f = |V f| cos @. Since the minimum value of cos f is —1 occurring when 8 = 7, the

minimum value of D, f is — |V f| occurring when 6 = =, that is when u is in the opposite direction of V f

(assuming V f # 0).

(b) f(z,y) =z'y —2%*® = Vf(z,y) = {42y — 2xy°, " — 32%y*), so f decreases fastest at the point (2, —3) in the

direction —V f(2, —3) = — (12, —92) = (—12,92).

The direction of fastest change is V f(z,y) = (2z — 2) i + (2y — 4) j, so we need to find all points (z, y) where V f(z, ) is

paralleltoi+j <« (2e—-2)i+R2y—-4)j=k(i+j) & k=2rx—-2andk=2y—4.Then2z —-2=2y—4 =

y=x+1,s0 the direction of fastest change is i + j at all points on the line y = x + 1.
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.

33.

35,

37,

k
T=————and 120 =T(1,2,2) = —sok 360.
Va2 +y? +22
(a)uz(l;\/;”,

- . _:_ 2 2 2\ —3/2 e B . ! _ _ 40
D“T(]:!2s2) _VT(1’2!2) u= [ 360(3‘. +u t+z ) (x’y’z)]u,z,z) 3 (1121 2) 75(11_1:1) — T 3J/3

(b) From (a), VT = —360(2® + y° + .zz')fal2 (,9, z), and since (z, y, z) is the position vector of the point (z, y, z), the

vector — {z,, z), and thus VT', always points toward the origin.
VV(z,y,z) = (10z — 3y + yz, zz — 3z,zy), VV(3,4,5) = (38,6,12)
(® DuV(3,4,5) = (38,6,12) - J5{1,1,-1) = %

(b) VV(3,4,5) = (38, 6,12), or equivalently, (19, 3, 6).

(©) |[VV (3, 4 ,5)| = /382 £ 62 + 122 = /1624 = 2 /406

— —_
A unit vector in the direction of AB is i and a unit vector in the direction of AC is j. Thus DA—4 f(1,3) = fu(1,3) = 3and
DA---c f(1,3) = fy(1,3) = 26. Therefore Vf(1,3) = (f2(1,3), f(1,3)) = (3,26), and by definition,

DIB f(1,3) = Vf - u where u is a unit vector in the direction of AD which is ( o 13> Therefore,

327

3 -*

(6 Vil B = <3(au+b‘u) B(wu+bv)> < 6—2+b@,a—-—+bg}i> <6u 3u>+b<@ @>

D f(1,3) =(3,26) (5, §3) =8 73 + 26~

l-lv-‘
wika

Oz dx' dy Ay az’' o dz’ dy
=aVu+bVv
v du av Au Bu v v ‘
(b) V(uv) = <1;—+ ay+u3—y>—.v<-é;,§g>+u<5;,a—y>—vVu+uV'u

Au v Ou v du du v v
[ e Y Y — — Y — OV =—y=— ) — —_—
uy _ Oz dr Oy dy- dz’ By dz’ By vVu—uVv
)V ) =

V2 ! 02 ) 2

(d) vyt = <5(un) a(un)> e <nun—1 @_ nun:—l @> = nun-l Vu

30,

Oz’ Ay
flz,y) =2 + 5’y +¢° . =
Dy f(z, 'y) Vi(z,y) u=(3z% + 102y, 52° + 3y*) - (2, %) = 22% + 62y + 42® + 2y* = 22” + 62y + L2y°. Then

Dif(z,y) = Du[Duf(z,y)] = V [Duf(z,9)] - u = (Bz +6y,6z + Ly) - (1, 2)

=S+ ¥y+Fo+ Ru=Fla+Fy

and D3 f(2,1) = 2(2) + (1) = .
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Let F(z,y,z) = 2(z — 2)> + (y — 1)* + (2 — 8)%. Then 2(z — 2) + (y — 1)° + (2 — 3) = 10 is a level surface of F.
Folz,y,2) =4(x —2) = Fu(3,3,5) =4, Fy(z,5,2) =2(y— 1) = Fy(3,3,5)=4,and
Fi(z,y,2) =2(z—3) = F.(3,3,5)=4
(a) Equation 19 gives an equation of the tangent plane at (3,3,5) as4(z — 3) +4(y —3) +4(2 - 5) =0 <
4z + 4y + 4z = 44 orequivalently z +y + z = 11

, ; : -3 —3 —5 ;
(b) By Equation 20, the normal line has symmetric equations - T = Y = £ i equivalently

z — 3 =y — 3 =z — 5. Corresponding parametric equationsarex =3+, y =3+, 2z =5+t

. Let F(z,y,z) = zyz>. Then zyz* = 6 is a level surface of F'and VF(z,y, 2) = (yz*, z2*, 2zyz).

(@) VF(3,2,1) = (2,3, 12) is a normal vector for the tangent plane at (3, 2, 1), so an equation of the tangent plane
is2(z—3)+3(y—2)+12(z—1)=00r2z + 3y + 12z = 24.
(b) The normal line has direction (2, 3, 12}, so parametric equations are @ = 3 + 2t, y = 2+ 3t, z = 1+ 12¢, and

z—=3 - y—2 z-1
2 3 12

symmetric equations are

. Let F(x,y,2) =z +y+2z— V" Thenz + y + z = €"¥* is the level surface F(z,y,z) =0,

Yz
TYE 1 — aye™F).

and VF(z,y,z) = (1 — yze™*,1 — xze
(a) VF(0,0,1) = (1,1, 1) is a normal vector for the tangent plane at (0, 0, 1), so an equation of the tangent plane
isl(z—0)+1(y—0)+1(z—1)=00rz+y+2z=1

(b) The normal line has direction (1,1, 1), so parametric equations are = t, y =t, z = 1 + ¢, and symmetric equations are

s=y=zg—1.

F(z,y,z) = zy+yz + 2x, VF(z,y,2) = (y +z,2+ z,y + ), VF(1,1,1) = (2,2,2), so an equation of the tangent
plane is 2z + 2y +2z = 6 orz + y + z = 3, and the normal line is givenby x — 1 =y — 1 =z — lorz = y = 2. To graph

3—xy
z+y

the surface we solve for z: z =
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8. flzy) =2y = Vi(z,y)=(y,2), VF(32)=(23). V(3,2

51.

53.

55.

59.

is perpendicular to the tangent line, so the tangent line has equation
Vf(3,2)-(z—3,y—-2)=0 = (2,3)- (z—-3,2—2)=0 =
2(z—3)+3(y—2)=00r2z + 3y = 12.

22‘.‘0 2‘y0 220
a2’ b2 !

VF(zo,Yy0,%0) = < > Thus an equation of the tangent plane at (29, yo, 20) is

2 2 2 . v, % . .
—5;3 z + % Y+ —;—0 &= 2(22 + gg -- Z—g) = 2(1) = 2 since (zo, Yo, zo) is a point on the ellipsoid. Hence
Yo 20 . § ;
z +£2 Y y+ F*= 1 is an equation of the tangent plane.
- ) 2 2

VF(zo,y0,20) = <%, %Ii—o, Tl> so an equation of the tangent plane is Z_m_ T+ % — %z = .2&322 + %%5’. - z_:

2z 2y0 s Zo zZo _ :1:_(2) ﬁ . .
or 2 T+ — b2 y— +2 +b2 c.Butc —a2+bz,sotheequat|oncanbewnttcnas

The hyperboloid z* — * — 2% = 1 is a level surface of F(z,y,z) = * — y*> — 2% and VF (z,y, 2) = (2z, -2y, —22) isa
normal vector to the surface and hence a normal vector for the tangent plane at (z, y, z). The tangent plane is parallel to the
planez =z +yorz+y— ‘z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (o, yo, 20)
on the hyperboloid where (2zq, —2y0, —220) = ¢ (1, 1, —1) or equivalently {zo, —yo, —20) = k (1,1, —1) for some k 5 0.
Then we must have 2o = k, yo = —k, zo = k and substituting into the equation of the hyperboloid gives

k2 —(=k)>—k?=1 < —k® =1, an impossibility. Thus there is no such point on the hyperboloid.

. Let (o, 3o, z0) be a point on the cone [other than (0, 0, 0)]. The cone is a level surface of F(z,y, z) = z° + ° — 2* and

VF(z,y,z) = (2z, 2y, —22), so VF(zo, Yo, z0) = (2z0, 2y0, —22p) is a normal vector to the cone at this point and an
equation of the tangent plane there is 220 ( — o) + 2y0 (¥ — ¥0) — 220 (2 — 20) = 0 or ZoT + Yoy — 202 = T + Y§ — 3.

But 3 + ya = 23 so the tangent plane is given by zox + yoy — 20z = 0, a plane which always contains the origin.

Let F'(z,y, 2) = 2* + y* — z. Then the paraboloid is the level surface F(z,y, z) = 0 and VF(z,y, z) = (2z, 2y, —1), so
VF(1,1,2) = (2,2, —1) is a normal vector to the surface. Thus the normal line at (1, 1,2) is given by = = 1 + 2¢,

y = 1+ 2t, z = 2 — t. Substitution into the equation of the paraboloid z = z* + 1/ gives 2 — ¢ = (1 4+ 2t)* + (1 +2t)* &
2—t=2+8t+82 & 824+9t=0 < £(8t+9) = 0. Thus the line intersects the paraboloid when t = 0,

corresponding to the given point (1, 1, 2), or when t = —2, corresponding to the point (-3, -

2. 5 25).

48
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Let (o, Yo, 20) be a point on the surface. Then an equation of the tangent plane at the point is

y z T+ WtV
2

. But \/Zo + /70 + +/Zo = /¢, so the equation is

z y z ; . ; 5 ; '
—— + —— + — = y/c. The z-, y-, and z-intercepts are /o, 1/CYo and ,/c2g respectively. (The z-intercept is found by
VTo Vo /Zo \/_

setting y = z = 0 and solving the resulting equation for z, and the y- and z-intercepts are found similarly.) So the sum of the

intercepts is \/E(,/mg + /Y0 + v/Zo ) = ¢, a constant,

If f(z,y,2) = z —2* —y* and g(z,y,2) = 4z® + 4 + 2%, then the tangent line is perpendicular to both Vfand Vg
at (—1, 1, 2). The vector v = V f x Vg will therefore be parallel to the tangent line.

We have Vf(z,y,2) = {(-2z,-2y,1) = Vf(-1,1,2) =(2,—2,1), and Vg(z,y, z) = (8z,2y,2z) =

i jk
Vg(—1,1,2) = (—8,2,4). Hencev=VfxVg=| 2 -2 1|=-10i—16j— 12k,
-8 2 4

Parametric equations are: ¢ = —1 — 10¢, y =1 — 16%, z = 2 — 121,

(a) The direction of the normal line of F' is given by VF, and that of G by VG. Assuming that
VF # 0 # VG, the two normal lines are perpendicularat P if VF - VG =0at P &
(OF/0z,0F |8y, 0F[8z) - (0G/0x,0G /0y, 0G/0z) =0atP & F,Gy + F,Gy+ F.G. =0at P.

(b)Here F =2® 439> — 22 and G = 2% + % + 2% — 1%, s0
VF VG = (2z,2y,—22) - (2, 2y, 22) = 4a® + 4y* — 42* = 4F = 0, since the point (z, y, z) lies on the graph of
F = 0. To see that this is true without using calculus, note that G' = 0 is the equation of a sphere centered at the origin and
F = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At
any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations F = 0 and G = 0 are everywhere orthogonal.

Let u = (a,b) and v = {c, d). Then we know that at the given point, D, f = Vf - u = af. + bf, and
D, f =V [ v =cf: + dfy. Butthese are just iwo linear equations in the two unknowns f.. and fy, and since u and v are

not parallel, we can solve the equations to find V f = (fx, f,) at the given point. In fact,

Vf= dDuwf—bDyf aDy f—cDuf
- ad — be ; ad — be ’
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14.7 Maximum and Minimum Values

1. (a) First we compute D(1,1) = fuu(1,1) fup(1,1) = [fay (1,1)]% = (4)(2) — (1) = 7. Since D(1,1) > 0 and
fee(1,1) > 0, f has a local minimum at (1, 1) by the Second Derivatives Test.

(b) D(1,1) = fou(1,1) fuu(1,1) = [fory (1, 1)]% = (4)(2) — (3)% = wl Since D(1, 1) < 0, f has a saddle point at (1, 1) by

the Second Derivatives Test.

3. In the figure, a point at approximately (1, 1) is enc.losed by level curves which are oval in shape and indicate that as we move
av:'ay from the point in any dirchion the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).
The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some.
directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) =4+a° +y® —3zy = fo(z,y) =32° - 3y, fy(z,y) = 3y* — 3z. We
have critical points where these partial derivatives are equal to 0: 3z* — 3y = 0, 3y” — 3z = 0. Substituting y = z” from the
first equation into the second equation gives 3(z*)> ~3z =0 = 3z(z® —1)=0 = z =0orxz = 1. Thenwe have
two critical points, (0, 0) and (1, 1). The second partial derivatives are fy.(z,y) = 6z, foy(2,y) = —3, and fyy(z,y) = 6y,
so D{z,y) = fea(z,y) Fou(@,y) = [fay (-T:?J)]Q = (6z)(6y) — (_3)2 = 36y — 9. Then D(0, 0) = 36(0)(0) — 9 = -9,
and D(1,1) = 36(1)(1) — 9 = 27. Since D(0,0) < 0, f has a saddle point at (0, 0) by thé Second Derivatives Test. Since

D(1,1) > 0and fzz(1,1) > 0, f has a local minimum at (1, 1).

5. flay) = +ay+92 +y = fe=20+y fy=2+20+1, fox =2 fay =1 fyy =2 Then f, =0 implies

y = —2x, and substitution into f, =z +2y+1=0 gives 2 +4+2(-2x)+1=0 = -83z=-1 = =zx= L

3
" Then ¥=-4 2 and the only critical point is (3, —%). Y ' :
S \\' "t’rt:t‘.h' :ﬂ',‘.,?,,- i
(E,y) = fanfyy — (fay)® = (2)(2) — (1)* = 3, and since 0 S‘“ “‘!" “' ‘.v%,,/
D(%,~2)=3>0and fee(3,-2) =2>0, (3, -%) = —} isalocal " “
z !
minimum by the Second Derivatives Test. = _5
0
o 5 -

Lfzy)=@@-y)(l-zy)=z—y—zy+2° = fo=1-2ay+y% fy=-1—2"+2zy, fox = -2y,
fey = =2z 4+ 2y, fyy = 2x. Then f; = 0 implies 1 — 2zy + y* =0and f, = 0 implies —1 — z? + 2y = 0. Adding the

two equations gives 1 +4°> —1—a2 =0 = y*=z = y =4z, butify= —athen fr =0 implics
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then substitution into f = 0 gives 1 — 227 + =0 = 2°=1 =
= =1, so the critical points are (1,1) and (—1, —1). Now
D(1,1) = (-2)(2) - 0*=—4 < 0 and

D(—1,-1) = (2)(-2) —0* = —4 < 0,s0(1,1) and (-1, —1) are

saddle points.

s Sy y) = y* + 32’y — 6z’ —6y" +2 = fo=6zy— 122, f =3y + 327 — 12y, fou = by —12, fay = 6a,

Joy = 6y —12. Then J= = 0 implies 6z(y — 2) = 0,s0 & = 0 ory = 2. If z = 0 then substitution into f, = 0 gives

37 —12y=0 = 3yly—4)=0 = y=0ory=4,s0we have critical points (0,0) and (0,4). Ify = 2,

substitution into f, = O gives 12 + 322 ~24=0 = 2’ =4 =

z = +2, so we have critical points (+2, 2).

D(0,0) = (—12)(—12) — 0% = 144 > 0 and f.-(0,0) = —1é <0,s0
£(0,0) = 2 is a local maximum. D(0,4) = (12)(12) —0* = 144 > 0
and fu(0,4) =12 > 0, so f(0,4) = —30 is a local minimum.

D(+2,2) = (0)(0) — (£12)* = —144 < 0, s0 (£2, 2) are saddle points.

f(m'ly) = m3 = 12$'y +8y3 = fﬂ' = 3'7"2 = 12’% f!} =-12z + 24y2a fmﬂ: = bz, f:cy = _125 f‘b‘y = 48?} Then fz =0
implies o2 = 4y and f, = 0 implies ¢ = 2y2. Substituting the second equation into the first gives (2yz)2 =dy =

4t =4y = 4y@®-1)=0 = y=0ory=11fy=0then

z = 0 and ify = 1 then = = 2, so the critical points are (0,0) and (2, 1).

3 [/
bet <o (114
D(0,0) = (0)(0) — (—12)* = —144 < 0, s0 (0, 0) is a saddle point. ';"-;I;-‘v"’;s;‘,".;
Wit
D(2,1) = (12)(48) — (=12)° = 432 > O and fua(2,1) = 12> 050 N
f(2,1) = —8 is a local minimum.
flz,y) =€ cosy = fr=¢€"cosy, f, =—e"siny.

Now fr = 0 implies cosy = 0 or y = § + nw for n an integer.

But sin(F + nw) # 0, so there are no critical points.

(© 2012 Cengage Learing. All Rights Reserved. May not be scanned, capied, or duplicated, or posted to a publicly accessible website, in whole or in part,



222 [0 CHAPTER14 PARTIAL DERIVATIVES

15.

17.

19.

f@,y) =@ +7)e " =

fo= (@ +92)eV " (—2z) + 2ze¥" = = 26V 7" (1 - 27 — ¢?),

fu=(2* + 19" == (2y) + 2ye”" " = 29"~ (1 + 2% +47),

Jzz = 2:63”2“”2(—2.1:) +(1—z% —37) (2:1:(—2:1:&”2_‘”2) +2¢v" “’"2) = 26""2_“”2((1 —z? — y?)(1 — 22%) — 227),
oy = 2zeV" %" (—2y) + 22(2y)e" " (1 — 22 — %) = —daye’" ~*" (22 +1?),

fyy = 2yey2"x2 2y)+ (1 +z* +¢%) (2y (Zye" e ) 4 9ev’ -2 ) = eV —*" (1422 + 31 + 2¢°) + 2.

= 0 implies y = 0, and substituting into f, = 0 gives
9ze~=" 1-2)=0 = z= 0 or z = =1. Thus the critical points are / in ““i‘“\"‘"
(0,0) and (+1,0). Now D(0,0) = (2)(2) —0 > O and fox(0,0)=2>0, > / ,M;q ‘ i ‘\ \\
s0 £(0,0) = 0 is a local minimum. D(£1,0) = (—4e™')(4e™ ') -0 < 0 /

so (£1, 0) are saddle points.

flz,y) =v* —2ycosz = f.=2ysinz, f, =2 — 2'cosw. 6

‘w"' T

| W
“‘\“\ Wiy .\‘v!v‘"

.
““]v't .".'t ,’f’""". \ ~ ‘\““ '

fex = 2ycose, fuy = 2sinz, fy, = 2. Then f, = 0 implies y = 0 or

sinz=0 = z=0,7,or 27 for—1 < ¢ < 7. Substituting ¥ = 0 into 0
fy=0givescosz =0 = =z =73 or 3, substitutingz =O0ora =27 ~2
into f,, = 0 gives y = 1, and substituting z = 7 into f, = 0 gives y = —1.
Thus the critical points are (0, 1), (%,0), (v,—1), (3F,0), and (2, 1).

(3.0) =D (%,0) = —4 < 0s0 (5,0) and (%7, 0) are saddle points. D(0,1) = D(w, —1) = D(2m,1) = 4 > O and

fax(0,1) = faulm,—1) = fua(2m,1) =2 > 0,50 £(0, 1) = f(m, ~1) = f(2r,1) = —1 are local minima.

flz,y) =22 +4° —day+2 = fo=2x—4y, f, =8y — 4%, for =2, foy = —4, fyy = 8. Then fz =0

and f,, = 0 each implies y = 4, so all points of the form (a:u, %:t:o) are critical points and for each of these we have

D(:co, %xo) = (2)(8) — (—4)? = 0. The Second Derivatives Test gives no information, but

flz,y) =2® + 49 —day + 2= (2 — 29)* + 2 > 2 with equality if and only if y = . Thus f(zo, 3z0) = 2 are all local

(and absolute) minima.
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N flz,y) =22 +y> +z7%y?

(] w1
SO

B
i
A}

i Il
| il
ALV ) )

N1\ Il' \\— 11
N N
z N _fﬁ,f
i e
A= R277
4 & 41 2
¥y

From the graphs, there appear to be local minima of about f(1,%1) = f(—1,=1) ~ 3 (and no local maxima or saddle
points). fo = 2x — 2272y~ 2, fy = 2y — 2272y 73, fox = 24627y, fop = 4273Y73, £y = 24 6272y, Then
f= = 0 implies 2z%y* — 2 = 0 or z*y® = 1 or y* = 2. Note that neither z nor y can be zero. Now f,, = 0 implies
222y* —2 =0, and with 5> = z~* thisimplies 227 —2=0o0rz® = 1. Thusz = +land ifz = 1,y = +1;ifz = —1,
y = =£1. So the critical points are (1,1), (1, —1),(—1,1) and (—1, —1). Now D(1, 1) = D(—1,4+1) = 64 — 16 > 0 and
fez > 0always, so f(1,+1) = f(—1, 1) = 3 are local minima.

2. f(z,y) =sinz +siny +sin(z+y), 0<z<2m, 0<y<2r

2

7
c

A1
i
z 0 §
; '--..;7
Y
LN S
N

From the graphs it appears that f has a local maximum at about (1, 1) with value approximately 2.6, a local minimum
at about (5, 5) with value approximately —2.6, and a saddl;: point at about (3, 3).

2 = cos @ + co8(z + 1), fy = cosy +cos(z +y), fox = —sinz —sin(z +y), fyy = —siny — sin(z +y),
fzy = —sin(z + y). Setting f> = 0 and f,, = 0 and subtracting gives cosz — cosy = 0 or cosz = cosy. Thusz = y
orz =27 —y. Ifx =y, f = 0 becomes cos + cos2x =0 or2cos® z +cosz—1 =0, aquadratjlc in cos z. Thus
cosz = —1lor § and z = m, §, or &F, giving the critifzal points (7, ), (%, %) and (3£, 37). Similarly if
z = 2w — ¥y, f~ = 0 becomes (cosz) + 1 = 0 and the resulting critical point is (7, 7). Now

D(z,y) = sinz siny +sinx sin(z + ) +siny sin(z + y). So D(w, ) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line y = z we have f(z,z) = 2sinz + sin 2z = 2sinz + 2sinz cosz = 2sinz(1 + cos z), and
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f(z, ) > 0for0 < & < m while f(z,z) < 0form < z < 2m. Thus every disk with center (7, ) contains points where f is

positive as well as points where f is negat:rve, so the graph crosses its tangent plane (z = 0) there and (7, ) is a saddle point.

D(%,%)=9>0and fou (5, %) <050 £(%,%) = 342 is alocal maximum while D(22,52) = 9 > 0 and
fao (35, 55) > 0,50 (5, %) = g%ﬁ is a local minimum.

flz,y) =2 +y* —42?y +2y = fo(z,y) =42® —8zyand f(z,9) =4° —42° +2. o =0 =

4x(z® - 2y) = 0,50 z = 0 or 2% = 2y. If 2 = O then substitution into f, = O gives 49°® = -2 = y= —55: 50

(O ) is a critical point. Substituting z* = 2y into f, = 0 gives 4y° — 8y + 2 = 0. Using a graph, solutions are

approximately y = —1.526, 0.259, and 1.267. (Alternatively, we could have used a calculator or a CAS to find these roots.)
Wehaver’ =2y = z= :l:\/2_ ,50 y = —1.526 gives no real-valued solution for z, but
y=10259 = o~x0720andy=1.267 = =z = +1.592. Thus to three decimal places, the critical points are

(0, ‘“é‘a) ~ (0, —0.794), (0.720, 0.259), and (41.592, 1.267). Now since fzx = 12z” — 8y, foy = —8z, fyy = 1247,

and D = (12z° — 8y)(12y?) — 64z, we have D(0,—0.794) > 0, fo.(0, —0.794) > 0, D(£0.720, 0.259) < 0,
D(+1.592,1.267) > 0, and fae(+1.592,1.267) > 0. Therefore f(0, —0.794) ~ —1.191 and f(+1.592, 1.267) ~ —1.310
are local minima, and (+0.720, 0.259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (+1.592, 1.267, —1.310).

==

20
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flz,y) =z +4° —‘3:52 +¥4+2-2y+1 = folz,y) =42® — 6z + 1and fy(z,y) = 3y° + 2y — 2. From the

- graphs, we see that to three decimal places, fr = 0 when z &~ —1.301, 0.170, or 1.131, and f, = 0 wheny =~ —1.215 or

0.549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to

find the solutions of f, = 0.) So, to three decimal places, f has critical points at (—1.301, —1.215), (—1.301, 0.549),
(0.170, —1.215), (0.170, 0.549), (1.131, —1.215), and (1.131, 0.549). Now since foz = 1222 — 6, fay. = 0, fyy = 6y + 2,
and D = (1222 — 6)(6y + 2), we have D(—1.301, —1.215) < 0, D(—1.301,0.549) > 0, fax(—1.301,0.549) > 0,
D(0.170, —1.215) > 0, fue(0.170, —1.215) < 0, D(0.170,0.549) < 0, D(1.131, —1.215) < 0, D(1.131,0.549) > 0, and

fx2(1.131,0.549) > 0. Therefore, to three decimal places, f(—1.301, 0.549) ~ —3.145 and f(1.131,0.549) ~ —0.701 are
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local minima, f(0.170, —1.215) = 3.197 is a local maximum, and (—1.301, —1.215), (0.170,0.549), and (1.131, —1.215)

are saddle points. There is no highest or lowest point on the graph.
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29. Since f is a polynomial it is continuous on I, so an absolute maximum and minimum exist. Here f, = 2z — 2, fy = 2y, and
setting f. = f, = 0 gives (1,0) as the only critical point (which is inside D), where f(1,0) = —1. Along L1: = = 0 and
£(0,) = y* for =2 < y < 2, a quadratic function which attains its minimum at y = 0, where f(0,0) = 0, and its maximum

aty = +2, where f(0,£2) = 4. Along Lo: y:g:—fzfor()S;r;SZ,andf(z,x—Q)=2£L"2—fix—i—él:Z(:E—%)z—l

21
a quadratic which attains its minimum at = = 2, where f(%, —1) = —1, and its maximum at z = 0, where F(0,-2) =4,
Along Lz: y=2—xfor0 < z <2, and . Y
= Wil 4 - L ©.2)
f(z,2 —z) =22* —6z+4=2(z — £)" — 1, a quadratic which attains \
5 a
its minimum at z = %, where f(-;—, 1) = —3, and its maximum at z = 0, L 2 9.
X
where f(0,2) = 4. Thus the absolute maximum of f on D is f(0,+2) =4 /
y ; (0,-2)
and the absolute minimum is f(1,0) = —1.
M. fulz,y) =2z + 22y, fylz,y) = 2y + 2, and setting f= = f, =0 ez
gives (0, 0) as the only critical point in D, with f(0,0) = 4. =L Ly wy
On Li: y = —1, f(z,—1) = 5, a constant. L = Ly
X
On Ly: z =1, f(1,y) = y* + y + 5, a quadratic in y which attains its —1,-1) I -1
i 1 (W
maximum at (1,1), f(1,1) = 7 and its minimum at (1, —3), f(1,—3) = L.

On La: f(z,1) = 22® + 5 which attains its maximum at (—1, 1) and (1, 1)

with f(#1,1) = 7 and its minimum at (0, 1), f(0,1) = 5.
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35.

37.

On La: f(=1,y) =y* + y + 5 with maximum at (—1,1), f(—1,1) = 7 and minimum at (-1,-3)f(-L,-3) =2

Thus the absolute maximum is attained at both (1, 1) with f(£1,1) = 7 and the absolute minimum on D is attained at

(0,0) with £(0,0) = 4.

fz,y) = 2* +y* — 4zy + 2 is a polynomial and hence continuous on I, so Y

it has an absolute maximum and minimum on D. f.(z,y) = 4z® — 4y and 0,2) L, (3,2) .

fulz,y) = 4y — 4a; then f,, = 0 implies y = 2%, and substitution into i .
4 2

=0 = z=9ygivesz® —2=0 = z(2*-1)=0 = z=0

or z = +1. Thus the critical points are-(0, 0), (1, 1), and (—1, —1), but only {0.0) Li 3,00 «x
(1,1) with f(1,1) = 0 is inside D. On L1: y = 0, f(,0) = z* + 2,

0 < < 3, a polynomial in & which attains its maximum at xz = 3, f(3,0) = 83, and its minimum at z = 0, f(0,0) = 2.
On Ly: z = 3, (3,7) = y* — 12y + 83,0 < y < 2, a polynomial in ¥ which attains its minimum at y = /3,
£(3,¥3) =83 —9/3 ~ 70.0, and its maximum at y = 0, (3,0) = 83.

OnLs:y=2 f(x,2) = a* — 8z + 18,0 < z < 3, a polynomial in 2 which attains its minimum at z = I,

f(\afﬁ,2) = 18 — 6 ¥/2 ~ 10.4, and its maximum at z = 3, f(3,2)=75.0nLy: 2 =0, f(0,y) = g4 +2,0<y<2a
polynomial in y which attains its maximum at y = 2, £(0,2) =18, and its minimum at y = 0, f(0, 0) = 2. Thus the absolute

maximum of f on D is f(3,0) = 83 and the absolute minimum is f(1,1) = 0.

folz,y) = 627 and f,(z,y) = 4°. Andso f. = Oand f, = 0 only ocour when z = y = 0. Hence, the only critical point
inside the disk is at z = ¢ = 0 where f(0,0) = 0. Now on the circle z2 + % = 1,3% = 1 — 2% so let

g(x) = f(z,y) ='22% + (1—2?)? =2* +22% — 22% + 1,—1 < z < 1. Then ¢'(z) = 4z® + 62% — dz=0 = z=0

—2,0r3. f(0,£1) =g 0 =1 f(%, :I:?) =g(3) =%, and (—2,—3) is not in D. Checking the endpoints, we get

f(=1,0) = g(-1) = —2 and f(1,0) = g(1) = 2. Thus the absolute maximum and minimum of f on D are f(1,0) =2 and

f(_13 0) =-2.

Another method: On the boundary 2% + ¢ = 1 we can write £ = cos 6, y = siné, so f(cosf,sinf) =2 cos® § +sin* 4,

0<8<2m.

foy)=-(z"-1)? - (Py—-z-1) = fulz,y) = —2(z* - 1)(2z) — 2(c’y — 2 — 1)(2zy — 1) and

Ffulz,y) = —2(z?y — & — 1)z2. Setting f,, (z,¥) = 0 gives either z = Dor 2%y — 2z — 1 = 0.

There are no critical points for z = 0, since f,(0,y) = ;2, sowesetz?y —x—1=0 & y= I;; . [z # 0],
c4+1Y 2 sz +1 z+1 2

50 fa (u:, -—-;2—) =—2(z* — 1)(2z) — 2($ i 1) (Qx = 1) = —4z(z* — 1). Therefore

f=(z,y) = fy(z,y) = 0 at the points (1, 2) and (—1, 0). To classify these critical points, we calculate
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fex(z,y) = —1222 — 122%y% + 12zy + 4y + 2, fuu(z,y) = —2z1,

and fey(2,y) = —8z’y + 62 + 4z. In order to use the Second Derivatives
Test we calculate

D(-1,0) = faz(~1,0) fy(~1,0) = [fay(-1,0)]2 =16 > 0,

faa(—1,0) = —10 < 0, D(1,2) = 16 > 0, and fuz(1,2) = —26 < 0, 50

both (—1,0) and (1,2) give local maxima.

-

Let d be the distance from (2,0, —3) to any point (x,y,z) onthe plane z +y + z = 1,s0d = /(2 — 2)% + y2 + (2 + 3)2

where » = 1 — & — y, and we minimize d* = = flz,y) = (z - 2)? 4+ 4 + (4 — x — y)%. Then
falz,y) = 2(z —2) + 24—z —y)(—1) = dz+ 2y — 12, f,(2,y) = 2 +2(4 —z —y)(~1) = 2+ dy — 8. Solving
4z + 2y — 12 = 0 and 2z + 4y — 8 = 0 simultaneously gives = = 2, y = 2, so the only critical point is (£, 2). An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

shortest distance occurs for z = £,y = 2 for whichd = \/(5—2) + (2 ) +(4—§7§)2: 34:72"5‘

Let d be the distance from the point (4, 2, 0) to any point (z,y, z) on the cone, so d = \/(z — 4)? + (y — 2)2 + 22 where

22 = z* +y?, and we minimize d*> = (z — 4)® + (y — 2)* + 2% + 3 = f(z,7). Then

folz,y) =2 (x —4) + 22 =4z — 8, fy(z,y) = 2(y — 2) + 2y = 4y — 4, and the critical points occur when

f=0 = x=2, fy=0 =y =1.Thus the only critical point is (2, 1). An absolute minimum exists (since there is a
minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4,2,0) are (2,1, +v5).

.+ y + 2 = 100, so maximize f(z,y) = xy(100 —z —y). f» = 100y — 2zy — 9%, f, = 100z — z* — 22y,

f;-;c = —2y, fuy = —233, f_—;y =100 — 2z — 2'y Then fz =0 |mp[|es y = 0or Y= 100 — 2z. SUbStitUting y= 0 into
fy = 0 gives = 0 or = 100 and substituting y = 100 — 2z into f, = 0 gives 32> — 100z =0soz =0 or 100
Thus the critical points are (0, 0), (100, 0), (0, 100) and (132, 139).

878
D(0,0) = D(100,0) = D(0,100) = —10,000 while D(*32, 232) = 10900 and f,. (199 100) — _200 < (. Thus (0,0),

(100, 0) and (0, 100) are saddle points whereas f(132,23%) is a local maximum. Thus the numbers are 2 = y = z = 122,

. Center the sphere at the origin so that its equation is z? ++ y* + 2% = 2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies 2* + y® + 2% = 72, so take (z, v, z) to be the vertex

in the first octant. Then the box has length 2z, width 2y, and height 2z = 2 /r? — 22 — y2 with volume given by

V(z,y) = (23:)(21;)(2 Vr?—zx? —y2) =8xy/r?—a?—y?for0 <z <7,0<y<r. Then

.3 8y(r? — 222 — 42 8x(r? — 2% — 2y°
Ve = (8ay) - §(r® —2® —¢/") 1/2(—2:r:)+\/rz“_xﬁ_ya.sy:y(ﬁTL;‘;)_dey: \(/r2—m2—y1;)'

Setting V. = 0 gives y = 0 or 22 + y* = 72, but y > 0 so only the latter solution applies. Similarly, V;, = 0 with z > 0
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47.

49.

5.

53.

implies 22 + 2% = r”. Substituting, we have 22> + 3° = z° + 2 = 22=4% = y=gz Thenz®+ ni=r> =

2

32 =r" = z=./r?/3=r/v/3=y. Thusthe only critical point is (r/v/3,7/v/3). There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when z = y = r/+/3 and the maximum

wolume s V (37, 57) =8(25) () y* - () - (28) = 5557

Maximize f(z,y) = s;_y (6 — = — 2y), then the maximum volume is V' = zyz.

[

fz = 3(6y - 2zy — y*) = $y(6 — 2z — 2y) and f, = 3z (6 — @ — 4y). Setting f, = 0and f, = 0 gives the critical point

(2,1) which geometrically must give a maximum. Thus the volume of the largest such box is V = (2)(1) (%) = 4

Let the dimensions be z, y, and 2; then 4z + 4y + 4z = ¢ and the volume is .

V_a:yz—my( c—:n—y) 4cmy—:r y—zy*, 2 >0,y > 0. Then V; = —cy 2ry —y? and Vy, = 4c:a: z? —2$J,
soVz=0=V, when2z+y = %candm-}- 2y = %c. Solving, we get = —.—1—2 y = fzcandz = }lc—a: y= ——c From
the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

1
length 15¢

Let the dimensions be z, y and z, then minimize zy + 2(zz + yz) if zyz = 32,000 cm®. Then

f(z,y) = zy + [64,000(z + ) /zy] = zy + 64,000(z~* + y~1), fo =y — 64,0002, f, =z — 64,000y 2.
And f> = 0 implies y = 64,000/1:2; substituting into f, = 0 implies 2® = 64,000 or = = 40 and then y = 40. Now
D(z,y) = [(2)(64,000)]>z 3y =% — 1 > 0 for (40, 40) and fxs (40, 40) > 0 so this is indeed a minimum. Thus the

dimensions of the box are x = y = 40 cm, z = 20 cm.

Let 2, 4, z be the dimensions of the rectangular box. Then the volume of the box is zyz and
L=yr2+y2+22 = L[*=22+9y"+2% = z2=+/[ -2 12
Substituting, we have volume V'(z,y) = 2y /L? — 2? —y? (z,y > 0).

2
Yy
szmz,.yz’

Vo=xy- s(L7 —2? —y?) V3 (=22) +y/I? -2 — P =y /L2 — 2% — 3% —

Vy=z/L?—2%—y? — \/7 V. =0impliesy(L? — 22 —¢y*) =2y = gy(I? -22°—¢*) =0 =
2x% 4+ 9% = L (since y > 0),and V;, = O implies z(L? — 2% —y) =ay® = 2L’ -2 -2 =0 =

o

2% + 2y* = L? (since = > 0). Substituting y* = L* — 2z into &* + 2y = L? gives 2° + 2L —dz® = L* =

32° =L = z=L/V3(sincex > 0)andtheny = /L2 — 2(L/V/3)} = L/v/3.

So the only critical point is (L /3, L/ V3 ) which, from the geometrical nature of the problem, must give an absolute

maximum. Thus the maximum volume is V' (L/v/3, L/v/3) = (L/\/g)2 \/LZ — (L/\/§)2 - (L/\/ﬁ)2 = L%/(3V3)

cubic units.
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55. Note that here the variables are m and b, and fm,b)= 3% [y — (maz; + b)]?. Then f,, = 3 —2zi[y; — (mzi +b)] =0
‘ i=1 3

=1

: n n n n
implies i (:x:l-y,- —ma? — ba?i) =0or 3 i =m ), zi+b Y ziand fi = 3 —2[yi — (mai + b)] = 0 implies
&4 . : : ;

i=1 =1 i=1 i=1

Y w=my m+ b= m( > :z:;) + nb. Thus we have the two desired equations.

i=1 i=1 t1=1 i=1

NOW frnm = i 22, fov= 3 2=2nand fruy = 3. 2zi. And frm(m,b) > 0 always and
f=1 i=1 i=1l

n n 2 L T 2
D(m,b) = 4n( X, mf) — 4( 3 a:g-) =4 [n (Z mf) - ( 3 ﬂ?i) ] > 0 always so the solutions of these two
=1 i=1 i=1 vl

T
equations do indeed minimize 3 d?.

i=1

14.8 Lagrange Multipliers

1. At the extreme values of f, the level curves 01;‘ f just touch the curve g(z, y) = 8 with a common tangent line. (See Figure 1
aﬁd the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve
f(z,y) = ¢ with the largest value of ¢ which still intersects the curve g(z,y) = 8 is approximately ¢ = 59, and the smallest
value of ¢ corresponding to a level curve which intersects g(x, y) = 8 appears to be ¢ = 30. Thus we estimate the maximum

value of f subject to the constraint g(x, y) = 8 to be about 59 and the minimum to be 30.

3 flz,y) =22+ 9(z,y) =2y =1,and Vf = A\Vg = (22,2y) = (\y, Az),s02z = Ay, 2y = Az, and zy = 1.
From the last equation, z % O and y # 0,80 2z = Ay = A = 2z/y. Substituting, we have 2y = (2z/y)z =
y* =2 = y=+z. Butzy=1,s0z =y =+l and the possible points for the extreme values of f are (1, 1) and
(=1, —1). Here there is no maximum value, since the constraint zy = 1 allows z or y to become arbitrarily large, and hence

f(z,y) = x* + ¢* can be made arbitrarily large. The minimum value is f(1,1) = f(-1,-1) = 2.

b

flz,y) =" —2% gz,y) =32> +9* = Land Vf = AVg = (—2z,2y) = ($)z,2)y), 50 —22 = L)z, 2y = 22y,
and 1z +y® = 1. From the first equation we have z(4 + A) =0 = =z =0o0r A = —4. Ifz = 0 then the third equation
gives y = 1. If A = —4 then the second equation gives 2y = —8y = y = 0, and substituting into the third equation,

we have z = £2. Thus the possible extreme values of f occur at the points (0, £1) and (+2, 0). Evaluating f at these points,

we see that the maximum value is f(0, £1) = 1 and the minimum is f(£2,0) = —4.
T flz,y,2) =22 +2y+2 gle,,2) =+ + 22 =9,and Vf = A\Vg = (2,2,1) = (2Ax, 2\y, 2)z), s0 2)z = 2,
g

; ; 1 o g
2\y = 2, 2Az = 1, and 2* + 3* + 2% = 9. The first three equations imply = = V=3 and z = % But substitution into

o R FINY L R NE 9
the fourth equation gives (X) +(X) +(ﬁ) =9 = ng = A ==£1, so f has possible extreme values at
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13.

15.

17.

the points (2,2, 1) and (—2, —2, —1). The maximum value of f on 22 + 32 + 2% = 9 is £(2,2,1) = 9, and the minimum is

L flz,y,2) = zy2, g(z,y,2) =22 + 202 +322 =6. Vf = AVg = (yz,z2, xy) = A{2z,4y,6z). Ifany of z, y, or z is

zero then z = y = z = 0 which contradicts z° + 2y + 32% = 6. Then A = (y2)/(2z) = (z2)/(4y) = (zy)/(62) or

z® = 2y” and z* = Z9°. Thus z° + 2y* + 32% = 6 implies 6y = 6 or y = +1. Then the possible points are
(Va£1,1/2), (VR 21, —/2), (-v3£1,1/2 ), (~V2,£1,-/Z ). The maximum value of f on the ellipsoid is
-\725, occurring when all coordinates are positive or exactly two are negative and the minimum is —72§ occurring when 1 or 3 of

the coordinates are negative.

fayz) =22+ +22, gl 2) =i+ +20=1 = Vf= (22,2, 2z), AVg = (42z®, 4%, 42%).

Case I: Ifx # 0,y # 0and z # 0, then Vf = AVg implies A = 1/(2z%) = 1/(25%) = 1/(22*) or z* = 3* = 2* and
41— lorz =+l givi ints (4L L L U U ETE B el el
8! = Lorz = & giving the poinss (247, 4z 35). (+p 3 %) (e 3o~ %) (53— —)

all with an f-value of /3.

Case 2: 1f one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are
equal with common value 712- and corresponding f value of v/2.
Case 3: If exactly two of the variables are zero, then the third variable has value 21 with the corresponding f value of 1. Thus

on z* 4+ y! + z* = 1, the maximum value of f is v/3 and the minimum value is 1.

flzyznt)=z+y+z+t, gz, at)=0> 4+ +22+2 =1 = (1,1,1,1) = (2)z, 2)y, 2)z, 2Xt), s0
A=1/(2z)=1/(2y) =1/(2z) = 1/(2t) andz =y =z =t. Butz® + y* + z* + 12 = 1, so the possible points are
(3,43, 43,+1). Thus the maximum value of f is f(3,%,%, %) = 2 and the minimum value is

3_%1‘%1_ ) = -2

He

Wl
=

f@y,2)=2+2, g(z,y,2) =z +y+z=1, hiz,p,2) =12+ 22 =4 = Vf=(1,2,0),AVg= (LA}

and pVh = (0, 2uy, 2pz). Then1 = X, 2 = A+ 2pyand 0 = A+ 2uz so py = 3 = —pz ory = 1/(2u), z = —1/(2p).
Thus = +y + z = 1 implies £ = 1 and y* + 2* = 4 implies u = iﬂ'lé' Then the possible points are (1, +v2, Fv2)
and the maximum value is f (1, /2, —v/2) = 1 + 2+/2 and the minimum value is f (1, —/2, \/i) =1-—22.
flz,y,2) = yz +zy, g(z,y, z) =zy=1, hlz,y,2) =9y +22 =1 = Vf={yz+21y) AVg=(\y Az,0),
pVh = (0,2py, 2pz). Theny = Ay implies A = 1 [y # 0 since g(z,y,2) = 1], £ + 2z = Az + 2py and y = 2uz. Thus

p=z/(2y) = y/(2y) ory* = 2%, and so y* + 2* = 1 implies y = i:}i’ i :I:%. Then zy = 1 implies z = #+/2 and
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the possible points are (i\/ﬁ, j::/l,j, 71.5) ] (;I:\/ﬁ, :1:715, —%) Hence the maximum of f subject to the constraints is

f (V3 2, %55 ) = 4 and the minimum is [(EV2+575) =+

Note: Since zy = 1 is one of the constraints we could have solved the problem by solving f(y, 2) = yz + 1 subject to

y? + 2 =1.

f(z,y) = 2* + 4 + 4z — 4y. For the interior of the region, we find the critical points: f, = 2z + 4, f, = 2y — 4, so the
only critical point is {(—2, 2) (which is inside the region) and f(—2,2) = —8. For the boundary, we use Lagrange multipliers.
glz,y) =2 +1° =950V f=AVg = (2z+4,2y—4)=(2:z,2\y). Thus 2z +4 = 2\zand 2y — 4 = 2)\y.
Adding the two equations gives 2z + 2y = 2Az +2\y = z4+y=Mz+y) = (z+y)(A—1)=0,s0
z+y=0 = y=-zorA—1=0 = A=1 But)=1Ileadstoacontradition in 2z + 4 = 2)z, so y = —z and

22 +y2 =9implies2° =9 = y= ﬂ:%. We have f (%, fﬁﬁ) =94 12v2 ~ 25.97 and

i (_735, 735) =9 —12+/2 & —T7.97, so the maximum value of f on the disk 2% + y* < 9is f (735, —‘—/3.5) =9+12+/2
and the minimum is f{—2,2) = —8.

f(z,y) = e Y. Forthe interior of the region, we find the critical points: f. = —ye™™Y, f, = —ze™™Y, so the only
critical point is (0,0), and f(0,0) = 1. For the boundary, we use Lagrange multipliers. g(z,y) = z® + 4> =1 =
AVg = {2Az, 8\y), so setting V f = AVg we get —ye™ ™" = 2z and —we™™" = 8\y. The first of these gives

e™™ = —2)z/y, and then the second gives —z(—2Az/y) = 8xy = x® = 4g*. Solving this last equation with the
constraint 2 + 4y = 1 gives z = :l:;% andy = :t-é-l\/»;. Now f(ﬂ:yl-z-,$ﬁ) =e/* ~ 1.284 and

f (iVIE” :I:ﬁzs-) = e~1/* 2 0.779. The former are the maxima on the region and the latter are the minima.

@ flz.y) ==z, glz,y) =y’ +a* -2 =0 = Vf=(1,0)=AVg=A(42" - 32%,2y). Then
1 = A(4z® — 3z%) (1) and 0 = 2)y (2). We have A # 0 from (1), so (2) gives y = 0. Then, from the constraint equation,
z*—z*=0 = z}(x—-1)=0 = =x=0orz =1 Butz = 0 contradicts (1), so the only possible extreme value

subject to the constraint is f(1,0) = 1. (The question remains whether this is indeed the minimum of f.)

3

(b) The constraintisy® + 2* —2®* =0 &  y? = 2® — 2*. The left side is non-negative, so we must have z* — z* > 0

which is true only for 0 < & < 1. Therefore the minimum possible value for f(z, ¥) = z is 0 which occurs forz =y = 0.

However, AVg(0,0) = A {0 — 0,0) = {(0,0) and V £(0,0) = (1,0}, so Vf(0,0) # AVg(0, 0) for all values of \.

(¢) Here Vg(0,0) = O but the method of Lagrange multipliers requires that Vg # 0 everywhere on the constraint curve.

@ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posied 10 a publicly accessible website, in whole or in part.



232 0O CHAPTER14 PARTIAL DERIVATIVES

25,

27.

3.

33

35.

P(L,K) =bL*K'™®, g(L,K)=mL+nK =p = VP=(abL* K"~ (1- a)bL*K~*), AVg = (Am, An).
Then ab(K/L)' ™ = Amand (1 — a)b(L/K)* = Anand mL + nK = p, so ab(K/L)'~%/m = (1 — a)b(L/K)%/nor
ne/[m(1l — a)] = (L/K)*(L/K)*~% or L = Kna/[m(1 — a)]. Substituting into mL + nK = p gives K —= (1—a)p/n

and L = ap/m for the maximum production.

Let the sides of the rectangle be x and y. Then f(z,y) = zy, g(@,y) =22+ 2y =p = Vf(z,y) = (v, :c)‘

AVg = (2X,2)). Then A = 3y = 32 implies = y and the rectangle with maximum area is a square with side length 1p.

. The distance from (2,0, —3) to a point (z,y, z) on the plane is d = \/(z — 2)? + 3% + (z + 3)2, so we seek to minimize

d* = fz,y,2) = (x — 2)? + y* + (2 + 3)” subject to the constraint that (z,y, z) lies on the plane = + 1 + z = 1, that is,
that g(z,9,2) =z +y+2=1. ThenVf=AVg = (2(z—2),2y,2(z+3)) = (\,\, A}, 50z = (A +4)/2,

’\+4+5+ﬁ=1 = 3A-2=2 =

y = A/2, z = (A — 6)/2. Substituting into the constraint equation gives 7 5 5

,y:

a=/3-2+ @ +(F+9' = /1= 5

>
I
ol
w
(=}
8
I
wlo
wito

,and z = —'—,of. This must correspond to a minimum, so the shortest distance is

Let f(z,y,2) = d> = (z — 4)* + (y — 2)* 4 2%, Then we want to minimize f subject to the constraint

g(z,y,2) =22+ —22=0. Vf=2Vg = (2(z—4),2(y—2),22) = (2\z,2\y, —2A2),s0x — 4 = )z,

y — 2= Ay, and z = —Az. From the last equation we have 2+ Az =0 = 2z (14 A)=0,soeitherz=00r A= —1.
But from the constraint equation wehave z =0 = 224+4*=0 = =z =y = 0 which is not possible from the first
two equations. So A= —landaz —4=X Az = z=2,y—2=X) = y=Llandz®?+¢y®-2"=0 =
441—-22=0 = z==+/5. This must correspond to a minimum, so the points on the cone closest to (4, 2, 0)

are (2,1,£v5).’

flzyy,2) =zyz, glz,y,2) =z+y+2=100 = Vf=(yz,zz,zy) =AVg=(AMAA).Then\=yz=zz==ay

100

impliesz =y =2z = 4.

If the dimensions are 2, 2y, and 2z, then maximize f(z,y,z) = (2z)(2y)(22) = 8xyz subject to

gz, y,z) =2+ +22 =r? (£ >0,y >0,2>0). Then Vf = AVg = (8yz,8zxz,8zy) = X (2z,2y,2z} =

8yz = 2\z, 8zz = 2)\y, and 8zy = 2\2, 50 A = o 4%V hig gives 2z = y*z = % = y® (since z #0)
T y z

* =yl oz’ =9y’ =2 = z= Yy = z, and substituting into the constraint

2

andzy® =22 = 2

equation gives 32 = r* = =z =r/v3 =y = z. Thus the largest volume of such a box is

() =8 () (%) (%) = 508
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1. f(z,y,z) = zyz, g(z,y,2) =x+2y+3z2=6 = Vi = {yz,zz,zy) = AVg = (A, 2\, 3)\).

39.

41.

Then A = yz = S22z = dzy implies s =2y, z = 3y. But 2y + 2y + 2y = 6soy = 1,z = 2, 2 =  and the volume
isV=4%.
f(z,y,2) = zyz, g(z,y,2) =4(z+y+2)=c = Vf={(yzzz,79), \Vg = (4,4, 4)). Thus

4\ =yz = Tz = zy orz = y = z = ;¢ are the dimensions giving the maximum volume.

If the dimensions of the box are given by x, ¥, and z, then we need to find the maximum value of f(z,y, z) = zy=

[2,y,z > 0] subject to the constraint L = /22 + 32 + 22 or g(z,y,2) =2 +12 + 22 = L%, Vf=AVg =

(yz, xz,zy) = AM(2x,2y,22),50 yz = 2\z = /\=%,mz=2/\y = )\=:2E—;,andzy=2,\z = )\=%.2'__
Thusx:%:% = z?=19> [sincez#0] = m=yand)x=g—;:;—z = x=2z [sincey # 0]

Substituting into the constraint equation gives 2° + 2> + 22 = L* = 22 =1%/3 = 2=L/V3=y=zandthe

maximum volume is (L/v/3)” = L3/(3/3).

We need to find the extreme values of f(z,y,2) = z° 4 3 + 22 subject to the two constraints glz,y,z) =2 +y+22=2
and h(z,y,2) =2 +y* —2=0. Vf= (2:.:, 2y, 2z), AVg = (A, A\, 2)) and uVh = (2;@_, 2py, —p). Thus we need
2r=A+2ux (1), 2y=A+2uy ), 22=22—pu 3), c+y+22=2 @),anda®+y>—2z =0 (5).

From (1) and (2), 2(z — y) = 2p(z — y), soif & # y, = 1. Putting this in (3) gives 22 =2\ —lor A = z + % but pljtting
pu = 1into (1) says A = 0. Hence z + § = 0 or z = —3. Then (4) and (5) become = +y — 3 = 0 and 2® + y* + £ = 0. The
last equation cannot be true, so this caée gives no solution. So we must have z = y. Then (4) and (5) become 2z + 2z = 2 and
22 — z =0 whichimplyz=1—-zandz = 22> Thus2z® =1 —zor22® + 2 — 1 = (2z — 1)(z + 1) =0soz=1Lor

x = —1. The two points to check are (1,3, 3) and (—1,-1,2): f(3, 1,

b=

) =3 and f(—1,-1,2) = 6. Thus (,3,1) is

the point on the ellipse nearest the origin and (—1, —1, 2) is the one farthest from the origin.

. flz,y,2) = ye* %, g(z,y,2) = 92° +4y° + 362" =36, h(z,y,2) =zy+yz=1. Vf=AVg+uVh =

(ye® %, "%, —ye® 7y = \18z, 8y, 72z) + ply, x + 2,v), 50 ye* ™% = 18z + py, €% = 8y + u(z + 2),
—ye® % = 72Az + py, 9z° + 4y* 4 3627 = 36, zy +yz = 1. Using a CAS to solve these 5 equations simultaneously for x,
Y, z, A, and p (in Maple, use the allvalues command), we get 4 real-valued solutions:

T~ 0.222444, y=~ —2.157012, =z~ —0.686049, )=~ —0.200401, u = 2.108584

z = —1.951921, gy = —0.545867, =z~ 0.119973, A = 0.003141, u =~ —0.076238

z ~ 0.155142, y =~ 0.904622, z ~ 0.950293, A —0.012447, p =~ 0.489938
z = 1.138731, y =~ 1.768057, =z~ —0.573138, A ~0.317141, == 1.862675

Substituting these values into f gives f(0.222444, —2.157012, —0.686049) =~ —5.3506,
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F(—1.951921, —0.545867,0.119973) ~ —0.0688, f(0.155142, 0.904622, 0.950293) ~ 0.4084,
F(1.138731, 1.768057, —0.573138) = 9.7938. Thus the maximum is approximately 9.7938, and the minimum is
approximately —5.3506.
47. (a) We wish to maximize f(z;,z2, ..., Zn) = {YZ122 - - - T, subject to
g(z1,z2, ..., Ta) =21+ T2+ + 2 =cand z; > 0.
Vf= <%(;{:1m2 : --wn)%_l(mz Sy, %{:1:13:2 e En)%_l(:}c]_ﬂig e Zn)y ey (T1T mn)%_l(ml ---zn,1)>

and AVg = (\, A, ..., A), so we need to solve the system of equations

1 1/n_1 1
%(-’1'»'1-1'2 ' "-’En) nZpexn) =X = fcl/n%/n * 2 'CUn/ﬂ = nAzy
, ‘
19 1
%(w1$2..-mn)n {wlwanouwn) :A = xlln:ré/n..-z',}l/n :nA$2

1
] 1 1 iy
L(zama-Tn)™ (T1e To1) =X = oi/mgd/™ g™ = ndzn

This implies nAz1 = nAzz = -+ = nAz,. Note A # 0, otherwise we can’t have all z; > 0. Thus 1 =22 = -+ = .
c ;
Butzi+22+- +2n=¢ = nri=c¢ = 1= = = ¥y = Tz = - - - = Tn. Then the only point where f can
. fC ¢ c ]
have an extreme value is (-—, =% R 5% ——). Since we can choose values for (1, z2,...,%,) that make f as close to

zero (but not equal) as we like, f has no minimum value. Thus the maximum value is

(cc ey e ¢ G _
o n n

C
e

. But

3o

(b) From part (a), % is the maximum value of f. Thus f(z1, 22, ..., 2,) = YT122-- 2, <

T &I g axe Tn . .
3 T3 : t . These two means are equal when f attains its

1+ Ta+F o+ Tn =06 80 YT1T2 - Tn <

maximum value % but this can occur only at the point (ﬁ, %, — %) we found in part (2). So the means are equal only
: c
whenzi =2 =23 =+ = &y, = —.
n
14 Review : ‘
CONCEPT CHECK

1. (2) A function f of two variables is a rule that assigns to each ordered pair (i, %) of real numbers in its domain a unique real
number denoted by f(z,y).
(b) One way to visualize a function of two variables is by graphing it, resulting in the surface z = f(z, y). Another method for
visualizing a function of two variables is a contour map. The contour map consists of level curves of the function which are
horizontal traces of the graph of the function projected onto the Ty-planc. Also, we can use an arrow diagram such as

Figure 1 in Section 14.1. ¥
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. A function f of three variables is a rule that assigns to each ordered triple (2, y, z) in its domain a unique real number

f(z,y, z). We can visualize a function of three variables by examining its level surfaces f(z,y, z) = k, where k is a constant.

lim  f(z,y) = L means the values of f(z,y) approach the number L as the point (z,y) approaches the point (a, b)

" (z)—(a,b)

10

1.

12.

13.

14.

along any path that is within the domain of f. We can show that a limit at a point does not exist by finding two different paths

approaching the point along which f(z, y) has different limits.

. (a) See Definition 14.2.4.

(b) If f is continuous on R, its graph will appear as a surface without holes or breaks.

. (a) See (2) and (3) in Section 14.3.

(b) See “Interpretations of Partial Derivatives” on page 927 [ET 903].

(c) To find f, regard y as a constant and differentiate f(z,y) with respect to z. To find f,, regard z as a constant and

differentiate f(z,) with respect to y.

. See the statement of Clairaut’s Theorem on page 931 [ET 907].

. (a) See (2) in Section 14.4.

(b) See (19) and the precedix_xg discussion in Section 14.6.

. See (3) and (4) and the accompanying discussion in Section 14.4. We can interpret the linearization of f at (a, b) geometrically

as the linear function whose graph is the tangent plane to the graph of f at (@, b). Thus it is the linear function which best

approximates f near (a, b).

. (a) See Definition 14.4.7.

(b) Use Theorem 14.4.8.

See (10) and the associated discussion in Section 14.4.
See (2) and (3) in Section 14.5. |
See (7) and tﬁe preceding discussion in Section 14.5.

(a) See Definition 14.6.2. We can interpret it as the rate of change of f at (zo, 7o) in the direction of u. Geometrically, if P is
the point (o, Yo, f(Zo, %)) on the graph of f and C' is the curve of intersection of the graph of f with the vertical plane
that passes through P in the direction u, the directional derivative of f at (zo, o) in the direction of u is the slope of the

tangent line to C' at P. (See Figure 5 in Section 14.6.)
(b) See Theorem 14.6.3.
(a) See (8) and (13) in Section 14.6.
(b) Du f(z,y) = Vf(z,y) -uor Du f(z,y,2) = Vi(z,y,2) - u
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15.

16.

17.
18.

19.
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(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the

function, the gradient points in the direction of steepest ascent.

(a) f has a local maximum at (a, b) if f(z,y) < f(a,b) when (z,y) is near (a, b).

(b) £ has an absolute maximum at (a, b) if f(z,y) < f(a,b) for all points (z,y) in the domain of f.

(c) f has a local minimum at (a, b) if f(z,y) = f(a,b) when (z,y) is near (a, b).

(d) f has an absolute minimum at (a, b) if f(z,y) > f(a,b) for all points (z, y) in the domain of f.

() f has a saddle point at (a, b) if f{a, b) is a local maximum in one direction but a local minimum in another.

(a) By Theorem 14.7.2, if f has a local maximum at (a, b) and the first-order partial derivatives of f exist there, then
f(a,b) = 0 and f,(a,b) = 0.

(b) A critical point of f is a point (a, b) such that f.(a,b) = 0 and f,(a,b) = 0 or one of these partial derivatives does
not exist. -

See (3) in Section 14.7.

(a) See Figure 11 and the accompanying discussion in Section 14.7.

(b) See Theorem 14.7.8.

(c) See the procedure outlined in (9) in Section 14.7.

See the discussion beginning on page 981 [ET 957]; see “Two Constraints” on page 985 [ET 961].

|

TRUE-FALSE QUIZ

1.

. True. f,(e,b) = lim fle,b+ hf),, = f(a,b) from Equation 14.3.3. Let h =y — b. As h — 0, y — b. Then by substituting,

h—0

f(a$y) — f(ﬂ.,b)

we get fy(a,b) = lim

y—b Y= b
*f
. False. fuy = oy
. False. See Example 14.2.3.

. True. If f has a local minimum and f is differentiable at (a, &) then by Theorem 14.7.2, f.(a,b) = 0 and f,(a,b) = 0, so

Vf(a,b) = (.fm(aw b),,f-g(ﬁb, b)) = (Os 0) =0.

. False. V f(z,y) = (0,1/¥).

True. V£ = (cosz,cosy), so |Vf| = \/cos? & + cos? y. But |cosf| < 1, s0 |V f| < V2. Now

Dy f(x,y) = Vf+-u=|Vf||u|cos, but u is a unit vector, so | Du f(z,y)| < vV2-1-1=+2.
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EXERCISES
b Y4

1. In(z +y + 1) isdefiredonly whenz +y+1>0 & y>-z-1, ‘\\

so the domain of f is {(z,y) | y > — — 1}, all those points above the \l‘

. —ls x
liney =—z—1. ‘ _‘1\\
y=-x— I‘\

2= flz,y)=1- yz, a parabolic cylinder 5. The level curves are /4x2 + 2 = k or 42° + y2 = k?,

k > 0, a family of ellipses.

7. 9. f is a rational function, so it is continuous on its domain.

Since f is defined at (1, 1), we use direct substitution to

( : :, .‘:’ . : 2zy 2(1)(1) 2
evaluate the limit:  lim = ==,
P emman @ +2 | P+ 2(1)2 3

T(6 + h,4) — T(6,4)
h

1. (a) T.(6,4) = ’PE%] , 50 we can approximate T (6, 4) by considering h = +2 and

_ T(8,4)—T(6,4) _86—80 _

2 2 -

using the values given in the table: T (6, 4)
T(4,4) —T(6,4) 72—80
-2 T -2

T(6,4+ h) — T'(6,4)
h

T=(6,4) ~

= 4. Averaging these values, we estimate T (6, 4) to be approximately

3.A5°C/m. Similarly, T}, (6,4) = ’ltin%} , which we can approximate with h = +2:

T(6,6) — T(6,4) _ 75— 80
2 T2

T(6,2) — T(6,4) _87—80 _

T,(6,4) = = = —3.5. Averaging these

= —2.5,T,(6,4) =

values, we estimate T}, (6, 4) to be approximately —3.0°C/m.
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(b) Here u = <71; %} so by Equation 14.6.9, Dy T'(6,4) = VT(6,4) - u = T3 (6,4) 25 + T (6, 4) 5. Using our
estimates from part (a), we have Dy T(6,4) ~ (3.5) 75 + (=3.0) % = 2—\1/5 =~ 0.35. This means that as we move

through the point (6,4) in the direction of u, the temperature increases at a rate of approximately 0.35°C/m.

. 6+ hid, 44 h ) —T(6,4)
Alternatively, we can use Definition 14.6.2: Dy, T'(6,4) = lm% ( V2 ; 75) ;
h— )
T(8,6) — T(6,4) _ 80— 80

which we can estimate with A = 42 /2. Then D, T(6,4) =~ =
(6,4) o Wi

=0,

T(4,2) —T(6,4) _74—80 _ 3

D, T(6,4) =~ 57 =57 \/_

Averaging these values, we have D,, T(6,4) = 7 ~1.1°C/m.

which we can

. Te(z,y 4+ h) — Tz, . Tz(6,4+h) —T:(6,4
O To9) = 3 [Ta(o,)] = Jig ZEVHTM =T o7, 5,4) — g TOA+H = L0

estimate with h = +2. We have T;(6,4) = 3.5 from part (a), but we will also need values for T, (6, 6) and T (6, 2). If we

use h = =+2 and the values given in the table, we have

— L I — T(C -
T.(6,6) = T&:6) T(6,6) _ 80 =75 _y ¢ 15 6) n L4:0) T(6,6) _ 68 75 _,.
2 2 -2 -2
Averaging these values, we estimate T, (6, 6) ~ 3.0. Similarly,
Ta(6,2) = T(82) - T(6,2) _ 90 =87 _ oo TUD-TE2 _T4-8 oo
2 2 -2 -2
Averaging these values, we estimate 7% (6,2) ~ 4.0. Finally, we estimate T%y (6, 4):
Ty (6,4) ~ T:(6,6) = T:(6,4) _ 3.0 = 35 _ 095, Ty (6,4) ~ T.(6, 2)_—22}(6,4} . 4.0:23.5 _—

Averaging these values, we have Tt (6,4) ~= —0.25.

13 f(z,y) = (50° +227)° = fo = 8(5y" + 22%y)" (day) = 32uy(5y° + 227y)",

fy = 8(5y° + 22%y)" (1592 + 222) = (1622 + 120y%) (5% + 227y)"

1 ) 2(13
15. F(a,f) =a’In(e® + %) = Fa=o’ pranrdCe In(a® + £%) - 20 = = + 20 In(a? + %),
1 203
Fa=a® —— _(28)= 2% _
Il « a2+‘@2‘( ﬂ) 2 +’32
— _ R 1 _ uw
17. S(w,v,w) = varctan(vy/w) = S, = arctan(vy/w), S, =u Tt TP (Vw) = T

uv

= b L v ly=1/2) =
Sw—u 1+(’U\/TTJ)2( ) ! ) 2\/1_”(1_'_,”21”)

18. f(z,y) =4 —azy® = fo=122" -9 fy = —2ay, foo =24z, fyy =22, foy = fr= =2y
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foy,2) =2y'e™ = fo=kat g™, f, =1y em, £ = matye™ Y, fun = k(k — 1ok-2ylam,
-y = (L — )aky'=22™, foz = m(m - Dary'2™2, foy = fye = Klz* 912", for = fon = kmm" 1ylamt,
fy: = f"‘b’ = lm:r:" e ]Zm_
3 ;
z2=gzy+2e'® = % =y— Lerte v, a—; = g4 e¥/® apd
% g—i 3 g; (y - Eeulm @ ey/x) +'y(;r; i ev/z) = oy —ye¥/* + ze¥/® + ay +ye'/* = zy+ zy+ze?’* = Ty + 2.

(@) 2. =6x+2 = 2(1,-2)=8andz, = -2y = 2z4(1,—2) =4, so an equation of the tangent plane is
z2—1=8(z—1)+4(y+2)orz=8z+4y+ 1
(b) A normal vector to the tangent plane (and the surface) at (1, —2, 1) is {8, 4, —1). Then parametric equations for the normal

-1 _y+2 =z2-1
8§ 4 = -1

line there are x = 1 + 8¢, y = —2 + 4¢, z = 1 — ¢, and symmetric equations are o

(a) Let F(z,y,2) = 2° + 2y* — 32%. Then F, = 2z, Fy = 4y, F, = —6z,50 Fz(2,—1,1) = 4, F}(2,-1,1) = —4,
F.(2,-1,1) = —6. From Equation 14.6.19, an equétion of the tangent plane is 4(x — 2) —4(y + 1) = 6(z — 1) =0
or, equivalently, 2z — 2y — 3z =3. ‘

(b) From Equations 14.6.20, symmetric equations for the normal line are - ; 2 - y:ll - —61'

(a) Let F(:r, Y, z) = & + 2y + 3z — sin(zyz). Then F; = 1 —yz cos(zyz), Fy = 2 — xz cos(zyz), F: = 3 — xy cos(zyz),
so F.(2,—1,0) = 1, Fy(2,-1,0) = 2, F>(2, —1,0) = 5. From Equation 14.6.19, an equation of the tangent plane is

Wz —2)+2(y+1)+5(z—0)=00rz+2y+5z=0.

(b) From Equations 14.6.20, symmetric equations for the normal line are AL y_-;—_l =gorz— 2= g;—l = ;

Parametric equations are x = 2 4+ t,y = —1 + 2t, z = 5.

The hyperboloid is a level surface of the function F(z,y, z) = &> + 4y® — 2%, s0 a normal vector to the surface at (zo,yo, 20)
is VF(zo,y0,20) = (220, 8yo, —220). A normal vector for the plane 2z + 2y + z = 5 is (2, 2, 1). For the planes to be
parallel, we need the normal vectors to be paral[el 50 (2x0, 8yo, —220) = k(2,2,1),0rzo =k, 90 = %k, and z0 = —1k.

Butz+4y —28=4 = K+ -1=4 => KF=4 = Foe= 449, So there are two such points:

(2,%,-1) and (-2, -3, 1).

L flzy,2) =222+ 22 = fo(x,y,2) =322 VPP + 22, fulz,y,2) = . f:(x,y,Z):—-E:—

Vit A
s0 £(2,3,4) = 8(5) = 40, f2(2,3,4) = 3(4) V25 = 60, £,(2,3,4) = 22 = 24 and £.(2,3,4) = L& = 2. Then the
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35

7.

39,

"G dwdp  Gydp 0z dp

linear approximation of fat(2,3,4) is

fl@,y,2) = £(2,3,4) + fo(2,3,4)(z — 2) + f,(2,3,4)(y — 3) + f2(2,3,4)(2 — 4)
=40+ 60(z — 2) + (y —3) + L(2 — 4) =60z + Ly + 22 — 120

Then (1.98)%/(3.01)2 + (3.97)% = £(1.98,3.01,3.97) ~ 60(1.98) -+ 24(3.01) + 32(3.97) — 120 = 38.656.

b _ouds  Oudy  ouds = 22y%(1 + 6p) + 327y (pe® + e?) + 4z%(pcosp + sinp)

0z _0z0z K 0z0y = _
éE‘amas+aya .Whens=1andt =2z = ¢(1,2) =3and y = h(1,2) = 6, s0

o _  (D1) 4 (8)(5) = —47. Similaty, %% — 220 | 920y
= f=(3,6)9:(1,2) + £, (3,6) ha(1,2) = (7)(—1) + (8)(—5) = —47. Similarly, = + By 3¢ 5°

By the Chain Rule,

% = £2(3,6)9:(1,2) + £y (3,6) he(1,2) = (7)(4) + (8)(10) = 108.
g}f = 2zf'(z* — ), g—;:l—ny’(mg-yz) where f' = Tm;i'-f———)}."[hen
%+$g—_2myf(x —y)+-’5*2'ﬂyf($ -J)

41,

ﬁ_% Oz —y
dr O v 22

&7 9 (8z)’ @Bz =38 _22 8z azz;y Bz—y 8%z
0z? Yoz (Bu) = g m ( ) z3 v (';‘m2 Vt tu 2 + R | Bubn?
_2yo= 2 & 2y 8z i
“Z30v Y 5w T 22 Gudv | ot

and

+ ]

9z 9z 10z
Alsoa—y— 6u+m§ and

Fo_, 0 () 10 (o) (s i) 1(Oa1, 85 ) 0, Px 10
8y 7 8y \ du zoy \dv) “\our"  vduz 2z ' Gudv ) T Au? dudv ' z2 Ov?

Thus

8z 8z 28z 9z 8%z 2 9%z 8z &z, o? 0%z

po-e PR dpte gz 452 v 2202 2 _y o=z

B2 Y Ay e 2y Au dvu t 22508 TV g3 2y dudv  x? Hu?
_ 20z 4 a dz 8%z

= 2v

z v Y Budv v dug Ou v

. uv 2
simce y = v = ? or Yy~ = uv.

. flzy,2) = 2’ = Vof =iy o= <2ze”=2, zlev™ 22 z2eV= -2yz> - (2:1':.&'“"2 m’zze”"z, ngyze"’z2>
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85. f(z,y) =a’e™¥ = Vf={(2ze ¥ —z’e "), Vf(—2,0) = (—4,—4). The direction is given by (4, —3), so

47.

51.

u= 7:2'?:(—;:;3'(4;_3) = "1'5(47 _3> and Dy f(—2| 0) = Vf(._Q,O) = (_4! _4) p %(4: _3) L= %(—16 o 12) = —-;-.

VS = (2zy,2° +1/(2/F)) [VF(2,1)]| = [(4, )|. Thus the maximum rate of change of f at (2, 1) is ¥Z% in the

direction (4, §).

. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately 50; 46 _ % = 0.625 knot/mi.

flz,y) =2 —zy+9y°+9z—6y+10 = fo=22c—y+9,
fy=—T+2y—6, fax =2=fyy, foy = —1. Then fo = Oand f, = 0imply
y = 1, © = —4. Thus the only critical point is (—4, 1) and fo.(—4,1) > 0,
D(—4,1) =3 > 0,s0 f(—4,1) = —11 is a local minimum.

. flmy)=3zy—2y -z’ = fa=3y-2zy—1? f,=38z—2" -2y,

foa = =2y, fyy = =2z, fzy =3 — 2z — 2y. Then f. = 0 implies

y(3 — 2z —y) = 0soy = Qory = 3 — 2x. Substituting into f, = 0 implies
z(3—z)=0o0r3z(-1+z)y= 0. Hence the critical points are (0, 0), (3,0),
(0,3) and (1,1). D(0,0) = D(3,0) = D(0,3) =—9 < 050 (0,0), (3,0), and
(0, 3) are saddle points. D(1,1) =3 > 0and f,.(1,1) = -2 <0, so

f(1,1) = 1 is a local maximum.

. First solve inside D. Here f. = 4y — 2zy® — 4%, f, = 8zy — 22y — 3z1°.

Then f, =0 impliesy = 0 or y = 4 — 2z, but y = 0 isn’t inside D. Substituting
y=4—2zinto f, =0impliesz =0,z = 2orx = 1, but z = 0 isn’t inside D,
and when z = 2, y = 0 but (2, 0) isn’t inside D. Thus the only critical point inside
Dis (1,2) and f(1,2) = 4. Secondly we consider the boundary of D.

On Ly: f(x,0) =0andso f =0on L1. On Lg: z = —y + 6 and

F(—=y +6,y) = y*(6 — y)(—2) = —2(6y> — ¢*) which has critical points

g, 177
LTy, 7

e,

NN,

NN 7 7777
R\ \‘\‘\\‘,,

&
LAY

{0, 6)

L,

(0,0)

L;

(6, 0)

aty = 0and y = 4. Then f(6,0) = 0 while f(2,4) = —64. On L3: f(0,y) =0, so f = 0 on La. Thus on D the absolute

maximum of f is f(1,2) = 4 while the absolute minimum is f(2,4) = —64.
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57.

59.

61.

63.

flz,y) =2 -3z +¢* — 2°

15
2 ( O
- EERNNNNNNSE N\
aENy g -1.5 U 1.5
- uE
b ] - £ < O
-1 0 1
y -1.5

From the graphs, it appears that f has a local maximum f(—1,0) = 2, local minima (1, 1) & —3, and saddle points at
(—1,%£1) and (1, 0).

To find the exact quantities, we calculate f. =322 -3=0 & z=+landf, =4 -4y =0 &
y = 0, %1, giving the critical points estimated above. Also fzz = 6, fzy = 0, fyy = 12y% — 4,s0 using the Second
Derivatives Test, b(—l,[]) =24 > 0and fzz(—1,0) = —6 < 0 indicating a local maximum f(—1,0) = 2;
D(1,£1) = 48 > 0 and fzz(1,£1) = 6 > 0 indicating local minima f(1,+1) = —3; and D(—1,+1) = —48 and

D(1,0) = —24, indicating saddle points.

f(z,y) =2, glz,y) =22 +y* =1 = Vf= <2wy,:r:2) = AVg = (2Az, 2)\y). Then 2zy = 2z implies z = O or

y = A\ Ifz = 0 then 22 + % = 1 gives y = &1 and we have possible points (0, 1) where f (0, 1) = 0. If y = A then

z* = 2)y implies z° = 2y* and substitution into 2% + 3y = Lgives 3y’ =1 = y=— +randz = d:\/g. The

corresponding possible points are (:t \/g , :l:715) The absolute maximum is f (ﬂ: 2 715) = 525 while the absolute

minimum is f(+1/3, 35 = —5%5-
flz,y,2) =zy2, 9(z,y,2) =2 +y* +22=3. Vf=AVg = (yz,zz,zy) = M(2%,2y,22). Ifany of z, y, or z is

zero, then & = y = z = O which contradicts 22 + 9 + 22 = 3. Then A= Z = Z - T o 92, = 2% =
¥ 2 2y 2z

y* = 2%, and similarly 2y2* = 23:23;. = 2% = 2%, Substituting into the constraint equation gives z° + z* + 2> =3 =

i
x? =1 = y* = 2% Thus the possible points are (1,1,+1), (1,—1,=1), (=1,1,£1), (=1, —1, £1). The absolute maximum
is f(1,1,1) = f(1, -1, ~1) = f(~1,1,~1) = f(~1, —1,1) = 1 and the absolute

minimum is f(1,1,-1) = f(1,-1,1) = f(—1,1,1) = f(-1,-1,-1) = —

flz,y,2) =2 +9° + 2%, 'g(m, p2) =2y’ =2 = Vf=(2z,2,22) =AVg={NfFs ,2hzyz®, 3xzy?2?).

Since zy%2° =2,z # 0,y #0and z # 0,50 2z = M\y%2° (1), 1= Azz® (2), 2=3Xzy’z (3). Then (2) and (3) imply

1
zz8 ~ 3zy?z

2

3 _. 2.3 _ 2 @i . 2z
ory’ =gz soy=x=z \/; Similarly (1) and (3) imply W = 3:1:y~ or3z> =2sox = :l:\—/-z But
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:r:y 2% = 2 so z and z must have the same sign, that is, z = Tz Thus g(z,y, z) = 2 implies 7-2( 222)23 =2'or
z = +31/* and the possible points are (£3~1/4,3=1/4/2, +31/4), (£3~1/4, —3;1/4\/2_, +3'/%). However at each of these
points f takes on the same value, 2 v/3. But (2, 1, 1) also satisfies g(z,y, 2) = 2and f(2,1,1) = 6 > 2 V3. Thus_f has an
absolute minimum value of 2 /3 and no absolute m?ximum subject to the constraint z3%2° = 2. -
Alternate solution: g(z,y,z) = zy*2z® = 2 implies y* = :?, so minimize f(x,2) = z* + ;_c% + 22, Then

g,:=23:__2—-,fz= +2z,fn._2+ ,f‘z:—g-+2andfn=i.Nowfm:Uimplies
7329 28 225 2224

22323 — 2 = 0 or z = 1/z. Substituting into f, = 0 implies —6z> + 22~ =0 orz. = ‘—‘;_5, so the two critical points are
(-J:L :l:\“/E).'l'hen D(:tL :l:\‘,‘/g) =@2+49(2+3%) - ( : )2 > 0and fm(:l:—l- ﬂ:{‘/ﬁ) = 6 > 0, so each point
%a w: 3 75 %1 3

is a minimum. Finally, 4* = %, so the four points closest to the origin are (:t-j—_ 2 +3 ) (:‘:— —-J—c , £33 )

The area of the triangle is lca, sin @ and the area of the rectangle is be. Thus,

the area of the whole object is f(a,b,c) = 3casinf + be. The perimeter of

the object is g(a, b, ¢) = 2a + 2b+ ¢ = P. To simplify sin § in terms of a, b,

2

b and ¢ notice that a® sin® § + (-;-c)2 =at = gind= % Tt — .

Thus f(a,b,c) = = \/4a2 — ¢ + be. (Instead of using @, we could just have

used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must find a, b, ¢, and A by solving Vf = AVyg whj;:h
gives the following equations: ca(4a® — ¢?)™/? =2X (1), c=2X @), }(4a® —*)? - 1P(da® - 32)" V2 4 b=

(3), and 2a + 2b +c = P (4). From (2), A = icand so (1) produces ca(4a® — ) 2 =¢ = (4a® — )2 =q =

2
4a®> —c* =a® = c¢=+/3a (5). Similarly, since (4a® — c’z)lj2 =aand A = 1c, (3) gives &=L ph= 5 sotom

4 4a 2
V3 o :
(5),% — 3—40'- +b= \/Ea _% = ‘/;a =—bh = b= %(1 ++/3) (6). Substituting (5) and (6) into (4) we get:
2a+a(l+v3)+v3a=P = 3a+2V3a=P = a= i :2\/5_3Pnndlhus
3+23 3

b=

(2\/5_3()5(1+\/§) = fPandc—(2—f)P
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1. The areas of the smaller rectangles are A; = zy, 42 = (L —z)y, I z L |

A= (L—2)(W—-y), As=a(W —y).For0<z < L0<y<W,let ’ _‘V

W

flz,y) = A} + A3 + A3 + 4] A Wy J
=2?y® + (L — )’y + (L — 2)*(W —y)* + 2 (W —y)* x =

= [o® +(L—2)’|[y* + (W —y)°]
Then we need to find the maximum and minimum values of f(z, y). Here
fo(z,y) =2z —2(L - o) + (W —9)*] =0 = da—2L=0orz = 3L,and
fu@y) =P+ (L -2y -2W —y) =0 = 4y—2W =0ory=W/2. Also
v = A% + (W = 4)%], fyy = 4l + (L — )?), and fu = (4 — 2L)(dy — 2W). Then,
D = 16[y® + (W —y)?][z? + (L —=)?] — (4z — 2L)*(4y — 2W)*. Thus whenz = £ Landy = W, D > 0 and
fax = 2W? > 0. Thus a minimum of f occurs at (L, 3W) and this minimum value is f (3L, $W) = 3 L*W?2,
There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let
9(y) = £(0,y) = f(L,y) = P[> + (W —y)’,0 <y <W.Theng'(y) = L2y —2(W —3)]| =0 & y=1iW.
And g(%) = 3 L*W?*. Checking the endpoints, we get g(0) = g(W) = L*W?*. Along the length of the rectangle let
h("xj = f(z,0) = f(z,W) = W?[2* + (L — 2)*),0 < = < L. By symmetry h'(z) =0 < z=1Land
h(3L) = LL*W?. At the endpoints we have h(0) = h(L) = L*W?. Therefore L*W? is the maximum value of f.

This maximum value of f occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is k(b1 + ba), where h is the height (the distance between the two parallel sides) and by, by are
. the leng§h5 of the bases (the parallel sides). From the figure in the text, we‘see that h = 2sinf, by = w — 2z, and
ba = w — 2z + 2z cos 6. Therefore the cross-sectional area of the rain gutter is
A(z,0) = 3zsinb[(w — 2z) + (w — 2z + 2z cos )] = (zsind)(w — 2z + x cosb)
=wrsing — 2z sinf + z?sinfcosh, 0 <z < fw,0< < Z
We look for the critical points of A: 9A/8z = wsin@ — 4z sinf + 2z sinf cosd and

DA/80 = wzx cos§ — 2z° cos § + 2 (cos® O — sin® §), 50 0A/0z =0 < sinf (w—4z+2zcosf) =0 &

4‘”2; Z=2-2= (0<0<F = sind>0).If inaddition, 9A/36 =0, then

0 = wzcosf — 2z% cos @ + x*(2cos® § — 1)

= ua(2- g2) - 2% (2- o) +2*[2(2- 1) -1

2
=2wm—%w2—4m2+wm+$2[8—4?w+2w—ﬂ—1] = —wz 4+ 3z° = 2(3z — w)

cosf =
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Since z > 0, we must have « = Jw, in which case cos§ = 3,500 = %, sinfl = A?,t‘c: %w,b; = 1w, by = 3w

and A = JCw Asin Exampie 14.7.6, we can argue from the physical nature of this problem that we have found a local

maximum of A, Now checking the boundary of A, let

9(0) = A(w/2,0) = 3w’ sinf — Jw?sinf + 1w’ sinfcos§ = Lw?sin26, 0 < § < Z. Clearly g is maximized when
sin 20 = 1 in which case A = Jw®. Also along the line 8 = %, let ii(z) = A(z,3) =wz — 22*, 0 <z < -.}—!w‘ =
W(z)=w—-4z=0 & z=4Liwandh(3w)=w(iw)-2(2w)® = 1w’ Since 1w? < ¥& w?, we conclude that

the local maximum found earlier was an absolute maximum.

. o y w\? w
(b) If the metal were bent into a semi-circular gutter of radius r, we would have w = 7rand A = %11'7'2 = %w(—) =—

™ 2T
. w? _ Bu? ; ’ . .
Since = - T it would be better to bend the metal into a gutter with a semicircular cross-section.
1
s eto) =2/ (L) eno. (o) = () o7 (2) (-5) = 1(2) - L (2)

gy(z,y) =zf’ (%) (%) = f! (%) Thus the tangent plane at (zq, yo, zo) on the surface has equation

-ar(2) - () e () e-o0 (Eo- -

[_f (@) —yozg L f! (%)] T+ [f’ (%‘]—)]y — z = 0. But any plane whose equation is of the form az + by +cz =0
To 0 0
passes through the origin. Thus the origin is the common point of intersection.

7. Since we are minimizing the area of the ellipse, and the circle lies above the z-axis, ¥ b

the ellipse will intersect the circle for only one value of y. This y-value must

satisfy both the equation of the circle and the equation of the ellipse. Now Xty 2,= il
0 a X

& i @l s o ituting i i

Sptay= =1 = z*= = (b — 4/*). Substituting into the equation of the

2

9' g
circlcglvcs (b - )+ -2y=0 = (E~b2—a)y2—2y+a2=0.

2b2_ﬂ.2

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4 — 4a =0 =

b? — a®b? + a* = 0. The area of the ellipse is A(a, b) = wab, and we minimize this function subject to the constraint

gla,b) = b* — a?b® +a* = 0.

— _ 3 _ o 12 — _op2 _ wh
Now VA =AVg < wb= A(4a® —2ab”), ma = A(2b—2ba”) = A ~%a(2a? — 57 (1),
—__Tma 2 2;2 4 _ . . wh _ ma
A= (1 — ) (2), b* — a*b* + a* = 0 (3). Comparing (1) and (2) gives Sa(Za? — 5 ~ (1 — )

2 _

2arh? = dra® & a 7»: b. Substitute this into (3) to getb = 7 = a= \/g
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15.1 Double Integrals over Rectangles

1. (a) The subrectangles are shown in the figure. S
The surface is the graph of f(z,y) = zy and AA = 4, so we estimate .
3 2 2
Ve S 3 fl@iy) A
i=1 = .
2

= f(2,2) AA+ f(2,4) AA+ f(4,2) AA+ f(4,4) AA+ f(6,2) AA+ f(6,4) AA
= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

BV~ E F(@:.,7;) AA=f(1L,L1) AA+ f(1,3) AA+ f(3,1) AA+ f(3,3) AA + f(5,1) AA + f(5,3) AA

i=1gj=1

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the figure. Since AA=1.3 = %, we estimate
ff ze “VdA = 21 Z f( styIJ)A‘A y 4
i=1 j=
1
=J 1)AA+f11)AA+f(,2)AA+f{2 1) AA 1
2
= e M2 (3) + e (3) + 267 (2) + 272(3) ~ 0,990
0 1 2 x
®) [, ze *VdA ~ 21 Z f(T:,7;) AA ¥
= J_
1
(2*4) AA+f(2,4)AA+f(%,%)AA+f(%,%)AA 1 : .
z
= @) + () + 4 @) + B () w118 M L
0 1 2 x
5. (a) Each subrectangle and its midpoint are shown in the figure. i’ 1
The area of each subrectangle is AA = 2, so we evaluate f 3 : i
at each midpoint and estimate 7 : :
)
[ fz,y) dA ~ r X f(@:,7;) AA
=17 = -
= f(1,2.5) AA + f(1,3.5) AA ’ . "
+ f(3,2.5) AA+ f(3,3.5) AA
=2(2) + (-1)(2) +2(2) +3(2) =
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(b) The subrectangles are shown in the figure. 7
In each subrectangle, the sample point closest to the origin ;
is the lower left comer, and the area of each subrectangle is A4 = % 5 5
Thus we estimate :
- 4 4 ' : ; . :
Jr f(=z) dAﬁElElf(x:‘j,yfj)AA : o 1 2 3 4=x

= £(0,2) AA + £(0,2.5) AA+ £(0,3) AA + £(0,3.5) AA
L F(L2) AA+ F(1,25) AA+ F(1,3) AA + f(1,3.5) AA
+ f(2,2) AA + £(2,2.5) AA + £(2,3) AA + f(2,3.5) AA
+ f(3,2) AA+ £(3,2.5) AA + f(3,3) AA + £(3,3.5) AA
=-3(3) +(-5)(3) + -6(}) + HE) + ((DE) + (-DE) + HE) + (D)

+1(3) +0(3) + (=1)(3) +1(3) +2(3) +2(3) + 1(3) +3(3)

=-—8

7. The values of f(z,y) = /52 — 22 — y? get smaller as we move farther from the origin, so on any of the subrectangles in the
problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have U < V' < L. (Note that this

]

is true no matter how R is divided into subrectangles.)
9. (a) Withm = n = 2, we have AA = 4. Using the contour map to estimate the value of f at the center of each subrectangle,
we have

[[p fz,y) dA = _ijl i;l f(T,7;) AA = AA[f(1,1) + f(1,3) + f(3,1) + f(3,3)] = 4(27 +4.+ 14+ 17) = 248

(®) fave = simy SIn (2, y) dA m 75(248) = 15.5
11. z = 3 > 0; so we can interpret the integral as the volume of the solid S that lies below the plane z = 3 and above the
rectangle [-2,2] x [1, 6]. S is a rectangular solid, thus [, 3dA =4-5-3 = 60.
13. z = f(a,y) =4 — 2y > 0 for 0 < y < 1. Thus the integral represents the volume of that
part of the rectangular solid [0, 1] x [0, 1] x [0, 4] which lies below the plane z =4— 2y.

So
[la(4—2y)dA = (1)(1)(2) + 2(1)(1)(2) = 3
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15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 4.1.9 [ET 5.1.9]. In Maple, we can define the function n estimate
f(z,y) = VI + xeV (calling it £), load the student package, and then use the T1 | 1.141606
command 4 | 1.143191
middlesum (middlesum (£, x=0..1,m), 16 | 1.143535

y=0..1,m); : | 64 | 1.143617

to get the estimate with n = m? squares of equal size. Mathematica has no special 256 | 1.143637
Riemann sum command, but we can define £ and then use nested Sum commands to 1024 | 1.143642

calculate the estimates.

17. If we divide R into mn subrectangles, [, kdA ~ Y5 3 f(zi;,yi;) AA for any choice of sample points (3, ;).
i=1 =1

But f(zi;,u5) =k always and Z }: AA =areaof R = (b— a)(d — ¢). Thus, no matter how we choose the sample
i=1j=1

points, E Zf(mu,y”) AA = kz Z AA = k(b— a)(d —c) and so

i=1y=1

[LkdA= lm 3 3 f(ziul)Ad= Jim kY 3 AA= lim k(b—a)(d - c) = k(b—a)(d — c).

mn—o0; 2] ;=1 P=1 g=1 Vil

15.2 lIterated Integrals

3 =5 e . o ' )
1. [ 12273 dz = [12 %y"] = 4m3y3]:;§ =4(5)*y® — 4(0)* y* = 500y°,
i z=0

Say=1 _
JJ 1222 dy = [12::2 yz] = 3m2y4}:;; = 3z%2(1)* - 32%(0)* = 322
y=0

3. [} [2(62®y—2z)dydz = [} 32y —ny]y_z dr = [}(122° - 4z) dz = [42® — 22%]] = (256 — 32) — (4—2) = 222
4

5. fuz f; yPe?” dy da = fua T d:r:f y*dy [asin Example 5] = [L1e? ]ﬁ [%y‘i]n = 1(e* —1)(64 — 0) = 32(e* ~ 1)

[ B o r/g(y,r-+-y cosz)dzdy = f [zy + * sinz]"—7 ="/2 gy

= f—a (§U+y") dy = [%yﬂ + 51)'3]3_3
= [+ 0 (T ~0)] =18

)
¥ E+£ dydz = ’ zln| [-i-—-}- y_gdﬂ: al 2+ —[l In2+21n .
| Gtz )= i+ =g = zln dz = (32" In2+ 31n|z|]]
2

:81n2+%1n4—-é—hlfl:l._,—"hl2+31n41/2 =2l1n

o

M. f;'ful v(u+v?)tdudy = fol [Fv(u+0?)° ]u:1 dv = 'u [(1+2%)° = (0 ++?)%] dv

u=0
=1 [ [v1+v?)® -] dv = %[% 1+ -4 12]0
[substitute t = 1 +v? = dt = 2vduvinthe ﬁrst term]

=&[(2°-1)-(1-0)]=%(63-1)=2

)
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13, [7["rsin® 0dfdr = fozrdr Jo sin*8d6 [asin Example S] = [ rdr 7 (1 - cos26) df

0’2
2-3m-0)-(0-0)]=m

[érzlﬂ i[6- %sin?ﬁ]; =(2-0)-1[(r- %s;ing) ~ (0~ 3sin0)]

5. [fsin(z —y)dA = f"lz e sin(z — y) dyde = foﬁ [cos(z — y]]y—"ﬂ dz = f’rﬂ [cos(z — %) — cosz| dz
/2
= [sin(..": — %) —sin :r:]u =gin0 —sin § — [sin(—%) — sin0]

=0-1-(-1-0)=0

/f dA = ff —fl dz[a'ﬁd —[lln(x2+1)]1[l 3]3
22 41 3$2+1 5 2+1 _3y V=12 0 3Y -

=3(n2-In1)- 3(27+27) =9In2

19. j;r/sf;'/a zsin(z + y) dy dz
=j;r/ [—mcosm+y)]y i da:--_]"/ [wcosm—xcos r+Z ]da‘:

= z[sinz —sin(z + §)] :/s -y /% [sinz —sin(z + Z)]dz  [by integrating by parts separately for each term]

=53 -1] - [eoszteos(e+§)] =~ - [-F +o- 1+ =52 - 5

2. [[ye™ dA= [} [Zye~™ dudy = [} [—e-*v]:jz dy = [~ +1)dy = [2e 2 + y]

=g B3Pl =4+

wlen

B z2=f(z,y) =4—-x—2y>0for0<z < 1and0§y5 1. So the solid
is the region in the first octant which lies below the plane 2 =4 — =z — 2y
and above [0, 1] x [0, 1].

25, The solid lies under the plane 4z + 6y — 224+ 15=00r2 = 2z + 3y + 1.—_3"‘ S0
V= [z +3y+PydA= [, [2,Qe+3y+ P)dedy = [1; [® +3ay + Pe] 170, dy

=1 [(19+6y) — (-2 —3y) dy = [, (B +9y)dy = [Ly+ 2*]', =30 (-21) =51

2. v=[1 (1-3is —-yz)dzdy—4_ﬁjfn( —32° — 3y%) dady
=4f02 [I_'ilims_%yzm]::o dy=4j;, (% _ili g)dy 4{129_ 273’3]024'% = 1_;;@

29. Here we need the volume of the solid lying under the surface z = zsec?® y and above the rectangle R = [0, 2] x [0,7/4] in
the zy-plane.

V= f;f;/‘l:nse&ydy dx =f02:1:d:r: f’r“ sec’ ydy = (4= ] (tany]"“
=(2—-0)(tanF —tan0) =2(1-0)=2
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31. The solid lies below the surface z = 2 + a2 + (y — 2)2 and above the plane z = 1for —1 < & < 1, 0 < y < 4. The volume
of the solid is the difference in volumes between the solid that lies under z = 2 + 2 + (y — 2)? over the rectangle
R = [—1,1] x [0, 4] and the solid that lies under z = 1 over R.
V= fof 2+ 2® + (y — 2)*| dzdy — fo f_ (1)dzdy = fo [Qw +3 izt +a(y—2) ]z_l dy — j_ dz fo dy
= [@+3+@-27) - (-2-3-(v—2")]dy—[=I2, vl
= /o [3+20v -2 dy - [1 - (-1)]}4 - 0] = [Fy + 3 - 2°], - @)
= [ +8)-0-¥)-8=F-s=%
33. In Maple, we can calculate the integral by defining the integraﬁd as £
and then using the command int (int (£,x=0..1),y=0..1) ;.
In Mathematica, we can use the command
7 Integratel[£f, {x,0,1},{y,0,1}]

‘We find that [}, z°y°¢™ dA = 21e — 57 ~ 0.0839. We can use plot3d

(in Maple) or P1ot 3D (in Mathematica) to graph the function.
35. R is the rectangle [-1,1] x [0,5]. Thus, A(R) = 2-5 = 10 and

fue =~ )ffn z,y)dA=% fof_ T ydzd’r Sl By)iC dy=% [P 2ydy = '113[%3’2]5'__ 5,

1 .
- m .
7. ff T4 28 dA = f f e 4dyd f g 4dmfn ydy [by Equation 5] butf(a:)-_—mlsanqdd

Rmctionso f f(z) dz = 0 by (6) in Section 4.5 [ET (7) in Section 5.5]. Thus /f - Ty
=1 &

39, Let f(z,y) = Then a CAS gives [ [ f(z,y)dydz = % and [} [} f(z,y) dzdy = —1.

e
(z+y)*
To explain the seeming violation of Fubini’s Theorem, note that f has an infinite discontinuity at (0, 0) and thus does not
satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

15.3 Double Integrals over General Regions

1. fo [P oy dudy = [ [32**]2 ‘/_dy \/')%02 =1 [P dy=1[3y"]} = 1(64—0) = 32

3 o 2+ 2)dydz = [§ [y+97]) i dz = [j [z +2" —2® - ()] da

L
- [i@-atde = 4o~ 4oy = § - —0+0=

2 . )
5 [ fs cos(s®) dtds = fo [tcos(s®)],—; ds = [, s*cos(s®)ds = %sm(s:’)]; = 5 (sin1—sin0) = 3 sin1
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T [[pvPdA = (2, Y,y dedy= [T, [&*]72" L dy=[1 " ly—(~y—2)ldy

=L@+ dy = [+ 3%, =3 +3-3+3=4%

8. [fzdA= |~ E’;mm:J:oi,'j.,;da:=j;r [a:y]:j;i”d$=f::zsinmdm [ megraie by pacts ]

withe = =, dv = sinz dz

= [~zcosz +sinz|; = —wcosm+sinT+0—sin0=nx
11. (a) At the right we sketch an examp[e of aregion D that can be described as lying x
between the graphs of two continuous functions of « (a type I region) but not as
lying between graphs of two continuous functions of i (a type II region). The
regions shown in Figures 6 and 8 in the text are additional examples.
0 x
(b) Now we sketch an example of a region D that can be described as lying between Y
the graphs of two continuous functions of y but not as lying between graphs of two
continuous functions of z. The first region shown in Figure 7 is another example.
0 x
13. ¥ As atype [ region, D lies between the lower boundary y = 0 and the upper

n
boundaryy =z for0 <z < l,soD={(z,y)|0<z<1,0<y <z} Ifwe

L describe D as a type Il region, D lies between the left boundary = = y and the

right boundaryz = 1for0 <y < l,so D= {(z,y) |0<y <l y<z <1}

0 y=0 (1, 0) x

Thus [f,2dA = [} [Fzdyde = [ [zy]" " de = [} a*de = 32°], = 3(1-0)=1or

v 0
. z=1 1
[fpzdA=[j[jzdedy= [y [32°).2 dy=3 [1—-v")dy=3[y— 3"l =3[(1-3) -0 = 3.
Thecurvesy =2 — 2o0rz =y + 2and ¢ = y° intersect wheny +2 =1 &
Y¥—y—2=0 & (-2)(@y+1)=0 & y=-1,y =2, sothe pointsof

intersection are (1, —1) and (4, 2). If we describe D as a type I region, the upper

0 ‘“’+2 x boundary curve is y = y/z but the lower boundary curve consists of two parts,
x=y
1.1 .
‘ . y=—y/zfor0<z<landy=z—2forl <z <4

Thus D = {(,y) [0< 2 <1, —vZ<y<yF}U{(zy)|1<z<4o-2<y<z}and

[fpudA = [} [¥5 ydydz+ [ [/% ydyde. If we describe D as a type Il region, D is enclosed by the left boundary

x = y? and the right boundary z =y + 2for -1 < y < 2,50 D = {(z,9)| -1 <y<2,9® Sm5y+2} and
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ffpydA= [ f;';” y dz dy. In either case, the resulting iterated integrals are not difficult to evaluate but the region D is
more simply described as a type 1l region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral:
JfpydA= 2 [P ydady = [2, [oy] 22 la " dy = [2,(w+2—vPydy = [2,(* + 2y — %) dy

=B +y -1l =B+ - (-3+1-9) =

~le

17. fofo :ccosydyda:—fn [zsmy] dm—-fn zsinz? dr = —%cos:rz]; =2(1—cos1)

T—3y 2
=7-3
P » y] 1,2) . 1fp v*dA = f/ . dwdy:fl [wy]:‘“‘lv "

x=y=1/ > x=7-3 "
fote SO o = [ [(T-3y) - (y— )]y’ dy = [7(8y* — 4y*) dy
@1 4,1) )
0 % =[%y3my4]1=__16_g+1='13_
21. 2 Va—z2
? f / (2z — y)dydz
y=v4-x* —2J /42t

2 y=v/4—22
/ h - [ -] e
-2 0 2 x
kj = 2, (20 VAT - 34— 2) + 20 VAT + 3 (4 0?)] do
y=—v4

== j'_22 4z ‘\/mdm = _%(4 _ 1‘2)3/2]2 —0

-2

[Or, note that 4z +/4 — z? is an odd function, so ff2 dz+/4 — 2¥dz = 0.]

=1 B
. Ve 2 [0 ot ) dydo = [ [y —ay +?]ys D do
1 9
=/ [((1 - %) —a(1 - %) + (1 - 2*)?)
0
| - ((1—;5)—:c(1—:r)+(1ﬂ-:t:)2)] dz
=i [(a* +2° —32® —z +2) - (22 — 42 +2)] dz
= [ (& +2° - 52® + 3z) dz = [22° + 2* — §2® + 327
—i+i-t+i-8
%y V=[P aydedy = [7 [37y] 7217 dy
1,2)
x+3y=7 =%f12(48y—42y2+9y3)dy
(L1) 4.1
=3[20" - 14 + ) = %
D| x
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3
2. ¥4 V= fﬁ 3-3%(6— 3z — 2y) dy dz
(0,3)
3-
= [ [y —3ay -’22 ¥ de
3Ix+2y=6
2
% = [, [6(3 — 3z) —31-(3 —- 32) - (3 - 22)% dz
. = fe (32* -9z +9)dx = [32° - 32° +92]. =6-0=6
0 2,00 «x '
o
' 2 4 3
(2.4 2.4 V=[Cp fra o dyda
i y=x* = fz mz[y]z::ﬁ dz = [,(42* — o) du
L e e e Bt
0 x
3. ¥y
1 py/l—o? 11 271¥=v1l-=x
©.1) V=j f 1d1d:r::[ [H] dz
Ayl o Jo v 0 y=0
D 1 e z? i g
= [ a=tle- 1=
0 (1,0) x
33, 3 From the graph, it appears that the two curves intersect at z = 0 and
at z ~ 1.213. Thus the desired integral is
1.213 p3z — 2 1.213 y=3z—2?
JlpzdAr [ [§7° zdyde = [ [ ]y=x4 dz
—01 = J13 ' = 01'2]3(3m2 23— 2%)dz = [.r3 - %1,4 . %1_5];.213
' ~0.713

35. The two bounding curves y = 1 — z? and y = z” — 1 intersect at (1, 0) with 1 — z® > 2% — 1 on [—1, 1]. Within this
region, the plane z = 22+ 2y + 10 is above the plane z = 2 — z — y, so

V= fl 1221 2$+2y—|—10dydz—f f 2—'1:—y)dydm

__J _[' {2m+2y+10 (2—z—y))dyde

‘:1—:52
= e (3m+3y+8)dydm~j [Smy-l- 32 A-Sy}y dz

y=z2-1
f [Bz(1 —2®) + 2(1 — 2°)* + 8(1 — 2%) — 3z(z® — 1) — $(z* — 1)° —8(z? —1)] dz
= [1,(—6z® — 162" + 6z + 16) dz = [-32" — La® + 32 + 163:]

=—3-¥43+16+3-L-3+16=5
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|
The solid lies below theplane z =1 —z — y

or x +y + z = 1 and above the region (0.:;
D={(z,y)|0<2<1,0<y<1—z} gksgs]
in the zy-plane. The solid is a tetrahedron. D

0 (1,0) x

x

The two bounding curves y = x® — z and y = #* 4 x intersect at the origin and at z = 2, withz® + = > 2° — z on (0,2).
Using a CAS, we find that the volume is

V_/-zfmﬁ +mzd’( ” _,‘ /2[:2+$($3 4‘+:r12)d . 13,984,735,616
=i I Y i S W REIREES T iR

3

The two surfaces intersect in the circle z° + y* = 1, z = 0 and the region of integration is the disk D: z° + 3* < 1.

1 V1-=22 .
Using a CAS, the volume is /f(l —?—yY)dA = f f o = Py X
' 2 112 2
y‘r(n 1) Because the region of integration is
| o D={(z,y)|0sz<y0<y<1}={(zy)[2<y<1,0<x <1}
B we have [y fif f(z,y)dzdy = [f, f(z,9)dA = [ [} f(z,y)dydz.

Because the region of integration is
y=cosx
or D={(z,9) |0 <y <cosz,0<2 < 7/2}

_ ~L .
ey ={(zy)|0<z<cos™'y,0<y <1}

{

we have

S e (@ y) dydz = [f), flz,y)dA=[1 [V f(z,y)dzdy.

0 %}\x

4 [ y=Inx or x=¢’ Because the region of integration is -
In2 D={(z,9)|0<y<Inz,1<z<2}={(s,y) |’ <2<20<y <2}
_we have
2 plnz In2 p2
0 f/ f(m,y).dyd:c=ff f(m,v)dA=/ f f(z,y) dz dy
1 Jo D 0 Jev

‘ 1,3 3 px/3 3 y==/3
4 [ / e du dy = f f e dydz = / [e"’zy] " dx
Jo Jay o Jo 0 y=0

3 & 9 _
x=3y 3.1) =/‘ (E)ez“ dm:%erz]az e’ —1
D o 3 0 6
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51. ¥

f.[fy3+1 o /f 3+1

2
= :r:—y d =/ Y
_/0. P+l (=], dv . y3+1dy

2
= %Inlya-I-l[]O:%(an-lnl):%InQ

53, o y=sinx or

X =arcsiny

1 pw/2
f f cosx v/ 1+ cos? o dx dy
0

arcsin y

= [r/* “l”cosz\/1+cos§mdydm
(;'r"zt:(:»s.'.r:\/l+cos?m[y]1’_mnnc dz

i W T = Letu = &
w cosz 1+ cos? zsinzdz [ u = cos x, du ? sin z dz,

vl
=

—Jo dz = du/{— sin z)
=} —uVi+@du=-3(1+4 3)3/2]
=3(/B-1)=3(2v2-1)

. D={(z,y) |0<z<1, —z+1<y<1}U{(z9) | -1<2<0,z+1<y<1}
U{(z,9) [0<2<1, -1<y<z-1}U{(z,y) | -1<2<0, -1<y<—z—1}, alltypel

1 1 0 1 1 pe-—1 0 —x =1
ff wszzf f :z:gdyda:qkf f sczdydx+f/ m2dyd:z+/ f z* dy da
D 0 J1-w -1 /e +1 o /-1 )

=4 /; ' / 1_ 2% dydz [by symmetry of the regions and because f(z,y) = x> 0]
:4[; i dz = 4[%:1:4]; =1
57. Here Q = {(z,y) | 2> + 4> < 3,z > 0, > 0},and 0 < (2® +1*)* < (% ) = —& 5-—(:1:2;3—9'2)2 <0so
e71/16 < o~(=*+v")* < 9 — 1 since €' is an increasing function. We have A(Q) = ¢ (3)* = £, so by Property 11,

2)2

e AQ) < [l e IA<1.A(Q) » Ze V< i e~ +v"” 44 < or we can say

0.1844 < [ fQ e~ +v")* g A < 0.1964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

59. The average value of a function f of two variables defined on a rectangle & was

1,3

defined in Section 15.1 as fuye = Iﬁi S5 f (@, y)dA. Extending this definition g
y=3x fi8
to general regions D, we have fue = 7‘(1—5\5 [ flz,y)dA. ' &

Here D = {(z,7) |0 < 2 < 1,0 < y < 3z},50 A(D) = 1(1)(3) = £ and

Jove = 557 [ (@ 9)dA = g5 [3 [3% 2y dy da

=§fo ':'z"*’"y2 y_azdw—sfog““ dz = % ] =§

=0

P 4

=)
f;._ “l -
o

o
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Sincem < f(z,y) < M, [[,mdA < [f, f(z,y)dA < [[, MdAby (8) =

m [, LdA < [, f(z,y)dA< M [[,1dAby () = mA(D) < [[; f(z,y) dA < MA(D) by (10).

y First we can write [, (2 +2) dA = [[, ¢ dA + [[, 2dA. But f(z,y) =z is
A an odd function with respect to  [that is, f(—=,y) = — f(z,y)] and D is

symmetric with respect to z. Consequently, the volume above D and below the

3 0 3 x graph of f is the same as the volume below D and above the graph of f, so
[fpzdA=0.Also, [[,2dA =2 A(D)=2-1n(3)* = 97 since D is a half

disk of radius 3. Thus [, (z + 2) dA = 0 + 97 = 9.

We can write [, (2z +3y)dA = [, 2zdA+ [[, 3ydA. [[, 2z dA represents the volume of the solid lying under the
plane z = 2z and above the rectangle D. This solid region is a triangular cylinder with length b and whose cross-section is a

triangle with width a and height 2a. (See the first figure.)

z
{a, 0, 2a) z {0, b, 3b)
(a, b, 2a)

]

(a, b,0)

Thus its volume is 3 -a-2a-b = a®b. Similarly, JJ;5 3y dA represents the volume of a triangular cylinder with length a,

triangular cross-section with width b and height 3b, and volume 3 - b- 3b- a = 3ab®. (See the second figure.) Thus
[fp(2z + 3y) dA = a®b + $ab?

Il (az® + by* + Va® —? ) dA = [[,, az® dA+ [[,, by® dA+ [[,, Va® — 2 dA. Now az® is odd with respect
to  and by® is odc.i with respect to ¥, and the region of integration is symmetric with respect to both = and y,

so [[paz’dA = [[,by*dA=0.

il va? — 2% dA represents the volume of the solid region under the

graph of z = v/a? — x? and above the rectangle I, namely a half circular
cylinder with radius a and length 2b (see the figure) whose volume is

1. 7r?h = Lma®(2b) = wah. Thus

il (az® +by® + Va2 — 22 ) dA = 0+ 0 + ma’b = ma®bh.
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15.4 Double Integrals in Polar Coordinates

1. The region R is more easily described by polar coordinates: R = { T, 8) | 0<r<40<80< -25}

Thus [, f(z.y)dA = S22 4 £(r cos, v sin§) r dr df.

3. The region R is more easily described by rectangular coordinates: B = { 5y | -1<2<1,0< %:c —+ %}
Thus [[, f(z,y)dA = [, [TV f(z,y) dy da.

5. The integral f 3m/d i) 12 r dr d6 represents the area of the region
R={(r0)|1<r<2,m/4 <0 < 3r/4}, the top quarter portion of a
ring (annulus).

3m/a (2 _ [ p3n/a 2
Sl f2 rdrdo = (fm df)) (fl 'rdr)

=[O B =(F -9 $e-=3-4=%

7. The half disk D can be described in polar coordinates as D = {(r,0) |0 <r < 5,0 <0 < 7}. Then
[l x2ydA = [T [ (rcos8)*(rsinf) rdrdf = (| cos® esmede)( Syt dr)

= [~} cos®6]7 [£r°]y = —§(~1—1) - 625 = 2200
9. [f,sin(a? +y?)dA = [7/* [*sin(r?) rdrdf = ( /2 da) (f rsin(r 2)dr)
= [0 [~} cos(r)]]

= (%) [~%(c039 —cos1)] = Z(cos1 —cos)

W [fe v da= [T [ rdrdo = ["7 d0 [5re"" dr
g 2 2 =& W &
=61, [-3e] = (-DEet - =g -e)
13. R is the region shown in the figure, and can be described
by R={(r,0)|0<60<x/4,1 <r <2} Thus

Ths arctan(y/z) dA = f’f/‘l J? arctan(tan 6) 7 dr d6 since y/x = tané.

Also, arctan(ta.n f) = 6 for 0 < § < /4, so the integral becomes

T Rerdrdo= [T 0do [Prdr=[16°]1" [ir?]} =1

Ses
%)

Kl
Il

15. One loop is given by the region
D ={(r,0)|—m/6 <8 <7/6,0<r < cos38}, so the area is

w /6 cos 30 /6 1 r=cos 30
f[ dA = f f TdrdB:/ [—'r!] do
/6 /0 -7 /6 2 =0

/6 w/6
=f geosts0do=2 [ 1(W1+°°56")d9
/6 2 o 2 2
/6

1 I o
—§[9+631H69]D —ﬁ
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17. In polar coordinates the circle (z — 1)2 +3° =1 « z°+3y* =2z is 7> =2rcosf = r = 2cosh,
and the circle 22 +9* =1 is r = 1. The curves intersect in the first quadrant when
2cosf=1 = cosf= 3 = = 0 =m/3,s0 the portion of the region in the first quadrant is given by
D={(r,0)|1<r<2cos6,0 <6 < w/2}. By symmetry, the total area . 0=m/3
is twice the area of D: : r=1
2A(D) =2 [, dA = 21-«/3 2cosﬂrd’rd6 . fn-/s [ir 2]r—2conﬂde

/S r=2coséf

= fDrr/?i (4cos? 6 — 1) df = fnvr/a [4- (1 4 cos26) — 1] do

= [77%(1+ 2c08260) 0 = [0 + sin 20]5/° = & + 3

8.V = [fay 20 VBTV dA= [T [FViTrdrdd = [ db [ r*dr = [0]7 [3r°]g = 2m(§) = 3pn

21. The hyperboloid of two sheets —z? — y® + 2% = 1 intersects the plane z = 2 when —z* — y® +4 = 1 or 22 + y® = 3. So thie
solid region lies above the surface z = 1/1 + 22 + 12 and below the plane z = 2 for z2 + y* < 3, and its volume is

2T
f/ VIta?+y? )dA= / / ~V1+7?) rdras
2 +y2<3
/3
= 270 7 (r = rVTFT) dr = (0] [12 - 3 +oe]
=27r(3—%—0+%)=%7r
23. By symmetry,

' 27 pa 27 a
V=2 [f \/az_zzﬂyﬂdA=2f f\/az—rzrdrd6:2f dﬂf ryv/a? —r2dr
0o Jo 0 0

23 4 y? <a?

= 20013 [-4(@® = 2] = 202m)(0+ §a°) =

2
25. The cone z = /22 + 12 intersects the sphere 2* + y* + 2* = 1 when 2% + ¢* + (\/:1:2 +y2) =lorz?+y*=1.So

V= ff (\/1—32_yz_\/:z;2+y2)dA=L2w-/;1/ﬂ(m—r)rdrd9

22 4+y2<1/2

= 3o [y (r VT2 — 1) dr = [0]7 [-3(1 -2 - §

12
r]

=(-3)(&-1) =3(2-v2)
27. The given solid is the region inside the cylinder 2 + y* = 4 between the surfaces z = /64 — 4x? — 4y?
and z = —/64 — 4z% — 43>, So
[f [\/64 “d2? — 47 — (—\/64 'y 4y2)] dA = ff 2/64 — 42% — 452 dA

2 +y2 <4 z24+y2 <4

2
=4 26— rdrdd=4["df [Pr/T6—r2dr=4[8 ]"[ 36 —r2)*2]
= 8m(—%)(12%/% —16%/%) = & (64 — 24 V/3)

(© 2012 Cengage Leaming. All Rights Reserved. May not be d, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.




260

29,

3.

33.

35,

37.

O  CHAPTER 15 MULTIPLE INTEGRALS

‘ ¥y 3 3V 9—=2 5 P T 3
3 0 f f sin{z® + y*)dy dz = / f sin (r*) r dr d6
o o Jo

I hy= -3

= [y do [} rsin (r?) dr = [0]F [—% cos (r*)];

D
=7 (—3) (cos9—1)=Z (1 —cos9)

f;“ foﬁ (rcos@+rsind)rdrdd = _f;“ (cos® +sind) do foﬁ r? dr
: ™ V2
= [sin — cos 6]0/4 [%r?]n

=[#-F-0+1] jvi-0)=27

D={(r6)|0<r<1,0<0<2r} s0
i e+ 4a = il 7o eV pdrdf = [*"df i re™ dr = o fif re™ dr. Using a calculator, we estimate

o [ re’ dr ~ 4.5951,

The surface of the water in the pool is a circular disk D with radius 20 ft. If we place D on coordinate axes with the origin at
the center of D and define f(z, ) to be the depth of the water at (x, y), then the volume of water in the pool is the volume of
the solid that lies above D = {(z,y) | 2* 4+ y* < 400} and below the graph of f(z,y). We can associate north with the
positive y-direction, so we are given that the depth is constant in the z-direction and the depth increases linearly in the
y-direction from f(0, —20) = 2 to f(0,20) = 7. The trace in the yz-plane :i‘s a line segment from (0, —20, 2) to (0, 20, 7).

The slope of this line is WI—ETU) = £, soanequation of the lineis z — 7= (y — 20) = z= 4y + 3. Since f(z,y) is

independent of z, f(z,y) = 2y + 3. Thus the volume is given by [, f(w,y) dA, which is most conveniently evaluated
using polar coordinates. Then D = {(r,0) | 0 < r < 20,0 < ¢ < 27} and substituting z = 7 cos §, yy = r sin 8 the integral
becomes

ST (brsind + 2)rdrdf = [ [Frsing + %TQ]::? df = [ (192 sin 6 + 900) df

= [—219%0 cos ¢ + 9000 ;" = 1800

Thus the pool contains 18007 = 5655 ft® of water.

As in Exercise 15.3.59, fue = ﬁ [fp f(z,y)dA. Here D = {(r,#) [a <r < b,0 <0 < 27},

50 A(D) = wb? — wa® = w(b? — a?) and

1 1 1 2 b 1 1 27 b
=iy [, 7 A L), oL

:ﬁ (612" T]:=ﬁ(2ﬂ)(b—¢;)= 2(b—a) 2

(b+a)b—a)  a+b
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Va—z?
39, f f mydydz+[ f :z:yd_;d:z+/ / zy dydz bl -
14/2 J4/1—=22 ) y=x
w/4 w/4 i r=2
=/ / rscosﬁsinﬂdrdl?:f [—cos.‘)sinﬂ] de r=2
0 1 0 4 r=1
/4 s 2 p7m/4 =1
=28 [ singcosgds = E[S“‘ 9] b re .
4 /q 4 2 |, ~ 16 : 0 ﬂ‘l B 2 5
2

41. (a) We integrate by parts with v = x and dv —ze~ dg. Then du = dz and v = —%e‘”z, 0

2 T
fooo 323—1' dz = lim j;] —m:’ d'c=t1_1'12__‘ (_%we—mz]o_i_j:%e—w! d:r:)

t—+oo

Il

t—o0

lim (—4te™) +3 [;"e " dz=0+3 [;"e™"dz [by I'Hospital’s Rule]
=g e~ dv  [since e™™ is an even function]
=17  [by Exercise 40(c)]

(b) Letu=+/z. Thenu’ =z = dz=2udu =

o VEe T dz = Jim 4 \/Ee_"’ dz = lim foﬂ ue™" 2udu = 2 ! w2e™" du =2 (3v/7) [by part(a)] = —;-\/_

15.5 Applications of Double Integrals

1.Q = Jf, o(my)dA= [} 7 2o +4y) dyda = [ [2ay + 27|17, da
= [y (102 + 50 — 4z — 8) dz = [y (6 +42) dz = [32® + 42|, = 75 +210 = 285 C
am=[f, o(z,y)dA= [} [P kydydz =k [ dz [} yPdy = klzl} [3y 31 = k(2)(21) = 42,
=% [ op(my)dd =g [} [ hay’ dyde = 5 [Pede [P dy =3 [32°]) [30°]; = (@D =2,

i 3 5
T= 2% [l vola ) dd = g [} [k dydo = &5 [Tdo [1yPdy =1} [30"]) = H(2) (22) = 2

Hence m = 42k, (Z,7) = (2, ).

=3-x
5.m = fo fz/z (z +y)dyde = fo [Iy+ ;yz]:-—:/e dz = ro [ (3“ %m) +%(3_$)2 = %Iz] dz
= 7 (gt 4§ e = (2 + 3=
M, = fo.!:/a @ +zy)dydz = [ [2%y + 3=y ]y_:/,:' de = [} (32— 82°) do = &,

M. = (2[5 ey + ) dyde = [P [y + 30710 da = 2 (0 §o) da =,

y=z/2
e - (. 25) - (33).

T.m=[1 [0 kydydz =k [*, [}7]'0) = dz = 3k [1 (1 - 2?)2de = 3k [ (1 — 2% + 2%) dz

=jklz— 32 +3a"]L, =2k -3+E+1-3+3) =%%
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2 :I: .
M, = [_11 ; Dl_’ kzydydz =k [, [3zy? ]y_l de =3k [} 2 (1-2*)?de = 1k [* (z— 22° + 2%) dz

B 179 2 O TG B s O B o &8 W, W, SR (N (9 (ORI . (e
—2"[2 2I+6$]_1*2k(2 g+g-g+i-3)=0

Mo = [ 7 kb dyds =k [, [30%)722" do = Lk [*,(1 — 2%)do = 3k [2, (1 30% + 30" — 2%) da
=%k[$—z3+%:ﬂ5—%m7] =3k(1-1+% —-+1—1+-—— —) = £k

Hence m = £k, (T,7) = (0 —M) =(0,%).

Y TBk/15
9. Note that sin(m/L) >0for0<z<L.
m= [’ j:i“("‘”‘) ydydz = [, Lsin*(nz/L)dz = } [z — £ sin(2rz/L) ]0 =

1 e . i b m
My = [, JB I ydydz =3 foL wein’ (nz/L) dz L = I;Teiai s);:gr(t:r:}b) d.:r:]

=} z(iz— Lsin@rz/L))|; - 1 [ [z — & sin(2n2/L)] de

1
2
172 _1(1.2 L2 ) i,
3 £ & 455 cos(2mz/L) ‘

- (1P - &) =i
Me=f; f'""(”/m y-ydyde = [ 3sin®(re/L)dz =3 [ [1 - cosz(Tr:c/L)] sin(wz/L) dz
[substitute v = cos (wx/L)] = du= —F sin(wxz/L)]
L
= 1(—£)[cos(rz/L) — %cosa(ar:n/L)}U =—&(-1+3-1+3)=4L

Hence m = %’ (z,79) = (LTQ/%S‘ 4%;?1”)) - (_é:’ ;_?f)

N, p(z,y) = ky = krsind, m = [/ [T kr®sin6drdd = 1k [T/ sin0df = 1k[-cos8]7/" = Lk,
My = w/zf kr® sin 6 cos @ dr df = 1k_[”/25m6c056d6'= ‘["[_0‘3529]?/2 wh

M, = ﬂ'/zfo kr3sin® 0drdf = 3k [7/* sin® 0 df = 1k:[9+sin29]; = fgk.

Hence (Z,7) = (3, 32).

13.

plz,y) =k /22 +y* = kr,
m= [[, p(z,y)dA = fo"ff kr - rdrdf

=k [T do [P rdr=k(r) [3r°]} = Ink,

3

M, = [[,xp(z,y)dA = [T [Z(rcos@)(kr)rdrdf = k o cosf do [irdr

il [sin 9] o [l ?‘4] g k(U) (ﬁ) = [this is to be expected as the region and density
- o L4 = 4] — . . z
function are symrnetric about the y-axis]

M. = [[pyp(z,y)dA = [T [(rsin6)(kr)rdrdf =k [T sinfdf [7r®dr
=k [—cosf]; [%r"‘]f =k(1+1) () = $*.
Hence (Z,7) = (D, ?%‘;—J- = (0, 2=
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15. Placing the vertex opposite the hypotenuse at (0, 0), p(z, y) = k(z” + y?). Then

m=[2f " k(z® +y?) dyde =k [ [a2® —2® + § L (a—2)*] dz = k[Laa®

-ir*—L(a-z) ] = tka*
By symmetry,
My =M. = [ |7~ “ky(@@®+y*) dyde =k [ [3(a—=2)’2" + }(a—2)"]dz
= Kha"a® - Jast + foo® ~ dla- 27 = ko’
Hence (Z,7) = (%a, 2a).
7. I = [, v2p(z,)dA= [, [ kydyde =k, [4 ‘]Zﬁ“é “do =1k [} (1-2%)do
= 3k (0 — 409 + 60" — 42 + 1) do = 1k [3a® — 07 + 805 — 4% +a]', = &k,
I = [fpa*p(my) dA= [}, 3" kePydyde = & [2, [§227)00s dz = 3k [, 2*(1 - 2%)% da
= %kf:l(:r,z —2z* +2%) dx = 1k [%ma - %x"’ + :1,-567]1_1 %k,
andp=L+I,= :fsk'i‘ﬁk—:f—k
19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0, 0) and the equal sides along the positive axes
L= [TV ) dyde = k[ o) dyde = b [ + R e
=k [5 [ a—2)° + i(a—=)°]dz =k [} (3a°2® — 3a’a* + faz® — 12°) - (a—a:)e]g = mpkad,
L= [ [ "o bla? -y )dyda:—r’nfo (2t +2%y?) dyde = k [ [z y+1z2y“]z:; T dz
=k [ 2" (a—2) + 327 (a— 2)°] do = k [faa® — La® + § (3a®2® — 30%2" + ao® ~ §2%)]5 = 5ka®,
and Io = I + I = &ka®.
b h b
A I = [[, v pey)dA = [§ [y o’ dzdy = p [§ dz [y dy = p[]g [35°]5 = pb(3°) = 3 bk,
[[52*pley)dA = [§ [ pa® dzdy = p [§ 2* dz [} dy = p[32° ] ls = 306°R,
s Lob%} 2 -
and m = p(area of rectangle) = pbh since the lamina is homogeneous. Hence T f:; = % = % = IT= %
=2_I1_%pbh37h_2 = h
andy—m— o - 3 = y—ﬁ.
23. In polar coordinates, the regionis D = {(r,8) |0 <r < a,0< 8 < §},50
[[ov’pdA = f"/zfn p(rs'm&)zrd'rd0=pf“/231n dé [ r®dr
w/2 a
= 9[19 — 3sin20]" [3r']5 = p (§) (da*) = Fypa'm,
L= ffD:r pdA = f"/ﬁfu p(rcos8) rdrdf = pf"ﬁ cos® df [,
/2 a P
= p[30+ % sin20]7" [3r*]5 = (5) (Ja*) = Fgpa'm,
¢ a4 = = %pa‘ét’r a? = = a
and m = p - A(D) = p- 3ma" since the lamina is homogeneous. HenceZ" =7 3 g = = T=g= 3
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25. The right loop of the curve is given by D = {(7,0) | 0 < r < cos26, — /4 < # < w/4}. Using a CAS, we

find m = [f,, p(a,4)dA = [[p(a® +37)dd = [7/4, [i** * rdrd§ = 3. Then

64 /4 os 20 64 /4 cos 268 16384\/5
T= z,y 6 drdf = —
m/f @p( =5 4/4[ (rcos@) r* rdr o 7“/4] v cos@dr df = T and
/4 cos 20 /4 cos 260
= ff yplz, y)dA_ f . (rsin®) r’ rdrdf = [ f r*sin@drdd = 0, so
-7 /4 w/4 Jo
.- 16384+/2
@0 = ( 103957 ’0)'
The moments of inertia are
w/d 20 . a3 _ pm/4 peos20 5 . 5w 4
I = [[,y’p(z,y)dA = [T HMI”“ rsind)® rirdrdg = [, [77% r°sin® 0drdf = e
/4 os 20 2 2 /4 '8 20 _ 57r 4 '
I = [[,a*p(z,y) dA = Jinsals™ " (rcost)*r®rdrdf = _ﬂ,df“s o cos? O drdf = T 105.amd
5
Io = Ia; + Iy = @.

27. (a) f(z,y) is a joint density function, so we know [ [, f(z,y) dA = 1. Since f(z,y) = 0 outside the

rectangle [0, 1] x [0, 2], we can say

[l S(@w)dA = [, [, f@,)dyde = [} [2 0oL +y) dydo
=Of[] -'L'[y+2y2 z:;dm Can 4Id:c=C,'[2g; ]0=2O
Then2C =1 = C:%

®PX<LY <) = [ [1_ flzy)dyde =[5 [§ 3ol +y)dyde
=f saly+3v"], 2 1d2=f3%2(%)d$=%[%12] =3 or0.375
() P(X+Y <1)= P((X,Y) € D) where D is the triangular region shown in Y
the figure. Thus
P(X+Y <1)= [f, f(z,p)dA= [} [ ~" z(1 +y) dy dz
=Jo 3y + 371,20 do = [j ja(32® ~ 20+ §) do
=1l (?- — [zt _ g8 4 g22]"
=1Jy (&° - 10® + 30) do = } [5 — 43 +3%] .

= = 0.1042

29. (a) f(z,y) 2 0, s0 f is a joint density function if [fg. f(z,y) dA = 1. Here, f(z,y) = 0 outside the first quadrant, so
Sz flz,y) dA= e 0.13“(0"5“*'.]'2"') dydz = 0.1 jo°° ; e e 05202 gy dx — 0.1 ¥ ivg e 05% dy fo°° e~ %% dy
" t  —0.5z g t -0 . _0.5z1t 1 -0. t
=0.1 lim f;e=**dz lim fje~*dy=0.1 lim [-2¢"%]; lim [~5e™0%]
= 0.1 lim [—2(e~*™ —1)] Jim [-5(e™* —1)] = (0.1) - (—2)(0—1) - (—5)(0 -1)=1

Thus f(z,y) is a joint density function.
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(b) (i) No restriction is placed on X, so
PY 21)= %[ f(z,y)dydz = [° [ 0.1e~05=+0-21) gy d;
=0.1 e " dz [[7e "M dy =0.1 lim f; R - Jim Jte 02 gy
= 0.1 lim [-2e™"*"]) lim [~5e~* 2]} =041 lim [-2(e™"% —1)] Jim [-5(e~02 — ¢=0%)]
1) - (—2)(0 — 1) - (—5)(0 — e7%?) = 7% 2 0.8187
(i) P(X <2,V <4) = [ [*_ flz,y)dyde = [3 [ 0.1e 55402 gy oy
—0. 1J2 —0.5% . Id e~ 020 dy = 0.1[—26fﬂ'5ﬂ§ [‘_56—0.21;];
=(0.1) - (=2)(e! = 1) (=5)(e™** — 1)
=t =1)(e 1) =1+e 1t —e 0% 1 203481
(c) The expected value of X is given by

= [Jpaz flz,y)dA = jbmj;)oo T [O-IEH(O'M‘JFO'%)] dydz
oo —0.52 oo _—0.2 . t —0.5z . -
=01 [ e~ dy ["e °°”dy=0.1tEIB°L ze~05% dy llirf):o_[;e 02¥ gy
To evaluate the first integral, we integrate by parts with u = z and dv = ¢~ dz (or we can use Formula 96

in the Table of Integrals): [ ze™ %% dz = —22e %% — [ —2e705% dp = —22e70-5% — 405 = _9(p 4 2)e~0-5%,

Thus
py = 0.1 lim [—2(x + 2)c‘°-5’°]g Jim [_56—0-21:];

=0.1 gll.IEQ {___2) [(t a4 2)6—0»51: e 2] lim (—5) [870.% - 1]

t—oo

t+2 ) H )
= 0.1(=2 )(}3& A -2)(-5)(-1):2 [by ’Hospital’s Rule]

The expected value of ¥ is given by

to = [foz v flz,y)dA = [5° [(° y[ﬁ-le“°'5+°~2”)] dy dx

=01 e 0= s [* ye 0N dy = 0.1 Jlim fot e 05" dy Jim _ﬁ; ye 02 dy
—00 —o0 !

To evaluate the second integral, we integrate by parts with w =  and dv = e~ dy (or again we can use Formula 96 in

the Table of Integrals) which gives [ ye™*%" dy = —5ye™"*' + [ 5e™%% dy = —5(y + 5)e~*". Then
fig = 0.1 lim [—2¢™" s 17 Jim [-5(y + 5)e ]

=01 g, (-2 0], S, S0l )
=0.1(-2)(-1) - (-5) ( lim —_5 = 5) =5 [by I'Hospital’s Rule]

31. (a) The random variables X and Y are normally distributed with p, = 45, u, = 20, 1 = 0.5, and o2 = 0.1.

The individual density functions for X and Y, then, are fi(x) e~ (=—15)%/0.5 54

1
T 05v%2r

¢~ W=20%0.92_ gGince X and Y are independent, the joint density function is the product

fﬂ('y) 01\/—
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19205 _ L 202002 _ 10,-2(c—45)2-50(y-20)_

f(@9) = file) faly) =

0.5 \/27r 0.1v/27 .
Then P(40 < X < 50,20 <Y < 25) = [0 [ f(z,y) dydax = 12 [0 [25 ¢~2(2=45)*~50(~20)* g, g,

Using a CAS or calculator to evaluate the integral, we get P(40 < X < 50,20 <Y < 25} =~ 0.500.

(b) P(4(X — 45)% +100(Y — 20)*' < 2) = I, % ¢~ 2z—45)"~50(y—20)? dA, where D is the region enclosed by the ellipse
4(z — 45)% + 100(y — 20)? = 2. Solving for y gives y =20 + 75 /2 — 4(z — 45)?, the upper and lower halves of the
ellipse, and these two halves meet where y = 20 [since the ellipse is centered at (45, 20)] = 4(z —45)* =2 =

m=4_5:I:v—1,-2-.Thus

4841/VZ. 204 f54/2 — 4(z—45)2

Y2 2 1 2 2

f/ :::Je—2(a:—4a) ~50(y-20)% 4 4 1"0/ f ¢ 2a=152~50(y~20) g
D 45-1/vZ  J20-454/2 — 4(z—45)2

Using a CAS or calculator to evaluate the integral, we get P(4(X — 45)2 + 100(Y — 20)* < 2) ~ 0.632.

33. (a) If f(P, A) is the probability that an individual at A will be infected by an individual at P, and k dA is the number of
infected individuals in an element of area d A, then f(P, A)k dA is the number of infections that should result from
exposure of the individual at A to infected people in the element of area dA. 1ntegfation 6ver D gives the number of
infections of the person at A due to all the infected people in D. In rectangular coordinates (with the origin at the city’s

center), the exposure of a person at 4 is

ffkf(PAdA k/f20[20 d(P, A)] dA = kf/ 1— \/(a:—mo2+(y yo)]dA

(b) If A = (0,0), then

E= k[/ 1-4 m2+y]dA m
;
2 (]
_k:f / rdrd9—27rk[ T ——'rs] \_/
=2wk(50—?):2° mk ~ 209k

E L

=20cos @

For A at the edge of the city, it is convenient to use a polar coordinate system centered at A. Then the polar equation for
the circular boundary of the city becomes r = 20 cos # instead of r = 10, and the distance from A to a point P in the city

is again r (see the figure). So

w2 20:;050 /2 —
f i'r) rdrdfd==% [ [%'r'z w %rs];o s
—m/2

—/2

dé

=k [7/%, (200 cos? 6 — 42 cos® 6) df = 200k ["/%, [4 + } cos 20 — 3 (1 — sin® §) cos 6] d6
_QOUk[29+—Slu29——sm9+2-—1-=nn 9]”2 _2()015:[-"{— +0,%+%+%+0_%+%]
=200k(% — 5) =~ 136k

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.
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15.6 Surface Area

1. Here z = f(z,y) = 2 + 3z + 4y and D is the rectangle [0, 5] x [1, 4], so by Formula 2 the area of the surface is

A(S) = [fp Ve 0)I? + [fu(=,9)]? + 1dA = [, V3 + £ +1dA = v26 [[, dA
= V26 A(D) = V26 (5)(3) = 15 V26

3. z = f(=z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z + 2y = 6, so D is the triangular region given by
{(z,y) |0 <2 <2,0<y<3— 3z} Thus

= [fo VB + (-2 + 1dA = VT4 [f,,dA = VIAA(D) = VT4 (L -2.3) = 314

5.y +22=9 = 2=y0—12 fo=0,f,=—y(9-9)"* =

4 p2 4 p2 yé
A(S):[/ \/02+[—y(g—yﬁ)—1/2}2+1dydm=ff -+ 1dyde
o Jo oJo YV9-y
= [ [ Zamgreves=s | fin~ 3] o= [n~ @)a]y = 120n ()
=L L g—y'-’y =E 1 8l ™~ g/t ==as 3
1. 2 = f(z,y) = y* — 2 with 1 < 2% + 3? < 4. Then

(S)=_UD,/1 + 422 +4y2dA=fo2”f12v1+4r§rdrd9= :”dﬂ ffr\/1+4r§d'r
2
— (0] [#a+4?2] = 517 VIT -5 5)

9, z=f(a:,y)=mywith:c2+y2Sl,SOfm:y»fuzm =

= [fp VT ¥ LdA= [ [ /T ¥ Trdrdd = [7 [30° +1)a’2]:; @
— T §(2VE-1) o = (2vE- 1)

. z = /a2 — 2% — 2, 2. = —z(a® — 2 —y*) 712, 2, = —y(a® — 2® — y?)~ /2,
z2 + 42
f[ ’ﬂ_'—az—;cz— —+1dA
1r/2 acﬂsﬂ
. 1/ +1rdrdf
1r /2

A(S)

Il

r=acos #

0 a
/2 a cos @ (1]
= f f T drd
/2
w/2 r=acos 8
- / [ ava?—r? ]
r=0

'rr/2 /2
=f fa.( az—qzcoszﬁ—a.)da-:Zazf (l—\/l—cosﬂﬁ)dﬂ
-7 /2 0
/2 /2 /2
=2a2j d0—2a2f Vsin29d9=a27r—2a2f sinﬁd&:az('fr—Z)
0 0 0
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13.

15.

17.

19.

21.

O CHAPTER15 MULTIPLE INTEGRALS

o= f(ws y) = e—:z;'z—'f’ fa: = _QEB_zz_yQ. fy = _zye,IQ,yE. Then

AS)= [ V(—2ze2*—v*)2 4 (“2ye=a"—v")2 +1dA= [[ +/A(z?+y?)e2E"+7) +1dA.

22 4y2<4 a2+y2<4
Converting to polar coordinates we have
A(8) = 02'” fuz mrdr df = ;)2“ do _]'02 r/4r2e=2% 4 1dr
=2 f: r m@ 72 13.9783 using a calculator.

(a) The midpoints of the four squares are (1,1), (3,2), (2, 1), and (3, 2). Here f(z,y) = =* + 3, so the Midpoint Rule

gives

AS) = [, VIE@OF + Fy@u)F +1dA = ij 2a)? +(2y)2+1-dA

~ 3 (VRAT+ AT 1+ VROT + REF +1
/BT ) +1+\/% O

:%(\/§+2£+\/%)m1.8279

(b) A CAS estimates the integral to be A(S) = [[o/T+ (22)2 + (2y)2dA = [ [ /1 + 4a? + 4y2 dy dz ~ 1.8616.

This agrees with the Midpoint estimate only in the first decimal place.

2z =1+ 2z + 3y +44%, s0

Oz

A(S}_fL\/1+(§_;)2 (3_y) = / /m dydwf ] /T4 T 48y T 647 dy da.

Using a CAS, we have [ [} /14 + 48y + 64y? dy de = 2 v14+ {3 h1(11f+3¢_f) In(3v/5+14/5)

or £ /T4 + 1‘11111\/54_3\/%.
3v/5 +/T0

flz,y) =1+ 2y = fo =2z, f, = 2z%y. We use a CAS (with precision reduced to five significant digits, to speed

up the calculation) to estimate the integral

A = dx2q? - 4xdy? d d fi = 3.3213.
(S} = f f 1_mzwfj‘,c—f—fy-|—ld!ydm f f \/my + z*y -+ 1 dy dz, and find that A(S) = 3.3

Here z = f(z,y) = az + by + ¢, fol,y) = a fy(z,y) = b, 50

_A(S)=ffD\/a2+b2+1dAz\/a,2+b2+1ffDdA:\/a2+b2+1A(D).

23.

If we project the surface onto the xz-plane, then the surface lies “above” the disk z* + z* < 25 in the zz-plane.

We have y = f(z, 2) = «* + 2? and, adapting Formula 2, the area of the surface is

AS)= [f V@ )P+ [f-(z,2)2 +1dA= rj VAT + 422 ¥ 1dA

22422<25 x2422<25
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Converting to polar coordinates £ = r cos ), z = rsin § we have

AS)= [T f3 4r2 Trdrdf = [3"db 3 r(4r®+ 1) dr = [8]3" [1_12(4,-2 s 1)3/212 = £(101/101 - 1)

15.7 Triple Integrals

1. [[Lov?dv =[5 [ oyt dydzda= [ [} [%a:yzf]z:"’_l dzdz = [} [ 322° dzdx

= J} Ue 1D o= 3 F o= ]y =

3. fo fo fu_ Zm— dmdydz—fo fu [w -m]m y—zdydz—fofu [ —z)z—(y%z)y}dydz

z i =22
=l fy (P -v2)dydz = [§ [y2" — ey da = f7 (4 - §2°) do

y=0

— 1,5 _ 1,612 _32_ 64 . 16
*[52 2% ]o_ 5 12 15

5. flz 02z (;n:rxe_y dydzdz = flz. OZz [*ze*”]::l;nzdmdz = f]z 022 (—:Ee‘lna: +$e°) dzdz
= I57 (1 +2)dedz= [ [~z + lm2]:2§= dz

:ff (—2z+22%)dz= [~z +22:3] =—44+P4+1-3=3%"

7. f”/zfo fo cos(z +y + z)dzdz dy —j"/z [sm :c+y+z] dr dy

z=0
"/2 I3 [sin(2z + y) — sin(z + y)) dz dy

= 'u"/2 [—— cos(2z +y) + cos(z + y)]T_, dy

= f;ﬂ [—3 cos 3y + cos 2y -+ § cosy — cosy] dy

w/2

= [~4sin3y + Lsin2y — —;-siny]ol =;—-3=-1

9. f-rfE ydV = fos .rux :j; ydzdydz = fo fo [Jz]::

v
e L

M f/f A= /f./ 2+ ﬂdmd”_.[/[ St _I_IZZdZdy

= f; J; [tan™*(1) — tan~1(0)] dedy = [ [ (2 —0)dzdy =% [} [= ]z..d i

=Z[Ma-y)dy=T[dy-Ly*] =2 (16-8—-4+1)=2=

T4y dydiI::j;Ja fo:z: Zyg dyd.'l’.‘

13. Here E = {(2,9,2) |02 <1,0<y < /z,0<2< 1+ 2z +y},s0

fffs by dV = ful foﬁ f01+m+y 6zy dz dydr = ful foﬁ [Gzyz] ::;+r+w dy dz

=f01 _]‘O‘E 6zy(l+ 2z +y)dyde = fol [3zy® +3:1:2y2;i—2:z::lq ]"'"/_dx

y=0

= [ (32® + 3z® + 22%/2) dz = [a: + 32" + iz 7/2]0 =
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Here T = {(2,4,2) | 0<2<1,0<y<1—2,0<z<1—z—y},s0
([l 24V = [} [ =V dadydo = [} [ a1~ 5 —3) dydo
| = L6 -2 Py)dyde = [} oy — 2 Py — b T de
= o[ (1-2)-2*(1—2)— 12°(1—2)*] dz

‘=24 o) do = (et - ot + o7

I
o
~—
%1

8

The projection of E on the yz-plane is the disk y* + 2z* < 1. Using polar

coordinates y = r cos and z = rsin f, we get

[[fzzdv = [[, [fwm_zm]m_ I, [42 — (497 + 42%)?] dA

=8f j;] —r)rdrdd =8 7 dBj;)l(r—rs)dr

= 8(om)[3r° - 4271, = 3

19. The plane 2z + y -+ z = 4 intersects the zy-plane when
2r+y+0=4 = y=4-—2z550
E={(z,9,2)|0€2<20<y<4-22,0<2<4-2z—y}and

V= [ [7% [ dadyde = [? {7 (4- 20— y)dyde

= JZ [4y — 22y — %yz]z:;_zm dz

= J2 [4(4 - 22) — 22(4 — 2z) — (4 — 20)?] dz
= [2(22° — 8z + 8)dz = [22° —4a® + gx]z =
21. The plane y + z = 1 intersects the zy-plane in the line y = 1, so
E={(m.y,z) |-1<z<1,2?<y<1,0<z<1-y}and
V= [ffgdV=[" [ fo dzdyde = [1, [ (1—y)dydz
=y~ é'yzlz_;n de = 1, (3 —2® + 12%) do

N - R RN ) R (U TUNE QUETE N RS D
_[2”’ 3‘”"'10“'"-] 2 3twts—3tw=1;5
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23. (a) The wedge can be described as the region
D= {(z,y,2) | +2°<1,0<2<1,0<y <z}
= {(m,y,Z)IOst L0<y<z0<z< W}
So the integral expressing the volume of the wedge is

fffp dv = fnlfnJc 0 = dz dy dz.

(b) A CAS gives [ [Z [V dadyde = T - 1.

(Or use Formulas 30 and 87 from the Table of Integrals.)

25. Here f(z,y, z) = cos(zyz) and AV = - 3 - 3 = £, so the Midpoint Rule gives

-
1
A

.
1
=

E
Il
=

Dl

. | 1 .3 3 9 3 (
=3 [cosﬁ +cos gz +cos gz +cos gz +cosa +cos—4+cose%+cos%%] ~ 0.985

21. E={(z,4,2) |02 <1,0<2<1-2,0<y<2-2z}, z
the solid bounded by the three coordinate planes and the planes

z=1l—-z,y=2-22

X

]
[3%]
=)

If Dy, Da, Dg are the projections of E' on the xy-, y2-, and zz-planes, then

Di={(®y) | -2<2<2,0<y<4-2"}={(z,9) [ 0<y<4 —VI-y<e<vI-y}
De={(y2)10sy<4 —3vVE-y<z<3VA-9}={(12) | -1<2<1,0<y <4-42%)

D3 = {(z,2) | 2* + 42 < 4}
[continued]
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Therefore
; {(:c.y, z)|—2<2<20<y<4-2°, —%\/4—$2—ySZS%\/4—$’—y}
={( h2) |[0Sy<4 —VA-y<z<I-y —§Vi-22-y<z<3 4—x2—y}
={@y2) | -1<2<10<y<4-422 - VI—y- 2 <z <Ay &7
={( 0,2 |0<y<4, —3VI-y <2< 3/3—, —\/4—31—422535«/4—11—422}
={@y2)| 25222 - }VI—P <2< }VI-2,0<y < 4-a — 4%}
={ ,y,z)\—lSle,—\/4—4.22Smg\/4—4zz,05y§4—3:2—4z2}
Then
—x2 d—zé—y/2 = — R
[ffs @y av = 2, [ [V flay, ) dedyda = [ [Y05 V2 f@y,2) dadedy
Lz 4—y—422 — 4—y—4z
-ef_ f4 —42% _V\/;_;T“Tf(;; y,z)d:cdydz_fo f"’z u/2 f\'\r”u%f(m,y,z)dmdzdy
\f — —z2 4z v =2 —x2—422
Hf_ J \Z_x/.;_]; g fa:y,z)dydzd:u*f i ‘;447]'; “° f(z,y, z) dydzdz
3. »
4

(=2,4,0,

(2,4.0)

If Dy, D2, and Dy are the projections of E on the xy-, yz-, and zz-planes, then

Di={(zy)|-2<2<2s" <y<d}={@y | 0<y<4-Vy<z<Vi},

Da={(2)|0<y<40<2<2-4y} = {(42)[0<2<2,0<y<4-22},and

D3={(:c 2)| -2<<20<2£2~ % }={(:r,z)|0§Z§2,—\/4—225.w5\/4—2z}
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Therefore E ={(zy2)|-2<2<2s?<y<4,0<2<2- 4y}
={@u2)10<y<4 ~Vy<z<Vy0<<2- 4y}
={@yal0<y<a0<z<2-4y, —y<z< i}
—{@nal0<z<20<y<a-2; —\y<z< vy}
=@ 2<e<20<2<2- Ja o <y<a—2:)

={(:r,y,z)|0$z$2, —\/-4_—2_2'Sm£\/_4ﬁ2z-,a:2§y§4-2z}

Then  [ff, f(@.y,2)dV = [2, [ [ Flw,y,2) dzdydz = [} [V [372 f(2,y,2) dz de dy

= Iy I3 [ Fayy, 2 dedzdy = [ [T (VO f(z,y,2) dudy dz

_f f2—;:2/2f42 2"f(‘lc y,z)dydzda:ﬁfo f ‘/mf‘i T f(w,y:z)dydxdz

33 y z Z
=1
12 = The diagrams show the projections
- of E on the zy-, yz-, and xz-planes.
orx:=y’ Therefore
0 1 x

folye o 7Y Fay,2) dzdyda = [ [} TV fa 2 dedady = [2 12 [0 f(o,y, 2) dody de
= [LEV Y oy, 2) dedzdy = [ [T V2 f(wy,2) dy deda

= [ = 2" f(z,y,2) dydzdz

35.

1,1,0)
f;f;fo”f(m,y, vydzdedy = [[[; f(z,y,2)dV where E = {(z,1,2) | 0<z<y,y<z<1,0<y< 1}.
If D4, Do, and I3 are the projections of E on the zy-, yz- and xz-planes then

D= [(z,y) |0<y<Ly<z<1}={(z,9)|0<z<1,0<y <z},

S
|

= (9 |0<y<L0<z<y}={@2)|0<2<1z<y<1}and

Dy={(z,2)|0<2<1,0<z<a}={(z,2)|0<z<Lz<z<1}.

[continued]
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Thus we also have
E={(z1%2)|0<2<1,0<y<2,0<2<y} ={(z,4,2) | 0<y<L0<2<yy<z <1}
' ={(m,y,z)IOSzSl,zgysl:ySscSl}:{(m,y,z)iOSmg1,0$z$m,z_<_y§:c}
={(z,9,2) |0<2<,z2<z<1,2<y<z}.
Then
fl]lf;foy f(@,y,2)dzdady = fu]fozf: flz,y,2)dzdydzx = fnlfu"_]: f(z,y,2)dx dzdy
(=1L By, 2) dudydz = [} [7 7 f(x,y, ) dydzda
= [L12 0" f(a,y,2) dyduds
37. The region C is the solid bounded by a circular cylinder of radius 2 with axis the z-axis for —2 < z < 2. We can write
[f[o(4+ 5z*yz*) dV = [ffo4dV + [[[,52*y2* dV, but f(z,y, z) = 5z?y2* is an odd function with
. respect to y. Since C is symmetrical about the zz-plane, we have [[[ 5z%y2z? dV = 0. Thus

J[[(4+52%y2?)dV = [[[,4dV =4.V(E) =4 r(2)*(4) = 64r.
38.m =f-”E plz,y,z)dV =j;' fnﬁj;,1+z+”2dzdyd:c:fol fuﬁ2(1+z+y)dyda:‘

- 1
=i [2y+2:t:y-l-yz]:;(‘)ﬁcﬂx=fD1 (2\/5+2x3/2+m)dm= [§x3/2+§x5/2+§x2]n= I

(3

My. = [[[g zp(z,y,2)dV = E fﬂﬁ °1+‘°+“ 2rdzdyde = [ foﬁ 2z(1+z+y)dyde

o

-y 1
= J2 oy 28y 4 ]I = [+ 20500 4 7)o = [0 4 807+ 4] — 1B

M.z = [[[; yo(z,9,2)dV = fol fnﬁf01+w+y 2ydzdydz = fol joﬁ 2y(1+z +y) dyde
R e W e (o 4 3e) da = [+ a4 e = B

My = [[[5 zp(z,9,2)dV = fol j;)ﬁ fﬂlﬂﬂ‘ 2zdzdy de = jul foﬁ [2%] F=1tE Y gy dy = fo1 fu‘/’?(l +z+y) dydz

z=0
= fnl foﬁ(l + 2z 4 2y + 2y + 2% +¢%) dy dz = fol [y +2zy +y* +ay® + :czy‘—i— %ys] z:{;ﬁ dr

1
=1 (\/5+-§$3/2+m+m2+x5/2)dm= [§m3/2+%$5/2+%m‘.2 - %w3+§x7/2]0 =3

m 553’ 79’ 553

Thus the mass is 73 and the center of mass is (%, 7, Z) = (
m’ m' m

M,. M.. Mmy) B (358 33 571)

Hom= [ [l @+y+ 2 dadydz = [§ [ [32° + 2y +22®]_, dydz = [3 [5 (3 + ay® + az®) dydz

=0

= I3 3%y + Jay® + aps)Y 0 de = [ (304 4 a22?) de = [tz + Ja227]5 = 2a® + 3o = o

Mys= [0 [ Io [m3 +x(y? + zz)] dedydz = [ [5 %a" + 2a*(y* + 22)] dydz

=g %a"’ + 2a® + 2a%2%) dz = 1a° + }a° = 15a® = M. = M., by symmetry of E and p(z,y, z)

O

Hence (7,7, %) = (—l%a,, 1—720:, TTEC"')-
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8. L = [7 [ [ k@ + 22 dzdyde =k [ [} (Ly® + 3L%) dyde = k [ 214 de = 2kL5.

By symmetry, I, = I, = I. = 2kL°.

6 L = [+ p@ vV = [ [ k@@ +vP)dz]dA= [ k@ +y)hdA

224 y2<a? 224y2<a?

= k:hfozwjo r?)rdrd6 = kh [Z7df [ r®dr = kh( (2m)[37%], = 2nkh - 1a* = Lnkhat

a. @m= [ [L [}V /22 +yPdzdyde
(b) (I 7.7 whereZ = % [T [ [TV o/a? + P dzdyda, T= L [1, [5 [V y /22 + 12 dz dy dw, and
=m f— me zvmz+y2d2dydm. )

() I. =_]'_11f:2 f;_”(mz+y2)\/m2+y2dz dyda::f_ll fmzf (z? + y*)*? dz dy dx

N

49, (au)-rn:f‘D % S e IS4+ z+y+z)dedyds = 3% + 4
®) @,7,7) = (m_lfo VI [V o(1 + 2 4y + 2) dz dy de,
el o 4 = vl + 2 +y+ 2)dzdydz,

m~! [ [V o ”z(1+m+y+z)dzdydg:)

_ (28 30w+128 45w+ 208
~ \ 97 + 44’ 457 4- 220" 1357 + 660

1 1—z2 oy ‘
OL=[ [T [(@+i)a+e+y+dzayan =BT
o Jo 0 40

51. (a) f(z,y, z) is a joint density function, so we know [ o5 f(z,y,2) dV = 1. Here we have
[Tk f@y,2)dV = [ [, [, fz,y,2)dzdydz = [} [ [2 Cayz dzdy da
=C [y wdz [ ydy fj zd= = C[§2%]; [397]; [327]} = 8C
Then we musthave 8C =1 = C=1
OPX<LY<1,2<1)=[1_[1 [ f(zyz2)dzdydz= [} [} [ Layzdzdyda

. 1 1 1
=3 fowdz fyydy [ zdz = 3220 3] 3% = 33) = &
(¢) P(X +Y +Z < 1) = P((X,Y, Z) € E) where E is the solid region in the first octant bounded by the coordinate planes
and the plane  +y + z = 1. The plane x -+ y + z = 1 meets the zy-plane in the line 4+ y = 1, so we have

P(X+Y+ZS 1)=fffEf(:u,y,z)dV= S fa T T dzyz dz dy da
=1 oo ey (322" V dydz = & [ 1 oy(1 — 2 — y) 2 dy da
=L [ 57"1(® — 2% + @)y + (22° — 2z)? + 23®) dy do
=1 Jo [(@® —22% + 2)39® + (22* — 2z)% ya+x(jf)]"_’_’dz

:1921{)(3’_4‘” +6I ~dat +ab)dz = 1:132(310)=5_7166

(© 2012 Cengage Learning, All Rights Reserved. May not be d, copied, or duplicated, or posted to a publicly accessible website, in whole or in pari,



276 [ CHAPTER15 MULTIPLE INTEGRALS

1 L gL gL 1 [ L L
V(E)y=L* = f‘“‘“=_1/ f / :c1zd:t:dydz:—3/ 'r:dz:f ydy/ zdz
L3 Jy Jo Jo L2 Jo 0 0

1 [@]L[gﬂr [zi’]"_ 1 P2} 18

T8

21,12),12), T*222 8

55. (a) The triple integral will attain its maximum when the integrand 1 — 2 — 2y* — 32 is positive in the region E and negative
everywhere else. For if E contains some region I’ where the integrand is negative, the integral could be increased by

excluding F' from E, and if FE fails to contain some part G of the region where the integrand is positive, the integral could
be increased by including G in E. So we require that 2% + 2y? 4 322 < 1. This describes the region bounded by the
ellipsoid =% + 2y° + 327 = 1.

(b) The maximum value of [f[,; (1 —z? — 2y* — 32%) dV occurs when E is the solid region bounded by the ellipsoid

2% + 2% + 32% = 1. The projection of E on the zy-plane is the planar region bounded by the ellipse % + 2y% = 1, so

E:{(:ﬂ,y,z) |-1<zL ], —/3(1-2?)<y< \/%(1—12),—\/%(1—27 -2 )<z< %(1—&:2—21;2)}

and
{1—= —2u
[[[La-s -2t -styav= [ [T /“ (1= — 2% — 8% dadyda — 20 x
\/i(l—m o - (1—:!:2-23;2) 45
using a CAS.

15.8 Triple Integrals in Cylindrical Coordinates

1 @ . From Equations l,:c:rcosﬂ:tlcosg =4-3=2
0:) : ym'r'smﬂ_!ismg—:l ¥3 = 2/3, z = —2, 50 the point is
T w4
3 “'Q ¥ i (2, 2/3, —2) in rectangular coordinates.
: 4]
1452

z=2cos(—%) =0,y= 2sin(—%) = -2,

and z = 1, so the point is (0, —2, 1) in rectangular coordinates.
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3. (a) From Equations 2 we have r* = (-1)24+1° =2s07 = V2; tanf = - = —1 and the point (—1, 1) is in the second

quadrant of the zy-plane, so f = %ﬂ + 2nm; z = 1. Thus, one set of cylindrical coordinates is (\/ﬁ, iz, 1)

(b) 7% = (—2)2 + (2V/3)* = 16 507 = 4; tan @ = 24 = —/F and the point (2, 2/3) is in the second quadrant of the

T S T % = 2 : 27
zy-plane, so f = 2? + 2nm; z = 3. Thus, one set of cylindrical coordinates is (4, 2 3).

5. Since § = J but r and z may vary, the surface is a vertical half-plane including the z-axis and intersecting the zy-plane in the

half-liney = z, z > 0.

1. 2=4—r2=4— (:t:2 +9?%) ord — 2% — y?, so the surface is a circular paraboloid with vertex (0,0, 4), axis the z-axis, and

opening downward.

9. (a) Substituting 2% + y* = r” and & = r cos 6, the equation 2> — z + y* + 2* = 1 becomes r* — rcos@ + 2° = 1 or
22 =1+rcosf—r2
(b) Substituting z = r cos § and iy = rsin#, the equation z = z* — y* becomes

2 = (rcosf)? — (rsin6)® = r?(cos® # — sin® ) or z = r? cos 26.’

1. 0<r<2and0 < z < 1 describe a solid circular cylinder with
radius 2, axis the z-axis, and height 1, but —7/2 < @ < 7/2 restricts
the solid to the first and fourth quadrants of the zy-plane, so we have

a half-cylinder.

13. We can position the cylindrical shell vertically so that its axis coincides with the z-axis and its base lies in the zy-plane. If we
use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shellas 6 < r < 7,

0<6<2r,0<2<20.

15. The region of integration is given in cylindrical coordinates by

E={(r6,2) | -m/2<0<7/2,0<r<20<z<r?}. This
represents the solid region above quadrants I and IV of the zy-plane enclosed
by the circular cylinder r = 2, bounded above by the circular paraboloid

z =12 (z = £* 4+ 3?), and bounded below by the zy-plane (z = 0).

:/:/!2 Jo jorz rdzdrdf = fwﬁz.ﬁ) ["z]z:; rdi?-f"ﬁ2 2r3d'rd6

T /2
f T/riz dp f2 rddr = Ie]—n/Z [%"'4]0
=7(4—-0)=4r
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17. In cylindrical coordinates, E is given by {(r,6,2) |0 <8 <27, 0<r < 4, -5 <z <4} So

[fs VTPV = 37 f§ 4y rdzdrds = [37 a0 fir*dr [*,ds

:[e]?:' 392 2%, = (2m) (%) (9) = 384

19. The paraboloid z = 4 — 2* — y® = 4 — r? intersects the zy-planc inthe circle z® + 3> =4orr =4 = r=2s0in

cylindrical coﬁrdinates, E is given by {(r, 0, z) [0 <0<7/2,0<7r<2,0<z2<4 77 } Thus -

iy P fﬂﬂfu g it R B AT 1wfn[ cosﬂ+sin9)z+%rzz]z;ﬂzdrde
= Jo"? f3 [(4r® = r*)(cos 0+ sin6) + 1r(4 — r?)?] drdo
- ar/2 [(4 3 .1. )cosa+su10) (4—1'2)3]’""‘2
/2

= [/% [6(cos8 +sin6) + 18] d6 = [% (sin f — cosB) + 126] "

=80-0)+3F - F-HO-1)-0=§x+ 47

21, In cylindrical coordinates, E is bounded by the cylinder r» = 1, the plane z = 0, and the cone z = 2r. So
E={(r68,2)|0<6<2m,0<r<1,0<z<2r}and
[z dv = f 21"'r'zcos Ordzdrdf = f fu [ cos Gz]z-zrd df = 2ﬁf0 274 cos® 6 dr dff

= for [g'r"coszﬂ] L =2 [T cos?0df =2 [7" 1 (14cos20)df = 1[0+ Lsin26])" = 2n

|

23. In cylindrical coordinates, E is boundéd below by the cone z = r and above by the sphere 72 + 22 = 2 or z = v/2 — r2. The
cone andﬂle;phere-intersectwhen2r2 =2 = r=LeoB={rf)| 0805205 rsl #5232 \/2——1"2}
and the volume is .

Il dV = J2m [ Y2 rdzdrdd = (2 [ (r222Y? " drdd = [2 [} (ry/Z= 17 — 1) dr dd
2T 4 j;,l (rv2—7T—r?)dr=2n [—%(2 — )32 %rg];
=2m (-3)(1+1-2%%) =-2r(2-2/2) = $r (V2-1)

25. (a) The paraboloids intersect when 2 + 3> = 36 — 32 — 3y = 2% +y® = 9, so the region of integration
is D = {(z,y) | «® +4? < 9}. Then, in cylindrical coordinates,

E={(r6z2|mr"<2<36-3%0<r<30<6<2r}and

= [ 3% pdadrdd = [ )7 (36r — 4r%) drd6 = 27 [18r% — r*]"2d9 = [27 81d6 = 162

(b) For constant density K, m = KV = 1627 K from part (a). Since the region is homogeneous and symmetric,
M,. = M,. =0and
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May = fn [5 @K)rdzdrdo = K [77 [ r[322)20007" drds

27 [2((36 — 3r)2 — i) drdo = £ [77 d6 [5(8r® — 2167° + 12967) dr

= X (2m)[Br® — 2844 4 1206,2]% — 7 (2430) = 24307 K

M. M
Thus (";E,@,E) = (A::z ; 'ﬁ! ﬁ) = (0 05 2?6320:1_2() = (0,0, 15)

27. The paraboloid z = 4z” + 4y intersects the plane z = a when a = 4z + 4y* or 2® +3? = %a. So, in cylindrical

coordinates, E = {(r,0,z) | 0 <7 < /2,0 < 0 < 2m,4r* < z < a}. Thus

2T py/a/2 2w pNa/2
m= f f f Krdzdrdf = Kf f (ar — 4r®) dr d@
4ar2

= K[ [-;-a':r2 - r“]f:ﬁ“de = Kf Ga df = —a, K
0 0

Since the region is homogeneous and symmetric, M. = M. —0and

2r p/a/2 pa 2 -ﬁ/?. y
My = f f Krzdzdrdg = Kf f (ha2r — 8¢%) dr do
0 0 4r?

2 27
- Kfo [1a%? — 478]7=V2/% g = Kf = Ld®rK

r=0

Hence (Z,7,%) = (0,0, 3a).

29. The region of integration is the region above the cone z = /22 + 32, or z = r, and below the plane = = 2. Also, we have

—2<y<2 with —/4 — 32 < = < /4 — y? which describes a circle of radius 2 in the zy-plane centered at (0, 0). Thus,

4—y2 27 27
f / ’ zzdzdz dy = / ff (rcosf) zrdzdrdﬁ—f ff 7% (cos §) zdz dr df
Va-y? J S22y

= 27 [212 (cosO) [52%] 222 drdf = & [2™ [2 12 (cosf) (4 — 12 ) dr df

=3 i coaﬂdﬂfﬁ (4r* — %) dr = L [sin@]3" [4r® — 2+°]2 =0

31. (a) The mountain comprises a solid conical region C. The work done in lifting a small yolume of material AV with density

g(P) to a height h(P) above sea level is h(P)g(P) AV. Summing over the whole mountainwe get
W = [[f. h(P)g(P)dV.
(b) Here C is a solid right circular cone with radius R = 62,000 ft, height H = 12,400 ft,

and density g(P) = 200 Ib/ft* at all points P in C. We use cylindrical coordinates:

= H=z
W= [27 [H [RA=2/H) 5 9007 dr dzdf = 2r [ 2002[3r?]7=8C 35 g
"
H 2 . H 2 3
_ R BV e 2 .l z
—4[0071"/0 z (I—H) dz = 200mR [D (z 7 +H2)d:z -
2 3 4 1H 2 2 2
= 222 _22° | 2" |7 _ af " 2H" . H r H-z z
= 2007 R [2 3H+4H2] —200#R(2 e r=tioi 2

= WrR*H? = Pr(62,000)7(12,400)* ~ 3.1 x 10" fi-Ib
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15.9 Triple Integrals in Spherical Coordinates

1. (a) : 652) From Equations 1, z = psingcosf = 6sinfcos T =63 -3 = 3,
y=psingsing =6sinTsinZ =6-1. %% = 3¢5 anq
il
/0
—5'4'6 i z=pcos¢p=06cos % =6- 325 = 3+/3, so the point is (%,%‘E,Sﬁ) in
/ !
1

rectangular coordinates.

(=

iy
£
e

H

:c=35ini_l’icos%:3o-‘§o0:0,

(b)

3z . .
4 y=23sin3Tsin I

z :3cos?7” =3 (— 22) :‘h%é,sothepointis (0,342‘@,—1}?) in

3-¥2.1=234 and

\\:;}\O ta
-
-

W

d

-

bl
w
-

‘rectangular coordinates.

-
@
[T re——

(3%

3.'(a)FromEquationslandZ,p:\/1:3+y2+z2=\/02+(—2)2+02=2,cos<,6:§=g:O = ¢=—,and

0 0 3m : : — 3r w
cos@ = o e 0 = 6= " [since ¥ < 0]. Thus spherical coordinates are (2, 57 2).
(b)p:\/1+1+2=2,cosr;f}=%::—Tw/i = ¢r=%r,and
@ -1 -1 1 3m
cosf = —— = — = ==—— = = — [sincey > 0]. Thus spherical coordinates
psing  2sin(3r/4)  2(v2/2) V2 4 : y >0l P

are 2@_31
Y474 )

5. Since ¢ = %, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z-axis.

7. p=sinfsing = p® =psinfsing & 2+’ +22=y & 22+y’-y+i+2=1 &
a® + (y — §)* + 2> = 4. Therefore, the surface is a sphere of radius 1 centered at (0, 1,0).
9. (a) z = psin¢cosh, y = psin$sinb, and z = pcos ¢, so the equation z? = z? + y* becomes
(peos¢)? = (psin ¢ cosB)? + (psin psin8)? or p? cos? ¢ = p®sin? . If p # 0, this becomes cos? ¢ = sin? ¢. (p = 0
corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,
such as tan® ¢ = 1, 2cos® ¢ = 1, cos 2 = 0, oreven ¢ = 5, ¢ = 3,
M2 +22=9 & (psingcosd)® + (pcos¢)® =9 < p*sin® pcos® O+ p>cos®d = Yor

p* (sin® pcos® 0 + cos® ¢) = 9.
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1. 2 < p < 4 represents the solid region between and including the spheres of z
radii 2 and 4, centered at the origin. 0 < ¢ < 7 restricts the solid to that
portion on or above the cone ¢ = %, and 0 < § < 7 further restricts the

solid to that portion on or to the right of the zz-plane.

13. p < 1 represents the solid sphere of radius 1 centered at the origin.

5’43 < ¢ < = restricts the solid to that portion on or below the cone ¢ = ST".

15. z > m because the solid lies above the cone. Squaring both sides of this inequality gives 2% > 22 +¢* =
22>z 4yt +22=p* = 22=pcos’p>1p® = cos® > 3. The cone opens upward so that the inequality is
cos ¢ > ‘—/IE, or equivalently 0 < ¢ < . In spherical coordinates the sphere z = 2° + y* + 2% is pcos p = p° =
p =cosg. 0 < p < cos ¢ because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 < p < cos¢), 0 < ¢ < I.

17. 23 The region of integration is given in spherical coordinates by
E={(p,0,¢)|0<p<3,0<8<7/2,0< ¢ <n/6}. This represents the solid
region in the first octant bounded above by the sphere p = 3 and below by the cone

¢ =m/6.

B ST IS o singdpdody = [i/°sinpde [/ do 3 o dp

IE]

= [—eosdg”® (615 [34°]5

(-2

)®) =2 (2~ V3)

] 3

19. The solid E is most conveniently described if we use cylindrical coordinates:

E={(r62)]0<0#<30<r<3,0<2z<2}. Then

[ffe fl@y,2)dV = 0"”[;[; f(rcosf,rsind, z) r dz dr df.
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21. In spherical coordinates, B is represented by {(p,6,¢) |0 < p <5,0 <8 < 27,0 < ¢ < 7 }. Thus
Ifs@+ 9 +222dV = [ [2 [2(0*)p* sinpdpdf dp = [] singdg ["dO [7 o° dp
~ [oosdly [012° [be7]5 = (2)(2m)(242)
= S125007 ~ 140,249.7
23. In spherical cgordinates, E islreprescntéd by {(p,0,¢)|2<p<3,0<0<2m,0<¢p<m}and
2? + y? = p*sin” P cos? O + p? sin® psin® § = ,c;v"'lsin2 ¢ (cos®  + sin® f) = p® sin® §. Thus
Iffp@@+v3)av = [T 57 [2(0*sin? ¢) p*sin pdpdf d = [ sin® pdo [77 d8 [} p* dp
= [7(1 - cos’ ¢) sinpde | ] [sp —cos¢ + 4 cos® ¢| 7 (27) : 3(243 — 32)

(1_§+1_§) (2m) (211) Gss

o™

25, In spherical coordinates, E is represented by {(p,8,¢) [0 <p <1,0<0 < 3,0 < ¢ < F }. Thus

s ze® P+ gy — f"/z w/d fu (psin ¢ cos f)e” ? % sin pdpdf dp = f’rlz sin? ¢ dep f;”z cos B do fol o2 dp
1
1r/2 11— coqub)dqbf"/zcosGde ( ]ij:pe”ﬂdp)
[integrate by parts with u = p*, dv = ,cu:z“’2 dp]

= [4 — L sin2¢]7"* [sin0]7/? [%p%f” - %a’”]l =(2-0)(1-0)(0+3)=%

0

27. The solid region is given by E = {(p,0,¢) | 0 < p < a,0 <8 < 2r, 7 < ¢ < 5} and its volume is

'.'r/3

V= [[fgdV = f:/sa 27 [ p?sin ¢ dpdf dgp = f,r 15 sin ¢ dg (27 d [ p* dp

= [~eosgl7/g 103" [30°); = (=3 + ) 2m) (30°) = Ltaa®

29. (a) Since p = 4 cos ¢ implies p? = 4p cos ¢, the equation is that of a sphere of radius 2 with center at (0, 0, 2). Thus

= [T I Iy o sindpdp b = [37 7 [36°),75° singdpdb = [7 [ (5 cos”9) sin ¢ ddf

= [ [~ % cos’g] S0 % do = [7T - (& —1)do = 59] =107
(b) By the symmetry of the problem M, = M.. = 0. Then
My = :" =3 :m’"& p® cos psin g dpde df = u U“/:! cosqt:smd) (64(:05 ¢) dpdf
= 7764 [~ 4 cos®|920/% df = [37 L do =21

Hence (Z,7,%) = (0,0,2.1).
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31. (a) By the symmetry of the regidn, My. = 0 and M. = 0. Assuming constant density K,
m= [[[, KdV =K [[[, dV = Z K (from Example 4). Then"

A i deV:Kf ”/4 ;"d’(pcosd))p smr;&dpdrj)dG—K'j W%mqbcosqb[ip ]”"°°s‘”d¢d9
= 1K [2" [/ sin ¢ cos ¢ (cost ¢) dpd = LK [7™ df [7/* cos® psin pdep

=3 [ oot o}/ = 4o (<) [ (B)° -1] = -8k (D) = B¢

Thus the centroid is (T, 7, ) = (&,%ﬁ, -‘Eﬂ) = (0,0, 7:}?;:6) = (0,0, ).

m m m
(b) As in Exercise 23, z* 4+ y* = p® sin® ¢ and
LS [ffp ) KV = K27 [71% [ (5 sin® ) in pdp g = K [27 [ s [3°)275 dp
=LK 27 [/ 5in® ¢ cos® ¢d¢dﬂ =LK [27df [T/* cos® ¢ (1 — cos® §) sin pdop
=K [B]g [—% cos® ¢ + § cos ¢]"/4

6
= k@ [‘% (8)' +3 ()" +1-3] - px @) - %

960

33. (a) The density function is p(z, y, z) = K, a constant, and by the symmetry of the problem Mz: = My. = 0. Then
M= 5" «/2.’6 Kp®sin¢ cos pdpdpdff = twKa* f"n sin ¢ cos ¢ dp = twKa®. But the mass is K (volume of

the hemisphere) = 27 Ka®, so the centroid is (0,0, £a).

(b) Place the center of the base at (0, 0, 0); the density function is p(z, y, z) = K. By symmetry, the moments of inertia about
any two such diameters will be equal, so we just need to find I.;:

2

L=]" "/2fD(Kp sin ¢) p® (sin® ¢ sin® 6 + cos® ¢) dp dep dB

ﬁI{f "/2 (sin® ¢ sin® 6 + sin ¢ cos® ¢)(a°) dpdb _
= 1Ka® [7" [sin? @ (—cos ¢ + 4 cos® ¢) + (=3 cos )]\ "/2 df = ;Ka Bjuz" [3sin® 0+ 1] d6
=1Ka® [2(10 - 1sin20) + 16]"" = 1Ka® [3(m — 0) + (27 — 0)] = L Ka®r
35. In spherical coordinates z = /zZ + Z becomes cos ¢ = sin¢ or ¢ = %. Then
= [T Sy PP sinpdpdedd = [ db [ sinpdg i p*dp=2m (—F +1)(3) = dn(2— VE),

My = :ﬂ 0"/4 ! p%sin ¢cosd)dpd¢d9 = 2#[——(:05 245]"/4 () = % and by symmetry M. = M. = 0.

L 3
Hence (T,7,%) = (0, 0, ——-—8(2 = \/ﬁ))

37. In cylindrical coordinates the paraboloid is given by z = 72 and the plane by z = 2r sin @ and they intersect in the circle

r=2sin@. Then [ zdV = [ [25"° [ 12 dzdrdf = 5% [using a CAS).
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39. The region E of integration is the region above the cone z = /2 + 32 and below the sphere 2% + y* + 2% = 2 in the first

octant. Because E is in the first octant we have 0 < § < 7. The cone has equation ¢ = T (as in Example 4), 500 < ¢ < I,

and 0 < p < /2. So the integral becomes

S ml2 (V2 (5 sin g cos 8) (psin ¢sin 8) p* sin  dpd6 dep -

(Jo (1~ cos* ) sinpag) [sin?]3" [36°]
= [4cos® ¢ —cosg]’* - %%(\/5)5:[% o (5_1)]_%@:4,@-5

15

w/4

= [7"sin® pdg f"/zqmacosﬂdﬂf p*dp =

#1. The region of integration is the solid sphere 22 + 42 + (z — 2)? < 4 or equivalently
pPsin® g+ (peosdp—2)° = p> —4pcosp+4<4 = p<dcoshs00<H<IM0<P< %, and

0 < p<dcosg. Also (2 +y° + 22)¥? = (p*)¥? = p? so the integral becomes

J73 fam oo (03) p? sinpdpdf g = [7/* [2" sing [1p°]772° dBdp = 3 /7 [ sin b (4096 cos® §) dB dep

p=0
4096)]"/2 cos® ¢ sin ¢ dop f2" do = 28 [ 2 cos gﬂ’rﬂ [0]%

0
= 58 3) (2r) = 5=

43. In cylindrical coordinates, the equation of the cylinderisr = 3,0 < z < 10.

The hemisphere is the upper part of the sphere radius 3, center (0, 0, 10), equation

r 4+ (z— 10)2 = 32, z > 10. In Maple, we can use the coords=cylindrical option |

in a regular plot3d command. In Mathematica, we can use Pa rametricPlot3D.

111
|
1

1

45, If E is the solid enclosed by the surface p = 1 + % sin 60 sin H¢, it can be described in spherical coordinates as
E={(p0,¢)|0<p<1+ 2sin60sin5¢,0 <6 < 2m,0 < ¢ < }. Its volume is given by

= [[f[ dV = [T 27 [T EROOmID/E 2 gin $dpdf dg = 13T [using a CAS].

47. (a) From the diagram, z = r cot ¢y to z = Va? —r2, 7 =0
to r = asin ¢, (or use a® — r? = r? cot® ¢,). Thus

-*Fz =a
V = 27 [esinde (VO or® g dr do L

rcot ¢g -~

a sin 7 =rcol ¢
=2 2 # (r/a — 1% — 12 cot ¢y) dr - Ll

] asin ¢g 0 = ¥

= ZT" [-—-(112 — r2)3/2 —r?cot P

=2 [— (a® — a? sin® q’au)a 72 _ g3 sin® ¢ cot ¢y + aa]

= 2ma®[1 — (cos® ¢ + sin? ¢, cos )| = 371'0.3(1 — Cos ¢hg)
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(b) The wedge in question is the shaded area rotated from & = 6, to § = 5. z
Letting i

Vi; = volume of the region bounded by the sphere of radius p,

and the cone with angle ¢, (6 = 0, to 62)

N

and letting V' be the volume of the wedge, we have ol 5 >

V = (Vag — Va1) — (Va2 — Va1)

B2 ppasingg prcot ¢y
Or: Show that V' = f f rdz dr df.
¢ Jp T

1 8in ¢y cot g
(c) By the Mean Value Theorem with f(p) = p® there exists some p with p, < p < p, such that
Fp2) — f(p1) = F(B)(pa — py) or p} — p§ = 35> Ap. Similarly there exists ¢ with ¢, < ¢ < ¢,

such that cos ¢, — cos ¢, = [ —sin t} Ad¢. Substituting into the result from (b) gives
2 g

AV = (p* Ap)(02 — 01)(sin ) Ap = p*sind Ap Agp Ad.

15.10 Cﬁange of Variables in Multiple Integrals

1.z =5u—v, y=u-+3v.

Az,y) _
Au,v)

Oz/Ou Ox/Ov
dy/ou dy/dv

B
1 3

The Jacobian is =5(3) — (—1)(1) = 16.

3. z=e "sinf, y=e" cosb.
d(x,y) |Ox/0r Oz/00

a(r,0) — |oy/or By/08

—e "sinfl e " cosf

=e e sin? @ — e"e” cos? 6 = sin? @ — cos? § or — cos 20

e’ cosfl —e"sinf

5 z=ufv, y=v/w, z=wlu.

dz/8u Oz/dv Bz/Bw /v —ufe? 0
-E%(:‘g-—’;)) = |8y/Ou Oy/ov Oy/Bw|= 0 1w —vfuw®
Y 8z/0u 0z/0v 9z/ow| |-—w/u® 0 1/u
[ 1| 1/w -'u/t.d2 ( U ) 0 —v/w? 0 1/w
Tl o 1/u v? —.w/u"‘ 1/u —w/u® 0

(1 _, +2(0- %) 4o=-L __1 _gq
v\ uw 2 uw uvw  uvw
7. The transformation maps the boundary of S to the boundary of the image R, so we first look at side S; in the uv-plane. S is
describedbyv = 0,0 < u < 3,50z = 2u+ 3v = 2uand y = v — v = u. Eliminating u, we have.z = 2y,0 < z < 6. Sz is
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the line segmentu = 3,0 <v < 2,50z =6+3vandy=3—v. Thenv=3—y = z=6+3(3—y)=15-3y,

6 <z <12 S3isthelinesegmentv =2,0<u<3,sox=2u+6andy =u—2,givingu=9y+2 = z=2y+10,
6 < x < 12. Finally, Sy isthe segmentu =0,0<v < 2,soz=3vandy=—v = z= —3y,0 < x < 6. The image of
set S is the region R shown in the zy-plane, a parallelogram bounded by these four segments.

v ¥
Sy
0,2) - (3,2) (6,3)
- T
S S hY —_—
‘if 5 R (12,1)
0 51 (3,0 u 0 x
(6,—2)

S, is the line segment u = v,0 < u < 1,50y = v = uand z = u? = y?. Since 0 < u < 1, the image is the portion of the
parabolaz = 92,0 <y < 1. Sy isthe segmentv = 1,0 < u < 1,thusy = v = land z = u?, 50 0 < = < 1. The image is
the line segmenty = 1,0 < £ < 1. Szisthe segmentu = 0,0 < v < I,s0z =u? =0andy=v = 0<y <1 The
image is the segment z = 0, 0 < y < 1. Thus, the image of S is the region R in the first quadrant bounded by the parabola

z = y?, the y-axis, and the line y = 1.

vA YA
S,

0,1) (1,1) {0, 1) (1,1)
. R
3

53 :F —TP if
Sy
0 :t 0 x

R is a parallelogram enclosed by the parallel lines y = 2z — 1, y = 2z + 1 and the parallel linesy =1 — 2,y = 3 — . The
first pair of equations can be written as y — 2z = —1, y — 2z = 1. If we let u = y — 2z then these lines are mapped to the
vertical lines u = —1, u = 1 in the uwv-plane. Similarly, the second pair of equations can be writtenas = +y = 1, ::; +y=3,
and setting v = = + y maps these lines to the horizontal lines v = 1, v = 3 in the uv-plane. Boundary curves are mapped to
boundary curves under a transformation, so here the equations u = y — 2z, v = = + y define a transformation 7" that
maps R in the zy-plane to the square S enclosed by the lines u = —1, u = 1, v = 1, v = 3 in the uv-plane. To find the
transformation 7' that maps S to R we solve u = y — 2z, v = = + y for z, y: Subtracting the first equation from the second
givesv—u =3z = z = (v—u)andadding twice the second equation to the first gives u + 2v = 3y =

y = $(u + 2v). Thus one possible transformation T' (there are many) is given by z = (v — u), y = 3 (u + 2v).

v ¥

3| v=3

u=-1

-1 0 1 u 0 | x
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13. R is a portion of an annular region (see the ﬁgure) that is easily described in polar coordinates as
R= {(r, 8)|1<r<+2,0<0< w/2}. If we converted a double integral over R to polar coordinates the resulting region
of integration is a rectangle (in the r{-plane), so we can create a transformation 7" here by letting u play the role of 7 and v the
role of 6. Thus T is defined by z = wcosv, y = usinv and 7" maps the rectangle § = {(u,v) |1 < u < /2,0< v < n/2}

in the uv-plane to R in the zy-plane.

U4 2
2| N2
i 1
s —_—
0 1 Vfi u 0 X
ANz,y) |21 B,
5. 3w v) =1y 5= 3and z — 3y = (2u+v) — 3(u + 2v) = —u — 5v. To find the region S in the uv-plane that

corresponds to R we first find the corresponding boundary under the given transformation. The line through (0, 0) and (2, 1) is
y=3z which is the image of u + 2v = 1(2u+v) = v =0;the line through (2, 1) and (1,2) is 2 + y = 3 which is the
image of (2u 4+ v) 4+ (u+2v) =3 = u+ v = 1; the line through (0,0) and (1,2) is y = 2z which is the image of

u+20=2(2u+v) = wu=0.ThusSis the triangle 0 <v <1 -, 0 < u < 1 in the uv-plane and

C ffa(e=3y)dA = [} [T (—u—50) |3 dvdu= -3 ) [wv+ 30T " du .

uw=0

=3[! (u—1?+ E(1 —u)?) du=—3[1u? — 1u® —

oen

(A-’)y=-3(3-3+§) =3

17. ggz’ gg = 2 2 = 6, 2% = 4u? and the plagar ellipse 9% + 4y® < 36 is the image olfthe disk u2 + v? < 1. Thus
Jlpa®dA=[[ (4u?)(6)dudv= I3 [ (247® cos® 0) rdr df = 24 [ cos® 60 [} 18 dr
u?u2<1
=24[1z + Lsin22])7 [3r1]] =24(m)(3) = 6m
19. gg:: g; = lév —ul/v2 = %, xy = u, y = x is the image of the parabola v = u, y = 3z is the image of the parabola

v? = 3u, and the hyperbolas zy = 1, zy = 3 are the images of the lines w = 1 and u = 3 respectively. Thus

3 pVEu g 3 .
f[ :t:ydA::ff u( )d«;@:f u(m\/a_—lnﬁ)duzfluln\/ﬁdu=41n\/§=21n3.
R 1 Ja 1

v

a 00
O(z,y,2z) _ ; _r Yy Z ; T ’
21. (a) m =10 b 0| =abcand since u = At S MS the solid enclosed by the ellipsoid is the image of the
00 ¢

ball w? +v* +w? < 1. So

[[[edv= [[[ abedudvdw = (abc)(volume of the ball) = Fmabc

upe? w2 <1
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2 yz 23 )
63782 63782 T G3g2. — 1» them e can estimate

the volume of the earth by finding the volume of the solid £ enclosed by the ellipsoid. From part (), this is

(b) If we approximate the surface of the earth by the ellipsoid

[f[fzdV = $m(6378)(6378)(6356) ~ 1.083 x 10" km®.

(c) The moment of intertia about the z-axis is I, = 22 +y?) p(z,y, z) dV, where E is the solid enclosed by
B

2 2 2

T Y 2 Asi on 2 = au. 1 = by, 2 — A(z,y,2) | _

e + = + = = 1. As in part (a), we use the transformation = au, y = bv, z = cw, so Blu,v,0)| abe and
L=[[fy(e®+y*)kdVv = [ff  k(a®u®+b%*)(abc) dudvdw

w4022 <1
= abek [T [27 [ (a®p* sin® g cos® 6 + b?p? sin® ¢sin® B) p? sin ¢ dp d dp
= abck [ fu fo (p? sin? ¢ cos? 0) p* sin ¢ dp df dop + b* fo ’rfol (p” sin® ¢sin® @) p? sin pdp df dq&]

= a’bek [ sin® ¢ do J2 cos?0d0 [ p* dp + ab®ck [ sin® ¢ dg fhsm 0de [, p*dp

1

= a®bek [ cos® ¢ — cos ¢| [29+4sm29]2’r : 5] + abck [§ cos® g — cos @] [36 ;'i—sin23]§W 1],

= a®bek (%) (m) (%) + ab3ck (%) () (%) = %11' (a2 + b2) abck

-1/5 2/5
23. Lettingu =2z — 2y and v = 3z — y, we have z = $(2v — u) and y = } (v — 3u). Then ggz g% 3;5 1;5 =%
and R is the image of the rectangle enclosed by the lines u = 0, w = 4, v = 1, and v = 8. Thus
-2y __'4 8 a1 _1/"" fal 171,274 8 _ g
./fn3$—'ydA_./u/1 =le d'udu_-s : wdu : vdv_s[zu]o[ln\'v”l—nﬁln&
. ] Mx,y) | —1/2 1/2 1 :
25. Lettingu =y —¢,v =y + =, we hiavey = 2(u 4+ v), £ = 1 (v — u). Then L = A = —— and R is the
gu=y y y=3z(utv)z=3v-u B(u,v) 12 12 3

image of the trapezoidal region with vertices (—1,1), (=2, 2), (2, 2), and (1,1). Thus

ffizzoa- [ [ ot}

2. Letu=z+yandv=—z+y. Thenu+v=2y = y=g(u+v)andu—v=2z = z=3(u—v)

N 1=, . A
dudv = = [vsm -—-] dv = 3 2usin(1)dv = 5 sinl
v 1

Viu=-—

dz,y) _|1/2 -1/2 1

Bww) 172 12| 3 Newll=letyl<lel <1 = -1<usxiland

o] =|—z+y| <|z|+ |y <1 = —1<wv <1 Risthe image of the square ){

region with vertices (1, 1), (1,—1), (=1, —1), and (—1,1). e _K’“

So [[p et dA = %f-11 .Lll e dudy = %[eu]l—:l [U]1—1 =e—e . Y/‘ i
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15 Review .
CONCEPT CHECK

1. (a) A double Riemann sum of f is E Z f(zi;,ui;) AA, where AA is the area of each subrectangle and (zl,y5) isa

i=1lf=
sample point in each subrectangle. If f (z,y) > 0, this sum represents an approximation to the volume of the solid that lies

above the rectangle R and below the graph of f.

(b) ff;a &y y = lim E Z f( ’L_?ly‘l.j) AA

m, IL_*OOI__IJ__I

(c) If f(z,y) = 0, [[, f(z,y) dA represents the volume of the solid that lies above the rectangle R and below the surface
z = f(z,y). If f takes on both positive and negative values, [[,, f(x,) dA is the difference of the volume above R but

below the surface 2 = f(z,¥) and the volume below R but above the surface z = f(z,y).
(d) We usually evaluate [ [, f(x, ) dA as an iterated integral according to Fubini’s Theorem (see Theorem 15.2.4).

(e) The Midpoint Rule for Double Integrals says that we approximate the double integral [ [, f(x,y) dA by the double

Riemann sum Z Z f(%i,7;) AA where the sample pomts (Z:,7;) are the centers of the subrectangles.
=1 f=]

1 .
(£ o= m : /1 ' f(z,y) dA where A (R) is the area of R.

2. (a) See (1) and (2) and the accompanying discussion in Section 157.3.

(b) See (3) and the accompanying discussion in Section 15.3.
(¢) See (5) and the preceding discussion in Section 15.3.
(d) See (6)—(11) in Section 15.3.

3. We may want to change from rectangular to polar coordinates in a double integral if the region R of integration is more easily
described in polar coordinates. To accomplish this, we use [ [, f(z,y)dA = [ f fab f(rcos8,rsin@) rdrdf where R is
givenby0<a<r<ba<f<p

4. (a) m = [f, plx,y)dA
(b) M. = [[,yp(z,y) dA, My = [, zp(z,y) dA

(c) The center of mass is (T, ) where T = %.. andjj = %

@) I. = [f, ¥*plz,y) dA, I, = [[, 2*p(z,y) dA, To = [}, (z* +y*)o(z,y) dA “
5. (@) Pla< X <bc<Y <d)=[° [? f(z,y) dydz
®) f(@,y) > 0and ffys f(z,y)dA=1.
'(c) The expected value of X is j1, = [fye @f(z, 1) dA; the expected value of V' is s, = [fyo f(z, y) dA.
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8. A(S) = [[p VIfe(@ 0)]* + [fu(z, y)] + 1dA

1 ™m n
1. (a) I.”B flz,y,2)dV = ; im 37 3 > f(mfjka?}:jmz:jk) AV

TR0 {7 f =1 k=1
(b) We usually evaluate [[ [ f(z,y,z)dV as an iterated integral according to Fubini’s Theorem for Triple Integrals
(see Theorem 15.7.4).
(c) See the paragraph following Example 15.7.1.
(d) See (5) and (6) and the accompanying discussion in Section 15.7.
" (e) See (10) and the accompanying discussion in Section 15.7.

(f) See (11) and the preceding discussion in Section 15.7.
8. @ m= [[[.plz,y,2)dV :

(b) My. = fffE zp(x,y,2)dV, Mz = .”f}; yp(z,y,2)dV, Mey = [ffE zp(z,y,z) dV.

Myz,if= sz,aﬂdfz I—V[i;v‘-’-
™m

(c) The center of mass is (%, 7, Z) where T = = =

@) I = [[[G° + 2%)p(x, y,2)dV, I, = [[[(* + z_:':)p(a;, y,2)dV, L = [[[,(z* + y*)p(z,y, z) dV.
9. (a) See Formula 15.8.4 and the accompanying discussion.
(b) See Formula 15.9.3 and the accompanying discussion.

{c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region E of
integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using

cylindrical or spherical coordinates.

Bz /Ou dzf/Ov
Oy /ou By/dv

_Oxz0y Oz 53;

T Oudv  Ovdu

10. (a)-ggz'z; =

(b) See (9) and the accompanying discussion in Section 15.10.

(c) See (13) and the accompanying discussion in Section 15.10.

TRUE-FALSE QUIZ

1. This is true by Fubini’s Theorem.
3. True by Equation 15.2.5.
5. True. By Equation 15.2.5 we can write fol fnl (=) fly)dydz = fol flz)dz fol f(y) dy. But fol fly)dy = ful f(z)dz so

this becomes [} f(z) do [} f(z) du = [ f(a;)drz]z.

7. True:  [f,, /4 — 22 — y? dA = the volume under the surface =* + y* + z* = 4 and above the zy-plane

= 1 (the volume of the sphere * + y* + 2* = 4) = § - §n(2)® = L¥r
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9. The volume enclosed by the cone z = /22 + ¥* and the plane z = 2 is, in cylindrical coordinates,
= foz"foz_ﬁz rdzdrdf # f:ﬂf:ff dz dr df, so the assertion is false.

EXERCISES

1. As shown in the contour map, we divide R into 9 equally sized subsquares, cach with area AA = 1. Then we approximate

[ f(z,y) dA by a Riemann sum with m = n = 3 and the sample points the upper right corners of each square, so

ffRf(w.y JdA = Z E f(m'hy.u)

f=1 _'f—
=AA[f(1, 1)+ f(1,2) + f(1,3) + f(2,1) + f(2,2) + £(2,3) + £(3,1) + f(3,2) + £ (3,3)]
Using the contour lines to estimate the function values, we have

[Ja f(z,y) dA = 1[2.7 + 4.7+ 8.0+ 4.7 4 6.7+ 10.0 + 6.7 + 8.6 + 11.9] ~ 64.0

=2
7SS  2ze) dody = [ [y +2%] 2, dy = 72y +de) dy = [oF +4e]
=4+4e® —1—4de=4e’* —4e+3
5. [ Jo cos(z?)dydz = f [eos(z?)y] ::: dz = ‘-01 z cos(z®) dz = %sin(mz)]; = %sinl
s fled ' = .
T. fn f i fn Y ysinzdzdydz = [ [ [(ysin2)z] 2" ™ dydz = [] [} y+/1—y?sinedyde
o[ 11— .2Y3/2 o y=1 — 7L . .| T _ g
= [ s(1-97) .sm:r:] ==‘J.:i:z:_fu gsinzds = —3cosz]; = 3
9. The region R is more easily described by polar coordinates: R = {{(r,0) |2<7r<4,0<8 <7} Thus
[[n f(z,y)dA = [ [ f(rcosb,rsin6)rdrde.
1. The region whose area is given by [; /2 (=020 0 0 4B is
r=sin20 {(rn,8)|0<0<Z,0<r<sin 20}, which is the region contained in the
loop in the first quadrant of the four-leaved rose r = sin 24.
13. % j; f: cos(y?) dy dz = fol J3 cos(y?) do dy
1,1)
= fy cos(y®) [=]525 dy = [, ycos(y?) dy
y=x
=[;51ny)]0 isin1
0 x
15, [[yedA= [} [T yeVdzdy = [} [ V=2 dy = [P —1)dy = [2e® —y)d =18 —3 -1 =18 — ]
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17. 74

{..

1 pfE 1
_Y _ga-— y _ 1 11, 219=vE
,[/1;1+3:sz__[0_£ 1+m2dyd$g/[,. 14 22 [3v ]v"" a

1
=%[__x dz = [In(1+2%)]} = 11n2
JO

1+ z2
0 1 x
I
19 Y (4,2) [, ydA = f? H=y® o
) sl 4 pYeA=Jg Jip " ¥ ]
O -~ x=8—y2
8—
0 . = 2] T dy = [P w8~ v? — ) dy
= [y (8y—2y*)dy = [49* — 1y*]> =8

2. y : /3 p3
i (2,422 [f (z2+y’)“”2dA=j f(r2)3/2rdrd9
D
2 x’+y?=9
y=\3x =f dﬂf A dr — w/3 \,]g
D

0 3 x _73 _8ir

35 5

3. [[f, zydV = ]03 Iy :"‘” zydzdyde = fua Iy [z]::;+” dy dr = fu Iy zy(z +y) dy dz

e j;’ Jy(@®y +ay?)dydr = [ [$2%y® + §ay’ ;: o do= I (b2t + Lat) do

=33 s*de = [3o°]; = % =405

2. [f[; ygzzd\/—f_ f\/_.jl_” = Yz d!:n:dzciy-—f1 ]“\/_.yz (1—92 —2%)dzdy

1—y2
fo (r? cos® 0)(r* sin? B) (1 — r*) rdr df = '[62" , 3sin 220(r° — ") dr d

—j:"l(lfcosilﬂ)[sr —3r ]r*1 d9='%-[9—‘3“149] ==5

. [ffpyzdv = [2, [V [Vyzdzdyde = 2, [V Lfdyde = [T [? 13 (sin® 8) r dr dB

0Jo 2

_ 16 (T30 . 16[_ 1eog®g]™ — 04
=3 [sin®0df = [~ cosf + § cos 9]0—15

8. V=2 + 4 dyda = [2 [a%y + 45°]" " de = f2 (32° + 84) dw = 176

y=1.

\

V= ER g dedy = [2f¥ (1—1y) dedy

2 a
=/ (v ':liyz)dy='§

KN
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33. Using the wedge above the plane z = 0 and below the plane z = mz and noting that we have the same volume form < 0 as

for m > 0 (so use m > 0), we have

V=2V o mzdzdy =2 [/* m(a® - 9y®) dy = m[a?y — 3y°]"° = m(%a® - 3a®) = Zma®.

][ ]

B @m= [} [ ydedy= [} (y—y*)dy=3 - 1=

B

) My = [ [27" aydedy = f3 31— ) dy = ~50 -] = &,
M, = fulfol_ya v dedy = fﬂl (v* —y*)dy = &. Hence (T,7) = (& ).
A 017”2 yidedy = [ (v° — %) dy = &,
I = o Jy 7 vt dudy = f3 3y - ) dy =~k (1 - = &,

=2 1/12
Io=1I+1 =%1y = 4 =% = 7=71§:an

37. (a) The equation of the cone with the suggested orientation is (h —2) = 2,/22 +42,0< 2z < h. Then V = -:1;1m,2h is the
volume of one frustum of a cone; by symmetry M,,. = M. = 0; and

h—(h/a)y/z2+7 2r pa p(h/a)(a—r) .y :
M,,y_ f/ f zdzdA = / f f rzdzdmw~w/ rg (a—r)’dr

:1:244,!2 <al

B s\, _ wh? Ei%?ﬁ a'\ _ wh’a’
f(‘” Bar" +7")dr = a2(2 s v T) =12

Hence the centroid is (Z,7, %) = (0,0, zh).

Ul/ ) n 2”}!. a a wa h
3 3 4
h 1--—_ T :r‘de_‘—‘zqr —_ reo—-r r=—— — — — _
( ) N f(l ./( /() ' dzd [0 0 (G )d L (4 ) 10

39. Let D represent the given triangle; then D can be described as the area enclosed by the x- and y-axes and the line y = 2 — 2z,
or equivalently D = {(z,7) | 0 < 2 < 1,0 < y < 2 — 2z}. We want to find the surface area of the part of the graph of
z = * + y that lies over D, so using Equation 15.6.3 we have

2 2 —2x
A(S):f[ \/1+(g§ +(%) dA:f \/1+(2m)=+(1)2fm:f1fz VT iR dyds
D
= JoVZF AR (Y] do = [}(2-22)VEF AP de = [} 22T AP dz — [ 222 T AP de

Using Formula 21 in the Table of Integrals with a = V2, w= 2z, and du = 2 dz, we have

J2v2+ 452 dz = /2 + 42 + 1n(2w + /2 + 4x? ) If we substitute w = 2 + 422 in the second integral, then
du=8zdzand [2zvV2+4a2de =1 [ udu =1 2u%? = 1(2 + 42?)*/2. Thus

A(S)= [z V2 + 422 + In(2z + \/2+4m§) = _61.(2 +432)3/2]:
VB 10 (24 VB) — HO I+ o = 2 4

=In(vZ+v3) + ¢ ~ 1.6176
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. ; S
2 2
} [ f\/g__(a, +z’ dydm—/ fﬂw(w +y ) dydx
0 % jfﬁz jo (rcos 8)(r?) r dr df
- / = cos 0 do J2rtdr .
= [sm6]™, [4°]5 = 2- §(243) = 32 = 97.2
43, From the graph, it appears that 1 — z® = e® at z ~ —0.71 and at 1.25
x =0, with 1 — 27 > e® on (—0.71,0). So the desired integral is
[fp A% [%p [ yPdyda
=} Lol =5 — ] da -1 025
~0.25

e AT w8 g B8 1.7 1350 s
=3[z — 2%+ §2° — 327 — 3€%°]_ ,, = 0.0512

45, (a) f(z,y) is a joint density function, so we know that [ ;o f(x,y) dA = 1. Since f(z,y) = 0 outside the rectangle

[0,8] x [0,2], we can say

Jfia f(o,0) dA= [, [ S ) dyda = 3 Ol +v) dy do
=C [3 [ay + 30*]'25 dz = C [3 (22 + 2) dz = C[a? + 22]) = 15C

Then15C =1 = C=1—15-.

b P(X<2,Y>1) f_ S fzy) dyde = fn 1 15 :Ly)dyd:c*m_ﬂ) [xy+?al"J2]y T de

=% 5 (2 +3) do =% [" + ol =3

(c) P(X+Y <1)=P((X,Y) € D) where D is the triangular region shown in ¥y
the figure. Thus
PIX+Y 1) = [f, H(z,5)dA = [} [2" &(z+y) dyde
=1—x
=15 fo [y +3 2]§-o dz

=& [} el —2)+3(1 - 2)*] dz

1 1
=%f0(1—m2)d$:§lﬁ[:r—éx3]0=%

@, : I J I ) dedyda = [ 137 (YT £(avy,7) dady dz

y=1-—z

X X=J3’
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49, Sinceu =2 —yandv=z+y, 2= 3(u+v)andy = 3 (v — u).

51.

53.

—
1 r—y _ 0 a1 ' _ 4d'u_
_Qandf‘[Rm+ydAg‘/;.[_zv(—z—)dudvf—lfz ?——]_uz,

Letu=y—zandv=y+zsoz=y—u=@w-z)-u = r=iv-vady=v—3(v—u)=3i(v+u).

o(z,y)
8(u,v)

1/2 1/2
~1/2 1/2

AMz,y)

Thus B(u, v) =

= 5(3) — 3(3)| =|—3]| = %~ R is the image under this transformation of the square

Oz dy 0Oxdy

Judv v oy

with vertices (u, v) = (0,0), (—2,0), (0,2), and (-2, 2). So

PP = 1 1r271..2 1,,37u=0 102 2 8
[[ovan= [0 £ (B avar= § 2 a4, o= § 2 02— Y
R o J-2

This result could have been anticipated by symmetry, since the integrand is an odd function of y and R is symmetric about

I
|-
—
wlt

=
w
|
wloo
[~
=y
I
o

the z-axis.

For each r such that D lies within the domain, A(D;.) = 7r?, and by the Mean Value Theorem for Double Integrals there

exists (z., yr) in D, such that f (2, yr) = # / f(z,y) dA. But 111(1)1+ (zr,yr) = (a,b),
Dy T—

so lim £ /f [(z,y)dA = lim+ f(zr,yr) = f(a,b) by the continuity of f.
D, r—0

r—0+ wr?
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1, ¥ Let R = US_, Ri, where
5-_
O N Ri={(z,y) |e+y>i+2,2+y<i+3,1<z<32<y<5}
R
34 5 5 X
|l g [l +4ldA= % [[; [o+v}dA= [z -+ [, dA, since
] §+y=5 )
LT [z +y] = constant =i + 2 for (z,y) € Ri. Therefore
e P & . JJ'R [z +yldA = E?:1 (i+2) [A(R:)]

= 3A(R:) +4A(Rz2) + 5A(Rs) + 6A(Rs) + TA(Rs)
=3(1) +4(2) +5(2) +6(3)+7(3) =30

3 fwe = [fm)dr——/ U cos(t?) ]d;.,- 9

= [ cos(t?) dtdz = [ [ cos(t?) dudt [changing the order of integration] R=a
0Jz 0J0

= fo teos(t?)dt = % sm(tz)] 3 lginl

4 y — 1 =
5. Since |zy| < 1, except at (1, 1), the formula for the sum of a geometric series gives i 3 (zy)", so

fO fﬂ T ::y dxdy = r[) [;] - dﬂ,d’y— Z fﬁ rﬂ xT d:z:d'[ . [fl ™ d.’L’] ]:fnl yn. dy]
:ngﬂﬁ.#zrgnm=ﬁ+£7+§§+' ﬁzn—l_ﬂ'

1 —_—
1-zyz

fff dﬂcdydz—/[ Zmyz dmdydz—Z/// zyz)" dedy dz
1—-zyz 0 n=0

18

7. (a) Since [zyz| < 1 exceptat (1,1, 1), the formula for the sum of a geometric series gives

(zy=z)", so

1l
o

1 1 1
- 1 s 1. n s
'",EO[I dm][ro dy][ z dz] n§0n+1 n+l n+l
o 1 1 1 ‘ g 1
=S mrEEtEtEti=Ia
(b) Since |—zyz| < 1, except at (1, 1, 1), the formula for the sum of a geometric series gives ik E (—zyz)", so
=0
&5 1 p1 pl
f f f dx dy dz —/ -/ E (—zyz)" dzdydz = Y f f f (—zyz)" dz dy d=
1 +$J 0 n=0 r=0Jo Jo Jo
n T " n 1 1
n.—o (=1) [f " da:] [r" dy] [fo . dz] ,,gu( 1) n+1 n+1 n+1
o (-1)" 1 1 1 £ (—1)“’1
= = — — — —_—— e e _—
,nz::o (n+1)3 13 2% 38 ngﬂ n? [continued]
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* To evaluate this sum, we first write out a few terms: s = 1 — % + §13' - % + 5% — 6i3 ~ (.8998. Notice that

ar = ,;'—3 < 0.003. By the Alternating Series Estimation Theorem from Section 11.5, we have |s — sg| < a7 < 0.003.

This error of 0.003 will not affect the second decimal place, so we have s =~ 0.90.

. Ou Oudz  Oudy Oudz _Ou du .
9. = = = z. e O s Z5
(a) z =rcosf, y=rsinf, z =2 Then — = ay Br + o cosf + By sin 6 and

8u udx . 8%u By 8u 8z 5 % By &u Oz &u 0z
o7 = 9[6z2'é?+8y33:5;+626ma}+ B[Ey_?@-l_r?mayﬁ;—'_azayg]
2

_ B%u 8
= o cos? B-i-Wsm 9+28 B cos @ sinf

Similarly % = -—-g—: rsinf + % rcosf and

u _ Pu o gt *u 0*u du u
= P g2 2 .. — 2% sing.
iy + 3y 512 cos® Bya:r;r sinfl cos @ o2 rcosf ayrsmﬂ So
FPu  10u  10°u_ Pu  du os? 8%u 0%u ducosd  Busind
a5t ror T reE T o = g o 0+ g’ "Haya Sel Ll I T
o*u %y ®u
+835m 3+62c058 28y8m5m9m66

_@cos{? 7@sin9+62_u

ox Oy r 0z2
az 82
22 31;3 + 822

(b) z = psingcost, y = psingsinb, z'= pcos¢. Then

du _Juds  Budy  Budz Ou u . . . Bu
P amap+5§%+56—p—5sm¢cosﬂ+a—ysm¢am6+£cos¢,and

&u 8%u oz uw 8y  8%u 8z
5?“wmwbﬁw+@&w+mw%]

., . [Pudy 8Pu bz  Bu Bz
+omdsnd B+ i)
Pudz BPu Bz Ou By
+m”bﬁ%+%&%+w&a]
2

8u *u 7
u~2aya sin? r/ischosB—i—?a B smqbc,osq’;cosﬂ+2a 6 sin ¢ cos ¢ sin @
2
+g—sm ¢cos® G—I-gy—sm ¢sin? 6+g 2cos ]

- Ou _ du du ; ou .
Similarly 3 ~ 5z pcospcosf + 3 pcos¢sing — Bz psin ¢, and

I, or posted to a publicly accessible website, in whole or in part.
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3211 3211. 9 9 . 822& 2 .
W—2wp cos qﬁsnllﬂ cosﬂ—?az—az—p sin ¢ cos ¢ cosf
Fu 4 . : Bu 5 o 2 u 2 3 .2
_2-3—-ya-p sm¢c05¢8m9+5§p cos® ¢ cos 9+a—y2p cos® ¢ sin® @
% .05 ou u ., Ou
+6_zip sin qb—égpsmqbcosﬁ—a—ypsmq&smﬁ-—b;pcosqf)
And-g%=—%Epsinésin9+g—;psinq#cosﬁ,while
&u 8*u 9*u
o 28 3 p* sin® ¢cos€sm6+a—p sin? qbsm 0
Bu 5 . o 2 ou . Su . .
+5§§p sin” ¢ cos B—Epsmqﬁcosﬂ—a—ypsmqs sin @
Therefore
Pu 20u cotgpdu 1 (?iu 1 Pu

W+555+ F 0% FoF | pPenie ol
3:1:2 [(sm ¢ cos® 0) + (cos® ¢ cos® §) + sin? 6]

2; [(sin® ¢ sin® 0) + (cos® ¢ sin® 6) + cos® 0] +62— [cos® cf;+sm ?
du 2sin” ¢ cosf + cos® ¢ cos — sin® ¢ cos @ — cos @
O psin ¢
& du [2sin2q‘) sin @ + cos® ¢ sin @ — sin® ¢ sin 6 —sinG]
Ay psing '

But 2sin? ¢ cos 0 4 cos? ¢ cos § — sin? ¢ cos @ — cos @ = (sin? ¢ + cos® ¢ — 1) cos @ = 0 and similarly the coefficient of
du/8y is 0. Also sin® ¢ cos® 8 + cos® ¢ cos” 0 + sin® = cos® @ (sin® ¢ + cos” @) +sin®# = 1, and similarly the
coefficient of 8%u/8y” is 1. So Laplace’s Equation in spherical coordinates is as stated.
" Jy I3 fs f(t)dtdzdy = JfJ; f(t) dV, where .
E={(t,zy)|0<t<20<z<y0<y<ag}

If we let D be the projection of E on the yt-plane then

D ={(y,t) |0 <t<umt=<y <z} And we see from the diagram

that E = {(t,2,y) [t <2<y t<y<z,0<t<az} So
Jo B fs F@®ydtdzdy= [ [T [} F®)dzdydt = [ [ [ (v t)dy]
=y [y _—ty)f( ly2¢ dt=J5 [32® —tz — 3% + 2] f(2) at
= [T [3° —to:+-t2] fR)dt = [T (ha® — 2tz +£7) f(t) dt

=3[ —t)?f(t)dt
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13. The volume is V = [[[  dV where R is the solid region given. From Exercise 15.10.21(a), the transformation = = au,
y = bv, z = cw maps the unit ball u* + v? 4+ w? < 1 to the solid ellipsoid

2 22
__|_+_<j M

= abe. The same transformation maps the .
b2 B(M, v, W) ¥

planeu+v+w=1 to < + b + = 1. Thus the region R in xyz-space ‘

corresponds to the region S in www-space consisting of the smaller piece of the

_ unit ball cut off by the plane u + v + w = 1, a “cap of a sphere” (see the figure).

We will need to compute the volume of S, but first consider the general case

where a horizontal plane slices the upper portion of a sphere of radius r to produce ﬂiw
écap of height k. We use spherical coordinates. From the figure, a line through the / r—h —9, "; \

origin at angle ¢ from the z-axis intersects the plane whencos ¢ = (r — h)/a =
a = (r — h)/ cos ¢, and the line passes through the outer rim of the cap when

a=r = cos¢=(r—h)/r = ¢=cos™((r— h)/r). Thus the cap

is described by {(p,0,¢) | (r —h)/cos¢p < p<r,0<f<2m,0< ¢ < cos ™ ((r — h)/r)} and its volume is

cos~L({r—h}/r
SN o el j[r_h)/mwpsmqbdpdqbdﬁ

= 0217 (;:05—1((1-—11)/1") [% sin gl')]

d¢o dé

p= (7 —h)/cosd

(r—h)/7)
f f [7'3 sin ¢ — ('r ;) smqﬁ] depdi

:%_Oz“ [~rcos — 3(r — h)? cos™ f,i‘)]"j cos™ (r=R)/") g

B %fozw [_T'S (T;h) - (?“;h)_2+?~3+%(r—h)a] do

=1 [3™(3rh® — 1h%)dO = L(3rh® — 10%)(2x) = whP(r — D)

3

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method,;
see Exercise 5.2.49 [ET 6.2.49].)

To determine the height h of the cap cut from the unit ball by the plane line y=v=1w
utv+w= 1, note that the line u = v = w passes through the origin with P
- . | . N (5550 %)
direction vector {1, 1, 1) which is perpendicular to the plane. Therefore this line
- : 111
coincides with a radius of the sphere that passes through the center of the cap and \ )QB' 3 3)
h is measured along this line. The line intersects the plane at (3, £, %) and the plane u+ov+w=1

‘sphere at (‘—}5, %, 713) (See the figure.)
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2 -
The distance between these points is h = /3 (715 - %) =3 (715 = %) = 1— 5. Thus the volume of R is

f[ v = dV:abcffst:ach(S)

A TR

= aber (% - 725) (% + ﬁ;) = aber (% - 9—\875) ~ 0.482abc

3(1 Y, 2

A(u, v, w)
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16.1 Vector Fields : ;

1. F(z,y) =0.3i—0.4] ’
2
All vectors in this field are identical, with length 0.5 and i

N
parallel to {3, —4). \ \ l\

3. F(z,y) = —3i+(y—2)i y
The length of the vector —3 i+ (y — z)j is \ \ \ z\ -«

/% + (y — z)2. Vectors along the line y = z are e

-
| < |/
horizontal with length . - / I /

yit+a2j

The length of the vector

5 F(z,y) =

—

yi+zj .

mfsli | }L

4—//
/1
g
Ny

il
P 1/
//'..-v_.,.

=

-
——
7. F(z,y,2) =k &
All vectors in this field are parallel to the z-axis and have T T
length 1. ‘ \LU7 {
(I ¥
f
9. F(z,y,2) = zk N
At each point (z, y, z), F(z,y, ) is a vector of length |z|. ’l 4 |
For z > 0, all point in the direction of the positive z-axis, M
while for z < 0, all are in the direction of the negative | )
z-axis. In each plane z = k, all the vectors are identical. : 5 ]
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1.

13.

15.

17

19.

21.

25,

27.

. Vf(z,y,2) = J=(z, 9, 2) i+ fy(z, v, z)j + f:(ft,'ys z)k =

O CHAPTER16 VECTOR CALCULUS

F(z,y) = (z, —y) corresponds to graph IV. In the first quadrant all the vectors have positive z-components and negative
y-components, in the second quadrant all vectors have negative z- and y-components, in the third quadrant all vectors have
negative z-components and positive y-components, and in the fourth quadrant all vectors have positive z- and y-compdnents.

In addition, the vectors get shorter as we approach the origin.

F(z,y) = (y,y + 2) corresponds to graph I. As in Exercise 12, all vectors in quadrants 1 and II have positive z-components
while all vectors in quadrants Il and IV have negative z-components.Vectors along the line y = —2 are horizontal, and the

vectors are independent of z (vectors along horizontal lines are identical),
F(z,y,z) =i+ 2j + 3k corresponds to graph IV, since all vectors have identical length and direction.

F(z,y, z) =z i+ yj+ 3k corresponds to graph III; the projection of each vector onto the zy-plane is z i + y j, which points

away from the origin, and the vectors point generally upward because their z-components are all 3.

45
} : : ]| i ﬂ | The vector field seems to have very short vectors near the line y = 2z.
} Fie " : For F(z,y) = (0,0} we must have y* — 2zy — 0 and 3zy — 62> = 0.
—45 : i : . : : i 45 The first equation holds if y = D or y = 2z, and the second holds if
S aed 4 2= 0ory = 2z. So both equations hold [and thus F(z, ) = 0] along
\: o : : tt, the line y = 2.
-45

flz,y) =ze®¥ =
Vi(z,y) = f=(z9) i+ fy (2,9) § = (me™ -y + €™¥) i + (ze*¥ - 1) j = (zy + 1)e™¥ i + 2% j

T £ g Yy . z
1+ J+
VEE+y2+22 22+ 4227 e 4yR 4R

fla,y)=2-y = Vf(z,y)=2si-]

; ; y
2
The length of V f(z,y) is v/4z? + 1. When x # 0, the vectors point away A/A/ \A\‘

from the y-axis in a slightly downward direction with length that increases —6 0 é E 6 x

as the distance from Fhe y-axis increases. | %—2 &

2z . 4y z :
We graph V f(z,9) = 1+x2+2y21+1+m,+2y2_]alongw1th : =
a contour map of f. ¥
The graph shows that the gradient vectors are perpendicular to the =4

level curves. Also, the gradient vectors point in the direction in

which f is increasing and are longer where the level curves are closer

together.
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2. f(z,y) =2 +y* = Vf(z,y) =2xi+2y]. Thus, each vector V f(z, y) tias the same direction and twice the length of
the position vector of the point (z, /), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence, V f is graph III.

N f(z,y) = (@+y)?* = Vf(z,y) =2(z+y)i+2(z+y)j. The z- and y-components of each vector are equal, so all
vectors are parallel to the line y = x. The vectors are 0 along the line y = —z and their length increases as the distance from

this line increases. Thus, V f is graph II.

33, Att = 3 the particle is at (2, 1) so its velocity is V(2,1) = (4,3). After 0.01 units of time, the particle’s change in
location should be approximately 0.01 V(2, 1) = 0.01 (4, 3) = (0.04, 0.03}, so the particle should be approximately at the
point (2.04, 1.03).

35. (a) We sketch the vector field F(z,y) = xi — y j along with
several approximate flow lines. The flow lines appear to

be hyperbolas with shape similar to the graph of

y = £1/z, so we might guess that the flow lines have

equations y = C/z.

(b) If & = 2() and y = y(t) are parametric equations of a flow line, then the velocity vector of the flow line at the
point (z, y) is z'(t) i + 4’ (t) j. Since the velocity vectors coincide with the vectors in the vector field, we have
d(t)i+y'(t)j=wi-yj = da/dt=uz,dy/dt = —y. Tosolve these differential equations, we know
dz/dt =z = da/z=dt = Inlz|=t+C = z==xe'"% = Ae' forsome constant A, and
dyfdt=—y = dy/y=—-dt = Inly|=—-t+K = y==He*T¥ = Be* for some constant B. Therefore
xy = Ae’Be™* = AB = constant. If the flow line passes through (1,1) then (1) (1) = constant =1 = azy=1 =
y=1/z,2> 0. o

16.2 Line Integrals

1. o=t andy =1¢,0 <t <2, s0by Formula 3

- 2 dz\? dy i " : ¥
vds= [ £4/(Z) +(F dt:] ¢ \/(3t2)2+(1)2dt=/ 2 /9t + 1 dt
S 0 0 0
=T - 1)3’2]2 = (1452 — 1) or & (145 V145 — 1)
36 3 0 54 54

3. Parametric equations for C are z = 4cost, y =4sint, —% <t < %. Then

Jemy*ds= ["!% (4cost)(4sint)"\/(~asint)? + (dcost)? dt = JTI, 4% cost sin® t \/T6(sin” £ + cos? 1) dt

5 rm/2 . " /2 .40
=4 _T/rﬁ(sm‘itcost)(li) dt = (4)¢ [3sin®¢ —/w/z =24 _ 16384
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5. If we choose z as the parameter, parametric equations for Carez =z, y = Vazforl <z <4and
5 ($2y3 —\/:;) dy= [} [zz- (Vz)? —\/:r_:] ﬁdx= 1} (®—1)dz
St -ali=de-a-jen =2

C=C1+Cy i

1. 1
C OnCi:z=z,y=3%z = dy=3dz, 0<z<2
0| (3,0 X OnCa::r:=:r:,y=3—:1: = dy=—dz, 2<z<3.

Then
Jolz+2y)de+a?dy = [, (e+2) dz+o* dy+ [, (@ +2y) do + 2 dy
=y [z+2(32) +2* ()] da+ [ [z +2(3—2) +2*(-1)] dz
=2 (2z+%ta) de+ [} (6—z—32%)de

= e+ oo 4t - 4l = F -0+ 3-F =4

9. z = 2sint, y=1, z=—2cost, 0 <t < . Thenby Formula9,

fip wyzds = [T (2sint)(¢)(~2cost)y/ (22) + () + (L) at

= [y —4tsint cost/(2cost)? + (1)? + (2sint)? dt = [ —2¢sin 2t +/4(cos? ¢ + sin” £) + 1dt

= —2+/5 [ tsin2tdt = —2v/F [~ 1t cos 2t +'4 sin2¢]] [;“:3?;‘”"’:":;‘: e ]

= -2V5(-§-0) = V5
11. Parametric equations for Carez =¢, y =2t, 2 =3t, 0 <t < 1. Then

1
Joze?*ds = [} rrtem)(s"f)\/l2 F2Z+32dt =14 f) te®’ dt = /14 [1—128&2]0 = -‘%(66 —1).

: _ . :
13. [, zye¥* dy = f;(t)(t“)e(*z)“a) -2tdt = [} 2t%e” dt = %e‘?]o =2 —e)=%(-1)

15. Parametric equations forCarez =1+43t, y =1, z2=2¢, 0 Sts_l.'['hen
[o 2de+a?dy+yPdz= [} (2t)2 - 3dt+ (1+3t)2 dt + 2 - 2dt = [ (237 + 6t + 1) dt
=[P 3 =R +3+1=%

17. (a) Along the line 2 = —3, the vectors of F have positive y-components, so since the path goes upward, the integrand F - T is

always positive. Therefore |, o, Frdr= kD o, F - Tds is positive.
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(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F - T is negative, and therefore f02 F.dr={ ¢, F - T ds is negative.

19, r(£) = 1161 + % §, so F(r(t)) = (116*)(¢%) i+ 3(t*)* j = 11¢7 i + 3¢° j and r'(t) = 4431 + 3¢*j. Then

[ F-dr= [jF(r(t))-r'(t)dt = Jo (1187 - 446% + 360 - 38 dt = [ (484¢™° + 9t%) dt = [44¢™ +1°] =45

2. [ F-dr = [} (sint®, cos(—£2), ) - (3t%, —2t,1) dt

= [(3t*sint® — 2t cost® +t*) dt = [—cost® —sint® + %tﬁ]; =2 —cosl—sinl
23. F(r(t)) = (&) (e’tz) i+ sin (e"'z)j =it sm( )J, r'(t) =e'i—2te* j. Then
- i ’ _ R g 5 42 ot
F.dr= [ F(x(t) r'(t)dt = [e ¢ +sin(e ) : (ﬁ2te )] dt
c’ ) 1 1 ‘
2
= [ [ —ate™" sin dt ~ 1.9633
Ll ()]

25 z=1% y=t z=1"sobyFormula9,

Jozsin(y +z)ds = J3(#?) sin(t® + t*),/(2t)2 + (3t2) + (43)2 dt
= [ t*sin(t® +t*) VAT + 917 + 161° dt ~~ 15.0074

27. We graph F(z,y) = (z — y) i+ zy j and the curve C. We see that most of the vectors starting on C' point in roughly the same
direction as C, so for‘these portions of C the tangential component F - T is positive. Although some vectors in the third
quadrant which start on C' point in roughly the opposite direction, and hence give negative tangential components, it seems
reasonable that the effect of these portions of C' is outweighed by the positive tangential components. Thus, we would expect
Ja B dr = Jo F - Tds to be positive.

To verify, we evaluate [, F - dr. The éurve C can be represented by r(t) = 2costi+ 2sintj, 0<t < 3%,
so F(r(t)) = (2cost — 2sint)i+ 4 costsintjand r'(t) = —2sinti+ 2costj. Then |

25 JoF-dr= [T F(x() - x'(¢) dt

——,
Ay
\ Y

AN NS

= [3/*—2sint(2cost — 2sint) + 2cost(4costsint)] dt

LN T T R

LI ¥
)

g _ =4 [>*(sin® t — sint cost + 2sint cos® t) dt

=3r+4 -5 [using a CAS]

2. @) [oFde= [y (77, 60) - (26,3 dt = [ (2t +3¢7) de = [ + gta]: =4_1/e
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(b) r(0) = 0, F(r(0))={e~*,0) _ | 21

(%) = (5 xm) P(%)) = ()
r(1) = (1,1), F(r(1)) = (1,1).

In order to generate the graph with Maple, we use the 1 ine command in

(F(r(0)

the plottools package to define each of the vectors. For example, 0 2.1

\
-0.2

vl:=line([0,0]), [exp(-1),0]):

generates the vector from the vector field at the point (0, 0) (but without an arrowhead) and gives it the name v1. To show
everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined - > True option) to generate the vectors, and then Show to show everything on the same screen.

M. r=e'cosdt, y=e 'sindt, z=e"", 0<t<2r.

Then % = e~ (—sin4t)(4) — e ' cosdt = —e*(4sindt + cosdt),
dy o : —t " dz i
. (cos4t)(4) — e " sindt = —e*(—4 cosdt + sin4t), and 5 =€ 0
2 2 2
= + dy - Y = V/(—e~t)2[(4sin 4t + cos 4t)? + (—4 cos 4¢ + sin 4t) 4 1]
dt dt dt .
= e " \/16(sin® 4t 4 cos? 4t) + sin® 4t + cos? 4t + 1 =33e
Therefore Jo oy zds = 27 (e~t cosdt)® (et sindt) (e ™) (3v2Ze M) dt
= 02" 3v2e ™ cos® 4tsin® 4t dt = HETEV2 (1 - 7197)

33. We use the parametrization = 2cost, y = 2sint, —F <t < %. Then

=4/ (%’,5)2 + (%)2# = /(—2sint)® + (2cost)? dt = 2dt,som = [, kds = 2k ffﬁz dt = 2k(w),
T =g Joahds = 5= "i%(?w&t)?dt = ﬁ[tlsint]i/:/z =3 g=gk [ykds=5-[7 "/2 /2(2sint)2dt = 0.

Hence (Z,7) = (£,0).

B. (T = l[ zp(z,y,z)ds,§ = s / yo(x,y,2)ds, Z = 2. / zp(x,y,z) ds where m = [, p(z,y, z) ds.
mJeo mJjec mje

(b)m:fckds:kf v/ 4sin? t+4c032t+9dt—A.\/_fz"dt—‘Zn'k\/_

1 n27 1 v 27
T=———— 2k /13 si tdt:O,_:——/ 2k V13 costdt = 0,
¥ ki3 o B ¥= arkvis Jo o8
o _ 1 fzﬁ \/13) (3t) dt = = (2*) = 3. Hence (%,7,%) = (0,0, 37).
2rk /13 Jo 2
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37. From Example 3, p(z,y) = k(1 —y), z=cost, y =sinf,andds=dt, 0 <t <7 =
L= [ y*plz,y)ds = [ sin®t [k(1 —sint)] dt = k [ (sin® ¢ — sin® £) dt

=1k [T(1—cos2t)dt — k [ (1 — cos® t) sint dt [LE“‘: Sl i _“i’”dt]

in the second integral
=k[5+ 7 - uP)du] = k(5 -4
L= fcm plz,y)ds =k [ cos®t (1 —sint)dt = & ["(1 + cos2t) dt — k [ cos® tsintdt

= k(% — 2), using the same substitution as above.

0. W=[,F-dr= fuz't {t —sint, 3 — cost) - (1 —cost,sint) di
= Ozw(t——tcost—sint+sintcost+3sint—sintcost)dt

= [o7(t — tcost + 2sint) dt = [§t* — (tsint + cost) — 2c°5t]2"

inlegmlebyi}aﬂs
in the second term
= 211'2
4. r(t) = (2t,t,1-1t), 0<t <1
W= [Fdr=[ (2t—t*t—(1—-t),1—t—(2t)?)-(2,1,~1)dt

=j;l(4t—2t2+t—1+2t-—t2-1+t+4t2)dt=f;(i2+8t_2)dt:[%t3+4t2_2t];=_§

4. (a) r(t) =at?i+ ] = v(t)=r(t)=2ati+3b?] = a(t) =v'(t) = 2ai+ 6btj, and force is mass times
acceleration: F(t) = ma(t) = 2mai+ 6mbtj.
(b) W = [, F-dr=[)(2mai+6mbt]) - (2ati+ 3bt*j)dt = [ (4ma®t + 18mb*t) dt
= [2ma®? + §mb*t4]; = 2ma’® + mb?
45. Let F = 185 k. To parametrize the staircase, let = 20cost, y = 20sint, 2z = ﬂt = %rit, 0<t<bmwr =
W=[,F-dr= 7 (0,0,185) - (—20sint, 20 cost, 18) dt = (185)12 [*" di = (185)(90) = 1.67 x 10* fi-Ib
47. (a) r(t) = (cost,sint), 0 <+t < 2r, and let F = (a,b). Then
W=[ P -de= 02" (a,b) - (—sint, cost) dt = :"(—asint+bcost) dt = [acost +bs'mt]z7r
=a+0-a+0=0 '
(b) Yes. F (z,y) = kx = (kx, ky) and
W=[,F.dr= 2" (kcost, ksint) - (—sint, cost) df = foz"(—ksint cost+ ksint cost) dt = :"Odt =0.
49, Letr(t) = (z(t),y(t), z(¢)) and v = (1}1,'{)2,113) Then
Jov dr= _[' {v1,va,vs) - (&' (8),¥'(¢), 2/ (1)) dt = f [v1 &' () +v2 3/ (¢) + v3 2/ (t)] dt
= [v12(t) + va y(t) +vs z(t)]: = [v1 2(b) +va y(b) +vs z(b)] — [v1 z(a) + v2 y(a) + vs z(a)]
= v [2(b) — z(a)] + vz [y(b) — y(a)] + va [2(b) — 2(a)]
= (v1,v2,v3) - (x(b) — z(a), y(b) — y(a), z(b) — z(a))
= (v1,v2,v3) - [(z(b), y(b), (b)) — (z(a), y(a), z(a))] = v - [r(b) — r(a)]
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51. The work done in moving the object is [, F - dr = [, F - T ds. We can approximate this integral by dividing C into
7 segments of equal length As = 2 and approximating F - T, that is, the tangential component of force, at a point (z7, y7) on
each segment. Since C is composed of straight‘ line segments, F - T is the scalar projection of each force vector onto C.

If we choose (x},y:) to be the point on the segment closest to the origin, then the work done is
7
JoF-Tdsm Y [F(a7,y7) T(2l,y)] As = [2+ 2+ 2+ 24 1 + 1 4 1](2) = 22. Thus, we estimate the work done to
1=1

be approximately 22 J.

16.3 The Fundamental Theorem for Line Integrals

1. C appears to be a smooth curve, and since V f is continuous, we know f is differentiable. Then Theorem 2 says that the value
of [, V- dris simply the difference of the values of f at the terminal and initial points of C'. From the graph, this is

50 — 10 = 40.

3. 9(2x — 3y)/8y = —3 = &(—3x + 4y — 8)/0z and the domain of F is R* which is open and simply-connected, so by
Theorem 6 F is conservative. Thus, there exists a function f such that Vf = F, that is, f.(x,y) = 2z — 3y and
Ju(z,y) = —32 + 4y — B. But fz(z,y) = 2z — 3y implies f(z,y) = 22 — 3zy -+ g(y) and differentiating both sides of this
equation with respect to y gives fy(z, y) = -3z + ¢'(y). Thus —3z + 4y — 8 = —3z + ¢'(y) so g'(y) = 4y — 8 and

g(y) = 2y* — 8y + K where K is a constant. Hence f(z,y) = * — 3zy + 2y° — 8y + K is a potential function for F.
5. 0(e® cosy)/dy = —e® siny, (e” siny) /B = e” siny. Since these are not equal, F is not conservative.

1 :9(:1;-85E +siny)/dy = e® + cosy = A(e™ + x cosy)/z and the domain of F is R?. Hence F is CO.]'ISCI'VEitiVC so there
exists a function f such that Vf = F. Then fz(x,y) = ye® + siny implies f(z,y) = ye® + z siny + g(y) and
fulz,y) = €® +zeosy + ¢'(y). But fiy(z,y) = €® + xcosy so g(y) = K and f(z,y) = ye® + xsiny -+ K isa potential
function for F'.

9. d(lny + 22y°)/8y = 1/y + 6xy® = 9(32y* + x/y) /O and the domain of F is {(z,) | y > 0} which is open and simply
connected. Hence F is conservative so there exists a function f such that Vf = F. Then fz(z,y) = Ilny + 2xy” implies
f(z,y) =xlny + 2*y® + g(y) and fy(z,y) = z/y + 32°y* + ¢ (v). But fy(z,y) = 32°y* +-z/ysog'(y) =0 =

g(y) = K and f(z,y) = zlny + z*y® + K is a potential function for F.

11. (a) F has continuous first-order partial derivatives and (,% 2uy = 2x = % {(z?) on R?, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F' is independent of path; in particular, the

value of [ o F - dr depends only on the endpoints of C. Since all three curves have the same initial and terminal points,

f o F - dr will have the same value for each curve.
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(b) We first find a potential function f, so that V f = F. We know f(z, y) = 2zy and fy(z,y) = z>. Integrating
fz(z, ) with respect to z, we have f(z,y) = zy + g(y). Differentiating both sides with respect to y gives

2 = ¢(y)=0 = g(y)=K,aconstant.

fu(z,y) = 2% + ¢'(y), sowe must have 2* + ¢'(y) = =
Thus f(z,y) = z°y + K. All three curves start at (1,2) and end at (3, 2), so by Theorem 2,
[oF-dr = f(3,2) — f(1,2) = 18 — 2 = 16 for each curve.
13. (a) fx(z,y) = zy” implies f(z,y) = 32°y° + g(y) and fy(,y) = 2%y + ¢'(v). But fy(z,y) =2’y sog'(y) =0 =
g(y) = K, a constant. We can take K = 0, so f(z,y) = 32°y>.
(b) The initial point of C is r(0) = (0, 1) and the terminal point is r(1) = (2,1), so

JoF dr=f(2,1)-f(0,1)=2-0=2.

15. (a) fz(x, ¥, 2) = yz implies f(z,y, 2) = zyz + g(y, z) and so fy(z,y,2) = 2z + gy (y, 2). But fy(2,y,2) = zz so
a(y,z) =0 = g(y, z) = h(z). Thus f(z!ys z) =xyz + h(Z) and f-‘($$ yvz) =y + h’(z)- But
Folw,y,2) =2y + 22,50k (2) =22 = h(z) = #* + K. Hence f(z,y, z) = zyz + 22 (taking K = 0).

(®) [ F-dr = £(4,6,3) - £(1,0,—2) =81 — 4 = T77.

17. (a) fo(w,y, 2) = yze™ implies f(z,y, ) = ye™ + g(y, z) and 56 fy(z,y,2) = € + g,(y, 2). But fy(z,y, 2) = = s0
gy(¥,2) =0 = g(y,z) = h(z). Thus f(z,y, z) = ye* + h(z) and f.(z,y, z) = zye™ + h'(2). But
f=(z,y,2) = zye®,so0h'(z) =0 = h(z) = K. Hence f(z,y,z) = ye*~ (taking K = 0).

(®) £(0) = (1,~1,0), £(2) = (5,3,0) s0 [}, F+dr = £(5,3,0) — £(1,—1,0) = 3¢° + ¢° = 4.
19. The functions 2ze ¥ and 2y — e~ ¥ have continuous first-order derivatives on R? and

% (2xe™¥) =—2ze™¥ = % (2y — 2%e7Y), s0 F(z,y) = 2ze™V i+ (2y — 2e~¥) j is a conservative vector field by
Yy

Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and f(z,y) = 2ze™¥
implies f(z,y) = 2”e”? + g(y) and fy(z,y) = —z’e™¥ + ¢'(y). But fy(z,y) = 2y — z%¢"V s0
gdw) =2y = g(y) =9+ K. Wecantake K = 0, so f(z,y) = z%e"¥ + 3. Then
Jo 2ze™Vdo + (2y —z*e V) dy = f(2,1) — £(1,0) =4e™' +1— 1 =4/e.
21. If F is conservative, then |, o F - dr is independent of path. This means that the work done along all piecewise-smooth curves

that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

23, F(z,y) = 20*?i+ 3z \/yj, W = [, F - dr. Since 9(2y*/?) /0y = 3 \/y = 8(3z \/y )/, there exists a function f
such that Vf = F. In fact, fo(z,y) = 20*% = [f(z,) =22y** +9(y) = fi(z,y)=3zy"? +¢'(y). But
Jy(z,y) =3z ysog'(y) =0org(y) = K. Wecantake K =0 = f(z,y) = 22y%/2. Thus
W = [, F-dr=f(2,4) - f(1,1) = 2(2)(8) — 2(1) = 30.
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25. We know that if the vector field (call it F) is conservative, then around any closed path C, |, cFdr=0.Buttake Ctobea

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on C' are roughly in the direction of

motion along C, so the integral around C will be positive. Therefore the field is not conservative.

2 ¢ . £ d .
27, 7R = TTN From the graph, it appears that ' is conservative, since around all closed
22 e = = 8 L T T T
} } ; TS o ; paths, the number and size of the field vectors pointing in directions similar
B RICEEE R
; it vl A ? I to that of the path seem to be roughly the same as the number and size of the
=27 T— 2 ; #
f S Ty 1 ! T i vectors pointing in the opposite direction. To check, we calculate
IRE R o 8 P " &
it ey = (siny) = cosy = =— (1 + xcosy). Thus F is conservative, by
L .o ay oz
Lppa s sjey 24P
—2mw Theorem 6.

29. Since F is conservative, there exists a function f such that F = Vf, thatis, P = fz, Q@ = f, , and R = f.. Since P,
@, and R have continuous first order partial derivatives, Clairaut’s Theorem says that 8P/8y = fzy = fy= = 8Q/0z,
OP)0z = foz = fex = OR/Ox,and 0Q/0z = fy= = fzy = OR/0y.

M. D ={(z,y) | 0 < y < 3} consists of those points between, but not ’

on, the horizontal lines y = 0 and y = 3.

(a) Since D does not include any of its boundary points, it is open. More
formally, at any point in D there is a disk centered at that point that

lies entirely in D.

(b) Any two points chosen in D can always be joined by a path that lies

entirely in D, so D is connected. (D consists of just one “piece.”’)

(c) D is connected and it has no holes, so it’s simply-connected. (Every simple closed curve in D encloses only points that are
inD.)

33, D = {(z,9) | 1 < 2® +y® <4, y > 0} is the semiannular region
in the upper half-plane between circles centered at the origin of radii
1 and 2 (including all boundary points).

(a) D includes boundary points, so it is not open. [Note that at any

boundary point, (1, 0) for instance, any disk centered there cannot lie
entirely in D.]

(b) The region consists of one piece, so it’s connected.

(c) D is connected and has no holes, so it’s simply-connected.

z aQ y"’—:z:2 BP_@_

_ ¥ P _ yz—xz _ ar
35. (a) P = =i Oz _———(x2+y2)2.Tlms =

= T AT g
PP 0y @) ~

(b) Ci: x = cost,y =sint, 0 <t <.m, Ca: ¢ =cost,y =sint,{ =27 tot = 7. Then

L - T ™
F-dr:/ (—sint)(—sint) + (cost)(cost) dt=f dt=7rand[ oo s 5
0 0 Ca

e cos?t +sin® ¢ e
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Since these aren’t equal, the line integral of F' isn’t independent of path. (Or notice that JC.; F.dr = 02" dt = 27 where.

('3 is the circle % + % = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F, which is B? except the origin, isn’t simply-connected.

1

16.4 Green's Theorem

1. (a) Parametric equations for C' are & = 2cost, y = 2sint, 0 <t < 27. Then
$o(z—y)dz+ (x +y)dy = f [(2cost — 2sint)(—2sint) + (2cost + 2sint)(2 cost)] dt
T (4sin®t + dcos? t) dt = [ 4dt = 4t]>" = 8
(b) Note that C as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,
$o(z—y)dz+ (z+y)dy = [[, [% (z+y) — dy (z — ]dA:f_fD[l -(-1)]dA=2[[,dA

=2A(D) = 2x(2)? = 8«

3. (a) ¥ - Ci:z=t = de=d, y=0 = dy=0di 0<t<1.

Cozx=1 = de=0dt, y=t = dy=dt, 0<t<2.

Cs c, Cyiz=1-t = dr=—dt, y=2—-2t = dy=-2dt, 0<t<1.

D

of ¢ ao X

Thus $ozyda + 2’y dy = §  ayde+a*yPdy
C14+Ca+Cy

= fo 0dt+ [Z e dt + [ [-(1 —)(2—2t) — 2(1 — )2 (2—2t)%) dt
=0+ [+ 20—t + 81 -0)f] =4 -0 =2
(b) § zydz + 2°y* dy = [, [d—i (=%y°) - (my)] dA = [§ [27(2zy® — z) dydz

= Jo o' —2y) " do = [} (82° —20%)dw =% -2 =2

5. y The region D enclosed by C'is given by {(z,y) |0 < z < 2,z < y < 2z}, 50
4 Ak . Jozy?dz +22%ydy = [f, [a% (22%y) - ‘aa_ (zyz)] dst
.y @ = J2 12y 22) dy s
. =y ls’],22" do
y=x - = J5 82°dz = $a]{ =12
0 3 x

% [ (y+eﬁ)dz+(2x+cosyz)dyzﬂn [.‘g; (21’+C05y2)_a_“3!"(y+eﬁ)] o

= @ -V dedy = [} —yP)dy =}
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8 [ov'dz—a’dy = [f, [3% (") - & (ys)] dA = [[,(—32% - 3y*)dA = [77 [2(=3r*) rdrdo
=-3[2"df [ r®dr = —3(2m)(4) = —24n

1. F(z,y) = (ycosz — zysinz, ry + x cosz) and the region D enclosed by C is given by

{(z,y) |0 <z <2,0<y<4-—2z}. Cistraversed clockwise, so —C gives the positive orientation.

JoF dr=—[_ . (ycosz —aysinz)dz + (J:g+ zeosz)dy = — [f, [3% (zy +zcosz) — a% (ycosz — :cysin:r)] dA

=— [fp(y — @sinz + cosx — cosz + sinz) dA = —f02 f;""”ydydz
— 2Ly ]”Z“ Mdo=— [} 1(4-22)dz = — [}(8 — 8z + 2z*)dz = — [éa: —42® + 22°)2
—(16—16+ 18 —0) =18

13. F(z,y) = (y — cosy, zsiny) and the region D enclosed by C is the disk with radius 2 centered at (3, —4).

C' is traversed clockwise, so —C' gives the positive orientation.
JoFrdr=— [ . (y—cosy)dr+ (zsiny)dy =~ [[, [3%- (zsiny) — U_u (y— cosy)] dA
=— [f,(siny — 1 —siny)dA = [, dA =areaof D.= m(2)® = 4r

15. Here C = C; + C> where ¥
(1 can be parametrizedasz =1, y=1, —1 <t <1, and
Chisgivenbyz=—t, y=2—1, -1<t<L

Then the line integral is L1

§ yPetdotafeldy= [T [1-et + 3 0dt

C14+Ca 1 2 + +
+ [L 2= ) e (1) + (—t)%e* " (—2t)] dt -1 0 i =
= B == €& = e_z t = —8e + 48e™ -
1let — (2 - %)%t — 2t%* " | dt = —8e +48e~!

according to a CAS. The double integral is

1 p2—a? ‘
/ f (QQ - %) dA = / / (2ze — 2ye”) dy dz = —8e + 48¢ ™", verifying Green’s Theorem in this case.

—1J1

17. By Green’s Theorem, W = [ F-dr = [ z(z + y)dz + zy’ dy = [[,, (y* — z) dA where C is the path described in the
question and D is the triangle bounded by C.. So

W= [ [, " —z)dydz = [; [3u —zy] e Idm—fo (l(l—m)s;x(l-m))dm

19. Let C; be the arch of the cycloid from (0, 0) to (27, 0), which corresponds to 0 < t < 27, and let C be the segment from
(27,0) to (0,0), so Cs is given by =z = 27 —t,y =0,0< ¢ < 27 Then C = C; U C; is traversed clockwise, so —C' is
oriented positively. Thus —C encloses the area under one arch of the cycloid and from (5) we have

A=—§ ,ydz =‘fclyd$+fcz‘ydm=f:"(lncost}(l—cost)dt+ f(f"

= [7"(1—2cost +cos®t)dt + 0 = [t — 2sint + 4t + Lsin2¢])" = 3x
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SECTION 16.4 GREEN'S THEOREM 0O 315
21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as z = (1 — t)z1 + tz2, y = (1 — t)y1 + by,
0<t<1. Thendz = (z2 — z1) dt and dy = (y2 — 1) dt, so
[oedy —yde= [} [(1—t)zs + twa](y2 — 1) dt + [(1 — t)yr + tya] (22 — z1) dt
= [y (@1(y2 —11) —n(z2 —21) + t[(ﬁz —y1)(z2 — 1) — (T2 — 21) (32 — 91)]) dt
= fol (z1y2 — @ayr) dt = ﬂ?;yz — Zaya
(b) We apply Green’s Theorem to the path C' = C3 U C2 U - - - U Cy, where C; is the line segment that joins (z:,y:) to
(zit1,Yit1) fori =1,2,...,n — 1, and C, is the line segment that joins (zn, yn) to (z1,31). From (5),
1 [pxdy —ydz = [[, dA, where D is the polygon bounded by C. Therefore
area of polygon = A(D) = [f, dA= 3 [ zdy —ydz
=3 (fo, o dy —ydo+ [, mdy—ydz+ -+ [o zdy—ydo+ [ ady—yds)
To evaluate these integrals we use the formula from (a) to get
A(D) = 3[(z1y2 — T211) + (@2ys — Tay2) + -+ + (Tn—1¥Yn — TaYn-1) + (Tny1 — T1yn)].
©A=3[(0-1-2:0)4(2:3-1-1)+(1:2—0-3)+(0-1~(=1) - 2) 4+ (~1-0—0-1)]
=10+5+2+2) =3

23. We orient the quarter-circular region as shown in the figure. »

1 1
. 2 - 2
A= ma soz—mﬁ:c dyandy = __wa2/2f—;y dz.
Here C =C) +Ca+Cawhere Cri:x =t, y=0, 0<t<a;
Ca:z =acost, y=asint, 0 <t < F;and

Ci:z=0,y=a—10<t <a. Then
$ozidy= [, $2dy+fc x? dy + Jo, i dy = [ 0dt +f"m(acost)z(acost)dt+f;0dt
—j’rﬂ a® cos® tdt—aaf"/ (1 —sin®t) cost dt = a®[sint — } sin® t]"/2=%a3
e j{ o da
s“”m?/z V=30

$ovPdz= [, ¥ d:x:-i-.lc:y dz+ [o, y* de = [30dt + [7/*(asint)*(—asint)dt + [; 0dt

= [M*(—a®sin®t) dt = —a® [[/*(1 — cos® t) sint dt = —a® [} cos® t — cos t]"’z —2d®,
| 1 2, 4_a. i 4_(1 4_0.
S0y = waz/Zﬁy dr = T Thus (Z,7) = (37r, 37r)'
25. By Green’s Theorem, —3p§.1° dz = —3p [[,(—3y*)dA = [[,y*pdA = I, and

1op$.a® dy=3p [[(32°)dA = [[,2’pdA =1I,.

27. As in Example 5, let C' be a counterclockwise-oriented circle with center the origin and radius a, where a is chosen to
be small enough so that C’ lies inside C, and D the region bounded by C and C’. Here

__ 2ay s B8P 2z(z” +y*)® — 2zy - 2(2” +v%) - 2y _ 22° — 6:51{2
(z2 + y2)? By (22 + 2)4 (x2 + yz)d
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Q= __yj_i =4 9Q - —2z(z® + ") — (¥ —2%) - 2(a" + %) 2 - 223 — 6zy®
(.’1’.‘2+y2)2 ozt {$2+y2)4 (:c2+y )d

/dea;+Qdy+f_ Pdy+Qdy = ff (a*%)dﬂ=ffl)0dﬂ=°

and [ F-dr = [, F-dr. We parametrize C" as r(t) = acosti+asintj, 0 < ¢ < 2r. Then

27 2 (acost) (asint) i+ (a®sin®t — a® cos? ) j
fF-dr:[ F-dr:/ ( ) ) ( 5 )J-(asinti+acostj)dt
c ' 0 (a2 cos? t + a2 sin2t)

. Thus, as in the example,

2m 27
=§f (—comtsingt—-cos3 t) dt:éf (—costsinzt—cost(l—sinzt)) dt
0 0

i 2 1 ir
=*—f costdt = a—sint] =0
a fo a 3

.29, Since C is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t
contain the origin but does contain D. Thus P = —y/(2* + 3*) and Q = z/(2* + y) have continuous partial derivatives on
this open region cdntain'mg D and we can apply Green’s Theorem. But by Exercise 16.3.35(a), 9P/8y = 8Q/dz, so
$,F-dr=[[,0dA=0.

31. Using the first part of(S)', we have that [, dvdy = A(R) = [, xdy. Butz = g(u,v), and dy = gh du+ gh dv,

and we orient 85 by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along JR, so
8h oh ok
fanmdy—’/i; g(u,u)( u+ == d"b‘)—.[)SQ(U,TJ)E@-&-Q(“,U)%M
==+ [ [£ (9(u,v) L) — Z (g(u,v) $£)] dA  [using Green’s Theorem in the uv-plane]

=t Tl

=4 [f; (8 — Z28L) dA  [by the equahty of mixed partials] = = [/ -a—gu—%% du dv

2+ glu,v) ot — 528% — g(u,v) Fg ) dA  [using the Chain Rule]

e

v

The sign is chosen to be positive if the orientation that we gave to 9.5 corresponds to-the usual positive orientation, and it is

negative otherwise. In either case, since A(R) is positive, the sign chosen must be the same as the sign of %%T)
Oz, y) y) -
Therefore A(R / drdy = A ( ) dudv.
16.5 Curl and Divergence
i j k

1. @caulF=VxF=|8/0z 8/dy 8/0z
rT+yz Yy+xz z+xY

= ai(z+my)—‘:%(y+a:z} i— p (2+:cy)-6£("c+yz) i+ B (J+:nz) B(E'Hfz)
Y

=@-2)i-(y-v)i+(z-2)k=0
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. (@) curlF=V xF =
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(b)divF:V-F:—i(m+yz)+£(y+xz)+£(z+:xy)= 1+1+1=3
ox Ay dz

i k

. @ curlF =V xF=|8/0z 8/0y 0/0z|=(ze" —0)i— (yze® —zye*)j+ (0 — ze*) k

zye® 0 yze®

= ze®i+ (zye” —yze®)j—ze*k
. a . a 3] 5 3 x o
(b)dlvF=V-F=§(n:ye )+a—y(0)+§(yze ) =ye® +0+ye® =y(e® + &)
i J k
8/0x /0y /0=

% Y z
VB +yP+22 e +yP 2 Rty 422

1

= FE iR LR (—yz+yz)i—(—zz+z2)j+ (—ay +ay)k| =0

B R G s pat N B ¥ o8 TP &
i\ JEtp+2) W\t +2) 2\ JRtp iR

__:1:2+y2+z2—w2 Pyt 42— Pyt 207 4P 4222 9

T @R 222 (@@ 2232 T (2242 +22)3/27 T (2 + P +22)32 VETR+ 2

i j k

. (@ curlF =VxF=| 8/dz 9/dy .B/Bz =(0—ecosz)i— (e®cose—0)j+ (0 —e"cosy) k

e®siny eYsinz e°sinz

= (—e? cos z, —e” cos x, —e” cos y)

a a '
P UL B — _ i e N s o n
(b)divF =V F F (e sm‘y)+—ay (e sz)+_8z (e*sinz) = e®siny + e¥sinz + e sinx

. If the vector field is F = Pi+ Qj + Rk, then we know R = 0. In addition, the z-component of each vector of F is 0, so

0P _0P 9P _OR_OR_OR

P=0, hence-5;= By % " Bn By E:O.Qdecreasesasyincreases, sog—cj < 0, but Q'docsn’tchange
in the z- or z-directions, s0 B_Q = QQ =0.

or Oz
(a)divF=—g1—:+-g—§+g—I::0+g—g+0<0
(b)cur1F=(%g—%g)i+(%§hg—f)j+(%%E)k:(ﬂD)i+(0—0)j+(0—0)k=0

If the vector field is F = Pi+ @ j + Rk, then we know R = 0. In addition, the y-component of each vector of F is 0, so

@ = 0, hence % = %yg = % = g—f = %?— = g—f = 0. P increases as y increases, so ?9_5 > 0, but P doesn’t change in
_— P oOP
the z- or z-directions, so e
. _ 8P  8Q L OR e
@ divF =5+ 5%+ 5 =040+0=0
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_(OR 9Q\. P OR\., K (0Q 0P\, 6 _ i : P\, 9P
(b)curlF_(—-——)1+(E;—EE)J+(a—m—a—y)k-_(ﬂgﬂ)ﬁr(ﬂ—ﬂ)_]-b(0—-—-)k———-—k

gy 0=z Oy dy
Since % >0, —%—ik is a vector pointing in the negative z-direction.
i J k 2
1B.curlF=VxF=|8/0x 8/8y 8/3z |=(6ayz’—6ayz®)i— (3y°2* - 3y*2%)j+ (2y=° — 2yz*) k=0

iz 2zyz® 3myle?

and F is defined on all of R* with component functions which have continuous partial derivatives, so by Theorem 4,
F is conservative. Thus, there exists a function f such that F = V f. Then f,(z,y, 2) :-yzza implies
f(z,y,2) = 2y2° + g(y, ) and fy(z,y, ) = 2ayz° + gy (y, 2). But fy(z,y, 2) = 2zy2°, 50 g(y, 2) = h(2) and
f(z,y,2) = zy®2® + h(z). Thus f.(z,y, 2) = zy*2* + h'(z) but f.(z,y, z) = 3zy*2” so h(z) = K, a constant.
Hence a potential function for F' is f(z,y,2) = o2 + K.
i j k
15. curl F =V xF=| 8/0z 8/8y 8/9z

3zy?z? 2x%yz® 32%y%22
= (6zyz? — 6z2yz?) i — (6zy>2? — 6zy?2) j.+ (dwy2® — 6ay2”) k
= 6ay?2(1 — 2)j + 2wy2>(2z —3) k £ 0
so F is not conservative.
i J k
1. cwrlF =V xF=|9/0z 08/0y 0/0z
e¥* zze¥® zye¥
= [zyze¥® + ze¥* — (zyze¥® 4 xe¥*)]1i— (ye¥* —ye¥®) j + (2e¥* — 2e¥*) k=0
F is defined 6n all of R®, and the partial derivatives of the component functions are continuous, so F' is conservative. Thus
there exists a function f such that Vf = F. Then f.(z,y, z) = e¥* implies f(z,y, z) = z&¥* + g(y,2) =
fu(zyy, 2) = z2¥* + gy (y, 2). But fy(z,y, z) = zze?%, s0 g(y, 2) = h(z) and f(z,y, z) = ze¥® + h(z).
Thus f.(z,y, z) = zye¥* + h’(z:) but f-(z,y, z) = zye?” so h(z) = K and a potential function for F' is
flz,y, z) = ze¥* + K.

8 N, Masume thore aushia €, ThenSivlbmi ) = a%’ Y a% fema) % Bt s il T
which contradicts Theorem 11.
i j k
2. curl F = (8/8z 8/8y 8/0z|=(0—0)i+(0—0)j+ (0—0)k =0. Hence F = f(z)i+g(y)i+ h(z)k
f(@) g(y) h2)

is irrotational.

|
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For Exercises 23—29, let F(z,y,z) = PAi+ Q1 j+ R k and G(z,y,2) = P2i+ Q2j+ Ra k.

dPL+P) @  B(R
2. div(F + G) = div(P, + P, Q1 + Qo Rs + Ra) = 2 ’3: " (Q13+Q2)+ ( lajRZ)

_OP OB Qi 9Qs  OR: asz(aPlﬁLan aﬂl)+(aﬁ 8Qa 8R2)

az "By "oy 0z '8z Aoz By ' @ % oy e

=div(P1, @1, R1) + div(P, @2, Rz) =divF + divG

25, div(fF) = div(f (P, Q1, Ra)) = div(f Py, @1, fRa) = 9(fP) 3(fQ1 " d(fR:1)

oz 8y 0z
aPy or Q1 of OR, of
-(rmad)+ (R ra ) (152 +m L)
— (%R 0 % 5f af N _ ai .
d/0x o/dy O/0z ‘
27. div(F x G) =V - (F x G) A Q R i o gt
. di = . » = = — i + —
iv(F x ! 1 . 9z |, R, Y|P, R 0z | p, Q2

P Q2 Ra

R o Q&_ _ 0Q2 % aPy OR, P,
[Ql + Rg — e — @2 R Bm] |:Pl By + Ry — By —P— By —R; By]

+ [ BQZ + Qo — 6P1 - = BQI -G 8P2:|
- OR1 O oP,  OR: Q@ _ %
- E -2 a5 - am)*'*’*(am )]

8Ry  9Qs)\ . P, OR, Q2 9P
*[Pl(ia*;‘“a;)wl(a“—a;)*ﬂl(am —a—y)]

=G-curlF - F-curlG

i J k
29, curl(curl F) =V x (Vx F) = 8/ox /0y 0/0z
OR1/0y — 0Q1/82 OP1/8z — OR./Bx 08Q:/8z — 8P /8y
_ (aﬂQ1 P &P 82R1) . (6231 P | &R ) p

o S A ¥ P20y 022 82 T Bady

~ +

L (8P _ PR Ry &)
dxdz  Ox? Ay dy0z

Now let’s consider grad(div F) — V2F and compare with the above.

(Note that V*F is defined on page 1119 [ET 1095].)

[continued]
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9P 9*Q: 'R 8*P  9*Q,  O°R &P 8*Q, &R
e 1 1 LY. 1 1 1 . 1 1 1
grRd(AF] - ¥ [( o xdy i Bwaz) t (Byaa: + dy? + 3,7;82) Jr_( 20z * 20y t oz )k]

_Kazpl 82P1+82P1)i+(32621 8’Qu a%zl)j

52 T oF | 82 57 T oA o

0*R, 8°R.  9*R:
+(8:c2 + ay? * Bz?)k]

_(82(21 PR 8P 82P1).+(32P1 R Ble)j

dzdy = Bxdz Oy 922 dydz | Bydz Oz 022

62Pi 32Q1 _62R1 asz i
0z0x = D20y  Ox? By?

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and
comparing, we have curl curl F' = grad div F — V*F as desired.

ki (a)Vr—V\/m2+y2+z2 i L u k= zityitzk =Z
\/m2+y + 22 \/E2+fy _|_z:2 \/$2+y + 22 ’$2+'y2+z“ r

i
18 8 8 _12 v 98 ninl@ B nliallw_f .
BVxr=2 2 2 -2 @- 20|+ @ -2 @]+ [z o-F @) k=0
y oz '
Vel +y? +22
——1—(297) ;-—1——(2) —( %)
2 $2+y2+22 i_2 m2+y2+zz Y ,_QW k
- 22 +y? + 22 PRI T2+ Y2 + 22
zityj+zk r

T@ eyt 2232 B

(d) Vinr = Vin(e® + y° + 2%)"/2 = iVIn(z® +° +2%)
T . Y " z _mi+yj+zk‘_r

=$2—|—y2+zz1+m2+y2+z2‘]+w2+y3+z2 T2 t2 2 12

33. By (13), ¢, f(Vg) -nds = ffD div(fVg)dA = [[,[f div(Vg) + Vg - V f] dA by Exercise 25. But div(Vg) = V*g.

Hence [[, fV?gdA = §C ‘nds — [[, Vg VfdA.

35. Let f(z,y) = 1. Then Vf = 0 and Green’s first identity (see Exercise 33) says
I, V?9dA=§,(Vg) - nds— [[,0-VgdA = [[,V?9dA = §,Vg- nds. Butgis harmonic on D, so

Vig=0 = ¢,Vg -nds=0and§_Dagds=§,(Vg-n)ds=0.

37. (a) We know that w = 'v/a’,,. and from the diagram sinf = d/r = v = dw = (sinf)rw = |w x r|. But v is perpendicular

to both w and r, so that v = w x r.
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ij ok '
(b) From(a),v=wxr=(0 0 w|=(0-2-wy)i+(wz—0-2)j+ 0 -y—z-0k=—wyi+wzj
T Yy =z
i j  k
©curlv=Vxv=|98/8z 8/dy 0/0=z
—wy W 0
a 3] ; 7] é} P a a
= [B_y (0) — B2 (ww)] i+ [a (—wy) — o (0)] i+ [Bm (wz) — ey (—wy)| k
= [w— (—w)]k = 2wk = 2w '

39. For any continuous function f on R?, define a vector field G(z,y, z) = (g(z,y, 2),0,0) where g(z,y, z) = Iy f (ty,2)dt.

Then divG = % (g(z;y,2)) + % (0) + % (0) = (,% Jo f(t,y,z)rdt = f(z,y, z) by the Fundamental Theorem of

Calculus. Thus every continuous function f on R? is the divergence of some vector field.
ry g

16.6 Parametric Surfaces and Their Areas

1. P(7,10,4) lies on the parametric surface r(u, v) = (2u + 3v, 1 + 5u — v, 2 4w+ v) if and only if there are values for u
and v where 2u + 3v = 7,1+ 5u — v = 10, and 2 4 u + v = 4. But solving the first two equations simultaneously gives
u = 2, v = 1 and these values do not satisfy the third equation, so P does not lie on the surface. |
Q(5,22, 5) lies on the surface if 2u + 3v = 5,1 + bu — v = 22, and 2 + u + v = 5 for some values of u énd v. Solving the

first two equations simultaneously gives © = 4, v = —1 and these values satisfy the third equation, so () lies on the surface.

3. r(u,v) = (u+v)i+ (B3 —v)j+ (1 +4u+5v)k=(0,3,1) +u(1,0,4) + v (1, —1,5). From Example 3, we recognize

this as a vector equation of a plane through tﬁe point (0, 3, 1) and containing vectors a = (1,0,4) and b = (1, —1, 5). If we

i jk
wish to find a more conventional equation for the plane, a normal vector to the planeisa x b= |1 0 4| =41 — i—k
1-1 5

and an equation of the plane is 4(z — 0) = (y —3) — (# — 1) =0ordz —y — z = —4.

5. r(s,t) = <.5', 41 — 32), so the corresponding parametric equations for the surfaceare z = s, y=1¢, z = t* — s°. For any

point (z, ¥, z) on the surface, we have z = y* — z%. With no restrictions on the parameters, the surface is z = y* — 22, which

we recognize as a hyperbolic paraboloid.
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1. r(u,v) = (uQ,v‘z,u-i-v), —-1<u<l, -1<v<1.
The surface has parametric equations z = ul, Y= v, z=u+v,-1<u<],-1<v<l.

In Maple, the surface can be graphed by entering
plot3d([u~2,v 2,u+v],u=-1..1,v=-1..1);.

v constant

In Mathematica we use the ParametricPlot3D command.

If we keep u constant at ug, z = ud, a constant, so the

corresponding grid curves must be the curves parallel to the

yz-plane. If v is constant, we have y = vZ, a constant, so these

grid curves are the curves parallel to the zz-plane.

9. r(u,v) = (ucosv,usinv,u®). u constant
The surface has purametrié equations © = ucosv, ¥y = usinwv,
z=1", -1<u<1, 0<wv < 2« Note that if u = up is constant l
then z = uj is constant and z = up cos v, ¥ = up sin v describe a v constant

circle in z, y of radius |uo|, so the corresponding grid curves are

circles parallel to the zy-plane. If v = vq, a constant, the parametric

equations become & = ucos vy, y = usinvg, z = u®. Then -1 /—1
..\0\ o

y = (tanwo)z, so these are the grid curves we see that lie in vertical

planes y = kz through the z-axis.

M. z =sinv, y=cosusindy, z=sin2usindy, 0<u<2m, -5 <v<

[SIE]

Note that if v=1p is constant, then z = sin vy is constant, so the
corresponding grid curves must be parallel to the yz-plane. These
are the vertically oriented grid curves we see, each shaped like a
“figure-eight.” When u = ug is held constant, the parametric
equations become x = sin v, y = cos ug sin4v,

z = sin 2ug sin4v. Since z is a constant multiple of 3, the

corresponding grid curves are the curves contained in planes

2 = ky that pass through the z-axis.

13. r(u,v) = ucosvi+ usinvj+ v k. The parametric equations for the surface are x = ucos v, y = usinv, z = v. We look at
the grid curves first; if we fix v, then = and y parametrize a straight line in the plane z = v which intersects the z-axis. If u is
held constant, the projection onto the zy-plane is circular; with z = v, each grid curve is a helix. The surface is a spiraling

ramp, graph IV.
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r(u,v) = sinvi- cosu sin2v j + sinu sin 2v k. Parametric equations for the surface are z = sin v, y = cosu sin 2v,

z = sinu sin 2v. If v = vy is fixed, then & = sin vy is constant, and y = (sin 2vp) cosu and z = (sin 2vp ) sin u describe a
circle of radius |sin 2vp|, so each corresponding grid curve is.a circle contained in the vertical plane z = sin v parallel to the
yz-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to
holding u constant, in which case y = (cosup)sin2v, z = (sinug)sin2v = z = (tanwug)y, so each grid curve lies in a

plane z = ky that includes the z-axis.

3 3

@ = cos® u cos® v, y = sin® u cos® v, z = sin® v. If v = vy is held constant then z = sin® v, is constant, so the

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this
surface are neither circles nor straight lines, so graph I11 is the only possibility. (In fact, the horizontal grid curves here are
members of the family z = a cos® u, y = asin® u and are called astroids.) The vertical grid curves we see on the surface

3

correspond to u = wug held constant, as then we have 2 = cos® up cos® v, y = sin® ug cos® v so the corresponding grid curve

lies in the vertical plane y = (tan® ug)z through the z-axis.

From Example 3, parametric equations for the plane through the point (0, 0, 0) that contains the vectors a = (1, —1, 0) and
b=(0,1,-1l)arez =0+u(l)+v(0) =u, y=0+u(-1)+v(l) =v—u, 2=0+u(0) +v(-1) = —v.

Solving the equation for = gives 2* =1 +y* + 12 = = /1432 + 122 (We choose the positive root since we want

the part of the hyperboloid that corresponds to = > 0.) 1f we let y and 2 be the parameters, parametric equations are y = ,

z=2z, = /1+1y2+ F22

Since the cone intersects the sphere in the circle 2° + y* = 2, 2 = /2 and we want the portion of the sphere above this, we
can parametrize the surface as x = z,y = y, z = /4 — 22 — ? where 2 +3* < 2.

Alternate solution: Using spherical coordinates, ¢ = 2sin ¢cos, y = 2sin¢sinf, z = 2 cos ¢ where 0 < ¢ < % and
0<8<2m.

Parametric equations are = z, y = 4cosf, z = 4sinf, 0 <z < 5,0< 6 < 27,

The surface appears to be a portion of a circular cylinder of radius 3 with axis the z-axis. An equation of the cylinder is
y* + 2z* = 9, and we can impose the restrictions 0 < z < 5, y < 0 to obtain the portion shown. To graph the surface on a
CAS, we can use parametric equations # = u, ¥ = 3 cos v, z = 3 sin v with the parameter domain 0 < u < 5, F<v< ’T"

Alternatively, we can regard x and z as parameters. Then parametric equations are ¢ = z, z = z, y = —/9 — 22, where
0<z<5and -3 <z<3.

Using Equations 3, we have the parametrization z = x, y = e~ cos¥, 1 T

z=e "sinfh, 0<z<3, 0<8< 2.
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31. (a) Replacing cosu by sinu and sinu by cosu gives parametric equations

33

35.

37.
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= (2+sinv)sinu, y = (2 + sinv) cosu, 2 = u + cosv. From the graph, it
appears that the direction of the Spi}al is reversed. We can verify this observation by
noting that the projection of the spiral grid curves onto the zy-plane, given by

z = (2+sinv)sinu, y = (2 +sinv) cosu, z = 0, draws a circle in the clockwise
direction for each value of v. The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for z is identical in

both surfaces, so as z increases, these grid curves spiral up in opposite directions for

the two surfaces.
(b) Replacing cos u by cos 2u and sin u by sin 2u gives parametric equations
z = (24 sinv)cos2u, y = (2 + sinv) sin 2u, z = u + cos v. From the graph, it

appeafs that the number of coils in the surface doubles within the same parametric

I3
-

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the zy-plane, given by z = (2 + sinv) cos 2u, y = (2 + sinv) sin 2u, 5 %

z = 0 (where v is constant), complete circular revolutions for 0 < u < 7 while the Poeas
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original surface requires 0 < u < 27 for a complete revolution. Thus, the new

oS
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LN

surface winds around twice as fast as the original surface, and since the equétion for z
is identical in both surfaces, we observe twice as many circular coils in the same
z-interval.
r(u,v) = (u+v)i+3u?j+ (u—v)k
r,=i+6uj+kandr, =i—k,sory xr, = —6ui+ 2j— 6uk. Since the point (2,3,0) correspondstou =1, v=1,a
normal vector to the surface at (2,3,0) is —61 + 2j — 6 k, and an equation of the tangent plane is —6x + 2y — 6z = —6 or
Jr—y+3z=3.
r(u,v) =ucosvi+usinvj+vk = r(l,%)= (%, 32@, %)
r, =cosvi+sinvjandr, = —usinvi+ ucosvj + k, so a normal vector to the surface at the point (%, {—5, %) is
(1.5) xr(1,5) = (3i+E3) x (-Fi+3i+ k) = %%~ }j+k. Thus an cquation of the tangent plane at
1 3 ®\; 3 1 1 3 . B 1 g Y
(5%:5) s Br— ) -a(v—*zc) +1(z-§)=00r La—fy+2=35.

r{u,v) =v?i+2usinvj+ucosvk = r(1,0)=(1,0,1).
r, =2ui+2sinvj +cosvkandry, = 2ucosvj—usinvk,

so a normal vector to the surface at the point (1,0, 1) is

r.(1,0) x £y(1,0) = (21 + k) x (2j) = —2i + 4k.
Thus an equation of the tangent plane at (1,0, 1) is

—2(z—-1)4+0y—0)+4(z—1)=00r—x+22= 1.
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. The surface S is given by z = f(z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z + 2y = 6, s0 D is the

triangular region given by {(z,3) |0 <z < 2,0 <y < 3 — 3z}. By Formula 9, the surface area of S is

ae)= [[ 1+ (2) + (%) s

=/Ib \/1+(_3)2+(—2)2d/4=\/ﬁffDdA=\/ﬁA(D)=m(%.2.3) _3Vid

Here we can write z = f(z,y) = % - %a: - %y and D is the disk 2 + 3? < 3, so by Formula 9 the area of the surface is

AS) = ff\/ Bz) i = ff J1+ (=2 —§)24A=@f/;cm

a—
= GHAD) =51 n(v5)" = vTdn

2= f(z,y) = 2(=*? +y**)and D = {(2,9) [0 <2 < 1,0 <y < 1}. Then fo = 22, f, = y*/® and

AS) = o1+ (VoY + (Vi) dA= [} [} VTFeFydydo

= [%(-’E +y+ 1)3/2] z: dz =3 [} [(:1:+ 232 _ (z+ 1)3/2]

5 1 5
- §[%($+ 2)5/2 _ 2(z + 1).}/2]0 - %(35/2 —95/2 _95/2 L1y = A(3%/2 —97/2 4. 7)

. z=f(z,y) =zywithz* + ¥ <L sofo=y, fy=2 =

= [ VTHFF @ dA= [§ [{ VP Irdrdo = [77 [3 (¢ +13/2] 9
=l 5(2v2-1)do =% (2v2-1)

A parametric representation of the surface is z =,y = 4z + 2%, z = z with0 < 2 < 1; 0<z<1.

Hencery X r: = (i+4j) x (2zi+ k) =4i—j+ 22k,

Note: In general, ify = f(:r:,z)thenrmxr-_?1-J+-—£kandA(S) // \/1+ B‘f -+ f) dA. Then

= fo Jo VIT+ &2 dzdz = [ 1T + 422 dz
= (e VIT+ 47 + YL |2z + VAZ 717 ()], = & + Y [In(2+ V2T ) — In VIT]

. re = (2u,0,0), v, = {0,u,v),andry, X T, = (1: —2uw, 2u ) Then

ffD |re % | dA = jofo Vol F 2 + ful dvdu = [ fu +/ (0% + 2u2)2 dv du

_fnfo (v? +2u)dvdu*~f [30° 4 20 U]v Udu—fﬂ( +4u)du=[%u+§u3];=4

From Equation 9 we have A(S) = [f, +/1+ (f=)? + (fy)? dA. Butif [ fz| < 1and |f,| < 1then0 < (f.)? <1,
0S(f)P<1 = 1<14(BP+(R)* <3 = 1< VT+{)?+ ()2 < V3. By Property 153.11,
Jfp1dA < ([ T+ (Fa)2 + (Ju)2dA < [f,V3dA = A(D) < A(S) < V3A(D) =

mR? < A(S) < V3nR?.
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53, z = f(z,y) =e = " withz? + 42 < 4.

A(S) = [[, 1+ (—2ze==*¥*) + (=2ye—="-v*) dA = [[, /T +4(z? + 12)e— 2"+ dA

V1 ar2e- 7 rdrdd = [77dO [Fr/1+ 4r=e-2r’ dr =27 [2 /1 +4r2e~2" dr ~ 13.9783

55. (a)A(S)=ffD\/1+(g (32) dA = ff \/1+ lfm:_‘l?;z)ddydm

2
Using the Midpoint Rule with f(z,y) = \/1 -+ z].%::a::-—%%’ m = 3, n = 2 we have

AS) w3 if(muy,)AA 4 (1,1)+f(1.3)+f{3,1)+f(3;3)+f(5,1)+f(5,3)]=s24.2055

i=lj=1

43
(b) Using a CAS we have A(S) = [ / \/ a :3::31 7 dy dx = 24.2476. This agrees with the estimate in part (a)
to the first decimal place.

57. 2 =14 2z + 3y + 4y%, so

az 2 3.3 2 4 1 i 4 n ‘
A(S)=f/ 1+(—) +(—) dAzf f \/1+4+(3+8y)2dyd:c:/ f v/ 14 + 48y + 64y dy d=.
D oz By_ 1 Jo 1 Jo
Using a CAS, we have .
S /1A 48y + 64y? dyde = 42 V14 + B In(11v5 4 314 V5) — 2 1In(3v5 + V14 5)
or——x/_+ Jslnl;‘%af"%;u

59. (a) r = asinucosv,y = bsinusinv, z = ccosu = (b)
2 2 2 ’ 24
T Y z ; 2 ; . 8D 2
— + ==+ — = (sinucosv)” + (sinusinv)® + (cosu
L+ 5= ( P+ )+ (cosu)
=sin®u+cosu=1 =07
and since the ranges of u and v are sufficient to generate the entire graph, b
the parametric equations represent an ellipsoid.
. . . L ET D,
(c) From the parametric equations (witha =1, b= 2,and ¢ = 3), ¥
we calculate r,, = cosucosvi+ 2cosusinvj— 3sinuk and
r, = —sinusinvi+ 2sinucosv j. Sory x ry = 6sin® wcosvi+ 3sin® usinv j + 2sin ucos u k, and the surface

area is given by A(S) = [ [ [ru X 1| dudv= Jo " Jo V/36sin® wcos? v + 9sin usin® v 4 4 cos® u sin® u dudv

61. To find the region D: z = z? + y® implies z + 22 = 4z or 2> — 3z = 0. Thus z = 0 or z = 3 are the planes where the
surfaces intersect. But 22 + 32 + 2% = 4z implies z° + 4 + (2 — 2)? = 4, so z = 3 intersects the upper hemisphere.

Thus (z — 2)? =4 — 2 —y? or 2 = 2+ /4 — 32 — 2. Therefore D is the region inside the circle z* +y* + (3 — 2)* =4,
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thatis, D = {(z,y) | 2* +¢* < 3}.

A®) = [ I+ (o= =P + () - 2 =) da

/” | \/— rdrdf = f" [ [ [_2(4_,.2)1/5]:jfd9

27 (—2 4+ 4)dB = 20)27 = 4x

63. Let A(S1) be the surface area of that portion of the surface which lies above the plane z = 0. Then A(S) = 2A4(S4).

Following Example 10, a parametric representation of Sy is ¢ = asin¢cosd, y = asin¢siné,
z=acos¢and |ry X rg‘i = a’sin¢. For D, 0 < ¢ < ¥ and for cach fixed ¢, (z — %a)2 +32 < (%a»)2 or
[asin¢cos@ — %a]2 + a?sin? ¢sin® § < (a/2)? implies a®sin® ¢ — a®sin pcosf < 0 or
sin¢ (sin¢ —cosf) < 0. But 0 < ¢ < %, 50 cosf > sing orsin(F +6) >singorp—Z <8< z .
Hence D = {(4,0) |0< ¢ < F,¢—F <O < F —¢}. Then |
A(S1) = [j i ("/(2,1/_2;’ a*sin ¢pdf dp = a® "/2 (m —2¢)singpde

= a®[(—wcos§) — 2(—pcosd + sin¢)|5/% = a®(x — 2)

Thus A(S) = 2a*(m — 2).

Alternate solution: Working on S1 we could parametrize the portion of the sphere by z = z, y = y, 2 = \/a? — x? — 32,

2 2
F A 1 a
Y - d

_$2_y2 a2__$2_y2 \/ag_mz_yg

Then |rz X ry| = \/1 +=

/2 acos @

r=acosl

A(S1) =

0< (= —(a/2))% + 32 < (a/2)?
/2 2\1/2
_f“ﬂﬂ a(a® —r?) /]

= [77, a®(1 — |sin0]) d6 = 2* [;/*(1 — sin6) d6 = 22°(§ -

rdr dé

., = JT5, a*[1— (1 — cos® 6)V/2] db

Thus A(S) = 4a*(§ — 1) = 2a*(7 — 2).
Notes:
(1) Perhaps working in spherical coordinates is the most‘ obvious approach here. However, you must be careful
in setting up D.

(2) In the alternate solution, you can avoid having to use |sin #| by working in the first octant and then’

multiplying by 4. However, if you set up S; as above and arrived at A(S1) = a®m, you now see your error.
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16.7 Surface Integrals

1. The faces of the bbx in the planes = 0 and z = 2 have surface area 24 and centers (0, 2, 3), (2, 2, 3). The faces iny = 0 and
1y = 4 have surface area 12 and centers (1,0, 3), (1,4, 3), and the faces in z = 0 and z = 6 have area 8 and centers (1, 2, 0),
(1,2, 6). For each face we take the point P} to be the center of the face and f(x,y,2) = g0 @+ut2) | g6 by Definition 1,

Jfs f(z,y,2)dS = [£(0,2,3)](24) + [£(2,2, 3)](24) + [£(1,0,3)](12)
+ [£(1,4,3)](12) + [£(1,2,0)](8) + [£(1,2,6)](8)

- 24(8_0'5 o e—O.'?) + 12(6—0.4 +e—0.8) + 8(6_0'3 e e—O.U) =~ 49.09
3. We can use the zz- and yz-planes to divide H into four patches of equal size, each with surface area equal to the surface

area of a sphere with radius /50, so AS = %(4)71’(\/-5—5) = 25n. Then (£3, +4, 5) are sample points in the four patches,
and using a Riemann sum as in Definition 1, we have
[Jy Flz y,2) dS ~ f(3,4,5) AS + f(3,—4,5) AS + f(—3,4,5) AS + f(—3,—4,5) AS
= (T+8+9+12)(257) = 9007 ~ 2827

5or(u,v)=@+v)it+w—-v)j+(1+2u+v)k0<u<2,0<v<1and
ruxlru=(i+j—|—2k)x(ifj+k)=3i+j—2k =% |r.uxru|=‘\/32+12+(—2)2:\ﬁz.ThenbyFormu]al
[fe+y+2)dS= [[(u+v+u—v+1+2u+v) \'ruxr‘u\dA:folfoz(4u+v+1)-\/ﬁdudv
:x/ﬁfol [2u2+uv+u]zzz dv = \/Tfiful (‘2v+10)dv:\/ﬁ[ﬂ2+10v];=ll\/ﬁ

7. r{u,v) = (ucosv,usinv,v), 0 <u < 1,0 < v <7and

ry X ry = (cosv,sinv,0) X (<usinv,ucosv,1) = (sinv, —cosv,u) =

|ry % ry| = v/sin® v + cos? v +u2 = v/uZ + 1. Then
[fsydS= [[p(usin) |ru x ro| dA = [y [T (usinw) - vVuZ + Ldvdu = J3 uva® + 1du ) sinvdv

= [%(u2 + 1)3/2]: [~ cosv]y = %(23"2 -1)-2= %(2\/5— 1)

9. z=1+2:J:+3ysco§—'E = 2an d8—_3 Then by Formula 4,
oz &y
zyzdS /f:uyZ\/ %) +ldA:f:.ozmzy(1+2m+3y)\/{1+9+ldyda:

=+/14 fo j:) (x?y + 223y + 322y dy dz = /14 fo [1I2y2 +2?y? 4+ 1%y ;:s dz
= V12 [}(102° + 40%) dz = 14 [22® + 2%]] = 171 V14

11. An equation of the plane through the points (1, 0, 0), (0, —2,0), and (0, 0,4) is 4z — 2y + z = 4, so § is the region in the
plane z =4 —dz + 2y over D = {(z,y) | 0 < 2'< 1,20 — 2 < y < 0}. Thus by Formula 4,

[l zdS= f[, z/(-49?+(2)>+1dA = VT el N rdydz =+/21 [} [wy];:gz g d
= x/ﬁfol(—Zmz +2z)dz = \/2‘_1[—§$3+a:2:l0 = \/ﬁ(—g +1) =
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13. S is the portion of the cone 22 = z* + 3 for 1 < z < 3, or equivalently, S is the part of the surface = = /22 + y2 over the

region D = {(z,y) |1 < 2% +y* < 9}. Thus
2 2
2_2 Y ‘ :
/fzz ds = f/m(m +y)¢(m) +(——~—\/m) +1dA

=/[ ;;2(3;2+y2)1/z:—-'+_;z+1dA:/]; \/ixz(m2+y2)dA=\/§f% [3(rc066)2(r2)rd1'd9
D D J1

_\/— QNCOS 6do arﬁdr— 9—{——!:11129 1 Gs—\/ﬁ(ﬂ)'l(36—l}:364\/§'ﬂ
21370000 [ r*ar = VE[30 -+ huin2d)}” [3]} = VE(r) 3

15. Using z and z as parameters, we have r(z, z) = i+ (2° + 2°) j + 2k, 2% + 2% < 4. Then

rz xr: = (i+22j) x (22j+k) =2zi—j+ 2zkand |re X rz| = V4z® + 1+ 42?2 = /1 + 4(z2 + 22). Thus

[fsydS= [[ (2®+2°)/1+4(z®+2%)dA= B RV &Trdrdd = [P"d6 [2r* T+ arirdr

z?422<4
=2r [PriVI+4rirdr [letu=1+4r = ® = H{u—1)and }du = rdr]
=27 [ L(u— 1)\/ﬁ tdu =L [T = u1/2)du
17

=lﬂ'[§u5/2 2y 3/2]1 = lg [%(17)5/27_3_(17)3/2 2y 3] (391\/—+1)

17. Using spherical coordim;tes and Example 16.6.10 we have r(¢,4) = 2sin¢cos 01 + 2sin ¢sinf j + 2 cos ¢ k and
B % 2 = duisih, Then JIs(a*z+y*2) dS = [77 [7/*(4sin® §)(2 cos ¢)(4sin ¢) dp df = 16msin® ¢]7/* = 16m.
19. S is given by r(u,v) = ui+cosvj+sinvk, 0 <u < 3,0 <wv < 7/2. Then
ry Xry = i X (—sinvj+cosvk) = —cosvj—sinvkand |r, X 1| = V/cos2v +sinv = 1, so
Jglz+ zly)dS = fﬂl? fg(sinv + u? cosv)(1) dudv = 1/2(331111: + 9cosv) dv
= [—Scosv+95inv]g’2 =0+9+3-0=12

21, From Exercise 5, r(u, ) = (u+v)i+ (v —v)j+ (1 +2u+v)k 0<u<2,0<v<l,andr, xr, =3i+j— 2k

Then
F(r(u,v)) = (1 + 2u + v)e™ &) § _ 3(1 + 2u + v)e™ =) § 4 (u+v)(u—v) k

=(1+2u+ 'u)e"z“’z i—3(1+2u+ v)e"z_”2j +(u? -k

Because the z-component of ry, X r, is negative we use —(ry % r,) in Formula 9 for the upward orientation:

JfsFdS = [ B (=(ra x 1)) dA = f3 J§ [~8(1 +2u+v)e ™ +3(1+2u+v)e = 422 — 0)] dud
= A2 2(u? - ) d dy = 2 [ [3u® —wv®] ') dv =2 fo (8 —20%) dv
=2[3v—5v",=2(3 - %) =14

23. F(z,y,2) = ayi+yzj+ 2zk, z = g(z,y) = 4 — 2? — y°, and D is the square [0, 1] x [0, 1], so by Equation 10
[IsF-dS= [[,[—ay(—2x) — yz(—2y) + 22]dA = fu fn [2z%y + 2y%(4 — 2% — yz) +.’Ij(4— 2 — y®)] dy dz
= (e + oo+ §)dz =13
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25 F(z,y,2) =zi—zj+yk, z = g(z,y) = /4 — 2> — y* and D is the quarter disk

{(:c, y) |0 <z<20<y<v4—2z? } S has downward orientation, so by Formula 10,
JfsF-dS =~ [, [~ 34— 2" ~y*)7/2(20) ~ (~2) - §(4 —a? —?)"*(~2y) +] dA
=~ VI =Lty )da
= _.52 o y 4—22 — 42

= _ffp (=*+9%)~ 1/2d11=—fgrfzj;:'('f‘COSB)Q(&l—rﬁ)_lfardrde
=—f‘;rﬂcoszﬂdﬂf027'3(4—'r'2)_1/2d'r [letu=4—7* = r?=4—uand—}du=rdr]

= _forr/2 (% e —; cos 29) de ff —-21-(4 - u)(u)_1/2 s

™ g n
~[30 -+ 3ain20)5” (-})[8vE- 30 = ~F(-4)(-16+ ) = —4n

27. Let S; be the paraboloid y = 22 + 22,0 < y < 1 and S, the disk z* + 2% < 1,y = 1. Since S is a closed
surface, we use the outward orientation.
On S5y: F(r(z, z)) = (z? + 22)j — zkand vz X r- = 2z — j + 2z k (since the jcomponent must be negative on S). Then

[Is,F-a8=_[[ [- ($2+zz)—2zz]dA=—f:“f;(r2+2723in29)rdrd9

2 +22<1
== [2"[1r3(1+ 2sin0) drdf = — [7"(1+ 1 — cos26) df. [, r*dr
~[20 - Lsin26])" [3r%]) = —dm-Lt=-n

On S: F(r(z,2)) =j — zkandr: xr. =j. Then [fy F-dS= [f (1)dA=m

:rz-+-:2(1

Hence [[ F-dS = —m+x =0.

29, Here S consists of the six faces of the cube as labeled in the figure. On S;:
F=i+2yj+32kr, xr: =iand [f; F.dS=[*, [} dydz=4
Sy F=gzi+2j+3zkr. xr.=jand [[; F-dS=[1 [’ 2dzdz=8;
Sy:F=gzi+2yj+3kr, xry=kand ff; F-dS=[' [! 3dudy=12
S4:F=—i+2yj+3zk,r:xry:—iandffsqF-dS=4;
Ss:F=g2i—2j+3zk ro xr. =—jand [[; F-dS=8;

Se: F=zi+2yj—3kry xre =—kand [f; F-dS= [ [? 3dedy=12

6
Hence [ F-dS=Y [, F-dS=
i=1 *

31. Here S consists of four surfaces: S, the top surface (a portion of the circular cylinder 4* + z* = 1); Sz, the bottom surface
(a portion of the zy-plane); Ss, the front half-disk in the plane & = 2, and S4, the back half-disk in the plane x =0.
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On S;: The surface is z = /1 — y2 for 0 < z < 2, —1 < y < 1 with upward orientation, so

/fle-dS=fa'2f_ll [*-’02(0)—1}2 ( ‘/—) +z } dydm—f [ ( +1—y)dydx

=l [— 1=gf4 L —g'p +y—%y3]zzilda: = [Fidz =%

On S2: The surface is z = 0 with downward orientation, so
o Feds=J3 [ () dyde = [3 ', ©)dydo =0
On S3: The surfaceisz = 2for—1 <y <1,0<z < m, oriented in the positive z-direction. Regarding y and z as
parameters, we haver, X r. =iand
Jfs, F F.dS = T fu * 22 dzdy —f11f0m4dzdy =4A(Ss) =2r
On S;: Thesurfaceisz =0for -1 <y <1,0< 2z < M, oriented in the negative z-direction. Regarding y and z as
parameters, we use — (r, x r-) = —iand
Jfs, F-dS= s fo e dzdy = [* fo *(0) dzdy =0

Thus [[(F-dS=5§+0+274+0=2r+4.
z=xe¥ = 08z/0z = eY, 8z/0y = zeY, so by Formula 4, a CAS gives
s (2 +y* +2%)dS = fﬂlj; (2% + y* + 2%e?) Ve I 222 + L dr dy = 4.5822.
We use Formula4 with 2 = 3 — 22° —3* = 8z/0z = '—4:::, 8z/8y = —2y. The boundaries of the region

3—2z*> —y? > 0are —\/%_ <z< \/g and —v/3 — 222 <y < /3 — 222, s0 we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate

S 2z2
2 2 2 2 2 212
Yy z°dS = f y 3 —2z° —y”)° /1622 + 4y® + 1 dy dz ~ 3.4895
ff \/3/ —4/3 — 222 ( )

If S is given by y = h(z, z), then S is also the level surface f(z,y,2) = y — h(z,2) = 0.

Vi@,y,2) _ —haiti— b k, and —n is the unit normal that points to the left. Now we proceed as in the
T Vi) VREITRE

derivation of (10), using Formula 4 to evaluate
ah

_ oh . | '
fLF-dS:f[gF-ndS=/-/D(P5+Q.i+3k) \/(gigjjj;)ﬂ \/(%)2+1+(%)2M
dx 9z

where D is the projection of S onto the zz-plane. Therefore [ f F-dS= f f (P o Q+R gh) dA.

(© 2012 Cengage Learning. All Rights Reserved. May not be d, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.




332 O CHAPTER16 VECTOR CALCULUS

38.

4.

47,

m = [[, KdS = K - 4n(}a?) = 2ra®K; by symmetry M. = M,. = 0, and

My = [[;2K dS = K [77 [7/*(acos ¢)(a?sin g) dp df = 2mKa®[—1 cos 2¢)7/* = mKa®,
Hence (Z,7,%) = (0,0, 3a).

@) L = [[s(2® +y*)p(z,y,2) dS

® L = [fy(a* +7) (10— 7+ )dS=  [] ($2+y2)(m_\/m)ﬁd,4

1<2?4+y2<16

= [ [ V2(10r° —r) drdo = 227 (4320) = 820,54

. The rate of flow through the cylinder is the flux | Jspv-ndS = [[;pv- dS. We use the parametric representation

r(u,v) =2cosui+ 2sinuj+vkforS,where0 < u<2x,0<wv<1,sor, = —2sinui+ 2cosuj, r, =k, and the

outward orientation is given by r,, X r, = 2cosui+ 2sinuj. Then
[fgpv-dS= pﬁ"’ fnl (vi+4sin®uj+4cos® uk) - (2cosui+ 2sinuj) dvdu
= p 27 [ (2ucosu + 8sin® w) dvdu = p [7" (cosu + 8sin® u) du

= p[sinu+ 8(—%)(2 + sin® u) cos u]zw =0kg/s

. S consists of the hemisphere Sy given by z = \/a? — 2% — 32 and the disk S; given by 0 < z* +¢* < a®,z = 0.

On S1: E = asing cosfi-+ asing sinfj -+ 2acos gk,
Ty x Ty = a®sin® ¢ cos i + a®sin” ¢ sin 6 j + a” sin ¢ cos pk. Thus
[fs, B-dS= [ [/*(a®sin® § + 20% sin ¢ cos® ¢) d d6
= [37 ["/*(a®sin¢ + a® sin ¢ cos % ¢) dpdb = (2m)a” (1 -l--;-) = &ma®

OnSy: E=zi+yjandry x rz = —kso [f E-dS = 0. Hence the total charge is ¢ = €0 [[sE-dS = $ra’e.

KVu=6.5(4yj + 4z k). S is given by r(z, ) = zi+ /6 cosf j + /6 sin 0 k and since we want the inward heat flow, we
use ry X rg = —/0 cosfj — /6 sin @ k. Then the rate of heat flow inward is givén by

[fs (—K Vu)-dS = [2" [¥ —(6.5)(—24) dx df = (2)(156)(4) = 1248r.
s 1] 0

. Let S be a sphere of radius a centered at the origin. Then [r| = a and F(r) = cr/ |r|* = (c/a®) (zi+yj+zk). A

parametric representation for S'is r(¢,8) = asin¢ cosf@i+asing sinfj+ acos¢pk,0 < ¢ <m0 < 6 < 2m. Then
ry =acos¢ cosfi+acospsinfj—asinpk, rp = —asin¢ sinfi+ asin¢ cosf j, and the outward orientation is given
by ry x rg = a’sin® ¢ cos i+ a®sin® ¢ sinf j + a® sin ¢ cos p k. The flux of F across S is
[[sF-dS=f7 02’7 c,‘ (asing cosfi+asing sinfj+ acos¢k)
'+ (a®sin’ ¢ cos 0 -+ a® sin® ¢ sin 8§ + a” sin ¢ cos p k) df d¢p
== T 27 a® (sin® ¢ + sin ¢ cos? §) dO dp = c [T [27 sinpdf dp = dme |

Thus the flux does not depend on the radius a.
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16.8 Stokes' Theorem

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 22 + y* = 4,
z = 0 (which we can take to be oriented positively for both surfaces). Then H and P satisfy the hypotheses of Stokes’

Theorem, so by (3) we know [f,, curlF -dS = [, F -dr = [, curl F - dS (where C is the boundary curve).

3. The paraboloid z = z* + y? intersects the cylinder z° + > = 4 in the circle 2 + y* = 4, z = 4. This boundary curve C '
should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C' is
r(t) = 2costi+ 2sintj+4k,0 <t < 2. Thenr'(t) = —2sinti + 2costj,

F(r(t)) = (4cos® t)(16) i + (4sin” £)(16) j + (2cost)(2sint)(4) k = 64 cos® t i+ 64sin®tj + 16sint costk,
and by Stokes’ Theorem,
[fscurlF-dS= [, F-dr= 02" F(r(t))-r'(t)dt = 02"(—128 cos’ ¢ sint + 128sin® ¢ cost + 0) dt
=128[4 cos®t + 4 sin®¢]2" =0
+ 5. Cisthe square in the plane z = —1. Rather than evaluating a line integral around C we can use Equation 3:

IJ. 5, curl F - dS = $oF-dr= ”52 curl F' - dS where S; is the original cube without the bottom and Ss is the bottom face
of the cube. curl F = 2?21+ (zy — 2zyz) j + (y — #2) k. For Sz, we choose n = k so that C' has the same orientation for
both surfaces. Then curl F - n = y — 2z = x4y on 53, where z = —1. Thus [, curlF-dS = @ +y)dedy =0
s0 ff& curl F - dS = 0.

7. curl F = =221 — 22 j — 2y k and we take the surface S to be the planar region enclosed by C, so S is the portion of the plane

z+y+z=1overD={(z,y) |0<z<1,0<y <1z} Since C is oriented counterclockwise, we orient .S upward.
Using Equation 16.7.10, we have z = g(z,y) =1 —z —y, P = —22, Q = —2z, R = —2y, and
JoFdr= ffycurlF-dS = [f,, [~(~22)(~1) — (~22)(~1) + (~20)] dA

= [} fo (~2)dydz = -2 [}(1 - 2)dz = —1

9, curl F = (ze™ — 2z)i— (ye™ — y) j + (22 — z) k and we take S to be the disk =% + y* < 16, z = 5. Since C is oriented

counterclockwise (from above), we orient S upward._Then n=kandcurl F-n =2z — zon S, where z = 5. Thus
$F -dr = [[gcurlF -ndS= [[; (22 — z) dS = .[:['5,(10.-— 5)dS = 5(area of §) = 5(r - 4%) = 80«
11. (a) The curve of intersection is an ellipse in the plane « + ¢ + z = 1 with unit normal n = 7‘5 (i+j+k),
curlF = 2% j+9°k,and curl F - n = 715(1:2 +3?%). Then

$F -dr= [[g 715(‘”2 +y%)dS = I/ +y2<0 (w2+'yz) dzdy = fﬂzw 03 r®drdf = 2w () = EIEE

@ 2012 Cengage Learning. All Rights Reserved. May not be d, copied, or dupli I, or posted to a publicly accessible website, in whole or in part.



334 0O CHAPTER16 VECTOR CALCULUS

13.

15.

17.

19.

(b) (c) One possible parametrization is = 3 cost, y = 3sint,
z=1—3cost —3sint,0 <t < 27.

ST

-

The boundary curve C is the circle z® 4+ y? = 16, z = 4 oriented in the clockwise direction as viewed from abbvé (since S is
oriented downward). We can parametrize C by r(t) = 4costi —dsintj+ 4k, 0 < t < 27, and then
r'(t) = —4sinti—4costj. Thus F(r(t)) = 4sinti+4costj— 2k, F(r(t)) - r'(t) = —16sin’ t — 16 cos® t = —16, and
$F - dr = [2TF(r(t) -r'(t) dt = [7(—16)dt = —16 (27) = —32nr

Now curl F = 2k, and the projection D of S on the zy-plane is the disk 22 + y? < 16, so by Equation 16.7.10 with
z=g(T4) = \/m [and multiplying by —1 for the downward orientation] we have

[[gcurlF-dS=— [[ (-0—-0+2)dA=-2- A(D) = -2-n(4*) = —32n
The boundary curve C is the circle 22 + z* = 1, y = 0 oriented in the counterclockwise direction as viewed from the positive
y-axis. Then C can be described by r(t) = costi —sintk, 0 < ¢ < 27, and () = —sinti — cost k. Thus
F(r(t)) = —sintj+ costk, F(r(t)) -’ (t) = —cos?¢,and §, F - dr = [?"(—cos®t)dt = —3t — 1sin2t]}" = -,
Now curl F = —i — j — k, and S can be parametrized (see Example 16.6.10) by
r(¢,0) =sin¢g cos@i+sing sinfj+cosdk, 0 <0 <70 < ¢ <7 Then
ry X o = sin® ¢ cos 01 + sin® ¢ sinf j + sin ¢ cos pk and

[[geulF-dS= [[ curlF-(ry xrp)dA = [ ['(—sin® ¢ cos —sin® ¢ sin6 — sin ¢ cos ¢) df dep

z24+22<1
= fJ(—QSiIlz ¢ — msing cos @) dgp = [% sin2¢ — ¢ —  sin? (b]; =—T
It is easier to use Stokes” Theorem than to compute the work directly. Let .S be the planar region enclosed by the path of the
particle, so S is the portion of the plane z = %y for0 <z < 1,0 <y < 2, with upward orientation.
curl F =8yi+2zj+ 2y k and
§oF - dr = [[gcurlF-dS = [f,, [~8y (0) 22 (3) +2y) dA = [} [ (2 — $v) dyda

= [ 2 dydyde = [ [34°]'") de = [} 3dz =3

y=0
Assume S is centered at the origin with radius a and let H, and H5 be the upper and lower hemispheres, respectively, of S.

Then [[curl F-dS = [f, curlF-dS + [[, curlF-dS = §_ F-dr+ §, F-dr by Stokes’ Theorem. But C} is the

circle 22 + y* = a® oriented in the counterclockwise direction while C» is the same circle oriented in the clockwise direction.

Hence fch odr = —§01F -drso [[,curl F - dS = 0 as desired.
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16.9 The Divergence Theorem

1.

1.

divF=3+2+2z=3+3z,50
[[f gdivFdV = [} [ [1(3z + 3) dz dy dz = § (notice the triple integral is
three times the volume of the cube plus three times ).

To compute [, F - dS, on

Si:n=1LF =81+yj+2kad [f, F-dS = [f; 3d5=5;

Sa: F=3zi+:r:j+2a:zk,n:jandffsuF-dS=ff32md5'=%;
S3: F=3zi+ayj+2kn=kand [f; F-dS = [f, 2xdS=1;
Ss: F=0, [[; F-d8=0;S;: F=3zi+2rk,n=—jand [f; F-dS= [[, 0dS=0;

Se: F=3zi+ayjn=-kand [f. F-dS= [[; 0dS =0.Thus [[,F dS=1.

LdivF=0+140=1s0 [f[ divFadV = [f[ 1dV = V(E) = 37 - 4*> = 287 S is a sphere of radius 4 centered at

the origin which can be parametrized by r(¢,#) = (4sin ¢ cos ,4sin ¢sin6,4cos ¢), 0 < ¢ < 7,0 < # < 27 (similar to
Example 16.6.10). Then
Ty X re = (4cos pcosf,4cos psinf, —4sin ¢) x (—4sin$sinb, 4sin ¢pcosf,0)
= (16sin® ¢ cos 0, 16 sin® ¢ sin 6, 16 cos ¢sin )
and F(r(¢,6)) = (4cos ¢, 4sin ¢sin 6, 4sin ¢ cos 8). Thus '
F - (ry X rg) = 64 cos ¢sin® ¢ cos @ + 64 sin® psin® @ + 64 cos ¢ sin® ¢ cos § = 128 cos Psin® ¢ cos @ + 64 sin® ¢sin? 0

and 5 )
J[sF-dS= [[,F-(ry xre)dA= [ [T (128cospsin® ¢cosO + 64sin® ¢ sin? ) dep d

= [;7 [28sin® pcos O + 64 (— (2 + sin® ¢) cos ¢) sin? ::;' do

_ 27 256 _: 2 __ 256 [1 5 T 27 __ 258
= [, Bisin®fdf =2 [59—351n29]0 =280y

L divF = 2 (zye®) + £ (2y°2%) + £ (—ve®) = ye” + 2ayz® — ye* = 2wy2?, so by the Divergence Theorem,

da
J[sF-dS= [[[pdivFdV = [7 [? [ 2ayz* dzdydz =2 [J zdz [Pydy [} 2% dz

=2[3"; 3]s (=, =2(8) @ (1) = 3

. divF = 3y? + 0 + 327, so using cylindrical coordinates with y = r cos §; z = rsin, z = z we have

[[sF-dS = [[[ (3% +32%)aV = [77 [} [* (37" cos® @ + 3r® sin? 0) r dz dr dO

—3[2"d [*ridr (% dz=3(2n)(2)(3) = &

. divF = 2zsiny — zsiny — zsiny = 0, so by the Divergence Theorem, [[ F -dS =[[[ 04V = 0.

divF =92 +0+2> =22 +3%s0
JsF-dS = [[f (" +y*)dV = [I7 [ [5r* -rdedrdd = [7" 7 r3(4 —r?)drdf
2

=[2" df [? (ar® —r®)dr = 2r[r* — 4r%], = Zn
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13. F(z,y,2) =z /22 + 42 + 221+ y /22 + 42 + 22 + 2/22 + 42 + 22k, s0

diVF‘——I'%(:I.'z-T-yg +z2)'1/2(2:c)+(x2+y2+zz)1/2+y-%(m2+y2+zz}_1/2(2y)+(:1:2+y2+z2)1/2
4z %(,cz +y2 +z2)g1/2(22)+(w2+,y2 +2.2)l/2
:($2+y2+22)—1/2 [3:2+($2+y2_-|-22)+y2+($2 +'y2+22)+22+(2§2+y2+22)]

2 2 2
AU RL) BT
/wz +.y2 - 22

Then

/2 p27 pl
ffF.ds zf/[4\/;n2+y2+z2dv=/ f [ 4+/p? - p sin ¢ dp df dop
5 - .
= [7/singde [ d6 [} 4p° dp = [~ cos ]2/ 02" [0*] = (1) (27) (1) = 2
15, [[FdS=[[[,v3-22dv =/ [ [ " B drdyde =31 2+ B (A@)
17. For Sy wehaven = —k,so F -n = F - (k) = —z%z — y* = —y? (since z = 0 on 51). So if D is the unit disk, we get
-dS = F-ndS= 2YdA = — [2™ [ % (sin? 6) r dr df = — L. Now since S is closed, we can use
.ffsl rfs D o Jo”
the Divergence Theorem. Since divF = £ (2"z) + £ %ya +tanz) + £ (z°z + %) = z* +y* + *, we use spherical
coordinates to get ffs2 F.dS = [f[,divFdV = f “/2 - p*singdpdg df = Zmr. Finally
.USF -d8 = fng F-dS— ffs,, F.dS= %7" —(~37) = ég'”

19. The vectors that end near P, are longer than the vectors that start near P, so the net flow is inward near P; and divF(P) is
negative. The vectors that end near P» are shorter than the vectors that start near P, so the net flow is outward near P, and

div F(P,) is positive.

2. < : 151 A From the graph it appears that for points above the z-axis, vectors starting near a
A . .
PN N LY £ Y f f particular point are longer than vectors ending there, so divergence is positive.
P gt wi The opposite is true at points below the x-axis, where divergence is negative.
=5 = 5 . :
et s mie F(z,y) =(zy,zc+y*) = divF=2Z (my)+ & (z+y*) =y+2y=3y
- - 28 L . T TS &
B LN U N ThusdivF > 0fory > 0,and divF < O fory < 0.
AL A NRY) '
~5
2, Shith e s SV R, B = _ B+ 4+ 3 with similar expressions
x J3 (2 + 42 + 22)3/2 Bz \ (22 + 2 +22)372 ] = " (22 + 42 + 22)5/2 P

for _3_ e and ﬁ S we have
Ay \ (2% + 2 + 22)°/2 az\ (@ + 2 +22)372 )

div(i) N 3(z? + 42 + 22) — 3(2? + 3 + %)
R (@ +y2 +22)7?

= 0, except at (0, 0, 0) where it is undefined.

2. [[ga-ndS = [[[.divadV = 0sincediva=0.
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2. [f;curl F-dS = [[[  div(curl F) dV = 0 by Theorem 16.5.11.
2. [[(fVg)-ndS = [[fdiv(fVg)dV = [[[(fV?g+ Vg-V[)dV by Exercise 16.5.25‘.
3. If ¢ = ¢1 i+ c2j + c3 k is an arbitrary constant vector, we define F = fc = fei i+ fe2j+ fes k. Then
af af af

divF =div fe = 5z ! +@c:2 +ECS = V[ - ¢ and the Divergence Theorem says [[¢F-dS= [[f. divFadV =

[[sF-ndS= [[f, Vf-cdV.Inparticular, ifc = i then [[, fi-ndS = [[[ V[ -idV =

f / fradS = f f BL. gy twherem=mns} £g] 4 ms k), Stiilarly, o= § wekave f f Pl // of v,
s i g O ‘ 8 e Oy

andc:kgivesfffn3d3=[/f a—de.Then
s JJ g Oz

[l fndS = ([[g fradS)i+ ([[s fr2dS)j+ ([[s fnadS)k

(L 3)e (L)oo L 3) s ] G- 200

= [[[VfdV asdesired.

16 Review
CONCEPT CHECK

1. See Definitions 1 and 2 in Section 16.1. A vector field can represent, for example, the wind velocity at any location in space,

the speed and direction of the ocean current at any location, or the force vectors of Earth’s gravitational field at a location in

space.
2. (a) A conservative vector field F is a vector field which is the gradient of some scalar function f.
(b) The function f in part (a) is called a potential function for F', thatis, F = V f.
3. (a) See Definition 16.2.2.
(b) We normally evaluate the line integral using Formula 16.2.3.
(c) The mass is m = [, p(z,y) ds, and the center of mass is (%, §) where T = - [ zp(z,y) ds,T= % [Lyp(z,y) ds.

(d) See (5) and (6) in Section 16.2 for plane curves; we have similar definitions when C' is a space curve

" [see the equation preceding (10) in Section 16.2].

(e) For plane curves, see Equations 16.2.7. We have similar results for space curves

[see the equation preceding (10) in Section 16.2].

4. (a) See Definition 16.2.13.

(b) If F is a force field, [, F - dr represents the work done by F' in moving a particle along the curve C.
(©) [oF-dr=[,Pdz+Qdy+ Rdz

5. See Theorem 16.3.2.
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(a) [, ¢ F - dr is independent of path if the line integral has the same value for any two curves that have the same initial and
terminal points.

(b) See Theorem 16.3.4.

. See the statement of Green’s Theorem on page 1108 [ET 1084].

. See Equations 16.4.5.

_(O8R 3Q\., (8P OR\. (8Q 8P\ _ i

-‘“C““F-(a*a)‘*(—az _Bm)J+(_6:c —ay)k-VxF
o P B0 BH o
BdnE= e e T =

(c) For curl F, see the discussion accompanying Figure 1 on page 1118 [ET 1094] as well as Figure 6 and the accompanying
discussion on page 1150 [ET 1126]. For div F', see the discussion following Example 5 on page 1119 [ET 1095] as well as
the discussion preceding (8) on page 1157 [ET 1133].

See Theorem 16.3.6; see Theorem 16.5.4.

(a) See (1) and (2) and the accompanying discussion in Section 16.6; See Figure 4 and the accompanying discussion on

page 1124 [ET 1100].

(b) See Definition 16.6.6.

(c) See Equation 16.6.9.

(a) See (1) in Section 16.7.

(b) We normally evaluate the surface integral using Formula 16.7.2.

(c) See Formula 16.7.4.

(d) The mass is m = [ [ p(x, y,2) dS and the center of mass is (Z, 7, z) where T = 2- [[, zp(z,y,2)dS,
7= [[sve(z.y,2)dS, 2 = & [[szp(w,y,2)dS.

(a) See Figures 6 and 7 and the accompanying discussion in Section 16.7. A Mbius strip is a nonorientable surface; see
Figures 4 and 5 and the accompanying discussion on page. 1139 [ET 1115].

(b) See Definition 16.7.8.

(c) See Formula 16.7.9.

(d) See Formula 16.7.10.

See the statement of Stokes’ Theorem on 'page 1146 [ET 1122].
See the statement of the Divergence Theorem on page 1153 [ET 1129].

In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the values of

the original funcltion only on the boundary of the region.
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TRUE-FALSE QUIZ

339

1.

. False; div F is a scalar field,

. True, by Theorem 16.5.3 and the fact that div0 = 0.

. False. See Exercise 16.3.35. (But the assertion is true if I is simply-connected; see Theorem 16.3.6.)
. False. For example, div(yi) = 0 = div(zj) but yi # « .

. True. See Exercise 16.5.24.

True. Apply the Divergence Theorem and use the fact that div F' = 0.

EXERCISES

1.

13.

. (a) Vectors starting on C' point in roughly the direction opposite to C, so the tangential component F' - T is negative.

Thus [, F - dr = [, F - Tds is negative.

(b) The vectors that end near P are shorter than the vectors that start near P, so the net flow is outward near P and

div F(P) is positive.

. [ yzcoszds = [ (3cost) (3sint) cost /(1) + (—3sint)? + (3cost)?dt = [ ( 9(:03 t sint)+/10 dt

= 910 (—3 cos® )] = —3V10(—2) =610

Sovtde oty = 1 [P (~2) + (1 —9*))dy = [1,(~yt - 2% + 1) dy

—[_1.58 3.8 1 _ 12 i _.2 __ 4
=[-8’ -3+y ,=—5-5+l-5-5+1=5

L Cix=14+2t = de=2dt,y=4t = dy=4diz=-1+3t = dz=3d,0<t<]1.

Jomyde +y* dy +yzdz = [[(1426)(46)(2) + (46)*(4) + (4¢)(—1 + 3t)(3)] dt

= o (11662 — 4t} dt = [1€¢® — 2¢?] =116 o — 110

. F(r(t)) g B(-)i+ P +t)k r'(t) =2ti +3t>j — kand

JoF dr=[j(2te™ —3t° — (t* + %)) dt = [-2te™ —2e™" — 1t — 118 — L] =11 _ 4,

7% (1 + zy)e™] = 2ze™ + zzye’l"'” = £ [e¥ + 2®¢*¥] and the domain of F is R?, so F is conservative. Thus there
exists a function f such that F = V f. Then f,(z,y) = e’ + z?e™ implies f(z,y) = e¥ + ze® + g(z) and then
fol@,y) = Tye™ + € + g'(x) = (1 +2y)e™ + ¢/ (z). But fulz,y) = (1 +29)e™, 509'(2) =0 = g() =
Thus f(z,y) = e¥ + ze™ + K is a potential function for F.

Since 'b% (tlzr:‘?;l,r2 - Zz:ya) =823y — 6z = -5%: (2zty — 3z%% + 4y3) and the domain of F is R?, F is conseﬁativc.
Furthermore f(z,y) = z"y* — z%y® + y* is a potential function for F. ¢ = 0 corresponds to the point (0, 1) and ¢ = 1
corresponds to (1,1),s0 [, F-dr = f(1,1) — f(0,1) =1—1=0. :
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15, Co:r(t) =ti+#2),-1<t< L ' "
: o
Ca:r(t) = —ti+j,-1<t< 1L L)yt &Y
Then D
G
fomy?de —aPydy = [1 (&5 — 2%)dt + [*, tdt 5 -

=[-3¢]1, + [3¢%]1, =0

Using Green’s Theorem, we have

] zy’ dz — 2y dy :ff [2 (—2%y) — = (xy }dA /[ 2:r:y—2:cy YdA = f f —dzy dy dx
c p 0% 6

—f [—2ay? ]y_xz dm—f (22° — 22) dz = [$a® - 2]1_ =
W fpotyd-mdy=_ [ [E(-o?)-&6]dA= [[ (- -a?)d o Jo ¥ drdo =~8n
2 4+y? <4 22 +y2 <4
19. If we assume there is such a vector field G, then div(curl G) = 2 + 3z — 2zz. But div(curl F) = 0 for all vector fields F.
Thus such a G cannot exist.

21. For any piecewise-smooth simple closed plane curve C' bounding a region D, we can apply Green’s Theorem to
F(z,y) = f(z)i+g(y)jtoget [ f(@)do+gly)dy = [[, [a"; 9(¥) — & f(m)] dA= [[,0dA=0.
23. V2 f = 0 means that ﬂ - a—f- = 0. Now if F = f, i — f, jand C is any closed path in D, then applying Green’s
Theorem, we get
JoFedr= [ fydo— fady= [[, [& (~£:) - & ()] a4
= = [[p(foz + fyy)dA == [[,0dA =0

Therefore the line integral is independent of path, by Theorem 16.3.3.

25 z=f(z,y) =2 + 2y with0 <z < 1,0 <y < 2z. Thus
‘ 1
= [f,VI+4z® T ddA = [} [>T &z dyda = [} 22V/5 + 4z de = (5+4:¢:2)3/2]0=é(27—5\/5).

2. 2 = f(z,y) =z* + y* with0 < 2% + yz <4sors X ry = —2zi — 2y j + k (using upward orientation). Then

IfszdS= [[ (&®+9*)V4a? + 42 +1dA

24942 <4
= [27 [2r3VI T+ artdrdf = (39117 +1)
(Substitute u = 1 + 47 and use tables.)

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and

JIs¥ - dS = [[[ pdivFdV = [[f pz =2 dV = [[[ x 2dV = 2[[[ y aV

-0 [ odd function in z

=_0.,4 3 _ _64
nndEissymmelric] —2-V(E)=-2 3”(2) = =g
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31.

33.

35.

7.

41,

CHAPTER 16 REVIEW 0O 3#1
Alternate solution: F(r(¢,0)) = 4sin¢ cosd cos¢di— 4sin¢ sin#j + 6sind cosbk,
ry X rg = 4sin® ¢ cosfi + 4sin® ¢ sinfj + 4sin ¢ cos ¢k, and
F - (ry x rg) = 16sin® ¢ cos® 6 cos ¢ — 16sin? ¢ sin® 6 + 24 sin” ¢ cos ¢ cos §. Then
Jf;F-dS= [ [T(16sin’ $ cos b cos? @ — 16sin> ¢ sin @ + 24sin” ¢ cos ¢ cos 8) dp df
= [2" 4(~165in®0) df = — S
Since curl F = 0, [[(curl F) - dS = 0. We parametrize C: r(t) = costi+sintj, 0 <t < 27 and

$F - dr = 27 (—cost sint + sin® t cost) dt = } cos®t + § sin® t]z’r =0.

The surface is givenbyz +y+2=1lorz=1-z—-3,0<z<1,0<y<1l-zandr, xry, =i+ j+ k. Then

$oF - dr = [fyourlF-dS = [, (~yi—zi~2k)- (i +J+k)dA = [f,(~1)dA = —(arcaof D) = —1.

[ffzdivFdV = [f[  3dV = 3(volume of sphere) = 4. Then

%2 +y2+_._.251
F(r(4,0)) - (ry x rg) = sin® ¢ cos® f + sin® ¢ sin®  + sin ¢ cos® ¢ = sin ¢ and

[[sF-dS= f(f“f; sin ¢ dgpdf = (2m)(2) = 4.

Because curl F = 0, F is conservative, so there exists a function f such that Vf = F. Then fz(z,y, z) = 3z%yz — 3y
implies f(z,y,2) = ayz —3zy +9(y,2) = fy(z,y,2) =2’z — 3z +gy(y, 2). But fy(2,v,2) = 2°z — 3z, s0
9(y, z) = h(z) and f(z,y,z) = °yz — Bzy + h(2). Then f.(z,y,z) = 2’y + h'(2) but f.(z, y, 2) = 23y + 22,

so h(z) = 2% 4+ K and a potential function for F is f(z,y, z) = 2°yz — 3xy + 2z°. Hence

[oF-dr= [, Vf dr=f(0,3,0)— f(0,0,2) =0—4=—4.

. By the Divergence Theorem, [ [, F-ndS = [[[, div FdV = 3(volume of E) = 3(8 — 1) = 21.

Let F = a X r = (a1, a2, a3) X (z,¥,2) = (a2z — aay, a3z — a1z, a1y — azz). Then curl F = (2a1, 2as, 2a3) = 2a,

and [[2a-dS = [[,curl F-dS = [, F-dr = [,(a x r) - dr by Stokes’ Theorem.
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1. Let S; be the portion of 2(.S) between S(a) and S, and let 51 be its boundary. Also let St be the lateral surface of S; [that
is, the surface of S1 except S and S(a)]. Applying the Divergence Theorem we have / / TR = [ [ vV.— dV
851 S1

But

v L ﬁ i & , ad \ y z
3 \dz Oy’ dz (z2 +y2+22)3/2’($2+y2+22)3/2' ($2+y2'+22)3/2

(@ 4y 422 -8+ (P P+ 2P —3y2)+(:;32 + 4% + 2% — 32%)
= (22 + 12 + 22)5/2

=0

= / f 2 Riv f f / 0dV = 0. On'the other hand, notice that for the surfaces of 85 other than S(a) and S,
as, 51

ran=0 =

oo [ e [ e [ Spane ] Sane [ Spuns [] e

[/—ds— [/ ——-dS Notice thaton S(a),r =a = n——E:—Eandr-rzr2=az,so
s 5(a) 4 o _

r3

that — f[sm R s = [[ " TE = ffs(a) - =—ff3(a) | m‘;fzs(a) 12(8)].
Therefore IQ(S)l—/f —dS |

3. The given line integral + Jo(bz — cy) dz + (cx — az) dy + (ay — bx) dz can be expressed as Jo F - dr if we define the vector
field F by F(z,y,z) = Pi+ Qj+ Rk = 1(bz — cy)i+ %(cz — az)j + i (ay — bz) k. Then define S to be the planar
interior of C, s0 S is an oriented, smooth surface. Stokes’ Theorem says [ F -dr = [/ curlF - dS = [f_curl F - ndS.

Now

8R  8Q 8P R\, (8Q oP
curl F = (By az)l-l-(%—'a—x),]‘f'(ax a—y)k

=(3a+3a)i+ (3b+3b)j+ (3¢+3¢0)k=ai+bj+ck=n
socurlF-n =mn-n = |n|? = 1, hence Sfscurl F-ndS = [[. dS which is simply the surface area of S. Thus,

Jo F-dr = 3 [ (bz — ey) dz + (cz — az) dy + (ay — bx) dz is the plane area enclosed by C.

5. (F-V)G

( +Q1 +R1 ) (Pei+ Q2 j+Rak)

( o5 +Q1 +R1@) +(P16Q" +@ 2% 45, —8-9—’)j

0 a dy dz

+(P13R2 +Q1 +R1———38R22)k

=(F -VP:)i+(F-VQ2)j+ (F VR2) k.
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Similarly, (G- V)F = (G - VP)i +(G - VQ1)j + (G - VR1) k. Then
i Jj k
FxculG= P Q1 R
6R2/8y = 3Q2/az 3P2/3z = aRg/ax 8Q2/8.€ o= an/ay

(Q16Q2 Qlapg el +R18R2) +(R13R2_R1@3_P13Q2+P6_P2)J

- o Ay 8 o Ay
3P2 2 2 BQZ
+(P1¥_P1W_Qla_y+ E)z)k
and
(@02 Q.08 2B 0 O 0@ 00, 0P
G xcurlF = (Qg — @2 Ry 5 + Ra Ba;) (Rz By Ro 52 Py Bz +P2 By J
a
‘|‘(P286P1 8R1 QZG_}EL QZ Ql)
Then .
(F-V)G+FxcurlG=(P1§5&+Q16Q2+R1%)i+( OF: 6Q2+R18£2)j
+(P1 e +Q1 + R; 52 )k
and
0P 6Q1 R, P Q OR; \
(G V)F+G x cwrlF = ( Fry +Q2 + Ro %) +(Pz B +Q2 + Rs By Jj
aP; ah R,
(P2 5 +Q2 +Rz—az—)k-
Hence

(F-V)G+FxewlG + (G- V)F+ G xcurl F

= [(PlaaP“ +P288 ) (QlaQ” +Q BQ‘) (Rl%+ﬁgaaﬂ; )}1

opP; Bi Q) O 9Ry OR1\|.
+[(P1 By + P 5y) (Ql + Q2 B'y) (Rl By + Re—— By )]J

+[(P1‘9;3° +Pza§1> (Qlacqueran) ( 3R2+R26R1)]k

=V(PiP. 4+ Q1Q2 + RiR2) = V(F  G).

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or pasted to a publicly accessible website, in whole or in part.



17 [0 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

1.

1.

13.

15.

17.

19.

The auxiliary equationis 7> —r —6=0 = (r—3)(r+2)=0 = r=3,r=—2. Then by (8) the general solution

isy = 16> + coe™ 2",

. The auxiliary equation is r* + 16 =0 = r = +4i. Then by (11) the general solution is

y = €% (¢1 cosda + ca sindx) = ¢1 cos 4z -+ ca sin 4.

. The auxiliary equationis 97> —12r +4=0 = (3r—2)’=0 = r= % Then by (10), the general solution is

y = c1**/® 4 caze®/3,

. The auxiliary equation is 2t —p = r(2r—1)=0 = r=0,r= %, soy = c1e’® + c2e®? =¢1 + coe®/2,

. The auxiliary equationis® —4r +13=0 = r= 4:':—2— i 2+ 3, s0 y = €**(c1 cos 3z + ¢3 5in 3z).
s g - 12 1
The auxiliary equation is 2r® +2r -1 =0 = r= %—\/_ ==z + ? S0
g 016(71/2+\/§/2)t 4 Cze(—l/Z—\/E/Z).'..
The auxiliary equation is 100r® +200r +101 =0 = 7= ‘—20%— i S T
P=et [cl cos (l—lot) + casin (l—lot)]
The auxiliary equation is 57° — 2r — 3 = (57 +3)(r—1) =0 = r=-§, 10
r = 1, so the general solution is y = c1e7%%/% | cae®. We graph the basic ‘ / ¢

solutions f(z) = e™3*/5, g(z) = ® as well as y = e 3%/% 4 2¢7, i j 3
y=e 3%/% _ ¢* andy = —2e~3*/% — ¢, Each solution consists of a single
continuous curve that approaches either 0 or 4-co as z — *oo. T

™ —6r+8=(r—4)(r —2) =0,s07 = 4, r = 2 and the general solution is y = c1e!® + c2e**. Then

Y =4c1e®™ 4+ 2c2e™,50y(0) =2 = 1 +ez=2andy’(0) =2 = 41 +2c2 =2, givingey = —lande; = 3.

Thus the solution to the initial-value problem is y = 3¢ — &**.

92 +12r +4=(3r+2°=0 = r= —% and the general solution is y = c1e™>*/3 4 coze~2*/3, Then y0)=1 =

2 —2x/3

c1 = 1and,sincey’ = —3cie ez (1—22)e 2, y(0)=0 = —2¢1+c2 =0,50c2 = 2 and the solution to

the initial-value problem is y = e=2/3 + %:t:e'h"".
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346 O CHAPTER17 SECOND-ORDER DIFFERENTIAL EQUATIONS

2.7 —6r+10=0 = r =3 =iand the general solution is y = €**(c; cos z + ¢z sinz). Then 2 = y(0) = ¢; and

3=%'(0)=ca+3c1 = c2 = —3and the solution to the initial-value problem is y = ¢**(2cosz — 3sinz).

B.r—r—12=(r—4)(r+3)=0 = r=4,7=—3and the general solution is y = c1e"” + co¢~>". Then

0=y(1l) =cie* + cze® and 1 = /(1) = 4c1e* — Beze > so 1 = 2e7*, ¢y = — 1€ and the solution to the initial-value

1

dz—4 1
76

3—3x
7€ w

problem is y = 2e %' — LePe™3 =

25. r* +4=0 = r=2iand the general solution is ¥ = ¢, cos 2z + ¢z sin 2z. Then 5 = y(0) = ¢; and 3 = y(x/4) = 3,

so the solution of the boundary-value problem is ¢ = 5 cos 2z + 3 sin 2.

2.’ +4r4+4=(r+2)?=0 = r— —2and the general solutionis y = cie~>* + caze™2*. Then 2 = y(0) = c1 and

0=1y(1) = c1e™? + cze”? 50 ¢ = —2, and the solution of the boundary-value problem is y = 2e2* — 2ze~ %%,

2.1 —r=r(r—1)=0 = r=0,r=1and the general solution is ¥ = ¢1 + cae®. Then 1 = y(0) = &1 + &

e—2 1 . . e—2 é*
and2 =y(1) = ¢1 + caesocy = - ca = o The solution of the boundary-value problem is y = e + —

M. 7" 4+4r420=0 = r = —2+ 4iand the general solution is y = e~**(c1 cos 4z + co sin 4mj. But 1 = %(0) = ¢; and

27

2=y(r) =cie” = ¢1 = 2€*", so there is no solution.

33. (a) Case I(A=0): ¥y" + y=0 = 3" =0which has an'auxiliary equation® =0 = r=0 = y=ci+cx
where ¢(0) = 0and y(L) = 0. Thus,0 = y(0) =ciand0=y(L) = 2L = c1=c2=0.Thusy =0.
Case 2 (A < 0): 9" + Ay = 0 has auxiliary equation 7> = —\ = 7 = +/—X [distinct and real since A < 0] =
Y = c1e¥™> + cae™V"** where y(0) = 0 and y(L) = 0. Thus 0 = y(0) =c1+c2 (x)and
0=y(L) = c1e¥™* + cae VL (4.
Multiplying (%) bly eV L and subtracting (1) gives cg (e‘/jL - ef‘/:ﬂ‘) =0 = éz = 0 and thus ¢; = 0 from (*).
Thus y = 0 for the cases A = 0 and A < 0.

(b) y” + Ay = 0 has an auxiliary equationr* + A =0 = r= +ivVA = y=cicosVAz+ cosinvAz where
y(0) = 0and y(L) = 0. Thus, 0 = y(0) = ¢1 and 0 = y(L) = ca sin /AL since ¢; = 0. Since we cannot have a trivial
solution, ¢z # O and thus sin VAL =0 = /AL = nr where nisaninteger = A = n’n?/L? and
y = ca sin(nmx /L) where n is an integer. ‘
3. @) r®—2r+2=0 = r=11iand the general solution is y = &* (¢1 cos = + casinz). If y(a) = cand y(b) = d then
e®(cicosa+casina) =c = cicosa+cesina = ce ® and e” (¢y cosb + cosinb) =d =

c1cosb+ cz sinb = de™". This gives a linear system in ¢; and ¢z which has a unique solution if the lines are not parallel.

If the lines are not vertical or horizontal, we have parallel lines if cos @ =.k cos b and sin @ = k sin b for some nonzero
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS [ 347

cosa sina sing sinb
constant k or - =k=—= =
cosbh sin b cosa cosb

= tana =tanb = b—a = nm,nany integer. (Note that

none of cos a, cos b, sin a, sin b are zero.) If the lines are both horizontal then cosa =cosb=0 = b—a = nmr, and

similarly vertical lines means sina =sinb=0 = b —a = nx. Thus the systerﬁ has a unique solution if b — a # nr.

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

—a

b — a = n. Ifthe lines are not horizontal, they are identical if ce™® = kde™" & =R
. de—® cosb
c a—bCOSQ i
5= e _— (If d = 0 then ¢ = 0 also.) If they are horizontal then cosb = 0, but k = — also (and sin b # 0) so
we require C% =g ”:32 Thus the system has no solution if b — a = nw and < ;é e %ﬁg unless cosb =0, in

_ysina
which case = # e®
# sinb’

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

whenb-a:mrandlf—e"’cos unless cos b = Omwhlchcaseg—e _—
d cosb d sinb

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equationis 7> —2r — 3= (r —3)(r+1)=0 = r =3, 7 = —1, so the complementary solution is
ye(x) = c1® + c2e™". We try the particular solution y;,(z) = A cos 2z + Bsin 2z, so
yp = —2Asin 2z + 2B cos 2z and yj, = —4A cos 2z — 4B sin 2z. Substitution into the differential equation gives
(—4A cos 2z — 4B sin 2z) — 2(—2A sin 2z + 2B cos 2z) — 3(Acos2z + Bsin2z) = cos2z =
(=7TA —4B)cos2z + (44 —TB) sin.2zv =cos2z. Then -7TA-4B=1and44-7B =0 = A= - and

B = —£. Thus the general solution is y(z) = yc(z) + yp(z) = c1€®® + e — o €08 2:1: o= sin 2.

3. The auxiliary equation is 7> + 9 = 0 with roots r = =34, so the complementary solution is y.(z) = ¢; cos 3z + ¢; sin 3z.

Try the particular solution y,(z) = Ae™?"

, 50y, = —2Ae %" and yj, = 4Ae™**. Substitution into the differential equation
gives 4de > +9(Ae ) =e ™ or134e ** = . Thus 134=1 = A= 75 and the general solution is

y(z) = yo(z) + yp(z) = c1 cos 3z + c25in 3z + e 2=,

5. The auxiliary equation is 7> — 4r + 5 = 0 with roots r = 2 % 1, so the complementary solution is
ye(z) = €**(c1 cosz + cosinz). Try yp (z) = Ae %, 50y, = —Ae " and y = Ae™". Substitution gives

Ae™™ —4(—Ae ")+ 5(Ae™") =e* = 10Ae*=¢e® = A= L. Thusthe general solution is

l—

y(z) = e**(c1 cosz + casinz) + e
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T.

1.

13.

15.

17.

The auxiliary equation is 2 + 1 = 0 with roots 7 = =4, so the complementary solution is y.(z) = ¢1 cos © + ¢z sin z.
Fory” +y = e” try yp, () = Ae”. Theny;, = yj, = Ae” and substitution gives Ae® + Ae® =e* = A=1,
50 Yp, (x) = €. Fory" +y = 2° try yp, (z) = Az® + Ba® + Cz + D. Theny}, = 3Az* + 2Bz + C and

Yp, = 6Az + 2B. Substituting, we have 6Az + 2B + Az® + B2* + Cz2+ D = 2%, s0 A=1, B =0,
6A+C=0 = C=-6,and2B+D=0 = D =0. Thus yp,(z) = 2> — 62 and the general solution ‘is
Y(T) = Yel) + Yp, (%) + Ypo (@) = crco8 T + c2sinz + Je° +2° —62. But2=y(0) =c1 + 3 =
cr=3ad0=¢y(0)=ca+3-6 = ég = 4. Thus the solution to the initial-value problem is

y(z) = 2 cosz + 4 sinz + $e* + z° — 6a.

. The auxiliary equation is 72 — + = 0 with roots » = 0, 7 = 1 so the complementary solution is y.(z) = ¢1 + coe”.

Try yp(x) = z(Az + B)e” so that no term in y,, is a solution of the complementary equation. Then

yp = (Az* + (2A+ B)z + B)e® and y = (Az® + (4A + B)z + (24 + 2B))e”. Substitution into the differential equation
gives (Az® + (4A + B)x + (2A + 2B))e” — (Az® + (2A+ B)z + B)e* =ze® = (24z+ (24 + B))e* =ze* =
A=}, B=—1 Thus yy(z) = (3a® — z)e” and the general solution is y(z) = c1 + c2e® + (32* — z)€”. But
2=y(0)=c+c2 and 1 = y'(0) = ca — 1,50 co = 2 and ¢; = 0. The solution to the initial-value problem is !

y(z) = 2¢* + (32° — 2)e* = e* (3% — 2 +2).

The auxiliary equation is 72 + 3r +2 = (r + 1)(r+2) = 0,50+ = —1, r = —2 and y.(z) = c1e™° + cae ™",

Tryy, = Acosz + Bsine = y, =—Asinz + Bcosz, y, = —Acosz — Bsinz. Substituting into the differential

equation gives (—Acosz — Bsinz) + 3(—Asinz + Beosz) + 2(Acosz + Bsinz) = cosz or

(A +3B)cosz + (—3A + B) sinz = cos z. Then solving the equations 3
A+4+3B=1,-3A+B=0gvesA=+,B=and the general (\
solution is y(z) = e1e™ + cae™** + & cosz + & sin@. The graph B 7 s
shows yp and several other solutions. Notice that all solutions are i /

=3

asymptotic to yp as £ — oo. Except for y,,, all solutions approach either oo

or —ooasT — —0Q.

Here ye(z) = c1e®® 4 cae™™, and a trial solution is g, () = (Az + B)e® cosz + (Cx + D)e® sinz.
Here yc(z) = c1€®® + coe®. Fory” — 3y’ + 2y = e try y,, (2) = Aze® (since y = Ae” is a solution of the complementary
equation) and for §"" — 3y’ + 2y = sinz try yp,(z) = Bcosz + Csinz. Thus a trial solution is

Yp(Z) = Yp, (&) + Ypa(z) = Aze™ + Beosz + Csinz.

Since y.(z) = e~“(c1 cos 3z + ¢z 5in 3x) we try yp(z) = z(Ax? + Bz + Ce ™ cos 3z + z(Dx® + Ez + F)e " sin 3z

(so that no term of y,, is a solution of the complementary equation).
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Note: Solving Equations (7) and (9) in The Mettiod of Variation of Parameters gives
B e Gy2 Gyl
W == f_ 7 i _ 7
a(1ny; — y2v1) a(y1vz — y2u1)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

/
and Uy =

19. (a) Here dr” +1=0 = r=z3iandy.(x) = e1cos(3z) + casin(3z). We try a particular solution of the form
yp(z) = Acosz + Bsinz = y, = —Asinz+ Beoszandy, = —Acosz — Bsinz. Then the equatioﬁ
4y" + y = cosz becomes 4(—Acosx — Bsinz) + (Acosz + Bsinz) = cosz or

—3Acosz —3Bsinz =cosz = A= —3, B = 0. Thus, y,(2) = —3 cosz and the general solution is

Y(x) = ye() + yo(x) = 1 cos(3z) + c2 sm(lm) — 3 cosz.

(b) From (a) we know that y.(z) = c1cos § + czsin 5. Setting y1 = cos Z, y2 = sin £, we have

1,95 1 c2% 1 / cosT sin 7 1 zY i ;
Yiyh — Yoy = 3cos” 2+ 1sin? £ = E.Thusu? = —T =—3co8(2-3)sin§ = —1(2cos® £ —1)sin &
and uh = wﬁt:—cfs% = jcos(2-%)cos & = (1 —2sin® ) cos Z. Then
2
ui(z) = [ (3sin§ —cos® 2 sin2)dz = —cos 3 +-3-cossiand
uz(z) = [ (3cosZ —sin® £ cos %) dz =sin £ — Zsin® 2. Thus
Yp(z) = (—cos % + 3 cos® £) cos £ + (sin % — 3 sin® £)sin £ = — (cos® £ -s1n2 %) + % (cos* £ —sin* Z)
:—cos-(2-§ +%(cos —+Sln %) (cos w——sm ):—cosm+%cosz‘=—§cosm
and the general solution is y(z) = ye(x) + yp(z) = c1c08 % + casin ¥ — L cosz.

2. @r"=2r+1=(r—-1)%=0 = r=1,s0the complementary solution is yc(z) = c1e” + caze®. A particular solution
is of the form y,(z) = Ae®*. Thus 44e®* — 44e™ + Ae®™* =™ = A =¢ = A=1 = y(z)=€>
So a general solution is y(z) = ye(z) + yp(z) = c1€” + coze™ + €**
(b) From (a), yc(z) = c16”® + caze®, so set y1 = €, yo = ze”. Then, y1yz — yoyi = €**(1 + ) — ze®* = ¢** and so
uy =—ze® = w1 (z)=-— [ze"de=—(r—1)e” [byparts] anduj =e® = wus(z)= [e® dz = e®. Hence

Yp (2) = (1 — x)e™™ + ze® = e”- and the general solution is y(z) = yo(z) + yp(z) = c1€® + came™ + 2%

23. Asin Example 5, y.(z) = e1sinx + ca cosz, so set y; = sinz, ya = cosz. Then y1y4 — yapf = —sin® & — cos® 2 = —1,
2
sec’ T cosz
souj = e ur(z) = [seczdr = In(secz + tanz) for0 < z < I,
sec’ r sinz
and uy = ————— = —secr tanz = wuz(z) = —secx. Hence

=1

yp(x) = In(secx + tanz) - sinz — secz - cosz = sinz In(secx + tanx) — 1 and the general solution is

y(z) = cysinz + cacosz +sinz In(secz + tanz) — 1.
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2x -z
_— e Al ' r__ 3z ' —€ _ [ v
25. yy = €%, y2 = e and y1ys — ey = €7, Sowuy = GFe)e= — T1e= and
ur(z)= [ — il dr=In(l+e ). up= £ O so
1 - 1+e-= ._ + Uz (1 +e—z)833 T g3 + g2

uz(z) = f@ﬁ;dﬁl = lu(e ej ) —e* =In(l+e*)—e " . Hence

Yp(@) = € In(1 + ™) + €**[In(1 + ¢™*) — 7] and the general solution is

y(z) = [c1 +In(l + e *)]e” + [c2 — e~ + In(1 + e )]e*™.

2. —2r+1=(r=12=0 = r=1s0y.(z) =c1e® + caze®. Thus y1 = ¢, y2 = ze” and

' _ ;T x 2w dm I_—meiﬂ_eff-'/(l_'_mz)__ T
Yy — ey =e“(z+ 1)e” —ze®e” =e**. Sou) = pr = =T =
¥, 1 2 /(1427 1 1 5
ulz—/H—xzd.r_*Eln(1+m ),u12~ 821 =1+$2 = Uz = mdﬂ?——»taﬂ mand
Yp(z) = —3€®In(1 + z°) + ze” tan~" . Hence the general solution is y(z) = €®[e1 + c2z — § In(1 + 2°) + ztan™" z].

17.3 Applications of Second-Order Differential Equations

1. By Hooke’s Law k(0.25) = 25 so k = 100 is the spring constant and the differential equation is 5z 4 100z = 0.
The auxiliary equation is 57> + 100 = 0 with roots r = £2 v/51, so the general solution to the differential equation is
x(t) = e1c08(2/5t) + casin(2+/5¢). We are given that 2(0) = 0.35 = ¢; =035andz'(0) =0 =

2v5ea =0 = ¢ =0, so the position of the mass after ¢ seconds is 2(t) = 0.35cos(2/51).

3. k(0.5) = 6 or k = 12 is the spring constant, so the initial-value problem is 22" + 142 + 12z = 0, z(0) = 1, 2'(0) = 0.
The general solution is z(t) = c1e™ " + e2e ™. But 1 = 2(0) = ¢1 + c2 and 0 = z'(0) = —6¢y — co. Thus the position is

given by z(t) = —2e™% + fe".

5. For critical damping we need ¢ — 4mk = 0 orm = c*/(4k) = 14%/(4 - 12) = 2 kg.

2 .
7. We are given m = 1, k = 100, (0) = —0.1 and 2’(0) = 0. From (3), the differential equation is j—t—f- +c %tr: + 100z =0
with auxiliary equation r* + er 4+ 100 = 0.
If ¢ = 10, we have two complex roots 7 = —5 £ 5 V314, so the motion is underdamped and the solution is

z = e [c1 cos(5v/3t) + casin(5v/3t)]. Then —0.1 = 2(0) = ¢ and 0 = 2'(0) =53¢z — 5ex = e = —Tﬁ/?’

sox=e % [—ﬂ.l cos(5 x/{;t) - ﬁ sin(5 \/gt)}
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If ¢ = 15, we again have underdamping since the auxiliary equation has roots r = — 32 & ﬂzﬁ i. The general solution is
= ‘1"‘/2[c cos(it) + e2 sm(ﬁ‘/_t)] $0—0.1=z(0)=c1and0 =z'(0) = 2T, — Pa = = —103 5

Thus z = e~ 13/2 [—0.1cos(§-2~‘/—?t) 7 sm(it)]
For ¢ = 20, we have equal roofs 71 = 72 = —10, so the oscillation is critically damped and the solution is

@ = (c1 + cat)e . Then —0.1 = 2(0) = cy and 0 = 2'(0) = —10c1 + 2 = ez =—1, 502 = (—0.1 — t)e 0%

If ¢ = 25 the auxiliary equation has roots r; = =5, ra = —20, so we have overdamping and the solution is
@ =c1e”" +ce ", Then —0.1 = 2(0) = e1 + ez and 0 = 2'(0) = —5c1 — 202 = &1 = —F andcz = 7,
I WO e
S0 = —'i'ge + EE X

If ¢ = 30 we have roots 7 = —15 + 5+/5, so the motion is

overdamped and the solution is z = cre{~18+5VE)e 4 op(~15-8VE)e

Then —0.1 = z(0) = ¢1 + ¢2 and
0=2'(0)=(-15+5v5) 1+ (-15-5v5) ez

c = _51_03 a.nd 2 = _5+3_‘/- , S0

100 —0.11

(:o_-,hﬁ) (-15+5VE)t (—sim:égs) e(-15-8VE):,

9, The differential equation is ma” + kx = Fp coswot and wp # w = 4/k/m. Here the auxiliary equation is mr® + k=0
with roots £+/k/mi = twi so z.(t) = c1 coswt + ca sinwt. Since wo # w, try zp(t) = Acoswot + B sin wqt.
Then we need (m) (—w} ) (A cos wot + B sin wot) + k(A coswot + Bsinwot) = Fp coswot or A(k — mwd) = Fp and

F _ Fo

. gn - _ =
B(k — mwj) = 0. Hence B = 0 and A k—med  m(w? —

; k ; o
v since w” = —. Thus the motion of the mass is given
wi) m

: Fo
by x(t) = ¢1 coswt + ca sinwt + R =) cos wot.

11. From Equation 6, z(t) = f(t) + g(t) where f(t) = e1 coswt + ca sinwt and g(t) = 2 ) coswot. Then f
—Wwp

m(w?
is periodic, with period 2Z, and if w # wo, g is periodic with period i—g If ;= is a rational number, then we can say
wio =F = a= ;;"“-S where a and b are non-zero integers. Then
at+a ) =f(t+a ) +glt+a- ) =) +o(t+22) = f() +g(t+b- 2) = £(t) + 9(t) = 2(2)
so z(t) is periodic.

13. Here the initial-value problem for the charge is Q" + 20Q’ + 500Q = 12, Q(0) = @'(0) = 0. Then
Qc(t) = e (c1cos 20t + cosin20t) and try Qp () = A = 5004 =120r A = 3.

The general solution is Q(t) = e™'%(c1 cos 20t + ¢y sin 20t) + 13z. But 0 = Q(0) = ¢1 + 755 and
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Q' (t) = I(t) = e 2%[(—10c1 + 20c2) cos 20t + (—10c2 — 20¢1) sin 20¢] but 0 = Q'(0) = —10e1 + 20¢z. Thus the charge

is Q(t) = —gg5e (6 cos 20t + 3sin 20t) + 13z and the current is I{t) = e ™% (2) sin 20t.

15. As in Exercise 13, Q.(t) = e~ ***(c1 cos 20¢ + c2 sin 20¢) but E(t) = 12sin 10t so try
Qp(t) = Acos 10t + B sin 10¢. Substituting into the differential equation gives
(—100A + 200B + 500A) cos 10t + (—100B — 200A + 500B8) sin 10t =-12sin 10t =

4004 + 2008 = 0 and 4008 — 2004 = 12. Thus A = 250, B = 125 and the general solution is

Q(t) = e % (c1 cos 20t + ¢2 5in 20t) — 525 cos 10t + 13z sin 104, But 0 = Q(0) = ¢1 — 555 50 €1 = 5o5.
Also Q'(t) = & sin10t + & cos 10t + e '%[(—10c1 + 20¢p) cos 20t + (—10cz — 20¢1) sin 20¢] and -
0=@Q'0) = % — 10c1 + 20c2 s0 ¢z = —Egﬁ. Hence the charge is given by

Q(t) = e7 1% [52; cos 20t — 25 sin 20t] — 535 cos 10t + 1o- sin 10¢.

17. o(f) = Acos(wt +9) < z(t) = Alcoswtcosd —sinwtsind] < z(t) = A(i coswt + — blnwt) where

A

cosd =ci/Aandsind = —ca/A & z(t) = cicoswt | cosinwt. [Notethatcos?d +sin?d =1 = i =4%]

17.4 Series Solutions

oo o0
1. Lety(z) = 3 caz™ Theny'(z) = 3 nenz™ " and the given equation, 3’ — y = 0, becomes
n=0 -

n=1

E nepz™ " — E cnx™ = 0. Replacing n by n + 1 in the first sum gives Z (n+ Densrz™ — 3 caa™ =0, 50
n=1 n=0 n=0

z [(n+1)ent1 — en)z™ = 0. Equating coefficients gives (n + 1)cat+1 — ¢ = 0, so the recursion relation is

n=0

_ Ca _ . _ 1 e 1 1 1« 1 e
Cngl = n—_l_—l,n_U,l,Q,.... Then ¢1 = o, ¢2 =30 = 5, =30=3" 500= 5,0 = 763.= o, and
. co oy 2 5 - 20, g
in general, cn = —. Thus, the solution is y(z) = 3° cnz™ = 3° — 2" =co )| — = coe

! n=0 n=g T n=0 1!

(n+ 1)cpaz™ and

18

o oo
3. Assuming y(z) = 3 caz", wehavey'(z) = 3 neaz™ ™ =

n=0 wn=1 0
o0 oo
—i?y=— 3 ™= — Z cn_22". Hence, the equation v’ = z°y becomes E (n+1eap12™ — 3 caaz" =0
n=0 =23 =0 n=2
2 n s 5 3 Cn—-2
orer +2cez+ 3. [(n+ 1)ensr — en—z] 2™ = 0. Equating coefficients gives ¢y = c2 = 0 and cnq1 = e
n=2
forn=2,3,.... Butc; = 0,50 ¢4 = 0 and ¢7 = 0 and in general c3n41 = 0. Similarly cg = 0 50 ¢3n-2 = 0. Finally
Co C3 Co _Co . Cg Co Co Co :
€3 = —,06 =—F = , 0 = — = m————— = ———  _ and cg3, = ——. Thus, the solution
*T3* T " 6.3 :A’?T9T09.6.3 33 T 3l
. ) oo ) co ) oo an oo (1333/3)“ g
isy(z) = Bt = CanzS" = — g3 =g == = epe® /3.
y(®) nz::(] . ngp = ngl) 3" - n! . ngﬂ 3mnl COHEU n! CO
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oc oo oC
5. Lety(z)= Y eax” = ¥ (x)= 3 nenz"landy”(z)= Y (n+ 2)(n + 1)enq2x™. The differential equation
n=0 n=0

n=1l

becomes 2 n+2)(n+ Denroz™ + Z nen™ ! 4 Z cnz™ =0or E [(n+ 2)(n+ 1)cntz + nen - eala™ =

n=0 n=1 n=0 n=0
oo (==} i > 5
[smce 3. neaz = 3 ncn;c"] . Equating coefficients gives (n + 2)(n + L)ens2 + (n + 1)e, = 0, thus the
n=1 n=0

—(n+len _ ca
m+2)(n+1) n+2’

recursion relation is ¢,4+2 = n=20,1,2,.... Then the even

; ; o OO o B, 60 o Gk €0 :
coefficients are given by cz = 7 c4 1 7.1 Cs 6 5.4.6 and in general,
Co (— 1) cu €1 cy c1 Cs c1
n = (—1)" = . The odd coefficients —— = = —— = —— = —
ca (—1) T y— 2 e odd coefficients are c3 = 3 cs 5 =3.5 er 7 TR
e . _(=2)"nla

and in general, con41 = (—1)" . The solution is

357 @n+1)  @n+1)

n! 2l

R N Gt VA
y@) = 2 Grar

18
9T
-
=

0

3
I

Lety(@) = 3 eaz” = o (@)= 3 neas™ = 3 (n+ eaniz" mdy” (z) = Z(n+2)(n+ 1)ent22". Then

n=0 n=1 n=0

(z—1)y"(z) = ni:ﬂ(n+2)(n+1)cn+zm"+‘-nijo(n+2)(n+1)cn+zm" 3 n(n+1)easz” — Z(n+2)(‘n+1)cn+zm !

n=1

Since 3 n(n+ 1l)cat1z™ = 3 n(n + 1)ent1z™, the differential equation becomes

n=1 n=0

S am+1)cpprz” — 3 (n+2)(n+1)en2z” + 3 (n+ 1)enp1z" =0 =

n=0 n=0 n=0

f [n(n+1)entr — (n+2)(n+ Vensa + (n+ Venga)z™ =0 or iﬁ[{n + 1} chga — (n+2)(n+ Leps2)a™ =

n=0

Equating coefficients gives (n + 1)?cu41 — (n + 2)(n + 1)¢aq2 = 0 forn = 0,1, 2, ... Then the recursion relation is
(n+1)? n+1 2. 1 ~ 3 1
Cny2 = m(‘ﬂ.ﬂ Bt 26n+1, S0 given cg and ¢1, we have ca = —C1, C3 = jC2 = 3C1,C4 = 3C3 = 701, and
. c1 o oo g :
in general ¢, = —,n = 1,2,3, .... Thus the solution is y(z) = co +c1 Y - Note that the solution can be expressed as
n n=I
co —c11n(1 —z) for |z| < 1. '
o0 1 o0 o0
. Let y(z) }: enz™.Then —zy'(z) = —z Y nepz™ = — 3 nens™ =— 3 nenz®,
. n= n=1 n=1 =0

y'(z) = 3 (n+2)(n+ 1)cns22™, and the equation 3y’ — zy’ — y = 0 becomes
n=0

3 [(n+42)(n+ 1)ens2 — nen — en]z™ = 0. Thus, the recursion relation is
n=0
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__meanten  _ _ ca(n+l) " cen _ - : — B
Cnyz = I+ +Dn+D)  n+2 forn =0,1,2,.... One of the given conditions is y(0) = 1. But
(0) = of:c (0" =eco+0+0+---=co,s0co = 1. Hence, c: o c =c_2:-L cs:c—4= -
Y n=Dn ’- . 5 C2 2 2:4 4 2.4: 6 2'4‘6’ 3
7 o0
Con = ﬁ The other given condition is 4'(0) = 0. Buty’(0) = Y ncn(0)" ' =c1 +0+0+ .- =¢1,50¢; = 0.
: n=1
By the recursion relation, ¢z = c—; =0,c5=0,...,c2n41 =0forn=0,1, 2,.... Thus, the solution to the initial-value
: = n o 2n = = (Y w? /2
problemisy(z) = } enz"™ = } anz™ = ) o= ¥ =4
n=0, n=0 amgarnl o=h ml
== 1 o0 (== o0 o0
11. Assumingthaty(z) = 3 caz”™,wehavezy =2 Y cuz™ = 3 caz"t, 2%y =22 ¥ newz™ ' = Y neaz™tt,
n=0 n=0 n=0 n=1 n=0

o0 o0
¥'(z)= ¥ a(n—Leaz” 2= ¥ (n+3)(n+2entaz™H? [replace n with n + 3]

n=2 n=-—1
=2c2+ Y (n+3)(n+2)casaz™,
n=0
and the equation 3" + z%y’ + zy = 0 becomes 2c2 + 3 [(n + 3)(n + 2)cn+s + nes + ca] 2™ = 0. So ¢2 = 0 and the
n=0 .

—nen—cn _ (n+1)en
(n+3)(n+2) (n+3)(n+2)

recursion relation is ¢n4+3 = n=0,1,2,.... Buteg = y(0) = 0 = ¢z and by the

)
recursion relation, csn = eani2 = 0forn =10,1,2,.... Also,¢1 = 4'(0) = 1,80 ¢4 == -%% = —4—?5,
o B g oaee BB L BEP gl R g (3n — 1)? -
oy e e = (=P vy i) =) BT 1) . Thus, the solution is
oo - oo 2252 5 G (3n‘_' 1)2m3n+1
z) = "=z =)™
ya)= p o =ot B [( b Gn+ )]
17 Review
CONCEPT CHECK

1. (a) ay" + by’ + cy = 0 where a, b, and ¢ are constants.
by ar? +br+e=0
(c) If the auxiliary equation has two distinct real roots r; and rq, the solution is ¥y = c1e™" + c2e™7. If the roots are real and

equal, the solution is y = e1e” + esze™ where r is the common root. If the roots are complex, we can write 71 = a + i

_ and r2 = a — if3, and the solution is y = e™*(c; cos Bz + ¢ sin fz).

2. (a) An initial-value problem consists of finding a solution y of a second-order differential equation that also satisfies given

conditions y(z0) = yo and y'(x0) = y1, where yp and y, are constants.
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(b) A boundary-value problem consists. of finding a solution y of a second-order differential equation that also satisfies given

boundary conditions y(zo) = yo and y(z1) = 1.

. (a) ay” + by’ + cy = G(z) where a, b, and c are constants and G is a continuous function.

(b) The complementary equation is the related homogeneous equation ay” + by’ + cy = 0. If we find the general solution Ye
of the complementary equation and y;, is any particular solution of the original differential equation, then the general
solution of the original differential equation is y(z) = yn(x) + ye(z).

(c) See Examples 1-5 and the associated discussion in Section 17.2.

(d) See the discussion on pages 1177-1179 [ET 1153-1155].

. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric

circuit; see the discussion in Section 17.3.

See Example 1 and the preceding discussion in Section 17.4..

TRUE-FALSE QuIZ

. True. See Theorem 17.1.3.

. True. cosh x and sinh x are linearly independent solutions of this linear homogeneous equation,

EXERCISES

The auxiliary equationis 4r> —1=0 = (2r+1)(2r —1)=0 = 7 = £, Then the general solution

x/2 —x/2

isy =c1e™ " + cze

The auxiliary equationis 7 +3=0 = 7 = %/3i. Then the general solution is y = c1 cos(v/3z) + ¢z sin(v3z).

.72 —4r+5=0 = r=2%4,50y () =€ (c1cosz+esinz). Try yp (z) = 4e*® = 3, = 24¢*

and y;, = 4Ae**. Substitution into the differential equation gives 44e®* — 8A4e?* 4+ 54e** = ¢ = A =1land

the general solution is y(z) = €**(c1 cosx + ca sinz) 4 **.

P —2r+1=0 = 7r=1andyc(z)=c1e” + caze®. Try yp(z) = (Az + B) cosz + (Cz + D)sinz =

¥y = (C — Az — B)sing + (A+ Cx + D) cosz and ylf = (2C — B — Az) cosz + (—2A — D — Cz) sin z. Substitution

gives (—2Cz + 2C — 2A — 2D)cosz + (2Ax — 2A + 2B — 20)sinzt = zcosz = A=0,B=C=D= —%,

The general solution is y(z) = c1€” + caze™ — § cosz — 3(z + 1) sinz.

Lr?—r—6=0 = 7r=-2,7=3andy(z) =cie ** + 26> Fory” —y' — 6y = 1, try yp, (z) = A. Then

Yp, () = ¥y, (z) = 0 and substitution into the differential equation gives A = —%. Fory” — ¢/ — 6y = ™% try
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T,

13

15.

17.

19.

21.

Ypo () = Bze * [since y = Be™>" satisfies the complementary equation]. Then ., = (B — 2Bz)e ™" and
Y, = (4Bz — 4B)e~>*, and substitution gives —5Be~2* = ¢™** =" B = —1. The general solution then is

y(z) = 167 + 2% + yp, () + Upy (7) = 167 + 2™ — L — Lpe™,

The auxiliary equation is r* + 67 = 0 and the general solution is y(z) = ¢1 + éze*‘a’ = ky + k2e™ %=1 But
3=y(1) = k1 + ko and 12 = y/(1) = —6k>. Thus ko = —2, k; = 5 and the solution is y(z) = 5 — 2e~ %=1,
The auxiliary equation is 72 — 57 + 4 = 0 and the general solution is y(r) = e1e” + cge®™. But 0 = y(0) = ¢1 + ¢3

and 1 = y'(0) = ¢1 + 4e, so the solution is y(z) = §(e** — ¢*).

r?4+4r4+29=0 = r = —2= 5iand the general solution is 3y = e~ >"(e; cos 5z + ¢z 8in 52). But 1 = y(0) = ¢; and

~1=y(r) =—c1e™® = ¢ = €7, so there is no solution.

o0 oo oo
Lety(z) = 3 caz™. Theny” (z) = 3 n(n —1)cnz™ 2 = 3 (n+ 2)(n + 1)cns2x™ and the differential equation
n=>0

n=>0 n=0

00
becomes 3 [(n+ 2)(n + 1)cnsz + (n + 1)cn]z™ = 0. Thus the recursion relation is ¢ni2 = —¢n/(n + 2)

n=0
3 : ) 1 (_ 1)2
forn=0,1,2,.... Buteo =y(0) = 0,50 c2n =0forn=0,1,2,.... Alsoc;: =y'(0) = 1,50 ¢3 =—§,cs= 35
—1)\3 _1)393gy C(—1)Y" 97 01
oy = 3( 51) g = ( 1'}7[2 3! ooy Congl = ((2113—_*_21)? forn=0,1,2,.... Thus the solution to the initial-value problem
. _ nZ n_ & (=1)"2"nl 4,4
U= 2 e Bt
Here the initial-value problem is 2Q" + 40Q’ + 400Q = 12, @ (0) = 0.01, @'(0) = 0. Then
Qc(t) = e '%(cy cos 10t + c2 sin 10t) and we try Q,(t) = A. Thus the general solution is
Q(t) = e 1%(cy cos 10t + c2 5in 10¢) + 135. But 0.01 = Q'(0) = ¢; + 0.03 and 0 = Q" (0) = —10¢c; + 10cy,
so ¢; = —0.02 = ¢2. Hence the charge is given by Q(t) = —0.02e~%(cos 10 + sin 10t) + 0.03.
(a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density p as follows:
p= o L T & V- is the volume of the portion of the earth which lies within a distance r of the
volume of earth 7R3
3 7. |
center, then Vi, = %wr“ and M, = pV,. = A;;—Z'. Thus F,. = —G]::;’m = — G?;mr.
(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,
5 ‘
m % =F = —G;‘f—am y, 50y (t) = —ky (1) where K= % At the surface, —mg = Fr = —%, 50
GM 2. '8
g= F Therefore k° = E
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(c) The differential equation 3"’ 4 k®y = 0 has auxiliary equation r? + k* = 0. (This is the 7 of Section 17.1,
not the 7 measuring distance from the earth’s center.) The roots of the auxiliary equation are +ik, so by (11) in
Section 17.1, the general solution of our differential equation for ¢ is y(t) = ¢1 cos kt + co sin kt. It follows that
y'(t) = —ciksinkt + czk cos kt. Now y (0) = Randy/(0) =0,s0¢;1 = Rand c2k = 0. Thus y(t) = Rcos kt and
y'(t) = —kRsin kt. This is simple harmonic motion (see Section 17.3) with amplitude R, frequency k, and phase angle 0.
The period is T' = 27 /k. R = 3960 mi = 3960 - 5280 ftand g = 32 ft/s*, so k = \/g/R ~ 1.24 x 10~* 5! and
T = 2m/k ~ 5079 s ~ 85 min.

(@ y(t) =0 < coskt=0 <« kt=7F+xnforsomeintegern = y'(t) = —kRsin(F + mn) = +kR. Thus the
particle passes through the center of the earth with speed kR =~ 4.899 mi/s ~ 17,600 mi/h.
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0 APPENDIX

Appendix H Complex Numbers

1.

3

",

13.

15.

17.

19.

2.

23.

25.

27.

29,

(5—6i)+(B3+2))=(5+3)+(—6+2)i=8+4(—4)i=8—4i

(2 + 5i)(4 — 1) = 2(4) + 2(—i) + (5i)(4) + (56)(—i) = 8 — 2i + 201 — 5i = 8 + 18i — 5(—1)
' =B AL B TR 10 ' '

T2+ Ti=12-Ti

14+4i  1+4i 3-2 3—2i+12i—8(-1) 11+10i _11  10.

"3+2i 3+2 3-2 3%+ 27 =13 B'E
1 1 1-i_ 1—i ul—z’__]:__lz,

144 144 1—i 1—-(-1) 2 ~ 2 2

B =i i=(-1)i=—i

V=25 = /25i =b5i

12 — Bi = 12 + 15i and |12 — 154 = /122 + (=5)2 = /144 + 25 = /169 = 13

TH 0% =0+ 4i=4iand |-4i| = /0T F (42 = VI =4
47 +9=0 & 4°=—9 & *=-% & z=/2=2/li=si

-2+ /P —dD){) _ -2+ V=16 _ —2+4i

=-=1+2i.

By the quadratic formula, z*> + 2z +5=0 & z=

2(1) 2 2
= ; 14T —4DR) —1++/=F :
By the quadratic formula, 2 + 2 +2=0 & z= 1 200) (1)) s :|:2 4 = —% - \/T?z

Forz = -3+3i,7=+/(—-3)?+3>=3v2andtanf = % = -1 = 6 = 3T (since z lies in the second quadrant).
Therefore, —3 + 3i = 3 /2 (cos &F + isin 27).
Forz=8+4i,r=v3?+4 =5andtanf =3 = 0=tan™"'(3) (since z lies in the first quadrant). Therefore,

3 + 4i = 5[cos(tan™" 3) +isin(tan* 3)].

Forz=\/§-+--i.r:\f(\/g)2+12=2andtnn9=-_715 = =% = z:2(coslé~+is{n%).
Forw =1++3i,r=2andtand =3 = =3 = -w=2(c05%+isin§').
Therefore, zw = 2 - 2[cos(E + §) + isin(% + )] = 4(cos T +isin §),

z/w = §[cos(F — F) +isin(F — F)] =cos(—%F) +isin(—%),andl= 1+0i=1(cos0 +isin0) =
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1/z= [cos(O = —) +zsm(0 — %)] = 1[cos(—%) +isin(—%)]. For 1/z; we could also use the foﬁnula that precedes

Example 5 to obtain 1/z = 4 (cos T — isin %).

N Forz=2v3-2r=1/(2v3)" + (-2’ =4andtanb =2 =-% = 6=-F =
z =4[cos(—%) +isin(—F)].Forw=—1+ir=v2,tanf=L =-1 = =% =
w = /2 (cos 3 4 isin 2T ). Therefore, zw = 4v/2 [cos(—F + L) +isin(—F + 2F)] =42 (cos I +isin I3 )
zfw = 5 [cos(—F — 7F) +isin(—F — )] = Jz[cos(—4F) +isin(—%F)] =22 (cos TF + isin ), and

1/z = }[cos(—%) —isin(—F)] = (cos § +ésin F).

33.Forz=1+i,r=\/§andtan9:%:1 = =7 = z=\/§(c034+zsm )SobyDeMowresTheorem,

]

(149 = [V2 (cos 3 +isinF)] ™
= 2"[-1 +i(0)] = —2'° = —1024

= (21/2)20(@5 0.1 4 jsin 207) = 2'%(cos 5m + ¢ sin 5)

3. Forz =23 +2i,7 =/ (2v3)" + 22 = VI6 =4 and tanf = ;25 = 0=

= ]

% =% = z:4(c0&.——-+—151116)

So by De Moivre’s Theorem,

(2v/3+2i) = [4(cos § +isin §)]° = 4° (cos 3 + isin 3F) = 1024[- 3 + Ji| = —512 3+ 512

37. 1 =1+ 0i = 1(cos0+ isinQ). Using Equation 3 with r = 1, n = 8, and § = 0, we have

W =18 [cos(o +82k1'r) +isin(0+2kw)] = cos b _ern‘l“ where k=0,1,2,...,7.

8 4 4°
it ™ r ot W 1 X .. . Im
= 1(cos0+isin0) = 1, w1 = 1(cosz+zsmz) =gt ol i
wa = 1({cos I +isin ) =i, ws = L(cos & +isin L) = — ]2+ 1272, * ’
we = 1{cosm +isinT) = —1,w5=1(cos—+zsm54")=—71§—71§i, 4 0 1 Re
we = 1(cos & -|-il,sln37r)=—.’i,1U7=1(COS—+?.Sln%r‘):v%——lg'i s .

3. i=0+1i=1(cos § +isinE). Using Equation 3 withr = 1,7 = 3, and § = Z, we have

=+ 2km =+ 2km . Im
wy = 1173 [c05(2—3—) —l-isin(gT)], where £ =0, 1, 2.
wo = (cos—-f—zsm ) i-}-%

i 0 Re
w; = (cos 5T + isin 57) =,_§+%2
—i
wy = (cos ¥ +isin &) = —i |
41. Using Euler’s formula (6) with y = %, we have e'™? = cog FHising =0+1li=4,
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o 1 V3.

43. Using Euler’s formula (6) with y = % we have ¢/ = cos % + isin 33 + 5 &
45. Using Equation 7 with = 2 and y = 7, we have 27" = e?¢'™ = ¢*(cos 7 + isin7) = e*(—1 4+ 0) = —e.

47. Take 7 = 1 and n = 3 in De Moivre’s Theorem to get
[1(cos @ + isin 8)]* = 1%(cos 36 + isin 36)
(cos @ + isin #)® = cos 30 + i sin 30
cos® 0 + 3(cos? §)(isin f) + 3(cos ) (i sin )2 + (isin 0)® = cos 30 + isin 30
cos® 0 + (3cos? O sin 0)i — 3 cos @ sin® § — (sin® )i = cos 30 + isin 30
(cos® § — 3sin? @ cos @) + (3sind cos? @ — sin® 8)i = cos 30 + isin 30

Equating real and imaginary parts gives cos 30 = cos® # — 3sin” @ cosf and sin38 = 3sinf cos® # — sin® 4.
49, F(z) = ™ = elott)= = ga=¥bei — o9%(cog by + isinbz) = €** cosbx + i(e* sinbx) =
F'(z) = (e** cosbz)’ + i(e* sin bx)’
= (ae"® cosbx — be™” sinbz) + i(ac*” sin bz + be®* cos bx)
= a[e®*(cos bz + isinbx)| + ble* (— sin bz + i cos bz)]
= ae™ 4 b[e®* (i* sinbz + i cos bz)]

= ae"™ + bile"*(cos b + isin bx)] = ae™ 4+ bie"” = (a + bi)e™ = re"™*

1
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