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ATOMIC STRUCTURE 

 41.1. IDENTIFY and SET UP: ( 1)L l l= + . z lL m= .  0,  1,  2,...,  1l n= − .  0,  1,  2,...,  lm l= ± ± ± .  cos /zL Lθ = . 

EXECUTE: (a) 0l = : 0L = , 0zL = .   1l = : 2L = , ,0,zL = − . 2l = : 6L = , 2 , ,0, , 2zL = − − . 

(b) In each case cos /zL Lθ = .  0L = : θ not defined.  2L = :  45.0 ,  90.0 ,  135.0° ° ° .  6L = : 

35.3 ,  65.9 ,  90.0 ,  114.1 ,  144.7° ° ° ° °. 

EVALUATE: There is no state where L is totally aligned along the z axis. 
 41.2. IDENTIFY and SET UP: ( 1)L l l= + . z lL m= . 0,1,2,..., 1l n= − . 0, 1, 2,...,lm l= ± ± ± . cos /zL Lθ = . 

EXECUTE: (a) 0l = : 0L = , 0zL = .   1l = : 2L = , ,0,zL = − . 2l = : 6L = , 2 , ,0, , 2zL = − − .  3l = : 

2 3L = , 3 ,2 , ,0, , 2 , 3zL = − − − .  4l = : 2 5L = , 4 ,3 ,2 , ,0, , 2 , 3 , 4zL = − − − − . 

(b) 0L = : θ not defined.  2L = :  45.0 ,90.0 ,135.0° ° ° .  6L = : 35.3 ,65.9 ,90.0 ,114.1 ,144.7° ° ° ° ° . 2 3L = : 

54.7 ,73.2 ,90.0 ,106.8 ,125.3 ,150.0° ° ° ° ° °. 2 5L = : 26.6 ,47.9 ,63.4 ,77.1 ,90.0 ,102.9 ,116.6 ,132.1 ,153.4° ° ° ° ° ° ° ° ° . 

(c) The minimum angle is 26.6° and occurs for 4l = , 4lm = + . The maximum angle is 153.4° and occurs for 

4l = , 4lm = − . 

 41.3. IDENTIFY and SET UP: The magnitude of the orbital angular momentum L is related to the quantum number l by 
Eq.(41.4): ( 1) ,  1 0,  1, 2,L l l= + = … 

EXECUTE: 
2 34 2

34

4.716 10  kg m /s
( 1) 20

1.055 10  J s

L
l l

−

−

⎛ ⎞× ⋅⎛ ⎞+ = = =⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠ ⎝ ⎠
 

And then ( 1) 20l l + =  gives that 4.l =  

EVALUATE: l must be integer. 
 41.4. (a) max max( ) 2,  so ( ) 2 .l zm L= =  

(b) ( 1) 6 2.45 .l l + = =  

(c) The angle is arccos arccos ,
6

z lL m

L

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and the angles are, for 2 to 2,  144.7 ,l lm m= − = °  

114.1 ,  90.0 ,° ° 65.9 , 35.3 .° °  The angle corresponding to lm l=  will always be larger for larger .l  

 41.5. IDENTIFY and SET UP: The angular momentum L is related to the quantum number l by Eq.(41.4), ( 1) .L l l= +  

The maximum l, max ,l  for a given n is max 1.l n= −  

EXECUTE: For max2,  1 and 2 1.414 .n l L= = = =  

For max20,  19 and (19)(20) 19.49 .n l L= = = =  

For max200,  199 and (199)(200) 199.5 .n l L= = = =  

EVALUATE: As n increases, the maximum L gets closer to the value n  postulated in the Bohr model. 
 41.6. The ( , )ll m  combinations are (0,  0), (1,  0), (1, 1)± , (2,  0), (2, 1),±  (2, 2),±  (3,  0), 

(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), and (4, 4),± ± ± ± ± ± ±  a total of 25. 

(b) Each state has the same energy (n is the same), 
13.60 eV

0.544 eV.
25

− = −  

 41.7. 
19 2

181 2
10

0 0

1 1 (1.60 10  C)
2.3 10  J

4 4 1.0 10  m

q q
U

π r π

−
−

−

− ×= = = − ×
×P P

 

18

19

2.3 10  J
14.4 eV.

1.60 10  J eV
U

−

−

− ×= = −
×
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 41.8. (a) As in Example 41.3, the probability is 
2

2 2 3 1
/ 2 2 2 2

1 30
0

4 5
| | 4 1 0.0803

2 2 4 2

a
a r a

s

ar a r a e
P ψ πr dr e

a

−
−⎡ ⎤⎛ ⎞

= = − − − = − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ . 

(b) The difference in the probabilities is 2 1 1 2(1 5 ) (1 (5 2) ) (5 2)( 2 ) 0.243.e e e e− − − −− − − = − =  

 41.9. (a) 2 2 2| | | ( ) | | ( ) | ( )( )l lim im*ψ ψ ψ R r θ Ae Aeφ φ− += = Θ 2 2 2| ( ) | | ( ) | ,A R r θ= Θ  which is independent ofφ . 

(b) 
2 22 2 2

0 0

1
| ( ) |  2 1 .

2

π π
d A d πA A

π
φ φ φΦ = = = ⇒ =∫ ∫  

41.10. 
4

1
12 2 1 1 12 2 2 2

0

1
(0.75) .

(4 ) 2 2
r

n

m e E
E E E E E E

π n
= − Δ = − = − = −

P
 

(a) 31
rIf 9.11 10 kgm m −= = ×  

( )
4 31 19 4

29 2 18r
2 2 34 2

0

(9.109 10  kg)(1.602 10  C)
8.988 10  N m C 2.177 10  J 13.59 eV

(4 ) 2(1.055 10  J s)

m e

π

− −
−

−

× ×= × ⋅ = × =
× ⋅P

 

For 2 1→  transition, the coefficient is (0.75)(13.59 eV) = 10.19 eV. 

(b) If r ,
2

m
m =  using the result from part (a), 

4
r

2 2
0

2 13.59 eV
(13.59 eV) 6.795 eV.

(4 ) 2

m e m

π m
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠P

 

Similarly, the 2 1→  transition, 
10.19 eV

5.095 eV.
2

⎛ ⎞⇒ =⎜ ⎟
⎝ ⎠

 

(c) If r 185.8 ,m m=  using the result from part (a), 

4

2 2
0

185.8
(13.59 eV) 2525 eV,

(4 )
rm e m

π m
⎛ ⎞= =⎜ ⎟
⎝ ⎠P

 

and the 2 1→  transition gives⇒ (10.19 eV)(185.8) = 1893 eV. 

41.11. IDENTIFY and SET UP: Eq.(41.8) gives 
2 2

0 0
2 2

r r

4
.

h
a

m e m e

π
π

= =P P
 

EXECUTE: (a) rm m=  
2 12 2 2 34 2

100
2 31 19 2

r

(8.854 10  C /N m )(6.626 10  J s)
0.5293 10  m

(9.109 10  kg)(1.602 10  C)

h
a

m eπ π

− −
−

− −

× ⋅ × ⋅= = = ×
× ×

P
 

(b) r / 2m m=  
2

100
2

r

2 1.059 10  m
h

a
m eπ

−⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠

P
 

(c) r 185.8m m=  
2

130
2

r

1
2.849 10  m

185.8

h
a

m eπ
−⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠

P
 

EVALUATE: a is the radius for the 1n =  level in the Bohr model. When the reduced mass rm  increases, a 

decreases. For positronium and muonium the reduced mass effect is large. 
41.12. cos( ) sin( ),lim

l le m i mφ φ φ= +  and to be periodic with period 2 ,  2lπ m π  must be an integer multiple of 2 ,  so lπ m  

must be an integer. 

41.13. 2 2
1 30

0

1
( ) 2 (4 )

a
a r a

sP a ψ V e πr dr
πa

−= =∫ ∫ . 

2 2 2 3 3 3 3
2 2 2 2 0

3 3 3

0

2

4 4 4
( )

2 2 4 2 2 4 4

( ) 1 5 .

a
a r a r a

o

ar a r a a a a a
P a r e dr e e e

a a a

P a e

− − −

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −= = − − = − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⇒ = −

∫  

41.14. (a) 5 5
B (5.79 10 eV T)(0.400 T) 2.32 10 eVE μ B − −Δ = = × = ×  

(b) 2lm = −  the lowest possible value of .lm  



Atomic Structure  41-3 

(c) The energy level diagram is sketched in Figure 41.14. 

 
Figure 41.14 

41.15. IDENTIFY and SET UP: The interaction energy between an external magnetic field and the orbital angular 
momentum of the atom is given by Eq.(41.18). The energy depends on lm  with the most negative lm  value having 

the lowest energy. 
EXECUTE: (a) For the 5g level, 4l =  and there are 2 1 9l + =  different lm  states. The 5g level is split into 9 levels 

by the magnetic field. 
(b) Each lm  level is shifted in energy an amount given by B .lU m Bμ=  Adjacent levels differ in lm  by one, so 

B .U BμΔ =  
19 34

24 2
B 31

(1.602 10  C)(1.055 10  J s)
9.277 10  A m

2 2(9.109 10  kg)

e

m
μ

− −
−

−

× × ⋅= = = × ⋅
×

 

24 2 24 19 5
B (9.277 10  A/m )(0.600 T) 5.566 10  J(1 eV/1.602 10  J) 3.47 10  eVU Bμ − − − −Δ = = × = × × = ×  

(c) The level of highest energy is for the largest ,lm  which is 4 B4;  4 .lm l U Bμ= = =  The level of lowest energy is 

for the smallest ,lm  which is 4 B4;  4 .lm l U Bμ−= − = − = −  The separation between these two levels is 
5 4

4 4 B8 8(3.47 10  eV) 2.78 10  eV.U U Bμ − −
−− = = × = ×  

EVALUATE: The energy separations are proportional to the magnetic field. The energy of the 5n =  level in the 

absence of the external magnetic field is 2( 13.6 eV)/5 0.544 eV,− = −  so the interaction energy with the magnetic 

field is much less than the binding energy of the state. 
41.16. (a) According to Figure 41.11 in the textbook there are three different transitions that are consistent with the 

selection rules. The initial lm  values are 0, 1;±  and the final lm  value is 0. 

(b) The transition from 0 to 0l lm m= =  produces the same wavelength (122 nm) that was seen without the magnetic field. 

(c) The larger wavelength (smaller energy) is produced from the 1 to 0l lm m= − =  transition. 

(d) The shorter wavelength (greater energy) is produced from the 1 to 0l lm m= + =  transition. 

41.17. 
5

B 5
B

(2.71 10 eV)
3 3, 1, 0.468 T

(5.79 10 eV T)

U
p n l U μ B B

μ

−

−

×
⇒ = = Δ = ⇒ = = =

×
 

(b) Three:  0, 1.lm = ±  

41.18. (a) (2.00232)
2 2

e
U B

m

−⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B

(2.00232)

2
μ B= −  

5 5(2.00232)
(5.788 10 eV T)(0.480 T) 2.78 10 eV.

2
U − −= − × = − ×  

(b) Since n = 1, l = 0 so there is no orbital magnetic dipole interaction. But if 0n ≠  there could be since l < n 
allows for 0.l ≠  

41.19. IDENTIFY and SET UP: The interaction energy is ,U = − ⋅ Bμ  with zμ  given by Eq.(41.22). 

EXECUTE: ,zU Bμ= − ⋅ = +Bμ  since the magnetic field is in the negative z-direction. 

(2.00232) ,  so (2.00232)
2 2z z z

e e
S U S B

m m
μ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

,  so 2.00232
2z s s

e
S m U m B

m
⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

 

5
B 5.788 10  eV/T

2

e

m
μ −= = ×  

B2.00232 sU m Bμ= −  

The 
1

2sm = +  level has lower energy. 

B B

1 1 1 1
2.00232 2.00232

2 2 2 2s sU U m U m B Bμ μ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = = − − = + = − − − + = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

5 42.00232(5.788 10  eV/T)(1.45 T) 1.68 10  eVU − −Δ = + × = ×  
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EVALUATE: The interaction energy with the electron spin is the same order of magnitude as the interaction 
energy with the orbital angular momentum for states with 0.lm ≠  But a 1s state has 0 and 0,ll m= =  so there is no 

orbital magnetic interaction. 

41.20. The allowed ( , )l j  combinations are 
1 1 3 3 5

0,  , 1,  , 1,  , 2,  and 2,  .
2 2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

41.21. IDENTIFY and SET UP:  j can have the values 1/ 2l +  and 1/ 2.l −  
EXECUTE: If j takes the values 7/2 and 9/2 it must be that 1/ 2 7 / 2l − =  and 8/ 2 4.l = =  The letter that labels 
this l is g. 
EVALUATE: l must be an integer. 

41.22. (a) 
15 8

6

(4.136 10 eV s)(300 10 m s)
21cm,

(5.9 10 eV)

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 
8

9(3.00 10 m s)
1.4 10  Hz,

0.21 m

c
f

λ
×= = = ×  a short radio 

wave. 
(b) As in Example 41.6, the effective field is 2

B2 5.1 10 T, forB E μ −≅ Δ = × smaller than that found in the example. 

41.23. IDENTIFY and SET UP: For a classical particle .L Iω=  For a uniform sphere with mass m and radius R, 

22
,

5
I mR=  so 22

.
5

L mR ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Solve for ω  and then use v rω=  to solve for v. 

EXECUTE: (a) 
3

4
L =  so 22 3

5 4
mR ω =  

34
30

2 31 17 2

5 3/ 4 5 3/ 4(1.055 10  J s)
2.5 10  rad/s

2 2(9.109 10  kg)(1.0 10  m)mR
ω

−

− −

× ⋅= = = ×
× ×

 

(b) 17 30 13(1.0 10  m)(2.5 10  rad/s) 2.5 10  m/s.v rω −= = × × = ×  

EVALUATE: This is much greater than the speed of light c, so the model cannot be valid. 
41.24. However the number of electrons is obtained, the results must be consistent with Table (41.3); adding two more 

electrons to the zinc configuration gives 2 2 6 2 6 2 10 21 2 2 3 3 4 3 4s s p s p s d p .  

41.25. The ten lowest energy levels for electrons are in the n = 1 and n = 2 shells. 

1
1, 0, 0, : 2 states.

2
1

2, 0, 0, : 2 states.
2

1
2, 1, 0, 1, : 6 states.

2

l s

l s

l s

n l m m

n l m m

n l m m

= = = = ±

= = = = ±

= = = ± = ±

 

41.26. For the outer electrons, there are more inner electrons to screen the nucleus. 
41.27. IDENTIFY and SET UP: The energy of an atomic level is given in terms of n and effZ  by Eq.(41.27), 

2
eff
2

(13.6 eV).n

Z
E

n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 The ionization energy for a level with energy nE−  is .nE+  

EXECUTE: eff5 and Z 2.771n = =  gives 
2

5 2

(2.771)
(13.6 eV) 4.18 eV

5
E = − = −  

The ionization energy is 4.18 eV. 
EVALUATE: The energy of an atomic state is proportional to 2

eff .Z  

41.28. For the 4s  state, eff4.339 eV and 4 ( 4.339) ( 13.6) 2.26.E Z= − = − − =  Similarly, eff 1.79Z =  for the 4p state and 

1.05 for the 4d state. The electrons in the states with higher l tend to be further away from the filled subshells and 
the screening is more complete. 

41.29. IDENTIFY and SET UP: Use the exclusion principle to determine the ground-state electron configuration, as in 
Table 41.3. Estimate the energy by estimating eff ,Z  taking into account the electron screening of the nucleus. 

EXECUTE: (a) 7Z =  for nitrogen so a nitrogen atom has 7 electrons. 2+N  has 5 electrons: 2 21 2 2 .s s p  

(b) eff 7 4 3Z = − =  for the 2p level. 
2 2
eff
2 2

3
(13.6 eV) (13.6 eV) 30.6 eV

2n

Z
E

n

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

(c) 15Z =  for phosphorus so a phosphorus atom has 15 electrons. 
2+P  has 13 electrons: 2 2 6 21 2 2 3 3s s p s p  
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(d) eff 15 12 3Z = − =  for the 3p level. 
2 2
eff
2 2

3
(13.6 eV) (13.6 eV) 13.6 eV

3n

Z
E

n

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE: In these ions there is one electron outside filled subshells, so it is a reasonable approximation to 
assume full screening by these inner-subshell electrons. 

41.30. (a) 2
2 eff eff

13.6 eV
,  so 1.26.

4
E Z Z= − =  

(b) Similarly, eff 2.26.Z =  

(c) effZ  becomes larger going down the columns in the periodic table. 

41.31. IDENTIFY and SET UP: Estimate effZ by considering electron screening and use Eq.(41.27) to calculate the 

energy. effZ  is calculated as in Example 41.8. 

EXECUTE: (a) The element Be has nuclear charge 4.Z =  The ion +Be  has 3 electrons. The outermost electron 
sees the nuclear charge screened by the other two electrons so eff 4 2 2.Z = − =  

2
eff
2

(13.6 eV)n

Z
E

n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 so 

2

2 2

2
(13.6 eV) 13.6 eV

2
E = − = −  

(b) The outermost electron in +Ca  sees a eff 2.Z =  
2

4 2

2
(13.6 eV) 3.4 eV

4
E = − = −  

EVALUATE: For the electron in the highest l-state it is reasonable to assume full screening by the other electrons, 
as in Example 41.8. The highest l-states of +Be , + +Mg , Ca ,  etc. all have a eff 2.Z =  But the energies are different 

because for each ion the outermost sublevel has a different n quantum number. 

41.32. 2( 1) (10.2 eV)kxE Z≅ − . 
37.46 10 eV

1 28.0,
10.2 eV

Z
×≈ + =  which corresponds to the element Nickel (Ni). 

41.33. (a) 15 2 1720 : (2.48 10 Hz)(20 1) 8.95 10 HzZ f= = × − = × . 
8

15 17 10
17

3.00 10  m s
(4.14 10 eV s) (8.95 10  Hz) 3.71 keV.  3.35 10  m.

8.95 10  Hz

c
E hf

f
λ− −×= = × ⋅ × = = = = ×

×
 

(b) Z = 27: 18 101.68 10  Hz.  6.96 keV.  1.79 10  m.f E λ −= × = = ×  

(c) 18 1148 :  5.48 10  Hz, 22.7 keV, 5.47 10  m.Z f E λ −= = × = = ×  

41.34. IDENTIFY: The orbital angular momentum is limited by the shell the electron is in. 
SET UP: For an electron in the n shell, its orbital angular momentum quantum number l is limited by 0 ≤ l < n, 
and its orbital angular momentum is given by ( 1)  L l l= + . The z-component of its angular momentum is 

,z lL m=  where ml = 0, ±1, … , ±l, and its spin angular momentum is 3/ 4  S =  for all electrons. Its energy in 

the nth shell is 2(13.6 eV)/nE n= − . 

EXECUTE: (a) ( 1)  12  3L l l l= + = ⇒ = . Therefore the smallest that n can be is 4, so En = – (13.6 eV)/n2 =  

– (13.6 eV)/42 = –0.8500 eV. 
(b) For l = 3, ml = ±3, ±2, ±1, 0. Since ,z lL m=  the largest Lz can be is 3  and the smallest it can be is –3 . 

(c) 3/ 4  S =  for all electrons. 

(d) In this case, n = 3, so l = 2, 1, 0. Therefore the maximum that L can be is max 2(2 1)  6  L = + = . The 

minimum L can be is zero when l = 0. 
EVALUATE: At the quantum level, electrons in atoms can have only certain allowed values of their angular momentum. 

41.35. IDENTIFY: The total energy determines what shell the electron is in, which limits its angular momentum. 
SET UP: The electron’s orbital angular momentum is given by ( 1)  L l l= + , and its total energy in the nth shell 

is 2(13.6  eV)/nE n= − . 

EXECUTE: (a) First find n: 2(13.6 eV)/nE n= − = − 0.5440 eV which gives n = 5, so l = 4, 3, 2, 1, 0. Therefore the 

possible values of L are given by ( 1)  L l l= + , giving L = 0, 2 ,  6 ,  12 ,  20 .  

(b) E6 = – (13.6 eV)/62 = –0.3778 eV.  ΔE = E6 – E5 = –0.3778 eV – (–0.5440 eV) = +0.1662 eV 
This must be the energy of the photon, so ΔE = hc/λ, which gives 
λ = hc/ΔE = (4.136 × 10–15 eV s⋅ )(3.00 ×108 m/s)/(0.1662 eV) = 7.47 × 10–6 m = 7470 nm, which is in the infrared 
and hence not visible. 
EVALUATE: The electron can have any of the five possible values for its angular momentum, but it cannot have 
any others. 
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41.36. IDENTIFY: For the N shell, n = 4, which limits the values of the other quantum numbers. 
SET UP: In the nth shell, 0 ≤ l < n, ml = 0, ±1, … , ±l, and ms = ±1/2. The orbital angular momentum of the 

electron is L = ( 1)  l l +  and its spin angular momentum is 3/ 4  S = . 

EXECUTE: (a) For l = 3 we can have ml = ±3, ±2±, ±1, 0 and ms = ±½; for l = 2 we can have ml = ±2, ±1, 0 and 
ms = ±½; for l = 1, we can have ml = ±1, 0 and ms = ±1/2 ; for l = 0, we can have ml = 0 and ms = ±1/2. 

(b) For the N shell, n = 4, and for an f-electron, l = 3, giving ( 1)  3(3 1)  12L l l= + = + = . Lz = 

3 ,   2 ,  ,  0,lm = ± ± ±  so the maximum value is 3 . 3/ 4  S =  for all electrons. 

(c) For a d-state electron, l = 2, giving 2(2 1)  6L = + = . ,z lL m=  and the maximum value of ml is 2, so the 

maximum value of Lz is 2 . The smallest angle occurs when Lz is most closely aligned along the angular 

momentum vector, which is when Lz is greatest. Therefore min

2 2
cos 

6 6
zL

L
θ = = =  and θmin = 35.3°. The largest 

angle occurs when Lz is as far as possible from the L-vector, which is when Lz is most negative. Therefore 

max

2 2
cos  

6 6
θ −= = −  and max 144.7θ = ° . 

(d) This is not possible since l = 3 for an f-electron, but in the M shell the maximum value of l is 2. 
EVALUATE: The fact that the angle in part (c) cannot be zero tells us that the orbital angular momentum of the 
electron cannot be totally aligned along any specified direction.  

41.37. IDENTIFY: The inner electrons shield part of the nuclear charge from the outer electron. 

SET UP: The electron’s energy in the nth shell, due to shielding, is 
2
eff
2

(13.6 eV)n

Z
E

n
= − , where Zeffe is the 

effective charge that the electron “sees” for the nucleus. 

EXECUTE: (a) 
2
eff
2

(13.6  eV)n

Z
E

n
= −  and n = 4 for the 4s state. Solving for Zeff gives 

2

eff

(4 )( 1.947  eV)

13.6  eV
Z

−= −  

= 1.51. The nucleus contains a charge of +11e, so the average number of electrons that screen this nucleus must  
be 11 – 1.51 = 9.49 electrons 
(b) (i) The charge of the nucleus is +19e, but 17.2e is screened by the electrons, so the outer electron “sees” 19e – 
17.2e = 1.8e and Zeff = 1.8. 

(ii) 
2 2
eff
2 2

(1.8)
(13.6  eV) (13.6  eV) 2.75 eV

4n

Z
E

n
= − = − = −  

EVALUATE: Sodium has 11 protons, so the inner 10 electrons shield a large portion of this charge from the outer 
electron. But they don’t shield 10 of the protons, since the inner electrons are not totally equivalent to a uniform 
spherical shell. (They are lumpy.) 

41.38. See Example 41.3; 
22

22 2 2 / 2 / 2( )
,  (2 (2 / )),r a r ad r ψ

r ψ Cr e Ce r r a
dr

− −= = −  and for a maximum, r = a, the distance of 

the electron from the nucleus in the Bohr model. 
41.39. (a) IDENTIFY and SET UP: The energy is given by Eq.(38.18), which is identical to Eq.(41.3). The potential 

energy is given by Eq.(23.9), with q Ze= +  and 0 .q e= −  

EXECUTE: 
4 2

1 2 2
0 0

1 1
; ( )

(4 ) 2 4s

me e
E U r

rπ π
= − = −

P P
 

4 2

1 2 2
0 0

1 1
 ( ) gives

(4 ) 2 4s

me e
E U r

rπ π
= − = −

P P
 

2
0

2

(4 )2
2r a

me

π= =P
 

EVALUATE: The turning point is twice the Bohr radius. 
(b) IDENTIFY and SET UP: For the 1s state the probability that the electron is in the classically forbidden region 

is 
2 2 2

1 12 2
( 2 ) 4 .s sa a

P r a dV r drψ π ψ
∞ ∞

> = =∫ ∫  The normalized wave function of the 1s state of hydrogen is given in 

Example 41.3: /
1 3

1
( ) .r a

s r e
a

ψ
π

−=  Evaluate the integral; the integrand is the same as in Example 41.3. 

EXECUTE: 2 2 /
3 2

1
( 2 ) 4 r a

a
P r a r e dr

a
π

π
∞ −⎛ ⎞> = ⎜ ⎟

⎝ ⎠ ∫  
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Use the integral formula 
2

2
2 3

2 2
,r r r r

r e dr eα α

α α α
− − ⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

∫  with 2 / .aα =  

2 2 3
2 / 4 3 3 3

3 3

2

4 4
( 2 ) (2 / 4)

2 2 4
r a

a

ar a r a
P r a e e a a a

a a

∞

− −⎡ ⎤⎛ ⎞
> = − + + = + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

4 4( 2 ) 4 (13/ 4) 13 0.238.P r a e e− −> = = =  

EVALUATE: These is a 23.8% probability of the electron being found in the classically forbidden region, where 
classically its kinetic energy would be negative. 

41.40. (a) For large values of n, the inner electrons will completely shield the nucleus, so ff 1eZ =  and the ionization 

energy would be 
2

13.60 eV

n
. 

(b) 4 2 2 10 6
350 02

13.60 eV
1.11 10 eV, (350) (350) (0.529 10  m) 6.48 10 m

350
r a− − −= × = = × = × .  

(c) Similarly for n = 650, 5
2

13.60 eV
3.22 10 eV,

(650)
−= ×  2 10 5

650 (650) (0.529 10 m) 2.24 10 m.r − −= × = ×  

41.41. / 2
2 3

1
( ) 2

32

r a
s

r
r e

aa
ψ

π
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

(a) IDENTIFY and SET UP: Let 
2 2 2

2 20 0
4 .s sI dV r drψ π ψ

∞ ∞
= =∫ ∫  If 2sψ  is normalized then we will find that 

1.I =  

EXECUTE: 
2 3 4

/ 2 2 /
3 3 20 0

1 1 4
4 2 4

32 8
r a r ar r r

I e r dr r e dr
a a a a a

π
π

∞ ∞− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫  

Use the integral formula 
10

!
,n x

n

n
x e dxα

α
∞ −

+=∫  with 1/ aα =  

3 4 5
3 2

1 4 1 1
4(2!)( ) (3!)( ) (4!)( ) (8 24 24) 1;

8 8
I a a a

a a a
⎛ ⎞= − + = − + =⎜ ⎟
⎝ ⎠

 this 2sψ  is normalized. 

(b) SET UP: For a spherically symmetric state such as the 2s, the probability that the electron will be found at 

4r a<  is 
4 42 2 2

2 20 0
( 4 ) 4 .

a a

s sP r a dV r drψ π ψ< = =∫ ∫  

EXECUTE: 
3 4

4 2 /
3 20

1 4
( 4 ) 4

8

a r ar r
P r a r e dr

a a a
−⎛ ⎞

< = − +⎜ ⎟
⎝ ⎠

∫  

Let 1 2 33

1
( 4 ) ( ).

8
P r a I I I

a
< = + +  

4 2 /
1 0

4
a r aI r e dr−= ∫  

Use the integral formula 
2

2
2 3

2 2r r r r
r e dr eα α

α α α
− − ⎛ ⎞

∫ = − + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 2 2 3 4 4 3
1 04[ ( 2 2 )] ( 104 8) .r a aI e r a ra a e a− −= − + + = − +  

4 3 /
2 0

4 a r aI r e dr
a

−= − ∫  

Use the integral formula 
3 2

3
2 3 4

3 6 6r r r r r
r e dr e

a
α α

α α α
− − ⎛ ⎞

∫ = − + + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 3 2 2 3 4 4 4 3
2 0

4
[ ( 3 6 6 )] (568 24) .r a aI e r a r a ra a e a

a
− −= + + + = −  

4 4 /
3 2 0

1 a r aI r e dr
a

−= ∫  

Use the integral formula 
4 3 2

4
2 3 4 5

4 12 24 24r r r r r r
r e dr e

a a
α α

α α α
− − ⎛ ⎞

∫ = − + + + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 4 3 2 2 3 4 5 4 4 3
3 02

1
[ ( 4 12 24 24 )] ( 824 24) .r a aI e r a r a r a ra a e a

a
− −= − + + + + = − +  
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Thus 3 4
1 2 33 3

1 1
( 4 ) ( ) ([8 24 24] [ 104 568 824])

8 8
P r a I I I a e

a a
−< = + + = − + + − + −  

4 41
( 4 ) (8 360 ) 1 45 0.176.

8
P r a e e− −< = − = − =  

EVALUATE: There is an 82.4% probability that the electron will be found at 4 .r a>  In the Bohr model the 
electron is for certain at 4 ;r a=  this is a poor description of the radial probability distribution for this state. 

41.42. (a) Since the given 2 2 2 2( ) is real, | | .ψ r r ψ r ψ=  The probability density will be an extreme when 

2 2 2 2( ) 2 2 0.
d dψ dψ

r ψ rψ r ψ rψ ψ r
dr dr dr

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This occurs at 0,r = a minimum, and when 0,ψ = also a 

minimum. A maximum must correspond to 0.
dψ r
dr

ψ+ = Within a multiplicative constant, 2( ) (2 ) ,r aψ r r a e−= −  

21
(2 2 ) ,r adψ

r a e
dr a

−= − −  and the condition for a maximum is 2 2(2 ) ( ) (2 2 ), or 6 4 0.r a r a r a r ra a− = − − + =  

The solutions to the quadratic are (3 5).r a= ±  The ratio of the probability densities at these radii is 3.68, with 

the larger density at (3 5)r a= + . 

(b) 0 at 2ψ r a= =  

Parts (a) and (b) are consistent with Figure 41.5 in the textbook; note the two relative maxima, one on each side of 
the minimum of zero at 2 .r a=  

41.43. IDENTIFY: Use Figure 41.2 in the textbook to relate Lθ  to zL  and L: cos  so arccosz z
L L

L L

L L
θ θ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

(a) SET UP: The smallest angle min( )Lθ  is for the state with the largest L and the largest .zL  This is the state with 

1l n= −  and 1.lm l n= = −  

EXECUTE: ( 1)z lL m n= = −  

( 1) ( 1)L l l n n= + = −  

min

( 1) ( 1) 1
( ) arccos arccos arccos arccos( 1 1/ ).

( 1) ( 1)
L

n n n
n

nn n n n
θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −= = = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

EVALUATE: Note that min( )Lθ  approaches 0°  as .n → ∞  

(b) SET UP: The largest angle max( )Lθ  is for 1l n= −  and ( 1).lm l n= − = − −  

EXECUTE: A similar calculation to part (a) yields max( ) arccos( 1 1/ )L nθ = − −  

EVALUATE: Note that max( )Lθ  approaches 180°  as .n → ∞  

41.44. (a) 2 2 2 2 2 2 2 2 2 2( 1) so ( 1) .x y z l x y lL L L L l l m L L l l m+ = − = + − + = + −  

(b) This is the magnitude of the component of angular momentum perpendicular to the z-axis. 

(c) The maximum value is ( 1) ,l l L+ =  when 0.lm =  That is, if the electron is known to have no z-component 

of angular momentum, the angular momentum must be perpendicular to the z-axis. The minimum is l when 
.lm l= ±  

41.45. 4 2
5

1
( )

24
r aP r r e

a
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
.  

4
3 2

5

1
4

24
r adP r

r e
dr a a

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
4

30 when 4 0; 4 .
dP r

r r a
dr a

= − = =   In the Bohr 

model, 2
2so 4 ,nr n a r a= = which agrees. 

41.46. The time required to transit the horizontal 50 cm region is 
0.500 m

0.952 ms.
525 m sx

x
t

v

Δ= = =  The force required to 

deflect each spin component by 0.50 mm is z z 2 23

2 0.1079 kg mol

6.022 10 atoms mol

z
F ma m

t

⎛ ⎞Δ= = ± = ± ⎜ ⎟×⎝ ⎠
 

3

3 2

2(0.50 10 m)

(0.952 10 s)

−

−

× =
×

 

221.98 10  N.−± ×  According to Eq.(41.22), the value of zμ  is 24 2| | 9.28 10  A m .zμ
−= × ⋅  Thus, the required 

magnetic-field gradient is 
22

24

1.98 10  N
21.3 T m.

9.28 10  J T
z z

z

dB F

dz μ

−

−

×= = =
×
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41.47. Decay from a 3d to 2 p state in hydrogen means that 3 2 andn n= → =  2, 1, 0 1, 0.l lm m= ± ± → = ±  However 

selection rules limit the possibilities for decay. The emitted photon carries off one unit of angular momentum so 
l must change by 1 and hence lm  must change by 0 or 1.±  The shift in the transition energy from the zero field 

value is just 
3 2 3 2B( ) ( ),

2l l l l

e B
U m m μ B m m

m
= − = −  where 

3l
m is the 3 ld m  value and 

2l
m is the 2 lp m  value. Thus 

there are only three different energy shifts. They and the transitions that have them, labeled by the lm  names, are: 

: 2 1, 1 0, 0 1
2

0 :1 1, 0 0, 1 1

: 0 1, 1 0, 2 1
2

e B

m

e B

m

→ → → −

→ → − → −

− → − → − → −

 

41.48. IDENTIFY: The presence of an external magnetic field shifts the energy levels up or down, depending upon the 
value of ml. 
SET UP: The selection rules tell us that for allowed transitions, Δl = 1 and Δml = 0 or ±1. 
EXECUTE: (a) E = hc/λ = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(475.082 nm) = 2.612 eV. 
(b) For allowed transitions, Δl = 1 and Δml = 0 or ±1. For the 3d state, n = 3, l = 2, and ml can have the values 2, 1, 
0, –1, –2. In the 2p state, n = 2, l = 1, and ml can be 1, 0, –1. Therefore the 9 allowed transitions from the 3d state 
in the presence of a magnetic field are: 

l = 2 , ml = 2  →  l = 1, ml = 1; 
l = 2 , ml = 1  →  l = 1, ml = 0 
l = 2 , ml = 1  →  l = 1, ml = 1 
l = 2 , ml = 0  →  l = 1, ml = 0 
l = 2 , ml = 0  →  l = 1, ml = 1 
l = 2 , ml = 0  →  l = 1, ml = –1 
l = 2 , ml = –1  →  l = 1, ml = 0 
l = 2 , ml = –1  →  l = 1, ml = –1 
l = 2 , ml = –2  →  l = 1, ml = –1 

(c) ΔE = µBB = (5.788 × 10–5 eV/T)(3.500 T) = 0.000203 eV 
So the energies of the new states are –8.50000 eV + 0 and –8.50000 eV ± 0.000203 eV, giving energies of: 
–8.50020 eV, –8.50000 eV, and –8.49980 eV 
(d) The energy differences of the allowed transitions are equal to the energy differences if no magnetic field were 
present (2.61176 eV, from part (a)), and that value ±ΔE (0.000203 eV, from part (c)). Therefore we get the 
following. 
For E = 2.61176 eV: λ = 475.082 nm (which was given) 
For E = 2.61176 eV + 0.000203 eV = 2.611963 eV: 

λ = hc/E = (4.136 ×10–15 eV s⋅ )(3.00 × 108 m/s)/(2.611963 eV) = 475.045 nm 

For E = 2.61176 eV – 0.000203 eV = 2.61156 eV: 

λ = hc/E = (4.136 ×10–15 eV s⋅ )(3.00 × 108 m/s)/(2.61156 eV) = 475.119 nm 

EVALUATE: Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

41.49. IDENTIFY: The presence of an external magnetic field shifts the energy levels up or down, depending upon the 
value of ml. 
SET UP: The energy difference due to the magnetic field is  ΔE = µBB and the energy of a photon is E = hc/λ. 
EXECUTE: For the p state, ml = 0 or ±1, and for the s state ml = 0.  Between any two adjacent lines, ΔE = µBB. 
Since the change in the wavelength (Δλ) is very small, the energy change (ΔE) is also very small, so we can use 

differentials. E = hc/λ . 
2

| | 
hc

dE dλ
λ

= and 
2

hc
E

λ
λ
ΔΔ = . Since ΔE = µBB, we get B 2

hc
µ B

λ
λ
Δ=  and 

2
B

hc
B

µ

λ
λ
Δ= . 

B = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)(0.0462 nm)/(5.788 × 10–5 eV/T)(575.050 nm)2 = 3.00 T 
EVALUATE: Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

41.50. (a) The energy shift from zero field is 0 B .lU m BμΔ =  
5 4

0For 2, (2) (5.79 10 eV T) (1.40 T) 1.62 10 eV.lm U − −= Δ = × = ×  
5 5

0For 1, (1)(5.79 10 eV T) (1.40 T) 8.11 10  eV.lm U − −= Δ = × = ×  

(b) 0
0

| |
| | ,

E
E

λ λ ΔΔ =  where 7
0 0

36 1
(13.6 eV)((1/ 4) (1/9)),  6.563 10 m

5
E

R
λ −⎛ ⎞= − = = ×⎜ ⎟

⎝ ⎠
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4 5 5and 1.62 10 eV 8.11 10 eV 8.09 10 eV from part (a).E − − −Δ = × − × = ×  Then, 11| | 2.81 10  m 0.0281 nmλ −Δ = × = . 

The wavelength corresponds to a larger energy change, and so the wavelength is smaller. 

41.51. IDENTIFY: The ratio according to the Boltzmann distribution is given by Eq.(38.21): 1 0( ) /1

0

E E kTn
e

n
− −= , where 1 is 

the higher energy state and 0 is the lower energy state. 

SET UP: The interaction energy with the magnetic field is 2.00232
2z s

e
U B m B

m
μ ⎛ ⎞= − = ⎜ ⎟

⎝ ⎠
 (Example 41.5.). The 

energy of the 
1

2sm = +  level is increased and the energy of the 
1

2sm = −  level is decreased. 

1/ 2 1/ 2( ) /1/ 2

1/ 2

U U kTn
e

n
−− −

−

=  

EXECUTE: 1/ 2 1/ 2 B

1 1
2.00232 2.00232 2.00232

2 2 2 2

e e
U U B B B

m m
μ−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

B(2.00232) /1/ 2

1/ 2

B kTn
e

n
μ−

−

=  

(a) 55.00 10  TB −= ×  
24 2 5 232.00232(9.274 10  A/m )(5.00 10  T)/([1.381 10 J/K][300 K])1/ 2

1/ 2

n
e

n

− − −− × × ×

−

=  

72.24 10 71/ 2

1/ 2

0.99999978 1 2.2 10
n

e
n

−− × −

−

= = = − ×  

(b) 
35 2.24 101/ 2

1/ 2

5.00 10  T, 0.9978
n

B e
n

−− − ×

−

= × = =  

(c) 
25 2.24 101/ 2

1/ 2

5.00 10  T, 0.978
n

B e
n

−− − ×

−

= × = =  

EVALUATE: For small fields the energy separation between the two spin states is much less than kT for 
300 KT =  and the states are equally populated. For 5.00 TB =  the energy spacing is large enough for there to be 

a small excess of atoms in the lower state. 

41.52. Using Eq.(41.4), ( 1) ,L mvr l l= = + and the Bohr radius from Eq.(38.15), we obtain the following value for v : 
34

5
2 31 11

0

( 1) 2(6.63 10 J s)
7.74 10 m s.

( ) 2 (9.11 10 kg) (4) (5.29 10 m)

l l
v

m n a π

−

− −

+ × ⋅= = = ×
× ×

 The magnetic field generated by the 

“moving” proton at the electrons position can be calculated from Eq.(28.1): 
19 5

70
2 2 11 2

| | sin (1.60 10 C) (7.74 10 m s) sin(90 )
(10  T m A) 0.277 T.

4 (4) (5.29 10 m)

μ q v
B

π r

φ −
−

−

× × °= = ⋅ =
×

 

41.53. IDENTIFY and SET UP: sm  can take on 4 different values: 
3 1 1 3

,  , ,  .
2 2 2 2sm = − − + +  Each lnlm  state can have 4 

electrons, each with one of the four different sm  values. Apply the exclusion principle to determine the electron 

configurations. 

EXECUTE: (a) For a filled 1n =  shell, the electron configuration would be 41 ;s  four electrons and 4.Z =  For a 

filled 2n =  shell, the electron configuration would be 4 4 121 2 2 ;s s p  twenty electrons and 20.Z =  

(b) Sodium has 11;Z =  11 electrons. The ground-state electron configuration would be 4 4 31 2 2 .s s p  

EVALUATE: The chemical properties of each element would be very different. 
41.54. (a) 2 2( 13.6 eV) (7) ( 13.6 eV) 666 eV.Z − = − = −  

(b) The negative of the result of part (a), 666 eV. 
(c) The radius of the ground state orbit is inversely proportional to the nuclear charge, and 

10 12(0.529 10 m) 7 7.56 10 m.
a

Z
− −= × = ×  

(d) ( )0 2 2
1 1
1 2

hc hc

E E
λ = =

Δ −
 , where 0E  is the energy found in part (b), and 2.49 nm.λ =  
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41.55. (a) IDENTIFY and SET UP: The energy of the photon equals the transition energy of the atom: / .E hc λΔ =  The 

energies of the states are given by Eq.(41.3). 

EXECUTE: 
2

13.60 eV
nE

n
= −  so 2

13.60 eV

4
E = −  and 1

13.60 eV

1
E = −  

19 18
2 1

1 3
13.60 eV 1 (13.60 eV) 10.20 eV (10.20 eV)(1.602 10  J/eV) 1.634 10  J

4 4
E E E − −⎛ ⎞Δ = − = − + = = = × = ×⎜ ⎟

⎝ ⎠
34 8

7
18

(6.626 10  J s)(2.998 10  m/s)
1.22 10  m 122 nm

1.634 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

(b) IDENTIFY and SET UP: Calculate the change in EΔ  due to the orbital magnetic interaction energy, 
Eq.(41.17), and relate this to the shift λΔ  in the photon wavelength. 
EXECUTE: The shift of a level due to the energy of interaction with the magnetic field in the z-direction is 

B .lU m Bμ=  The ground state has 0lm =  so is unaffected by the magnetic field. The 2n =  initial state has 

1lm = −  so its energy is shifted downward an amount 24 2
B ( 1)(9.274 10  A/m )(2.20 T)lU m Bμ −= = − × =  

23 19 4( 2.040 10  J)(1 eV /1.602 10  J) 1.273 10  eV− − −− × × = ×  

Note that the shift in energy due to the magnetic field is a very small fraction of the 10.2 eV transition energy. 
Problem 39.56c shows that in this situation / / .E Eλ λΔ = Δ  This gives 

41.273 10  eV
/ 122 nm 

10.2 eV
E Eλ λ

−⎛ ⎞×Δ = Δ = =⎜ ⎟
⎝ ⎠

31.52 10  nm 1.52 pm.−× =  

EVALUATE: The upper level in the transition is lowered in energy so the transition energy is decreased. A smaller 
EΔ  means a larger ;λ  the magnetic field increases the wavelength. The fractional shift in wavelength, /λ λΔ  is 

small, only 51.2 10 .−×  
41.56. The effective field is that which gives rise to the observed difference in the energy level transition, 

1 2 1 2

B B 1 2 1 2

2
.

E hc πmc
B

μ μ e

λ λ λ λ
λ λ λ λ

⎛ ⎞ ⎛ ⎞Δ − −= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Substitution of numerical values gives 33.64 10 T,B −= ×  much smaller 

than that for sodium. 
41.57. IDENTIFY: Estimate the atomic transition energy and use Eq.(38.6) to relate this to the photon wavelength. 

(a) SET UP: vanadium, 23Z =  
minimum wavelength; corresponds to largest transition energy 
EXECUTE: The highest occupied shell is the N shell ( 4).n =  The highest energy transition is ,N K→  with 

transition energy .N KE E EΔ = −  Since the shell energies scale like 21/ n  neglect NE  relative to ,KE  so 
2 2 3( 1) (13.6 eV) (23 1) (13.6 eV) 6.582 10  eVKE E ZΔ = = − = − = × =  151.055 10  J.−×  The energy of the emitted 

photon equals this transition energy, so the photon’s wavelength is given by /  so / .E hc hc Eλ λΔ = = Δ  
34 8

10
15

(6.626 10  J s)(2.998 10  m/s)
1.88 10  m 0.188 nm.

1.055 10  J
λ

−
−

−

× ⋅ ×= = × =
×

 

SET UP: maximum wavelength; corresponds to smallest transition energy, so for the Kα  transition 

EXECUTE: The frequency of the photon emitted in this transition is given by Moseley’s law (Eq.41.29): 
15 2 15 2 18(2.48 10  Hz)( 1) (2.48 10  Hz)(23 1) 1.200 10  Hzf Z= × − = × − = ×  

8
10

18

2.998 10  m/s
2.50 10  m 0.250 nm

1.200 10  Hz

c

f
λ −×= = = × =

×
 

(b) rhenium, 45Z =  
Apply the analysis of part (a), just with this different value of Z. 
minimum wavelength 

2 2 4 15( 1) (13.6 eV) (45 1) (13.6 eV) 2.633 10  eV 4.218 10  J.KE E Z −Δ = = − = − = × = ×  
34 8

11
15

(6.626 10  J s)(2.998 10  m/s)
/ 4.71 10  m 0.0471 nm.

4.218 10  J
hc Eλ

−
−

−

× ⋅ ×= Δ = = × =
×

 

maximum wavelength 
15 2 15 2 18(2.48 10  Hz)( 1) (2.48 10  Hz)(45 1) 4.801 10  Hzf Z= × − = × − = ×  

8
11

18

2.998 10  m/s
6.24 10  m 0.0624 nm

4.801 10  Hz

c

f
λ −×= = = × =

×
 

EVALUATE: Our calculated wavelengths have values corresponding to x rays. The transition energies increase 
when Z increases and the photon wavelengths decrease. 
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41.58. (a) 
2

(2.00232) .
2 z

e e hc πmc
E B S B B

m m eλ λ
Δ = Δ ≈ = ⇒ =  

(b) 
31 8

19

2 (9.11 10 kg) (3.00 10 m s)
0.307 T.

(0.0350 m)(1.60 10 C)

π
B

−

−

× ×= =
×

 

41.59. (a) To calculate the total number of states for the thn  principal quantum number shell we must multiply all the 
possibilities. The spin states multiply everything by 2. The maximum l value is (n –1), and each l value has 
(2 1) ll m+  values.  So the total number of states is 

1 1 1
2 2

0 0 0

4( 1)( )
2 (2 1) 2 1 4 2 2 2 2 2 .

2

n n n

l l l

n n
N l l n n n n n

− − −

= = =

−= + = + = + = + − =∑ ∑ ∑  

(b) The n = 5 shell (O-shell) has 50 states. 
41.60. IDENTIFY: We treat the Earth as an electron. 

SET UP: The intrinsic spin angular momentum of an electron is 
3

4
S = , and the angular momentum of the 

spinning Earth is S Iω= , where I = 2/5 mR2. 

EXECUTE: (a) Using 
3

 
4

S Iω= =  and solving for ω gives 

( )
( )( )

34

73

22 24 6

3 3
 1.055 10  J s

4 4 9.40 10  rad/s
2 2

5.97 10  kg 6.38 10  m
5 5

mR
ω

−

−
× ⋅

= = = ×
× ×

 

(b) We could not use this approach on the electron because in quantum physics we do not view it in the classical 
sense as a spinning ball. 
EVALUATE: The angular velocity we have just calculated for the Earth would certainly be masked by its present 
angular spin of one revolution per day. 

41.61. The potential 21
( )

2
U x k x′=  is that of a simple harmonic oscillator. Treated quantum mechanically (see Section 40.4) 

each energy state has energy 1
2( ).nE ω n= +  Since electrons obey the exclusion principle, this allows us to put two 

electrons (one for each 1
2 )sm = ±  for every value of n⎯each quantum state is then defined by the ordered pair of 

quantum numbers ( , ).sn m  By placing two electrons in each energy level the lowest energy is then 

1 1 1 1

0 0 0 0

1 1 ( 1)( )
2 2 2 2

2 2 2 2

N N N N

n
n n n n

N N N
E n nω ω ω

− − − −

= = = =

⎛ ⎞ −⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤= + = + = + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑ ∑  

2 2 2[ ] .
k

N N N N N
m

ω ω
′

− + = =  

Here we used the hint from Problem 41.59 to do the first sum, realizing that the first value of n is zero and the last 
value of n is N – 1, giving us a total of N energy levels filled. 

41.62. (a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal force. There is an attractive 

force with charge +2e a distance r away and a repulsive force a distance 2r away. So, 
2 2

0 0

( 2 )( ) ( )( )

4 4 (2 )

e e e e

r rπ π
+ − − −+ =
P P

 

2

.
mv

r

−
But, from the quantization of angular momentum in the first Bohr orbit, .L mvr v

mr
= = ⇒ =  

So 

2

2 2 2 2

2 2 3
0 0

2

4 4 (4 )

m
e e mv mr

π r π r r r mr

⎛ ⎞− ⎜ ⎟− − ⎝ ⎠+ = = = −
P P

2 2
0

2 3

7 4

4

e π
r mr

−
⇒ = − P

. 

2
10 110

02

4 4 4 4
(0.529 10 m) 3.02 10 m.

7 7 7

π
r a

me
− −⎛ ⎞

= = = × = ×⎜ ⎟
⎝ ⎠

P
 

And 
34

6
31 10

0

7 7 (1.054 10 J s)
3.83 10 m s.

4 4 (9.11 10 kg)(0.529 10 m)
v

mr ma

−

− −

− × ⋅= = = = ×
× ×

 

(b) 2 31 6 2 171
2 9.11 10 kg (3.83 10 m s) 1.34 10 J 83.5 eV.

2
K mv − −⎛ ⎞= = × × = × =⎜ ⎟

⎝ ⎠
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(c) 
2 2 2 2 2

17

0 0 0 0 0

2 4 7
2 2.67 10 J 166.9 eV

4 4 (2 ) 4 4 (2 ) 2 4

e e e e e
U

π r π r π r πE r π r
−⎛ ⎞ ⎛ ⎞− − −= + = + = = − × = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠P P P P
 

(d) [ 166.9 eV 83.5 eV] 83.4 eV,E∞ = − − + =  which is only off by about 5% from the real value of 79.0 eV. 

41.63. (a) The radius is inversely proportional to Z, so the classical turning radius is 2 .a Z  

(b) The normalized wave function is 1 3 3

1
( ) Z r a

sψ r e
πa Z

−=  and the probability of the electron being found 

outside the classical turning point is 
2 2 2 2

1 3 32 2

4
4 .Zr a

sa Z a Z
P ψ πr dr e r dr

a Z

∞ ∞ −= =∫ ∫  Making the change of variable 

, ( )u Zr a dr a Z du= =  changes the integral to 2 2

2
4 ,uP e u du

∞ −= ∫ which is independent of Z. The probability is 

that found in Problem 41.39, 0.238, independent of Z. 



 

 


