QUANTUM MECHANICS

40.1.

40.2.

40.3.

40.4.

2h2
IDENTIFY and SET UP:  The energy levels for a particle in a box are given by E, = E’Z_Lz
m

—34 2
EXECUTE: (a) The lowest level is for n=1, and E, = (662610~ J Sz) =1.2x10"" J.
8(0.20 kg)(1.5 m)

1 ) i . L .
(b) E=—mv* so v= 28 |242x107 D) 1.1x107 m/s. If the ball has this speed the time it would take it
2 \'m 0.20 kg

. . 1.
to travel from one side of the table to the other is ¢ = 5—_?31 =14x10% s.
1.1x107™ m/s

2

(o) E, =8’:—L2, E,=4E, so AE=E,-E =3E =3(1.2x10" J)=3.6x10"" ]

(d) EVALUATE: No, quantum mechanical effects are not important for the game of billiards. The discrete,
quantized nature of the energy levels is completely unobservable.
h

\J8mE,

B (6.626x107 J -5)
J8(1.673x107 kg)(5.0x10° eV)(1.602x10™" J/eV)

IDENTIFY: An electron in the lowest energy state in this box must have the same energy as it would in the ground
state of hydrogen.

L =6.4x10" m.

nh®
8mL*’
EXECUTE: An electron in the ground state of hydrogen has an energy of —13.6 eV, so find the width

SETUP: The energy of the n™ level of an electron in a box is E, =

corresponding to an energy of E, =13.6 eV. Solving for L gives
_h (6.626x107* J -5)
JBmE,  [8(9.11x107" kg)(13.6 eV)(1.602x10™° J/eV)

EVALUATE: This width is of the same order of magnitude as the diameter of a Bohr atom with the electron in the
K shell.
(a) The energy of the given photon is

=1.66x107"" m.

(3.00x10° m/s)

E=hf =h< =(6.63x10" Joo ) —————"=1.63x10"J.
A (122%10™ m)
The energy levels of a particle in a box are given by Eq.40.9
2 2 2 —34 2 2 2
AE=_"" —(n*—n,). L= Wy =) (6'63X181 1) 2 12()) =3.33x107"° m.
8mL 8mAE 8(9.11x10™" kg)(1.63x10™" J)

(b) The ground state energy for an electron in a box of the calculated dimensions is

2 —34 2
= h - = (6'2?X 107 J-9) ——— =5.43X 107" J = 3.40 eV (one-third of the original photon energy),
8mL*  8(9.11x10™" kg)(3.33x107" m)

which does not correspond to the —13.6 eV ground state energy of the hydrogen atom. Note that the energy levels for

a particle in a box are proportional to n°, whereas the energy levels for the hydrogen atom are proportional to —LZ.
n
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40.5.

40.6.

40.7.

40.8.

40.9.

IDENTIFY and SET UP:  Eq.(40.9) gives the energy levels. Use this to obtain an expression for E, — E, and use the

value given for this energy difference to solve for L.
2 2

EXECUTE: Ground state energy is E, = S_Lz; first excited state energy is E, = Sl The energy separation
m m

, 3 3
between these two levelsis AE=F, — E, =——. This gives L=h, |———=
8mL 8mAE

3
8(9.109%x107" kg)(3.0 eV)(1.602x10™" J/1 eV)
EVALUATE: This energy difference is typical for an atom and L is comparable to the size of an atom.
(a) The wave function for n=1 vanishes only at x=0and x=L intherange 0<x<L.
(b) In the range for x, the sine term is a maximum only at the middle of the box, x=L/2.

(c) The answers to parts (a) and (b) are consistent with the figure.
IDENTIFY and SET Up: For the n=2 first excited state the normalized wave function is given by Eq.(40.13).

=6.1x10"° m=0.61 nm.

L=6.626x10"" J~s\/

v,(x)= %sin(z—lzxj. |l//2 (x)|2 dx = %sin2 (z—zxj dx. Examine |l//2 ()c)|2 dx and find where it is zero and where it is
maximum.

L . (2
EXECUTE: (a) |;1/2|2 dx =0 implies sm(%) =0

z_llfx:mﬂ', m=0,1,2,...; x=m(L/2)

For m=0, x=0; for m=1, x=L/2; for m=2, x=L
The probability of finding the particle is zero at x=0, L/2, and L.
(b) |w.|" dx is maximum when sin(z%] =41

2—’:‘=m(7r/2), m=1,3,5, ... x=m(L/4)

For m=1, x=L/4; for m=3, x=3L/4
The probability of finding the particle is largest at x = L/4 and 3L/4.

(c) EVALUATE: The answers to part (a) correspond to the zeros of |y/|2 shown in Fig.40.5 in the textbook and the
answers to part (b) correspond to the two values of x where |y/|2 in the figure is maximum.
d’ . g 2
7 l/; =—k’y, and for ¥ to be a solution of Eq.(40.3), k> = ESE m_op
X

o
(b) The wave function must vanish at the rigid walls; the given function will vanish at x =0 for any k, but to

vanish at x =L, kL = nz for integer n.

(a) IDENTIFY and SETUP: = Acoskx. Calculate dy’/dx’ and substitute into Eq.(40.3) to see if this equation is
satisfied.

n dw
EXECUTE: Eq.(40.3): — =FE
9.(40-3) 87°m dx* v
W A(—ksinkx) = — Ak sin kx
dx

2
v =—Ak(kcoskx) = —Ak*coskx

3 —
2

(—~Ak? coskx) = E(Acos kx).

Thus Eq.(40.3) requires 3 h

T m
2712 /
This says — h ]2( =FE; k= 2mE = 2mE
87°m (h/2r) h

W = Acoskx is a solution to Eq.(40.3) if k = 2mE .

(b) EVALUATE: The wave function for a particle in a box with rigid walls at x=0 and x =L must satisfy the
boundary conditions =0 at x=0and =0 at x=L. (0)=Acos0= A, since cosO=1. Thus ¥ isnot 0 at
x =0 and this wave function isn't acceptable because it doesn't satisfy the required boundary condition, even
though it is a solution to the Schrodinger equation.
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40.10.

40.11.

40.12.

40.13.

40.14.

(a) The third excited state is n =4, so

2 34 2
AE=(@ -1t o OO0 TS g 9000077 yo361 eV
8mL  8(9.11x107" kg)(0.125x10™ m)
34 8
®) q o he _(6.63x107 ) S)(i}OXIO W) 2 44 om
AE 5.78x1077 J

h h
Recall A=—=—=—.

P ~N2mE

2
(a) E, LN :;:ZL:Z(&OXIO"O m) =6.0x107"" m. The wavelength is twice the width of

4
8ml’ N2mh*8mI?

h  (6.63x107* J-s)

Z 6.0x107"° =1.1x10™ kg -m/s
. m

the box. p, =

4n’
(b) E, = S A, =L=3.0x10"" m. The wavelength is the same as the width of the box.
m

P, =%= 2p, =2.2x107 kg - mis.
on’ 2 10 . . .
(¢) E,=——= A4, ==L=2.0x10"" m. The wavelength is two-thirds the width of the box.
Pogmlr 73

py=3p, =3.3x107" kg - m/s.
IDENTIFY: If the given wave function is a solution to the Schrodinger equation, we will get an identity when we
substitute that wave function into the Schrédinger equation.

. . 2 . (nmx) . . . 1
SET UP: We must substitute the equation W(x,t) = I sin (—je % into the one-dimensional Schrodinger

hZ 2
equation 4 V/Ex)
2m dx

+UW () = Ep(x).

2
EXECUTE: Taking the second derivative of W(x,7) with respect to x gives o T] W(x,t)
X

d*¥(x, 1) _ _(niz

2 32 2 2

Substituting this result into —h—dLgx)JrU(x) w(x) = Ey(x), we get D7) (x.t) = E®(x,1) which
2m dx 2m\ L
. n* (nz) . N

gives E, =—| — | , the energies of a particle in a box.

2m\ L
EVALUATE: Since this process gives us the energies of a particle in a box, the given wave function is a solution
to the Schrodinger equation.

2 2

(@) Eq.@0.1)—-4 Y Uy =Ey.
2m dx

2 2 27,2

—h
Left-hand side: —d—z(A sinkx) + U Asinkx =
2m dx

27,2

Asinkx+U0Asinkx:[h k
2m

+U0]1//.
m

Kk’ nk?
But 5 +U,>U, > E for constant k. But 2—+ U, should equal E => no solution.
m m

hZ 2
(b) If E>U,, then 2——|-U0 =E is consistent and so y = Asinkxis a solution of Eq.(40.1) for this case.
m

According to Eq.(40.17), the wavelength of the electron inside of the square well is given by

2mE h
k =———= A, =———=——=—. By an analysis similar to that used to derive Eq.40.17, we can show that outside
h \2m@3U,)
the box

h h
“ 2mE-U,)  2mQU,)

A _2mBU,) _ \ﬁ
A, J2mu,) N2

Thus, the ratio of the wavelengths is
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40.15.

40.16.

40.17.

40.18.

40.19.

40.20.

40.21.

°h’
2ml*’

1/2
L= nh( _310'625 5 j =3.43%x10"" m

2(9.109x10™" kg)(3.20x107" J)
Since U,=6E_ we can use the result E, =0.625F_from Section 40.3, so U, — E, =5.375E_ and the maximum
wavelength of the photon would be
1= he _ he _ 8mL’c
U,—E, (5.375)(h*/8mL*) (5.375)h

_ 8(9.11x107" kg)(1.50x10™ m)*(3.00x10°m/s)
- (5.375)(6.63x10™ J -5)

N2mE N2mE .

x+ Bcos
h

d’y 2mE ) . N2mE 2mE 2mE —2mE
——=-A sin——x—B cos x= y) = Eq.(40.15).

E =0.625E_ =0.625 E, =2.00eV=3.20x10"1]

A =1.38x10° m.

Eq.(40.16): y = Asin

2
W (e —pe), & L
dx dx

K*(Ce*™ + De™) = K’y for all constants C and D. Hence  is a solution to

K2 .
Eq.(40.1) for —2—7(2 +U,=E,or k=[2m(U, — E)]"*/h, and K is real for E<U,,.
m

IDENTIFY: Find the transition energy AE and set it equal to the energy of the absorbed photon. Use E =hc/A to
find the wavelength of the photon.
222

SETUP: U,=6E_, asinFig.40.8 in the textbook, so E, =0.625E_ and E, =5.09E_ with E_= ;z' hLz . In this
m

problem the particle bound in the well is a proton, so m=1.673x107" kg.
222 2 34 2
EXECUTE: E. = V4 hz _ V4 (1.0375><10 J s)i15 i
2mL 2(1.673x107" kg)(4.0x107" m)
AE=E,—E =(509-0.625)E_=4.465E_. AE=4.465(2.052x107" J)=9.162x107"*J
The wavelength of the photon that is absorbed is related to the transition energy by AE = hc/A, so

—34 8
lzﬁ: (6.626x107" J-5)(2.998%10° m/s) —22%107 m =22 fm.

AE 9.162x107"* J
EVALUATE: The wavelength of the photon is comparable to the size of the box.

IDENTIFY: The longest wavelength corresponds to the smallest energy change.
2

SET UP: The ground level energy level of the infinite well is E_ = Sl and the energy of the photon must be
m

=2.052x107" J. The transition energy is

equal to the energy difference between the two shells.
EXECUTE: The 400.0 nm photon must correspond to the n=1 to n=2 transition. Since U, =6E_, we have

E,=243F_ and E, =0.625E_. The energy of the photon is equal to the energy difference between the two levels,

n L h 1.805 h?
and E_=——, which gives E, = E, - E, = —=(243-0.625)E_ = 805 :
8 A 8mL

2’

34 7
Solving for L gives L= | 15004 _ [A805)6.626x107 J-)400x107 m) _, ¢ 1019 1 = 0,468 nm.
8me 8(9.11x10™" kg)(3.00x10° m/s)

EVALUATE: This width is approximately half that of a Bohr hydrogen atom.

r=16L|1- L |mmmn E_ 60V E-U,=5eV=80x10"1J.
U, 11.0eV

0 0

(@) L= 0.80X1079 m: T = 16( 6.0eV j[l 6.0ev je—z(o.x()xlo9 m)~/2(9.11x107" kg)(8.0x107"% J) /1.055x107* J-5 — 4.4X10—8

11.0ev )| 11.0ev
(b) L=040x10" m: T=42x10".
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40.22.

40.23.

40.24.

40.25.

The transmission coefficient is 7 = 16U£(1 - Uﬁ]ez 2mWo=BLUL - with E=5.0 eV, L=0.60x10" m, and

0 0

m=9.11x10"" kg

(a) U,=7.0eV=>T=55x10"

(b) U,=9.0eV =T =1.8x10"

() U,=13.0eV=T=1.1x10".

IDENTIFY and SET UP:  Use Eq.(39.1), where K = p*/2m and E=K +U.
EXECUTE: A=hlp :h/\/ﬂ , SO AJK s constant

ANK, =4,K,; A and K, are for x> L where K, =2U, and A, and K, are for 0<x< L where
K,=E-U,=U,

A_ KUy 1
A4 \K, \2u, 2
EVALUATE: When the particle is passing over the barrier its kinetic energy is less and its wavelength is larger.

IDENTIFY: The probability of tunneling depends on the energy of the particle and the width of the barrier.

SETUP: The probability of tunneling is approximately 7 = Ge>*", where G = 16U£(1 - E] and

0 0

e 2m(U,—E) .
h
Execure: G =16-] 1L |=16200¢Y (1— 50.0 evj =327
u,\ U, 70.0eV{ 70.0eV
2mU,—E) _{J2(1.67x107 kg)(70.0 eV —50.0 eV)(1.60x10™"° J/eV) T
= _ — =9.8x10" m
h (6.63x107 J-5)/27
. ot A 1 1 3.27 b
Solving T =Ge for L gives L=—In(G/T)= ——In =3.6x10"" m=3.6 pm
2K 2(9.8x10" m™) ' 0.0030

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger.
EVALUATE: An electron can tunnel through a much wider barrier than a proton of the same energy.

2mU, - E
IDENTIFY and SET UP:  The probability is 7 = Ae >*", with A= 16£(1 - Ej and K= W

0 0

E=32eV,U,=41eV,L=0.25x10" m. Calculate T.
EXECUTE: (a) A= 16U£[1 —Ej = 162(1 - %) =2.741.

0 0 41
J2mU, -E)

h
o= \/2(9.109><10'31 kg)(41 eV —32eV)(1.602x107" J/eV)
1.055x107* J-s
T = Ae ¥t = (2.741)6—2(1.53@(10”' m™)(025x10” m) _ 2.741¢7% =0.0013
(b) The only change in the mass m, which appears in x.
\2mU,-E)
h
e \/2(1.673><10‘27 kg)(41 eV —32eV)(1.602x107" J/eV)
1.055x107 J-s
Then T = Ae—ZrL — (2'741)6—2(6.584“0” m™)(0.25x107 m) — 2.74167392.2 — 107143

EVALUATE: The more massive proton has a much smaller probability of tunneling than the electron does.

=1.536x10"" m™

=6.584x10" m™
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40.26.

40.27.

40.28.

40.29.

40.30.

40.31.

0 0
@If U, =30.0x10°% eV, L=2.0x10"" m, m=6.64x107"’ kg and
U,—E=1.0x10° eV (E =29.0x10° eV), T =0.090.
(b) If U,— E=10.0x10° eV (E =20.0x10° eV), T =0.014.

0 0

A E(, E J2mU,—E E(, E)220bp
T =Ge " with G :16—{1——] and K:"Z(T"), soT:l6—[l——]e h )

IDENTIFY and SET UP: The energy levels are given by Eq.(40.26), where @w= \/E
m

EXECUTE: = \/E _ (HONm ) 60 radss
m 0250 kg

The ground state energy is given by Eq.(40.26):
E, = %ha) = %(1.055><10‘34 J-5)(21.0 rad/s) =1.11x107* J(1 eV/1.602x107"° ) =6.93x107" eV

E, :(n+%jhar, E, .= £n+l+%jhw

The energy separation between these adjacent levels is
AE=E, -E =hw=2E,=2(1.11x107 J) =2.22x10™ ] =1.39x10™ eV

EVALUATE: These energies are extremely small; quantum effects are not important for this oscillator.
2

Let \/mk'/Zh =4, and so Z—w =-2x0y and cj{ v (4x°0* = 25)y, and y is a solution of Eq.(40.21) if
X

o

2

E= h—é = lh\/k'/m = lhw
m 2 2

IDENTIFY: We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the energy

difference between the two levels of the oscillator.

SET UP:  The energy of a photon is E, = hf = hc/A, and the energy levels of a harmonic oscillator are given by

E, =(n+l]h k— =[n+ljha).
2 m 2

EXECUTE: (a) The photon’s energy is E, =

he _ (6.63x107 J-5)(3.00x10° m/s)
7 5.8x10° m

27he _ h\/E Solving for k', we get
A m

=021eV

(b) The transition energy is AE=E,_,—E =hw= h\/E, which gives
m

_Ar’cm 477 (3.00x10° m/s)*(5.6x107 kg)
A (5.8x107° m)?
EVALUATE: This would be a rather strong spring in the physics lab.

According to Eq.(40.26), the energy released during the transition between two adjacent levels is twice the ground
state energy E,—E, =hw=2E =112¢eV.

For a photon of energy E

K =5,900 N/m.

¢ _he _(6.63x10™ J-5)(3.00x10° m/s)
f E (11.2eV)(1.60x107"° J/eV)

IDENTIFY and SET UP: Use the energies given in Eq.(40.26) to solve for the amplitude A and maximum speed
v,... of the oscillator. Use these to estimate Ax and Ap_and compute the uncertainty product AxAp .

max

=111nm.

E=hf => A=

EXECUTE: The total energy of a Newtonian oscillator is given by E = %k'A2 where k” is the force constant and A

is the amplitude of the oscillator. Set this equal to the energy E = (n+$)h® of an excited level that has quantum

number n, where = \/E, and solve for A: %k'A2 =(n+Hho
m

A= (2n +,l)ha)
k
The total energy of the Newtonian oscillator can also be written as E =2mv_,_ . Set this equal to E = (n+1)hw and

2

max

.1
solve for v, : smv

, - [en+hhe
max m

=(n+Hhe
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40.32.

40.33.

40.34.

40.35.

Thus the maximum linear momentum of the oscillatoris p,, =mv_ =+/(2n+1);im@. Assume that A represents

the uncertainty Ax in position and that p__ is the corresponding uncertainty Ap_ in momentum. Then the
uncertainty productis AxAp = QW;{—,DMJ(Zn +Dhmew =2n+)ho, % =2n+ l)h(o[ij =2n+1Dh.
o

EVALUATE: For n=1 this gives AxAp_=3#, in agreement with the result derived in Section 40.4. The

uncertainty product AxAp_increases with n.

2 7

A ’

(a) M =exp _Nmk exp[—\/mk'ﬂ,j =e¢'=0.368.
(20] h k

This is consistent with what is shown in Figure 40.20 in the textbook.

(24)° mk’ 5
(b) M —exp| YK 24y | = exp [—x/mk 43,] =e* =1.83x10™
v (0)] h k
This figure cannot be read this precisely, but the qualitative decrease in amplitude with distance is clear.
IDENTIFY: We model the atomic vibration in the crystal as a harmonic oscillator.
SET UP: The energy levels of a harmonic oscillator are given by E = (n + %jh LS = En + %jha)
m

EXECUTE: (a) The ground state energy of a simple harmonic oscillator is

7 34
E, =lha)=lh\/z _ (1055107 3rs) | 122 N/;Gn =9.43x102 J =5.89x107 eV
27 2\ m 2 3.82x107 kg

34 3
(b) E,— E, = ho=2E,=00118 eV, so A=< = (063xX10 " 1:5)300xI0" m/s)
E 1.88x107

=106 um

(© E  —E =hw=2E,=0.0118eV

EVALUATE: These energy differences are much smaller than those due to electron transitions in the hydrogen
atom.

IDENTIFY: If the given wave function is a solution to the Schrodinger equation, we will get an identity when we
substitute that wave function into the Schrédinger equation.

SETUP: The given function is #(x)= Ae™, and the one-dimensional Schrodinger equation is

_h iy
2m  dx?

U () = Ep(x).

EXECUTE: Start with the given function and take the indicated derivatives: w(x)= Ae™. @ = Aike™.
X

2 ) ) 2 h 2 hZ
TV _ gt = arze. VD - oy, - P AVO 1 4o Substituting these results into the
dx dx 2m dx 2m
272
one-dimensional Schrodinger equation gives . v(x)+Uyw(x)=E y(x).

27,2

*is a solution to the one-dimensional Schridinger equation if £—U, = By or
m

EVALUATE: p(x)=Ae

k= /w (Since U, < E was given, k is the square root of a positive quantity.) In terms of the particle’s

momentum p: k = p/h, and in terms of the particle’s de Broglie wavelength A: k =27/A.

IDENTIFY: Let I refer to the region x <0 and let /7 refer to the region x>0, so ,(x) = Ae™ + Be™* and
W, ()= Ce™*. Set w,(0)=w, (0yand =W o 10
X dx
SETUP: L (e = ike™,
dx

. _ . _ . dy, dy, P A . ——

EXECUTE: y,(0)=y,(0) gives A+B=C. P at x=0 gives ik, A—ik B =ik,C. Solving this pair of
X

k —k 2k
equations for B and C gives B=| ——2 |A and C= 2 |A
k +k, k +k,
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. L B> (k,—k,)’ . L
EVALUATE: The probability of reflection is R=—=-———+=—. The probability of transmission is
A (k +ky)
2 4k2
—C—zz—‘z. Note that R+T =1.
A™ (k +k,)
+1)?=-n* 2n+1 2 1
40.36. (a) R, = (n )2 ? = nz =—+—. This is never larger than it is forn =1, and R, =3.
n n non
(b) R approaches zero; in the classical limit, there is no quantization, and the spacing of successive levels is
vanishingly small compared to the energy levels.
272
40.37. IDENTIFY and SET UP: The energy levels are given by Eq.(40.9): E, = Sl Calculate AE for the transition
nm
and set AE =hc/A, the energy of the photon.
h2
EXECUTE: (a) Ground level, n=1, E, =——
8mL
2
First excited level, n=2, E, = iz
8mL
2
The transition energy is AE=E, —E = Sl Set the transition energy equal to the energy hc/A of the emitted
m
he  3h*
hoton. This gives — = .
P £ A 8mI’
e 8mcl’  8(9.109x107" kg)(2.998x10° m/s)(4.18x10” m)
3h 3(6.626x107 J-s)
A=1.92x10"° m=19.2 ym.
h’ h: o 4Rn? h’
(b) Second excited level has n=3 and E, = 9—2 The transition energy is AE=E,-E, = 2 5= = > 5
T 8mL 8mL” 8mL 8mL
he  5K0° 8mcl’ 3
—= so A= =—(19.2 ym)=11.5 ym.
A 8ml’ 5h 5 ( Hm) o
EVALUATE: The energy spacing between adjacent levels increases with n, and this corresponds to a shorter
wavelength and more energetic photon in part (b) than in part (a).
2pus ymx 2wl 2mx (L 2m\ 1
40.38. (a) —I sinz—dx:—J. —| 1—cos—— dx:—(x——sin— =———, which is about 0.0908.
L7 L LYo 2 L L 2 L), 4 2=z
L2
(b) Repeating with limits of /4 and L/2 gives 1 x— Lsin@ _1 + L,
L 2 L), 4 2«
about 0.409.
(c) The particle is much likely to be nearer the middle of the box than the edge.
(d) The results sum to exactly 1/2, which means that the particle is as likely to be between x=0and L/2 as it is to
be between x=L/2 and x=L.
(e) These results are represented in Figure 40.5b in the textbook.
40.39. IDENTIFY: The probability of the particle being between x, and x, is J.Xz|l//|2dx, where ¥ is the normalized

wave function for the particle.

(a) SETUP: The normalized wave function for the ground state is y, = \/% sin (%j

EXECUTE: The probability P of the particle being between x=L/4 and x=3L/4 is

L/4

3L/4 5 2 p3L14 . o Tx . . ..
P =I |'/’1| dx= ZJ.LM sin A dx.Let y=rxx/L; dx=(L/7x)dy and the integration limits become 7/4 and

3x/4.

2( L\¢3ars ., 201 1.
=—| — sin“ydy=—| —y——sin2
L[ﬂ]-[’”“ ye n[zy 4 y}

2137 7 1. (37x) 1 . (7
P=—| —————sin| — |+—sin| —
n{ 8 8 4 [ 2 j 4 (2H

P=— Z—l(—l)+l(l) :l+l:0.818. (Note: The integral formula Isinzydy:ly—lsinZy was used.)
4 4 4 2 27 4

3z/4

nl4
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40.40.

40.41.

40.42.

40.43.

(b) SET UP: The normalized wave function for the first excited state is ¥, = \/% sin (%)

3L/4

EXECUTE: P= I = J.

L/4

3L/4 .

L/4

( Zx]dx Let y=2zx/L; dx=(L/27x)dy and the integration limits

become 7/2 and 37/2.

2( L\ a2 11 1 2 (37[ nj
P== i dy = ——sin?2 =—| —-=—1=0.500
(271']-[ yy [2y 4 yl/z 7\ 4 4

(c) EVALUATE: These results are consistent with Fig.40.4b in the textbook. That figure shows that |l//|2 is more

concentrated near the center of the box for the ground state than for the first excited state; this is consistent with the
answer to part (a) being larger than the answer to part (b). Also, this figure shows that for the first excited state half

the area under |l//|2 curve lies between L/4 and 3L/4, consistent with our answer to part (b).

Using the normalized wave function y, = \/Z/_L sin(zx/ L), the probabilities 1y I* dx are
(a) (2/L)sin*(x/4)dx =dx/L

(b) (2/L)sin*(xr/2)dx=2dx/L

(¢) (2/L)sin*(3z/4)=dx/L.

IDENTIFY and SET UP: The normalized wave function for the n =2 first excited level is y, = \/% sin[z—zxj.

= |l//(x)|2 dx is the probability that the particle will be found in the interval x to x+ dx.
EXECUTE: (a) x=L/4

ool ) fon(E)-

P =(2/L)dx
(b) x=L2

2 ((2z\(LY\_[2.
w(x)= 7 SIH[(TJ(ED = \/Zmn(ﬂ') =0

P=0
(¢) x=3L/4

(x)—\/zsin (2_71'](3_L] —\/zsin(zj—— 3
VIO L)\4))\NL 2 ) \L
P=(Q2/L)dx

EVALUATE: Our results are consistent with the n =2 part of Fig.40.5 in the textbook. |l//|2 is zero at the center

of the box and is symmetric about this point.

S /] h hn » .
AP =Py — Piitar- | p| hk = Zﬁ = 2—2 At x=0 the initial momentum at the wall is p, ., = 2Ll and the final

hn » hn »
2L

. - hn 2 hn L
momentum, after turning around, is p, ., = +£l. So, Ap=+—1i - 2Ll] = +Tnl. At x=L the initial

P hn 2 . . P hn 2
momentum is p, ... = +Z' and the final momentum, after turning around, is p;, , = —Zl. So,

- hn» hn hn »
Ap=——Fi—i=—-i
2L 2L L

d 2l//()c) 2m
2

(a) For a free particle, U(x) =0 so Schrodinger's equation becomes — Ey(x). The graph is given in

h
Figure 40.43.
2 2.2
(b) For x < 0: y(x)=e"™. LG Ket . dy) Ket™. So kK7 = —2—ZZE =E= LS )
dx dx /] 2m
2
K)c. dl//(-x) :_ke—)oc d l//(-x) — K2€—Kx

c) F >0: =e .
(¢) For x w(x)=e o e
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So again x” = —?E =>E= . Parts (c) and (d) show w(x) satisfies the Schrodinger's equation, provided
_ K2
E= A .
2m
(d) Note % is discontinuous at x = 0. (That is, negative for x > 0 and positive for x <0.)
x
P(x)
1
L | 1 L x/k
=) -1 0 1 2
Figure 40.43
40.44. IDENTIFY: We start with the penetration distance formula given in the problem.
SET UP: The given formulais 7= #
\2mU, - E)
EXECUTE: (a) Substitute the given numbers into the formula:
—34
7= h _ 1.055x10™" J-s —74x10" m
\/Zm(UO —-E) \/2(9.1 1x107" kg)(20 eV —13 eV)(1.602x 107" J/eV)
—34
(b) 7= 1.055x107" J-s —144%10°5 m
\/2(1.67 %107 kg)(30 MeV — 20 MeV)(1.602x107" J/MeV)
EVALUATE: The penetration depth varies widely depending on the mass and energy of the particle.
40.45. (a) We set the solutions for inside and outside the well equal to each other at the well boundaries, x =0 and L.
x=0:Asin(0)+ B=C = B=C, since we must have D =0 for x <0.
x=L: Asin ZIZEL + Bcos ZZEL =+De " since C =0 for x> L.
. _ N2mE
This gives AsinkL + BcoskL = De™", where k = ;zn .
(b) Requiring continuous derivatives at the boundaries yields
x=0: ili—v/:Mcos(k -0)—kBsin(k -0) = kA = kCe** = kA = xC
x
x=L: kAcoskL —kBsinkL = —xDe ",
J2m(U,—E
4046. T=Ge™ with G=16- 1- L | and k= mU, ~ E) SN m(z)
o U, n 2k \G
If E=55eV,U,=10.0eV,m=9.11x10"" kg, and T =0.0010. Then
2(9.11x107" kg)(4.5eV)(1.60x107" J/eV . .
T £)4.5eVX [V) _ 1 09x10° m and G =162V [ 1= 33V |3 96
(1.054%x107" J -s) 10.0eV 10.0eV
1 0.0010
= — =3.8x10"" m=0.38 nm.
2(1.09x10" m 3.96
40.47. IDENTIFY and SET UP: When xL is large, then e*" is large and e™*" is small. When xL is small,

sinh kL — kL. Consider both xL large and xL small limits.
(U, sinh kL)’ T

EXECUTE: (a) T=|1+
4EWU,-E)
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KL —KkL
. e —e
sinh kL =

xL 2 2kL -1 _
For xL>>1, sinhxL —$— and T —| 1+ Uge = 16EW, E)z T
2 16EU,—E)| 16EU,—E)+Uze™

For kL>>1, 16E(U,—E)+Uje" - Uge™™"

7 10EW,—E) :16(£][1_£}m, which is Eq.(40.21).

2 2xL
Uge 0 0

(b) KL= Ly2m, ~E)
h
© xe J2m(U, — E)

k' =——————; Kk becomes small as E approaches U,. For x small, sinh kL — xL and

. So kL>>>1 when L is large (barrier is wide) or U, — E is large. (E is small compared to U,.)

2 272 ! 2 _ 2
SN Uikl _ 1+U022m(U0 E)L
4E(U,-E) W4EU,-E)

2UgL2mT

-1
} (using the definition of x)

Thus T — |1+
AER*

2

. 2ELm |
U,—Eso 2 5 F and T —| 14+ 2ELM
E an

2

2 -1
But £’ = 221E, so T — {H—(%] } , as was to be shown.

EVALUATE: When L is large Eq.(40.20) applies and T is small. When E — U, T does not approach unity.
4048. (a) E= %mv2 =(n+(1/2)hw = (n+(1/2))hf, and solving for n,

1

2
—my 2
Lo2™ 120020 kg)0.360ms) 1w

hf 2 (6.63x107* J-s)(1.50 Hz) 2
(b) The difference between energies is %iw = hf = (6.63x107* J-s)(1.50 Hz) =9.95%107** J. This energy is too

small to be detected with current technology
40.49. IDENTIFY and SET UP: Calculate the angular frequency @ of the pendulum and apply Eq.(40.26) for the energy levels.
2 2
EXECUTE: w=—=
T 0.500s

The ground-state energy is E, = %ha)= %(I.OSSXIO'34 J-s)drs)=6.63x107" J.

=4r s

E, =6.63x107" J(1 eV/1.602x107" J)=4.14x107" eV

E, =(n+1]ha)
2
1
E. =|¢n+tl+=|hw
2

The energy difference between the adjacent energy levels is

AE=E, —E, =hw=2E,= 1.33x107 ] =8.30x10™" eV

EVALUATE: These energies are much too small to detect. Quantum effects are not important for ordinary size objects.
40.50. IDENTIFY: We model the electrons in the lattice as a particle in a box. The energy of the photon is equal to the

energy difference between the two energy states in the box.
272

Sl We do not know the initial or final levels, but

m

we do know they differ by 1. The energy of the photon, hc/A, is equal to the energy difference between the two states.

34 3
EXECUTE: The energy difference between the levels is AE = he _(6.63x107 3 S)(3;90X10 ms) _
A 1.649x10™" m

1.206x10™"* J. Using the formula for the energy levels in a box, this energy difference is equal to
n’ n

=(2n-1 .

8mL’ ( )SmLz

SETUP: The energy of an electron in the n” level is E =

AE=[n2—(n—1)2]
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40.51.

40.52.

AE8mL ol (1.206x107"* 1)8(9.11x107"" kg)(0.500x10™ m) 3
" ) (6.626 X107 J -5)? -

The transition is from n=3 to n=2.

EVALUATE: We know the transition is not from the n =4 to the n=3 state because we let n be the higher state
and n—1 the lower state.

IDENTIFY: If the given wave function is a solution to the Schrédinger equation, we will get an identity when we
substitute that wave function into the Schrédinger equation.

SETUP: The given wave function is ¥, (x) = Aoe‘”’zx2 ’? and the Schrédinger equation is

T dy) K

Solving for n gives n :(

Tom de l//(x) E y(x).
EXECUTE: (a) Start by taking the derivatives: y,(x) = Aoe"’z"z/z. % = —052)54]@7“2%2/2-
d gy e d
Z(C)(X)_ ~A? /2+(0( YA 2 Z/;(C)Z(X) =[—0 + () 2] v, ().
2 ’7 2
_idlll—ﬂz(x):_h_[—a2+(a2)2x2] W, (x). Equation (40.22) is —— a v | kx W) =E y(x). Substituting
2m  dx 2m 2m  dx

2 k/ 2
the above result into that equation gives —2—[—0(2 +(@*)*x*] W, (x)+—— y/o(x) E w,(x). Since o = Tw and
m

7 2 ’ 2 2 b
W= \/E, the coefficient of x” is —h—(()tz)2 +k— = _h_(m_wj LI,
m 2m 2 2m\ h 2
mw 1/4
o (2
hr

(c) The classical turning points are at A==+ }i The probability density function |l//|2 is

wm
mo 1/2 mo 172
2 _(ZZX: _”10))(2 2

|1//0(_x)| = Aoze = [— e /h' At x=0, |y/0| = [_ .
hr hr

d 2 172 ) 172 ) d 2

—|l//0(x)| = [m_a) (—a*2x)e " = _2m_a) mo xe " At x=0, —|1//0(x)| =0

dx hr h \ hrw dx
d’ : 2 . d? ?
% = —Z%w(’;:—wj [1-2cx*]e™® . At x=0, Lgx)' <0. Therefore, at x=0, the first derivative is
X V4 X

zero and the second derivative is negative. Therefore, the probability density function has a maximum at x =0.
2.2, . . . . h 2
EVALUATE: i,(x) = A “""? is a solution to equation (40.22) if —2—(—052)1//0 (x)=E w,(x) or
m

_ra’ _ho
2m 2
IDENTIFY: If the given wave function is a solution to the Schrodinger equation, we will get an identity when we
substitute that wave function into the Schrédinger equation.

SETUP: The given wave function is i, (x)= A 2xe @~ "2
B dvw g

. E = hza) corresponds to n=0 in Equation (40.26).

and the Schrodinger equation is

E
om de y(x)=E yx).
EXECUTE: (a) Stan by taking the indicated derivatives: ¥, (x) = A, 2xe 2,
dﬁix) 2P zAl —a’x*/2 +2Ae -a’x /2 d’ Wl (x) — _2A1a22x€—0(2x2/2 —2Ala2x2 (_azx)e—alxz/z +24, (_azx)e-alxz/zl
d*y,(x
UL (202 (00 o)y () =130 +(@) ') ()
h 'y (x) R

P . [-3a +(@*)'x"] y,(x)
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40.53.

T dy) | kY

Equation (40.22) is — i —

l//(x) E w(x). Substituting the above result into that equation gives

’

2 7
—h—[—30(2 +(a*)*x*] vV, (x)+— k5 l//1 (x)=E w,(x). Since a’= 70) and w= \/E, the coefficient of x* is
m

__( )+k' h(thrmw:O

2m 2
1 mw 1/4
(b) 4 = —[—j
' \/5 hr
1 mao\"? _mox
(c) The probability density function |l//| is |l//1(x)| =Al4x’e o =E[h_j 4x’e "
V4
d ? 2.2 2.2
At x=0, |l//1|2 =0. M =Al8xe ™" + Al4X’ (—a’2x)e™ " = A128xe —A28x3 2gm
X
d ’ d ’
At x:()’ M:O. At )C:il, M:O
dx a dx
d2|W()C)|2 22 22 22 22
d—)lcz = A8 + AT8x(—a’2x)e™ " — AI8(BxN) e — Al8X a (—a 2x)e .
&y 0] : Ayl
# = A — A2 16x°0%e T — A224x7 0 T + AM16x (0F) e . At x d‘ >0. So at
I
x =0, the first derivative is zero and the second derivative is positive. Therefore, the probability density function
. 1 &y 1 o
has a minimum at x=0. At x=+—, T < 0. So at x =+—, the first derivative is zero and the second
o X a

derivative is negative. Therefore, the probability density function has maxima at x = il, corresponding to the
o

classical turning points for n =0 as found in the previous question.

EVALUATE: ¥, (x) = A 2xe” ¥ 12i5 a solution to equation (40.22) if ——( =30y, (x)= E y,(x) or

2.2
= ha :3h_a). E = 3o corresponds to n=1 in Equation (40.26).
2m 2 2

IDENTIFY and SET UP:  Evaluate 0°w/0x”, 9°w/dy”, and 9’y /97> for the proposed y and put Eq.(40.29). Use

that y, , ¥, ,and y, are each solutions to Eq.(40.22).
azy/ 821,” o’y
EXECUTE: (a) — +Uy =L
(@) (a Tty g [TV EY

. v, 1,,,
v, ¥, Vv, areeach solutions of Eq.(40.22), so - - +5kx v, =E. v,
> dy, 1
—— 4+ —kYy, =E
2m dy2 2 y an n, l//nv
ndy, 1

T ag T2¢ Y R

1, 1, 1,
y=y, Oy, MWy, (2, U =Ekx2+5ky2+5kz2

oy _[(dy, oy _[ 4y, oy _(dv,
ax2 —[ dxz l//n\‘ y/n: ) ayz - dy2 V/,," l//ﬂ: ) azz - dzz y/n'\ l//)l“-

2 2 2 2
—h— al//+al//+81// +Ul//= y/’l xl//n Wn l//n
2m 2 v

x> oyt 9 2m dy’

wdy, 1, dy, 1,
+[_% dyZ +5ky21//n‘.]l//n‘l//n‘+( om d 2 +2k 21// l//n l//n

o (azyf Oy

+

+Uy=(E, +E, +E
ox* oy’ BZZJ V=, +E FE W
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40.54.

40.55.

40.56.

Therefore, we have shown that this y is a solution to Eq.(40.29), with energy

nngn,

E = E,,’\ + Env + E,,: = [nx +n,+n + %jhw

. 3 .
(b) and (¢) The ground state has n, =n, =n_=0, so the energy is Ey, = Ehw There is only one set of n,,n, and
n, that give this energy.
. . 5
First-excited state: n, =1, n,=n,=0o0rn, =1, n,=n_=0o0rn =1, n,=n,=0and £, = E, = Ey, = Eha)

There are three different sets of n_, n,, n, quantum numbers that give this energy, so there are three different

quantum states that have this same energy.

EVALUATE: For the three-dimensional isotropic harmonic oscillator, the wave function is a product of one-
dimensional harmonic oscillator wavefunctions for each dimension. The energy is a sum of energies for three one-
dimensional oscillators. All the excited states are degenerate, with more than one state having the same energy.

@, = Jki/m, w, =k} /m. Let y, (x) be a solution of Eq.(40.22) with E, = [nx +%j ho,,y, (y) be a similar

solution, 7 (z) be a solution of Eq.(40.22) but with z as the independent variable instead of x, and

energy En__ = (nz + %] W,

(a) Asin Problem 40.53, look for a solution of the form y(x,y,z) = V.. (x)(//n‘ ( y)(//n: (z). Then,

2 2 2 2
Koy :( E -+ kl’ﬁjw with similar relations for %Y and 2. Adding,
2m ox C2 dy oz
h2 2 2 2
[0y Dy 0y
2m\ x> dy° Oz

1, 1, 1,
j:(E"X +En“ +E”: —Eklxz _Eklyz —Ekzzzjl//

=(E, +E, +E, —~U)yy=(E-U)y

. 1 . .
where the energy Eis E=E, +E, +E, = h{(nx +n, + Doy + (nz + 5] w; },wnh n,,n, and n, all nonnegative

integers.

(b) The ground level corresponds to n, = n,=n =0, and E = h(a)zl +%a)§j The first excited level corresponds to

X

. 3 .
n.=n,=0and n, =1, since CU12 > a)i, and E = ha)(wzl+5w§j There is only one set of quantum numbers for both

the ground state and the first excited state.
(a) w(x)=Asin kxand w(—L/2)=0=w(+L/2)

. [ +kL +kL 2nwt 2w
=0=Asin| — |>—=nmr—ok="-=""
2 2 L A
L h h 2 ZhZ 2 2h2
=>A=—=p, === 0 L. 2 3 :%, where n=1, 2...
n An L 2m  2mL dmL
(b) w(x)=Acos kxand w(-L/2)=0=w(+L/2)
= 0=Acos| L] K oy E o g = ZntDr_27
2 2 2 L A
2L oy = 2n+Dh
2n+1) Pr 2L
272
= E, =—(2';+1L)2 " =012
m
(c) The combination of all the energies in parts (a) and (b) is the same energy levels as given in Eq.(40.9), where
n*h?
" 8ml*’

(d) Part (a)’s wave functions are odd, and part (b)’s are even.
(a) As with the particle in a box, y(x) = A sin kx, where Ais a constant and k* = 2mE/h*. Unlike the particle in a

box, however, k and hence E do not have simple forms.
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(b) For x> L, the wave function must have the form of Eq.(40.18). For the wave function to remain finite as
x — o0, C =0.The constant x* = 2m(U, — E)/h, as in Eq.(14.17) and Eq.(40.18).
(¢) At x=L, Asin kL = De™ and kA cos kL = —xDe™". Dividing the second of these by the first gives
k cot kL = —k, a transcendental equation that must be solved numerically for different values of the length L and
the ratio E/U,,.
P’ h h
40.57. @QE=K+Ux)=—+Ux)= p=2m(E-U(x)). A=—= A(x) =—m—.
2m P 2m(E-U (x))
(b) As U (x) gets larger (i.e., U (x) approaches E from below—recall k >0), E—U(x)
gets smaller, so A(x) gets larger.
(¢) When E=U(x), E-U(x)=0, 50 A(x) = oo.
b dx dx 1 ¢p n b hn
(d) = =— 2m(E-U((x)) dx=— = 2m(E-U(x)) dx=—
I A(x) J h/\[2m(E -U (x)) hj 2 I 2

(e) U(x)=0for 0 < x < L with classical turning points at x=0and x = L. So,

| " 2m(E—U(x)) dx = | OLszde - szEjode =J2mEL.So, from part (d),

2 2.2
\/ZmEL=h—2n:>E=L(ﬁ] _fn

2m\2L)  8ml’.
(f) Since U(x)=0 in the region between the turning points at x =0 and x = L, the results is the same as part ().

The height U, never enters the calculation. WKB is best used with smoothly varying potentials U (x).

2E
K

40.58. (a) At the turning points E = %k'x%}, =X =1

b +2EIR ol E— L Ve = 7 o oval he i i . form th hes th
( ) I BER m —5 X —7. o evaluate the integral, we want to get 1t 1nto a form that matches the

standard integral given. 2m E ——k' 2 =~\2mE —mk'x> =\'m 2mE =~/m 2E

Letting AZIZ—LE,a:— 2—€,andb:+ 2_€
k \ k \ k

W{x\/ —-X +A2arcsm[ H
2 ||

_\/—{ % [E_2E 2E [ E/kH i 2

v )

Using WKB, this is equal to — n , SO E\/77r = fn .Recall w = \/Z, soE = ia)n =hon.
2 K 2 m 2

b

mk’ ' AP —x?

h 1
(c) We are missing the zero-point-energy offset of 7&) (recall E= hw(n + ED However, our approximation isn’t

bad at all!

40.59. (a) At the turning points E = A|pr| = Xpp = ii

(b)j " J2m(E = Alx]ydx = 2j " J2m(E = Ax) dx. Let y = 2m(E - Ax) =

dy =—-2mA dx when x =§, y=0,and when x =0, y =2mkE. So

0

2
21 A\2m(E — Ax dx——— =—_Z 2
J. ( ) J‘ZmE y SmAy

3mA 2 2m 4

= %(2mE)3/2. Using WKB, this is equal to h_zn So,

2mE 3m
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(c) The difference in energy decreases between successive levels. For example:
107 =1,2%° -17° =0.59,3"* =27 =0.49,...

e A sharp o step gave ever-increasing level differences (~ n?).

e A parabola (~ x*) gave evenly spaced levels (~n).

e Now, a linear potential (~ x) gives ever-decreasing level differences (~ n??).

Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola, then the
level differences will increase. If the curvature is less than a parabola, the differences will decrease.



