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QUANTUM MECHANICS 

 40.1. IDENTIFY and SET UP: The energy levels for a particle in a box are given by 
2 2

2
.

8n

n h
E

mL
=  

EXECUTE: (a) The lowest level is for 1,n =  and 
34 2

67
1 2

(1)(6.626 10  J s)
1.2 10  J.

8(0.20 kg)(1.5 m)
E

−
−× ⋅= = ×  

(b) 21

2
E mv=  so 

67
332 2(1.2 10  J)

1.1 10  m/s.
0.20 kg

E
v

m

−
−×= = = ×  If the ball has this speed the time it would take it 

to travel from one side of the table to the other is 33
33

1.5 m
1.4 10  s.

1.1 10  m/s
t −= = ×

×
 

(c) 
2

1 2 12
,  4 ,

8

h
E E E

mL
= =  so 67 67

2 1 13 3(1.2 10  J) 3.6 10  JE E E E − −Δ = − = = × = ×  

(d) EVALUATE: No, quantum mechanical effects are not important for the game of billiards. The discrete, 
quantized nature of the energy levels is completely unobservable. 

 40.2. 
18

h
L

mE
=  

34
15

27 6 19

(6.626 10  J s)
6.4 10  m.

8(1.673 10  kg)(5.0 10  eV)(1.602 10  J eV)
L

−
−

− −

× ⋅= = ×
× × ×

 

 40.3. IDENTIFY: An electron in the lowest energy state in this box must have the same energy as it would in the ground 
state of hydrogen. 

SET UP: The energy of the nth level of an electron in a box is 
2

2
.

8n

nh
E

mL
=  

EXECUTE: An electron in the ground state of hydrogen has an energy of 13.6 eV,−  so find the width 

corresponding to an energy of 1 13.6 eV.E =  Solving for L gives 

18

h
L

mE
=

34
10

31 19

(6.626 10 J s)
1.66 10 m.

8(9.11 10 kg)(13.6 eV)(1.602 10 J eV)

−
−

− −

× ⋅= = ×
× ×

 

EVALUATE: This width is of the same order of magnitude as the diameter of a Bohr atom with the electron in the 
K shell. 

 40.4. (a) The energy of the given photon is 
3

34 18
9

(3.00 10 m/s)
(6.63 10 J s) 1.63 10 J.

(122 10 m)

c
E hf h

λ
− −

−

×= = = × ⋅ = ×
×

 

The energy levels of a particle in a box are given by Eq.40.9 
2

2
22

( ).
8

h
E n n

mL
Δ = −  

2 2 34 2 2 2
101 2

31 20

( ) (6.63 10  J s) (2 1 )
3.33 10  m.

8 8(9.11 10  kg)(1.63 10  J)

h n n
L

m E

−
−

− −

− × ⋅ −= = = ×
Δ × ×

 

(b) The ground state energy for an electron in a box of the calculated dimensions is 
2 34 2

19
2 31 10 2

(6.63 10  J s)
5.43 10  J 3.40 eV

8 8(9.11 10  kg)(3.33 10  m)

h
E

mL

−
−

− −

× ⋅= = = × =
× ×

(one-third of the original photon energy), 

which does not correspond to the 13.6 eV−  ground state energy of the hydrogen atom. Note that the energy levels for 

a particle in a box are proportional to 2 ,n  whereas the energy levels for the hydrogen atom are proportional to 2
1 .
n

−  

40
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 40.5. IDENTIFY and SET UP: Eq.(40.9) gives the energy levels. Use this to obtain an expression for 2 1E E−  and use the 

value given for this energy difference to solve for L. 

EXECUTE: Ground state energy is 
2

1 2
;

8

h
E

mL
=  first excited state energy is 

2

2 2

4
.

8

h
E

mL
=  The energy separation 

between these two levels is 
2

2 1 2

3
.

8

h
E E E

mL
Δ = − =  This gives 

3

8
L h

m E
= =

Δ
 

34 10
31 19

3
6.626 10  J s 6.1 10  m 0.61 nm.

8(9.109 10  kg)(3.0 eV)(1.602 10  J/1 eV)
L − −

− −= × ⋅ = × =
× ×

 

EVALUATE: This energy difference is typical for an atom and L is comparable to the size of an atom. 
 40.6. (a) The wave function for 1n =  vanishes only at 0x = and x L=  in the range 0 .x L≤ ≤  

(b) In the range for ,x the sine term is a maximum only at the middle of the box, / 2.x L=  
(c) The answers to parts (a) and (b) are consistent with the figure. 

 40.7. IDENTIFY and SET UP: For the 2n =  first excited state the normalized wave function is given by Eq.(40.13). 

2

2 2
( ) sin .

x
x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
2 2

2

2 2
( ) sin .

x
x dx dx

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Examine 
2

2 ( )x dxψ  and find where it is zero and where it is 

maximum. 

EXECUTE: (a) 
2

2 0dxψ =  implies 
2

sin 0
x

L

π⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

2
,

x
m

L

π π=  0,  1, 2, . . . ;m =  ( /2)x m L=  

For 0,  0;m x= =  for 1,  /2;m x L= =  for 2,  m x L= =  
The probability of finding the particle is zero at 0,  /2,x L=  and L. 

(b) 
2

2 dxψ  is maximum when 
2

sin 1
x

L

π⎛ ⎞ = ±⎜ ⎟
⎝ ⎠

 

2
( /2),  1,  3, 5, . . . ; ( /4)

x
m m x m L

L

π π= = =  

For 1,  /4;m x L= =  for 3,  3 /4m x L= =  
The probability of finding the particle is largest at /4 and 3 /4.x L L=  

(c) EVALUATE: The answers to part (a) correspond to the zeros of 
2ψ  shown in Fig.40.5 in the textbook and the 

answers to part (b) correspond to the two values of x where 
2ψ  in the figure is maximum. 

 40.8. 
2

2
2

,
d

k
dx

ψ ψ= −  and for ψ  to be a solution of Eq.(40.3), 
2

2
2 2

8 2
.

π m m
k E E

h
= =  

(b) The wave function must vanish at the rigid walls; the given function will vanish at 0x = for any ,k  but to 
vanish at ,x L kL nπ= = for integer .n  

 40.9. (a) IDENTIFY and SET UP: cos .A kxψ =  Calculate 2 2/d dxψ  and substitute into Eq.(40.3) to see if this equation is 
satisfied. 

EXECUTE: Eq.(40.3): 
2 2

2 28

h d
E

m dx

ψ ψ
π

− =  

( sin ) sin
d

A k kx Ak kx
dx

ψ = − = −  

2
2

2
( cos ) cos

d
Ak k kx Ak kx

dx

ψ = − = −  

Thus Eq.(40.3) requires 
2

2
2

( cos ) ( cos ).
8

h
Ak kx E A kx

mπ
− − =  

This says 
2 2

2
;

8

h k
E

mπ
− =  

2 2

( /2 )

mE mE
k

h π
= =  

cosA kxψ =  is a solution to Eq.(40.3) if 
2

.
mE

k =  

(b) EVALUATE: The wave function for a particle in a box with rigid walls at 0x =  and x L=  must satisfy the 
boundary conditions 0ψ =  at 0x =  and 0ψ =  at .x L=  (0) cos0 ,A Aψ = =  since cos0 1.=  Thus ψ  is not 0 at 

0x =  and this wave function isn't acceptable because it doesn't satisfy the required boundary condition, even 
though it is a solution to the Schrödinger equation. 
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40.10. (a) The third excited state is 4,n = so 
2 34 2

2 17
2 31 9 2

15(6.626 10  J s)
(4 1) 5.78 10  J 361 eV.

8 8(9.11 10  kg)(0.125 10  m)

h
E

mL

−
−

− −

× ⋅Δ = − = = × =
× ×

 

(b) 
34 8

17

(6.63 10  J s)(3.0 10  m/s)
3.44 nm

5.78 10  J

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 

40.11. Recall .
2

h h

p mE
λ = =  

(a) 
2

10 10
1 12 2 2

2 2(3.0 10  m) 6.0 10  m.
8 2 /8

h h
E L

mL mh mL
λ − −= ⇒ = = = × = ×  The wavelength is twice the width of 

the box. 
34

24
1 10

1

(6.63 10  J s)
1.1 10  kg m/s

6.0 10  m

h
p

λ

−
−

−

× ⋅= = = × ⋅
×

 

(b) 
2

10
2 22

4
3.0 10  m.

8

h
E L

mL
λ −= ⇒ = = ×  The wavelength is the same as the width of the box. 

24
2 1

2

2 2.2 10 kg m/s.
h

p p
λ

−= = = × ⋅  

(c) 
2

10
3 32

9 2
2.0 10  m.

8 3

h
E L

mL
λ −= ⇒ = = ×  The wavelength is two-thirds the width of the box. 

24
3 13 3.3 10 kg m/s.p p −= = × ⋅  

40.12. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 

SET UP: We must substitute the equation /2
( , ) sin niE tn x
x t e

L L

π −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

 into the one-dimensional Schrödinger 

equation 
2 2

2

( )
( ) ( ) ( ).

2

d x
U x x E x

m dx

ψ ψ ψ− + =  

EXECUTE: Taking the second derivative of ( , )x tΨ  with respect to x gives 
22

2

( ,  )
( , )

d x t n
x t

dx L

πΨ ⎛ ⎞= − Ψ⎜ ⎟
⎝ ⎠

 

Substituting this result into 
2 2

2

( )
( ) ( ) ( ),

2

d x
U x x E x

m dx

ψ ψ ψ− + =  we get 
22

( , ) ( , )
2

n
x t E x t

m L

π⎛ ⎞ Ψ = Ψ⎜ ⎟
⎝ ⎠

 which 

gives
22

,
2n

n
E

m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 the energies of a particle in a box. 

EVALUATE: Since this process gives us the energies of a particle in a box, the given wave function is a solution 
to the Schrödinger equation. 

40.13. (a) 
2 2

2
Eq.(40.1): .

2

d ψ
Uψ Eψ

m dx

− + =  

Left-hand side: 
2 2 2 2 2 2

0 0 02
( sin ) sin sin sin .

2 2 2

d k k
A kx U A kx A kx U A kx U ψ

m dx m m

⎛ ⎞− + = + = +⎜ ⎟
⎝ ⎠

 

But 
2 2

0 02

k
U U E

m
+ > >  for constant .k  But 

2 2

02

k
U

m
+  should equal E ⇒ no solution. 

(b) If 0,E U>  then 
2 2

02

k
U E

m
+ =  is consistent and so sinψ A kx= is a solution of Eq.(40.1) for this case. 

40.14. According to Eq.(40.17), the wavelength of the electron inside of the square well is given by 

in

0

2
.

2 (3 )

mE h
k

m U
λ= ⇒ =  By an analysis similar to that used to derive Eq.40.17, we can show that outside 

the box 

out

0 0

.
2 ( ) 2 (2 )

h h

m E U m U
λ = =

−
 

Thus, the ratio of the wavelengths is 0out

in 0

2 (3 ) 3
.

22 (2 )

m U

m U

λ
λ

= =  
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40.15. 
2 2

19
1 12

0.625 0.625 ; 2.00 eV 3.20 10 J
2

π
E E E

mL
−

∞= = = = ×  

1/ 2

10
31 19

0.625
3.43 10  m

2(9.109 10  kg)(3.20 10  J)
L π −

− −

⎛ ⎞
= = ×⎜ ⎟× ×⎝ ⎠

 

40.16. Since 0 6U E∞=  we can use the result 1 0.625E E∞= from Section 40.3, so 0 1 5.375U E E∞− = and the maximum 

wavelength of the photon would be 
2

2 2
0 1

31 9 2 8
6

34

8

(5.375)( /8 ) (5.375)

8(9.11 10 kg)(1.50 10  m) (3.00 10 m/s)
1.38 10 m.

(5.375)(6.63 10  J s)

hc hc mL c

U E h mL h
λ

λ
− −

−
−

= = =
−

× × ×= = ×
× ⋅

 

40.17. Eq.(40.16): 
2 2

sin cos
mE mEψ A x B x= +  

2

2 2 2 2

2 2 2 2 2
sin cos ( ) Eq.(40.15).

d ψ mE mE mE mE mE
A x B x ψ

dx

−⎛ ⎞ ⎛ ⎞= − − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

40.18. ( ),x xdψ
Ce De

dx
κ κκ −= −  

2
2 2

2
( )x xd ψ
Ce De ψ

dx
κ κκ κ−= + =  for all constants C and .D  Hence ψ is a solution to 

Eq.(40.1) for 
2

2 1/ 2
0 0, or [2 ( )] ,

2
U E m U E

m
κ κ− + = = −  and κ is real for 0.E U<  

40.19. IDENTIFY: Find the transition energy EΔ  and set it equal to the energy of the absorbed photon. Use /E hc λ=  to 

find the wavelength of the photon. 

SET UP: 0 6 ,U E∞=  as in Fig.40.8 in the textbook, so 1 0.625E E∞=  and 3 5.09E E∞=  with 
2 2

2
.

2
E

mL

π
∞ =  In this 

problem the particle bound in the well is a proton, so 271.673 10  kg.m −= ×  

EXECUTE: 
2 2 2 34 2

12
2 27 15 2

(1.055 10  J s)
2.052 10  J.

2 2(1.673 10  kg)(4.0 10  m)
E

mL

π π −
−

∞ − −

× ⋅= = = ×
× ×

 The transition energy is 

3 1 (5.09 0.625) 4.465 .E E E E E∞ ∞Δ = − = − =  12 124.465(2.052 10  J) 9.162 10  JE − −Δ = × = ×  

The wavelength of the photon that is absorbed is related to the transition energy by / ,E hc λΔ =  so 
34 8

14
12

(6.626 10  J s)(2.998 10  m/s)
2.2 10  m 22 fm.

9.162 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

EVALUATE: The wavelength of the photon is comparable to the size of the box. 
40.20. IDENTIFY: The longest wavelength corresponds to the smallest energy change. 

SET UP: The ground level energy level of the infinite well is 
2

2
,

8

h
E

mL∞ =  and the energy of the photon must be 

equal to the energy difference between the two shells. 
EXECUTE: The 400.0 nm photon must correspond to the 1n =  to 2n =  transition. Since 0 6 ,U E∞=  we have 

2 12.43  and 0.625 .E E E E∞ ∞= =  The energy of the photon is equal to the energy difference between the two levels, 

and 
2

2
,

8

h
E

mL∞ =  which gives 
2

2 1 2

1.805 
(2.43 0.625)

8

hc h
E E E E

mLγ λ ∞= − ⇒ = − =  

Solving for L gives 
34 7

10
31 8

(1.805) (1.805)(6.626 10  J s)(4.00 10  m)
4.68 10  m 0.468 nm.

8 8(9.11 10  kg)(3.00 10  m s)

h
L

mc

λ − −
−

−

× ⋅ ×= = = × =
× ×

 

EVALUATE: This width is approximately half that of a Bohr hydrogen atom. 

40.21. 02 2 ( )/

0 0

16 1 L m U EE E
T e .

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 
0

6.0 eV

11.0 eV

E

U
=  and 19

0 5 eV 8.0 10 J.E U −− = = ×  

(a) 90.80 10  m:L −= ×  
9 31 19 342(0.80 10 m) 2(9.11 10 kg)(8.0 10 J) /1.055 10 J s 86.0 eV 6.0 ev

16 1 4.4 10
11.0 eV 11.0 eV

T e
− − − −− × × × × ⋅ −⎛ ⎞ ⎛ ⎞

= − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 90.40 10  m:L −= ×  44.2 10 .T −= ×  
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40.22. The transmission coefficient is 02 2 ( ) /

0 0

16 1 ,m U E LE E
T e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 with 95.0 eV, 0.60 10  m,E L −= = ×  and 

319.11 10  kgm −= ×  

(a) 4
0 7.0 eV 5.5 10 .U T −= ⇒ = ×  

(b) 5
0 9.0 eV 1.8 10U T −= ⇒ = ×  

(c) 7
0 13.0 eV 1.1 10 .U T −= ⇒ = ×  

40.23. IDENTIFY and SET UP: Use Eq.(39.1), where 2/2K p m=  and .E K U= +  

EXECUTE: / / 2 ,h p h mKλ = =  so Kλ  is constant 

1 1 2 2 ;K Kλ λ=  1λ  and 1K  are for x L>  where 1 02K U=  and 2λ  and 2K  are for 0 x L< <  where 

2 0 0K E U U= − =  

1 2 0

2 1 0

1

2 2

K U

K U

λ
λ

= = =  

EVALUATE: When the particle is passing over the barrier its kinetic energy is less and its wavelength is larger. 
40.24. IDENTIFY: The probability of tunneling depends on the energy of the particle and the width of the barrier. 

SET UP: The probability of tunneling is approximately 2 ,LT Ge κ−=  where 
0 0

16 1
E E

G
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 

( )02
.

m U E
κ

−
=  

EXECUTE: 
0 0

50.0 eV 50.0 eV
16 1 16 1 3.27.

70.0 eV 70.0 eV

E E
G

U U

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

27 19
0 11 1

34

2 ( ) 2(1.67 10  kg)(70.0 eV 50.0 eV)(1.60 10  J/eV)
9.8 10  m

(6.63 10  J s) 2

m U E

π
κ

− −
−

−

− × − ×
= = = ×

× ⋅
 

Solving 2 LT Ge κ−=  for L gives 12
11 1

1 1 3.27
ln( / ) ln 3.6 10  m = 3.6 pm

2 2(9.8 10  m ) 0.0030
L G T

κ
−

−
⎛ ⎞= = = ×⎜ ⎟× ⎝ ⎠

 

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger. 
EVALUATE: An electron can tunnel through a much wider barrier than a proton of the same energy. 

40.25. IDENTIFY and SET UP: The probability is 2 ,LT Ae κ−=  with 
0 0

16 1
E E

A
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( )

.
m U E

κ
−

=  

9
032 eV, 41 eV, 0.25 10  m.E U L −= = = ×  Calculate T. 

EXECUTE: (a) 
0 0

32 32
16 1 16 1 2.741.

41 41

E E
A

U U

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

02 ( )m U E
κ

−
=  

31 19
10 1

34

2(9.109 10  kg)(41 eV 32 eV)(1.602 10  J/eV)
1.536 10  m

1.055 10  J s
κ

− −
−

−

× − ×
= = ×

× ⋅
 

10 1 92 2(1.536 10  m )(0.25 10  m) 7.68(2.741) 2.741 0.0013LT Ae e eκ − −− − × × −= = = =  

(b) The only change in the mass m, which appears in .κ  

02 ( )m U E
κ

−
=  

27 19
11 1

34

2(1.673 10  kg)(41 eV 32 eV)(1.602 10  J/eV)
6.584 10  m

1.055 10  J s
κ

− −
−

−

× − ×
= = ×

× ⋅
 

Then 
11 -1 92 2(6.584 10  m )(0.25 10  m) 392.2 143(2.741) 2.741 10LT Ae e eκ −− − × × − −= = = =  

EVALUATE: The more massive proton has a much smaller probability of tunneling than the electron does. 
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40.26. 02

0 0

2 ( )
with 16 1  and ,L m U EE E

T Ge G
U U

κ κ− ⎛ ⎞ −
= = − =⎜ ⎟

⎝ ⎠
 so

02 2 ( )

0 0

16 1 .
m U E LE E

T e
U U

− −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

(a) If 6 15 27
0 30.0 10  eV, 2.0 10  m, 6.64 10  kgU L m− −= × = × = ×  and 

6 6
0 1.0 10  eV ( 29.0 10  eV), 0.090.U E E T− = × = × =  

(b) If 6 6
0 10.0 10 eV ( 20.0 10 eV), 0.014.U E E T− = × = × =  

40.27. IDENTIFY and SET UP: The energy levels are given by Eq.(40.26), where .
k

m
ω

′
=  

EXECUTE: 
110 N/m

21.0 rad/s
0.250 kg

k

m
ω

′
= = =  

The ground state energy is given by Eq.(40.26): 
34 33 19 15

0

1 1
(1.055 10  J s)(21.0 rad/s) 1.11 10  J(1 eV/1.602 10  J) 6.93 10  eV

2 2
E ω − − − −= = × ⋅ = × × = ×  

1
;

2nE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 ( 1)

1
1

2nE n ω+
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

The energy separation between these adjacent levels is 
33 33 14

1 02 2(1.11 10  J) 2.22 10  J 1.39 10  eVn nE E E Eω − − −
+Δ = − = = = × = × = ×  

EVALUATE: These energies are extremely small; quantum effects are not important for this oscillator. 

40.28. Let 2 ,mk δ′ =  and so 2
dψ

x ψ
dx

δ= −  and 
2

2 2
2

(4 2 ,
d ψ

x δ δ)ψ
dx

= −  and ψ  is a solution of Eq.(40.21) if 

2 1 1

2 2
E δ k /m ω.

m
′= = =  

40.29. IDENTIFY: We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the energy 
difference between the two levels of the oscillator. 
SET UP: The energy of a photon is / ,E hf hcγ λ= =  and the energy levels of a harmonic oscillator are given by 

1 1
.

2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EXECUTE: (a) The photon’s energy is 
34 8

6

(6.63 10  J s)(3.00 10  m/s)
0.21 eV

5.8 10  m

hc
Eγ λ

−

−

× ⋅ ×= = =
×

 

(b) The transition energy is 1 ,n n

k
E E E

m
ω+

′
Δ = − = =  which gives 

2
.

π c k

mλ
′

=  Solving for ,k′  we get 

2 2 2 8 2 26

2 6 2

4 4 (3.00 10  m s) (5.6 10  kg)
5,900 N/m.

(5.8 10  m)

π c m π
k

λ

−

−

× ×′ = = =
×

 

EVALUATE: This would be a rather strong spring in the physics lab. 
40.30. According to Eq.(40.26), the energy released during the transition between two adjacent levels is twice the ground 

state energy 3 2 02 11.2 eV.E E ω E− = = =  

For a photon of energy E  
34 8

19

(6.63 10 J s)(3.00 10 m s)
111 nm.

(11.2 eV)(1.60 10 J/eV)

c hc
E hf

f E
λ

−

−

× ⋅ ×= ⇒ = = = =
×

 

40.31. IDENTIFY and SET UP: Use the energies given in Eq.(40.26) to solve for the amplitude A and maximum speed 

maxv  of the oscillator. Use these to estimate xΔ  and xpΔ  and compute the uncertainty product .xx pΔ Δ  

EXECUTE: The total energy of a Newtonian oscillator is given by 21
2E k A′=  where k′  is the force constant and A 

is the amplitude of the oscillator. Set this equal to the energy 1
2( )E n ω= +  of an excited level that has quantum 

number n, where ,
k

m
ω

′
=  and solve for A: 21 1

2 2( )k A n ω′ = +  

(2 1)n
A

k

ω+=
′

 

The total energy of the Newtonian oscillator can also be written as 21
max2 .E mv=  Set this equal to 1

2( )E n ω= +  and 

solve for max:v  21 1
max2 2( )mv n ω= +  

max

(2 1)n
v

m

ω+=  
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Thus the maximum linear momentum of the oscillator is max max (2 1) .p mv n mω= = +  Assume that A represents 

the uncertainty xΔ  in position and that maxp  is the corresponding uncertainty xpΔ  in momentum. Then the 

uncertainty product is 
(2 1) 1

(2 1) (2 1) (2 1) (2 1) .x

n m
x p n m n n n

k k

ω ω ω ω
ω

+ ⎛ ⎞Δ Δ = + = + = + = +⎜ ⎟′ ′ ⎝ ⎠
 

EVALUATE: For 1n =  this gives 3 ,xx pΔ Δ =  in agreement with the result derived in Section 40.4. The 

uncertainty product xx pΔ Δ  increases with n. 

40.32. (a) 
2

2 1
2

( )
exp exp 0.368.

(0)

ψ A mk ω
A mk e

kψ
−⎛ ⎞′ ⎛ ⎞′= − = − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠

 

This is consistent with what is shown in Figure 40.20 in the textbook. 

(b) 
2

2 4 2
2

(2 )
exp (2 ) exp 4 1.83 10 .

(0)

ψ A mk ω
A mk e

kψ
− −⎛ ⎞′ ⎛ ⎞′= − = − = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠

 

This figure cannot be read this precisely, but the qualitative decrease in amplitude with distance is clear. 
40.33. IDENTIFY: We model the atomic vibration in the crystal as a harmonic oscillator. 

SET UP: The energy levels of a harmonic oscillator are given by 
1 1

.
2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EXECUTE: (a) The ground state energy of a simple harmonic oscillator is 
34

22 3
0 26

1 1 (1.055 10  J s) 12.2 N/m
9.43 10  J 5.89 10  eV

2 2 2 3.82 10  kg

k
E

m
ω

−
− −

−

′ × ⋅= = = = × = ×
×

 

(b) 4 3 02 0.0118 eV,E E Eω− = = =  so 
34 8

21

(6.63 10  J s)(3.00 10  m/s)
106 m

1.88 10  J

hc

E
λ μ

−

−

× ⋅ ×= = =
×

 

(c) 1 02 0.0118 eVn nE E Eω+ − = = =  

EVALUATE: These energy differences are much smaller than those due to electron transitions in the hydrogen 
atom. 

40.34. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 

SET UP: The given function is ( ) ,ikxx Aeψ =  and the one-dimensional Schrödinger equation is 
2

2

( )
( ) ( ) ( ).

2

d x
U x x E x

m dx

ψ ψ ψ− + =  

EXECUTE: Start with the given function and take the indicated derivatives: ( ) .ikxx Aeψ =  
( )

.ikxd x
Aike

dx

ψ =  

2
2 2 2

2

( )
.ikx ikxd x

Ai k e Ak e
dx

ψ = = −  
2

2
2

( )
( ).

d x
k x

dx

ψ ψ= −  
2 2

2
2

( )
( ).

2 2

d x
k x

m dx m

ψ ψ− =  Substituting these results into the 

one-dimensional Schrödinger equation gives 
2 2

0( ) ( )  ( ).
2

k
x U x E x

m
ψ ψ ψ+ =  

EVALUATE: ( )  ikxx A eψ = is a solution to the one-dimensional Schrödinger equation if 
2 2

0 2

k
E U

m
− =  or 

0
2

2 ( )
.

m E U
k

−=  (Since 0U E<  was given, k is the square root of a positive quantity.) In terms of the particle’s 

momentum p: / ,k p=  and in terms of the particle’s de Broglie wavelength :λ  2 / .k π λ=  

40.35. IDENTIFY: Let I refer to the region 0x <  and let II refer to the region 0,x >  so 1 1( ) ik x ik x
I x Ae Beψ −= +  and 

2( ) .ik x
II x Ceψ =  Set (0) (0)I IIψ ψ= and I IId d

dx dx

ψ ψ= at 0.x =  

SET UP: ( ) .ikx ikxd
e ike

dx
=  

EXECUTE: (0) (0)I IIψ ψ=  gives .A B C+ =  I IId d

dx dx

ψ ψ= at 0x =  gives 1 1 2 .ik A ik B ik C− =  Solving this pair of 

equations for B and C gives 1 2

1 2

k k
B A

k k

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 and 2

1 2

2
.

k
C A

k k

⎛ ⎞
= ⎜ ⎟+⎝ ⎠
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EVALUATE: The probability of reflection is 
2 2

1 2
2 2

1 2

( )
.

( )

B k k
R

A k k

−= =
+

 The probability of transmission is 

2 2
1

2 2
1 2

4
.

( )

C k
T

A k k
= =

+
 Note that 1.R T+ =  

40.36. (a) 
2 2

2 2 2

( 1) 2 1 2 1
.n

n n n
R

n n n n

+ − += = = +  This is never larger than it is for 11, and 3.n R= =  

(b) R approaches zero; in the classical limit, there is no quantization, and the spacing of successive levels is 
vanishingly small compared to the energy levels. 

40.37. IDENTIFY and SET UP: The energy levels are given by Eq.(40.9): 
2 2

2
.

8n

n h
E

mL
=  Calculate EΔ  for the transition 

and set / ,E hc λΔ =  the energy of the photon. 

EXECUTE: (a) Ground level, 
2

1 2
1,  

8

h
n E

mL
= =  

First excited level, 
2

2 2

4
2,  

8

h
n E

mL
= =  

The transition energy is 
2

2 1 2

3
.

8

h
E E E

mL
Δ = − =  Set the transition energy equal to the energy /hc λ  of the emitted 

photon. This gives 
2

2

3
.

8

hc h

mLλ
=  

2 31 8 9 2

34

8 8(9.109 10  kg)(2.998 10  m/s)(4.18 10  m)

3 3(6.626 10  J s)

mcL

h
λ

− −

−

× × ×= =
× ⋅

 

51.92 10  m 19.2 m.λ μ−= × =  

(b) Second excited level has 3n =  and 
2

3 2

9
.

8

h
E

mL
=  The transition energy is 

2 2 2

3 2 2 2 2

9 4 5
.

8 8 8

h h h
E E E

mL mL mL
Δ = − = − =  

2

2

5

8

hc h

mLλ
=  so 

28 3
(19.2 m) 11.5 m.

5 5

mcL

h
λ μ μ= = =  

EVALUATE: The energy spacing between adjacent levels increases with n, and this corresponds to a shorter 
wavelength and more energetic photon in part (b) than in part (a). 

40.38. (a) 
4

/ 4 / 42

0 0
0

2 2 1 2 1 2 1 1
sin 1 cos sin ,

2 2 4 2

L
L Lπx πx L πx

dx dx x
L L L L L L ππ

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  which is about 0.0908. 

(b) Repeating with limits of 4 and 2L L  gives 
2

4

1 2 1 1
sin ,

2 4 2

L

L

L πx
x

L π L π
⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 

about 0.409. 
(c) The particle is much likely to be nearer the middle of the box than the edge. 
(d) The results sum to exactly 1/2, which means that the particle is as likely to be between 0 and 2x L= as it is to 

be between 2 and .x L x L= =  

(e) These results are represented in Figure 40.5b in the textbook. 

40.39. IDENTIFY: The probability of the particle being between 1x  and 2x  is 
2

1

2
,

x

x
dxψ∫  where ψ  is the normalized 

wave function for the particle. 

(a) SET UP: The normalized wave function for the ground state is 1

2
sin .

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE: The probability P of the particle being between / 4x L=  and 3 / 4x L=  is 
3 / 4 3 / 42 2

1/ 4 / 4

2
sin .

L L

L L

x
P dx dx

L L

πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let / ;  ( / )y x L dx L dyπ π= =  and the integration limits become / 4π  and 

3 / 4.π  
3 / 4

3 / 4 2

/ 4
/ 4

2 2 1 1
sin sin 2

2 4

L
P y dy y y

L

π
π

π
ππ π

⎛ ⎞ ⎡ ⎤= = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫  

2 3 1 3 1
sin sin

8 8 4 2 4 2
P

π π π π
π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 1 1
( 1) (1) 0.818.

4 4 4 2
P

π
π π
⎛ ⎞= − − + = + =⎜ ⎟
⎝ ⎠

 (Note: The integral formula 2 1 1
sin sin 2

2 4
y dy y y∫ = −  was used.) 
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(b) SET UP: The normalized wave function for the first excited state is 2

2 2
sin

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE: 
3 / 4 3 / 42 2

2/ 4 / 4

2 2
sin .

L L

L L

x
P dx dx

L L

πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let 2 / ;  ( / 2 )y x L dx L dyπ π= =  and the integration limits 

become / 2π  and 3 / 2.π  
3 / 2

3 / 2 2

/ 2
/ 2

2 1 1 1 1 3
sin sin 2 0.500

2 2 4 4 4

L
P y dy y y

L

π
π

π
π

π π
π π π

⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = − = − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠∫  

(c) EVALUATE: These results are consistent with Fig.40.4b in the textbook. That figure shows that 
2ψ  is more 

concentrated near the center of the box for the ground state than for the first excited state; this is consistent with the 
answer to part (a) being larger than the answer to part (b). Also, this figure shows that for the first excited state half 

the area under 
2ψ  curve lies between L/4 and 3L/4, consistent with our answer to part (b). 

40.40. Using the normalized wave function 1 2 sin( )ψ L πx L ,= the probabilities 2| |ψ dx  are 

(a) 2(2 ) sin ( 4) /L π dx dx L=  

(b) 2(2 ) sin ( / 2) 2 /L dx dx Lπ =  

(c) 2(2 )sin (3 4) .L π dx L=  

40.41. IDENTIFY and SET UP: The normalized wave function for the 2n =  first excited level is 2

2 2
sin .

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
( )P x dxψ=  is the probability that the particle will be found in the interval x to .x dx+  

EXECUTE: (a) /4x L=  

2 2 2 2
( ) sin sin .

4 2

L
x

L L L L

π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(2/ )P L dx=  

(b) /2x L=  

2 2 2
( ) sin sin( ) 0

2

L
x

L L L

πψ π⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

0P =  
(c) 3 /4x L=  

2 2 3 2 3 2
( ) sin sin .

4 2

L
x

L L L L

π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(2/ )P L dx=  

EVALUATE: Our results are consistent with the 2n =  part of Fig.40.5 in the textbook. 
2ψ  is zero at the center 

of the box and is symmetric about this point. 

40.42. final initial.Δ = −p p p  .
2

nπ hn
k

L L
= = =p  At 0x =  the initial momentum at the wall is initial

ˆ
2

hn

L
= −p i  and the final 

momentum, after turning around, is final
ˆ.

2

hn

L
= +p i  So, ˆ ˆ ˆ.

2 2

hn hn hn

L L L
⎛ ⎞Δ = + − − = +⎜ ⎟
⎝ ⎠

p i i i  At x L=  the initial 

momentum is initial
ˆ

2

hn

L
= +p i  and the final momentum, after turning around, is final .̂

2

hn

L
= −p i  So, 

ˆ ˆ ˆ
2 2

hn hn hn

L L L
Δ = − − = −p i i i  

40.43. (a) For a free particle, ( ) 0U x =  so Schrodinger's equation becomes  
2

2 2

( ) 2
( ).

d ψ x m
Eψ x

dx h
= −  The graph is given in 

Figure 40.43. 

(b) For x < 0: ( ) .xψ x e κ+=  
2

2( ) ( )
.  .x xdψ x d ψ x

e e
dx dx

κ κκ κ+ += =  So 
2 2

2
2

2
.

2

m
E E

m

κκ = − ⇒ = −  

(c) For x > 0: ( ) .xψ x e κ−=  
( )

.xdψ x
ke

dx
κ−= −  

2
2( ) xd ψ x
e

dx
κκ −=  
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So again 
2 2

2
2

2
.

2

m
E E

m

κκ −= − ⇒ =  Parts (c) and (d) show ( )ψ x  satisfies the Schrodinger's  equation, provided 

2 2

.
2

E
m

κ−=  

(d) Note 
( )dψ x

dx
 is discontinuous at 0. (That is, negative for 0 and positive for 0.)x x x= > <  

 
Figure 40.43 

40.44. IDENTIFY: We start with the penetration distance formula given in the problem. 

SET UP: The given formula is 
0

.
2 ( )m U E

η =
−

 

EXECUTE: (a) Substitute the given numbers into the formula: 
34

11

31 19
0

1.055 10  J s
7.4 10  m

2 ( ) 2(9.11 10  kg)(20 eV 13 eV)(1.602 10  J/eV)m U E
η

−
−

− −

× ⋅= = = ×
− × − ×

 

(b) 
34

15

27 13

1.055 10  J s
1.44 10  m

2(1.67 10  kg)(30 MeV 20 MeV)(1.602 10  J/MeV)
η

−
−

− −

× ⋅= = ×
× − ×

 

EVALUATE: The penetration depth varies widely depending on the mass and energy of the particle. 
40.45. (a) We set the solutions for inside and outside the well equal to each other at the well boundaries, 0 and .x L=  

0 : sin(0) ,x A B C B C= + = ⇒ =  since we must have 0 for 0.D x= <  

2 2
: sin cos  since 0 for .LmEL mEL

x L A B De C x Lκ−= + = + = >  

This gives
2

sin cos , where .L mE
A kL B kL De kκ−+ = =  

(b) Requiring continuous derivatives at the boundaries yields 
00: cos( 0) sin( 0) kdψ

x kA k kB k kA Ce kA C
dx

κ κ⋅= = ⋅ − ⋅ = = ⇒ =  

: cos sin .Lx L kA kL kB kL De κκ −= − = −  

40.46. 2 LT Ge κ−=  with 0

0 0

2 ( ) 1
16 1  and ln .

2

m U EE E T
G L

U U G
κ

κ
⎛ ⎞ − ⎛ ⎞= − = ⇒ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

31
0If 5.5 eV, 10.0 eV, 9.11 10 kg, and 0.0010.E U m T−= = = × =  Then 

31 19
10 1

34

2(9.11 10 kg)(4.5 eV)(1.60 10 J eV)
1.09 10 m

(1.054 10 J s)
κ

− −
−

−

× ×
= = ×

× ⋅
5.5 eV 5.5 eV

and 16 1 3.96
10.0 eV 10.0 eV

G
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

10
10 1

1 0.0010
so ln 3.8 10 m 0.38 nm.

2(1.09 10 m ) 3.96
L −

−
⎛ ⎞= − = × =⎜ ⎟× ⎝ ⎠

 

40.47. IDENTIFY and SET UP: When Lκ  is large, then Leκ  is large and Le κ−  is small. When Lκ  is small, 
sinh .L Lκ κ→  Consider both Lκ  large and Lκ  small limits. 

EXECUTE: (a) 
12

0

0

( sinh )
1

4 ( )

U L
T

E U E

κ
−

⎡ ⎤
= +⎢ ⎥−⎣ ⎦
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sinh
2

L Le e
L

κ κ

κ
−−=  

For 1,  sinh
2

Le
L L

κ

κ κ →W  and 
12 2

0 0
2 2

0 0 0

16 ( )
1

16 ( ) 16 ( )

L

L

U e E U E
T

E U E E U E U e

κ

κ

−
⎡ ⎤ −→ + =⎢ ⎥− − +⎣ ⎦

 

For 2 2 2 2
0 0 01,  16 ( ) L LL E U E U e U eκ κκ − + →W  

20
2 2
0 0 0

16 ( )
16 1 ,L

L

E U E E E
T e

U e U U
κ

κ
−⎛ ⎞⎛ ⎞−→ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 which is Eq.(40.21). 

(b) 02 ( )
.

L m U E
Lκ

−
=  So 1Lκ W  when L is large (barrier is wide) or 0U E−  is large. (E is small compared to 0.U ) 

(c) 02 ( )
;  

m U E
κ κ

−
=  becomes small as E approaches 0.U  For κ  small, sinh L Lκ κ→  and 

1 12 2 2 2 2
0 0 0

2
0 0

2 ( )
1 1

4 ( ) 4 ( )

U L U m U E L
T

E U E E U E

κ
− −

⎡ ⎤ ⎡ ⎤−→ + = +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 (using the definition of κ ) 

Thus 
12 2

0
2

2
1

4

U L m
T

E

−
⎡ ⎤

→ +⎢ ⎥
⎣ ⎦

 

0U E→  so 
2
0U

E
E

→  and 
12

2

2
1

4

EL m
T

−
⎡ ⎤

→ +⎢ ⎥
⎣ ⎦

 

But 2
2

2
,

mE
k =  so 

12

1 ,
2

kL
T

−
⎡ ⎤⎛ ⎞→ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 as was to be shown. 

EVALUATE: When Lκ  is large Eq.(40.20) applies and T is small. When 0,E U→  T does not approach unity. 

40.48. (a) 21
( (1 2)) ( (1 2)) ,

2
E mv n ω n hf= = + = +  and solving for n, 

2
2

30
34

1
1 (1/2)(0.020 kg)(0.360 m/s) 12 1.3 10 .
2 (6.63 10  J s)(1.50 Hz) 2

mv
n

hf −= − = − = ×
× ⋅

 

(b) The difference between energies is 34 34(6.63 10 J s)(1.50 Hz) 9.95 10 J.ω hf − −= = × ⋅ = ×  This energy is too 

small to be detected with current technology 
40.49. IDENTIFY and SET UP: Calculate the angular frequency ω  of the pendulum and apply Eq.(40.26) for the energy levels. 

EXECUTE: 12 2
4  s

0.500 sT

π πω π −= = =  

The ground-state energy is 34 1 34
0

1 1
(1.055 10  J s)(4  s ) 6.63 10  J.

2 2
E ω π− − −= = × ⋅ = ×  

34 19 15
0 6.63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= × × = ×  

1

2nE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

1

1
1

2nE n ω+
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

The energy difference between the adjacent energy levels is 

1 02n nE E E Eω+Δ = − = = = 33 151.33 10  J 8.30 10  eV− −× = ×  

EVALUATE: These energies are much too small to detect. Quantum effects are not important for ordinary size objects. 
40.50. IDENTIFY: We model the electrons in the lattice as a particle in a box. The energy of the photon is equal to the 

energy difference between the two energy states in the box. 

SET UP: The energy of an electron in the nth level is 
2 2

2
.

8n

n h
E

mL
=  We do not know the initial or final levels, but 

we do know they differ by 1. The energy of the photon, / ,hc λ  is equal to the energy difference between the two states. 

EXECUTE: The energy difference between the levels is 
34 8

7

(6.63 10  J s)(3.00 10  m/s)

1.649 10  m

hc
E

λ

−

−

× ⋅ ×Δ = = =
×

 

181.206 10  J.−×  Using the formula for the energy levels in a box, this energy difference is equal to 
2 2

2 2
2 2

( 1) (2 1) .
8 8

h h
E n n n

mL mL
⎡ ⎤Δ = − − = −⎣ ⎦  
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Solving for n gives 
2 18 31 9 2

2 34 2

8 1 (1.206 10  J)8(9.11 10  kg)(0.500 10  m)
1 1 3.

2 (6.626 10  J s)

E mL
n

h

− − −

−

⎛ ⎞ ⎛ ⎞Δ × × ×= + = + =⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

The transition is from 3n =  to 2.n =  
EVALUATE: We know the transition is not from the 4n =  to the 3n =  state because we let n be the higher state 
and 1n −  the lower state. 

40.51. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 
SET UP: The given wave function is 

2 2 / 2
0 0( ) xx A e αψ −=  and the Schrödinger equation is 

2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  

EXECUTE: (a) Start by taking the derivatives: 
2 2 /2

0 0( ) .xx A e αψ −=  
2 22 /20

0

( )
.xd x

xA e
dx

αψ α −= −  

2 2 2 2
2

2 / 2 2 2 2 /20
0 02

( )
( ) .x xd x

A e x A e
dx

α αψ α α− −= − +  
2

2 2 2 20
02

( )
[ ( ) ] ( ).

d x
x x

dx

ψ α α ψ= − +  

2 2
2 2 2 20

02

( )
[ ( ) ] ( ).

2 2

d x
x x

m dx m

ψ α α ψ− = − − +  Equation (40.22) is 
2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  Substituting 

the above result into that equation gives 
2 2

2 2 2 2
0 0 0[ ( ) ] ( ) ( )  ( ).

2 2

k x
x x x E x

m
α α ψ ψ ψ

′
− − + + =  Since 2 mωα =  and 

,
k

m
ω

′
=  the coefficient of x2 is 

22 2 2
2 2( ) 0.

2 2 2 2

k m m

m m

ω ωα
′ ⎛ ⎞− + = − + =⎜ ⎟

⎝ ⎠
 

(b) 
1/4

0

m
A

ω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(c) The classical turning points are at .A
mω

= ±  The probability density function 
2ψ  is 

2 2 2
1/ 2

2 2 /
0 0( ) .x m xm

x A e eα ωωψ
π

− −⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 At 0,x =  
1/ 2

2

0 .
mωψ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2 2 2 2

2 1/ 2 1/ 2
0 2( )

( 2 ) 2 .x xd x m m m
x e xe

dx
α αψ ω ω ωα

π π
− −⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 At 0,x =  

2

0 ( )
0.

d x

dx

ψ
=  

2 2

2 1/ 22
0 2 2

2

( )
2 [1 2 ] .xd x m m

x e
dx

αψ ω ω α
π

−⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 At 0,x =  
22

0
2

( )
0.

d x

dx

ψ
<  Therefore, at 0,x =  the first derivative is 

zero and the second derivative is negative. Therefore, the probability density function has a maximum at 0.x =  

EVALUATE: 
2 2 /2

0 0( ) xx A e αψ −=  is a solution to equation (40.22) if 
2

2
0 0( ) ( )  ( )

2
x E x

m
α ψ ψ− − =  or 

2 2

.
2 2

E
m

α ω= =  0 2
E

ω=  corresponds to 0n =  in Equation (40.26). 

40.52. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 
SET UP: The given wave function is 

2 2 / 2
1 1( ) 2 xx A xe αψ −=  and the Schrödinger equation is 

2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  

EXECUTE: (a) Start by taking the indicated derivatives: 
2 2/2

1 1( ) 2 .xx A xe αψ −=  

2 2 2 22 2 / 2 /21
1 1

( )
2 2 .x xd x

x Ae Ae
dx

α αψ α − −= − +
2 2 2 2 2 2

2
2 /2 2 2 2 / 2 2 /21

1 1 12

( )
2 2 2 ( ) 2 ( ) .x x xd x

A xe A x x e A x e
dx

α α αψ α α α α− − −= − − − + −
2

2 2 2 2 2 2 2 2 21
1 12

( )
[ 2 ( ) ] ( ) [ 3 ( ) ] ( )

d x
x x x x

dx

ψ α α α ψ α α ψ= − + − = − +  

2 2
2 2 2 21

12

( )
[ 3 ( ) ] ( )

2 2

d x
x x

m dx m

ψ α α ψ− = − − +  
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Equation (40.22) is 
2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  Substituting the above result into that equation gives 

2 2
2 2 2 2

1 1 1[ 3 ( ) ] ( ) ( )  ( ).
2 2

k x
x x x E x

m
α α ψ ψ ψ

′
− − + + =  Since 2 mωα =  and ,

k

m
ω

′
=  the coefficient of x2 is 

22 2 2
2 2( ) 0

2 2 2 2

k m m

m m

ω ωα
′ ⎛ ⎞− + = − + =⎜ ⎟

⎝ ⎠
 

(b) 
1/ 4

1

1

2

m
A

ω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(c) The probability density function 
2ψ  is 

2

2 2
1/ 2

2 2 2 2
1 1

1
( ) 4 4

2

m x
x m

x A x e x e
ω

α ωψ
π

−− ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

At 0,x =  
2

1 0.ψ =  
2 2 2 2 2 2 2 2

2

1 2 2 2 2 2 2 3 2
1 1 1 1

( )
8 4 ( 2 ) 8 8x x x xd x

A xe A x x e A xe A x e
dx

α α α αψ
α α− − − −= + − = −  

At 0,x =  
2

1( )
0.

d x

dx

ψ
=  At 

1
,x

α
= ±  

2

1( )
0.

d x

dx

ψ
=  

2 2 2 2 2 2 2 2

22
1 2 2 2 2 2 2 2 3 2 2

1 1 1 12

( )
8 8 ( 2 ) 8(3 ) 8 ( 2 ) .x x x xd x

A e A x x e A x e A x x e
dx

α α α αψ
α α α α− − − −= + − − − −  

2 2 2 2 2 2 2 2

22
1 2 2 2 2 2 2 2 2 4 2 2

1 1 1 12

( )
8 16 24 16 ( ) .x x x xd x

A e A x e A x e A x e
dx

α α α αψ
α α α− − − −= − − +  At 0,x =  

22
1

2

( )
0.

d x

dx

ψ
>  So at 

0,x =  the first derivative is zero and the second derivative is positive. Therefore, the probability density function 

has a minimum at 0.x =  At 
1

,x
α

= ±  
22

1
2

( )
0.

d x

dx

ψ
<  So at 

1
,x

α
= ±  the first derivative is zero and the second 

derivative is negative. Therefore, the probability density function has maxima at 
1

,x
α

= ±  corresponding to the 

classical turning points for 0n =  as found in the previous question. 

EVALUATE: 
2 2 / 2

1 1( ) 2 xx A xe αψ −= is a solution to equation (40.22) if 
2

2
1( 3 ) ( )

2
x

m
α ψ− − = 1 ( )E xψ  or 

2 23 3
.

2 2
E

m

α ω= =  1

3

2
E

ω=  corresponds to 1n =  in Equation (40.26). 

40.53. IDENTIFY and SET UP: Evaluate 2 2 2 2/ ,  / ,x yψ ψ∂ ∂ ∂ ∂  and 2 2/ zψ∂ ∂  for the proposed ψ  and put Eq.(40.29). Use 

that , ,
x yn nψ ψ and 

znψ  are each solutions to Eq.(40.22). 

EXECUTE: (a) 
2 2 2 2

2 2 22
U E

m x y z

ψ ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂− + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

, ,  
x y zn n nψ ψ ψ  are each solutions of Eq.(40.22), so

22
2

2

1

2 2
x

x x x

n
n n n

d
k x E

m dx

ψ
ψ ψ′− + =  

22
2

2

1

2 2
y

y y y

n

n n n

d
k y E

m dy

ψ
ψ ψ′− + =  

22
2

2

1

2 2
z

z z z

n
n n n

d
k z E

m dz

ψ
ψ ψ′− + =  

2 2 21 1 1
( ) ( ) ( ),  

2 2 2x y zn n nx y z U k x k y k zψ ψ ψ ψ ′ ′ ′= = + +  

22 22 2 2

2 2 2 2 2 2
, , .yx z

y z x z x y

nn n
n n n n n n

dd d

x dx y dy z dz

ψψ ψψ ψ ψψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

So 
22 2 2 2 2

2
2 2 2 2

1

2 2 2
x

x y z

n
n n n

d
U k x

m x y z m dx

ψψ ψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ′− + + + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

2 22 2
2 2

2 2

1 1

2 2 2 2
y z

y x z z x y

n n
n n n n n n

d d
k y k z

m dy m dz

ψ ψ
ψ ψ ψ ψ ψ ψ

⎛ ⎞ ⎛ ⎞
′ ′⎜ ⎟+ − + + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

2 2 2 2

2 2 2
( )

2 x y zn n nU E E E
m x y z

ψ ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂− + + + = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
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Therefore, we have shown that this ψ  is a solution to Eq.(40.29), with energy 

3

2x y z x y zn n n n n n x y zE E E E n n n ω⎛ ⎞= + + = + + +⎜ ⎟
⎝ ⎠

 

(b) and (c) The ground state has 0,x y zn n n= = =  so the energy is 000

3
.

2
E ω=  There is only one set of ,x yn n  and 

zn  that give this energy. 

First-excited state: 100 010 001

5
1,  0 or 1,  0 or 1,  0 and 

2x y z y x z z x yn n n n n n n n n E E E ω= = = = = = = = = = = =  

There are three different sets of ,  ,  x y zn n n  quantum numbers that give this energy, so there are three different 

quantum states that have this same energy. 
EVALUATE: For the three-dimensional isotropic harmonic oscillator, the wave function is a product of one-
dimensional harmonic oscillator wavefunctions for each dimension. The energy is a sum of energies for three one-
dimensional oscillators. All the excited states are degenerate, with more than one state having the same energy. 

40.54. 1 1 2 2, .k m ω k mω ′ ′= =  Let ( )
xnψ x be a solution of Eq.(40.22) with 1

1
, ( )

2x xn x nE n ω ψ y
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 be a similar 

solution, ( )
znψ z  be a solution of Eq.(40.22) but with z as the independent variable instead of x, and 

energy 2.

1

2zn zE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

(a) As in Problem 40.53, look for a solution of the form ( , , ) ( ) ( ) ( ).
x y zn n nψ x y z ψ x ψ y ψ z=  Then, 

2 2
2

12

1

2 2xn

ψ
E k x ψ

m x

∂ ⎛ ⎞′− = −⎜ ⎟∂ ⎝ ⎠
 with similar relations for 

2 2

2 2
and . Adding,

ψ ψ
y z

∂ ∂
∂ ∂

 

2 2 2 2
2 2 2

1 1 22 2 2

1 1 1

2 2 2 2

( ) ( )

x y z

x y z

n n n

n n n

ψ ψ ψ
E E E k x k y k z ψ

m x y z

E E E U ψ E U ψ

⎛ ⎞∂ ∂ ∂ ⎛ ⎞′ ′ ′− + + = + + − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
= + + − = −

 

where the energy E is 2 2
1 2

1
( 1) ,

2x y zn n n x y zE E E E n n ω n ω⎡ ⎤⎛ ⎞= + + = + + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
with , andx y zn n n  all nonnegative 

integers. 

(b) The ground level corresponds to 2 2
1 2

1
0,  and .

2x y zn n n E ω ω⎛ ⎞= = = = +⎜ ⎟
⎝ ⎠

 The first excited level corresponds to 

0x yn n= = and 1,zn =  since 2 2
1 2 ,ω ω>  and 2 2

1 2

3
.

2
E ω ωω⎛ ⎞= +⎜ ⎟

⎝ ⎠
 There is only one set of quantum numbers for both 

the ground state and the first excited state. 
40.55. (a) ( ) sin and ( 2) 0 ( 2)ψ x A kx ψ L ψ L= − = = +  

2 2 2 2 2

2 2

2 2
0 sin

2 2

(2 )
, where 1, 2...

2 2 8
n

n n

kL kL nπ π
A nπ k

L

L h nh p n h n h
p E n

n n L m mL mL

λ

λ
λ

+ +⎛ ⎞⇒ = ⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

⇒ = ⇒ = = ⇒ = = = =
 

(b) ( ) cos and ( / 2) 0 ( / 2)ψ x A kx ψ L Lψ= − = = +  

2 2

2

(2 1) 2
0 cos (2 1)

2 2 2

2 (2 1)

(2 1) 2

(2 1)
0,1, 2...

8

n

n

kL kL π n π π
A n k

L

L n h
p

n L

n h
E n

mL

λ

λ

+⎛ ⎞⇒ = ⇒ = + ⇒ = =⎜ ⎟
⎝ ⎠

+
⇒ = ⇒ =

+
+

⇒ = =

 

(c) The combination of all the energies in parts (a) and (b) is the same energy levels as given in Eq.(40.9), where 
2 2

2
.

8n

n h
E

mL
=  

(d) Part (a)’s wave functions are odd, and part (b)’s are even. 
40.56. (a) As with the particle in a box, ( ) sin , where is a constant andψ x A kx A=  2 22 .k mE=  Unlike the particle in a 

box, however, k and hence E do not have simple forms. 
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(b) For ,x L>  the wave function must have the form of Eq.(40.18). For the wave function to remain finite as 
2

0, 0. The constant 2 ( ) ,x C κ m U E→ ∞ = = −  as in Eq.(14.17) and Eq.(40.18). 

(c) At , sin and cos .κL κLx L A kL De kA kL κDe− −= = = −  Dividing the second of these by the first gives 

cot ,k kL κ= − a transcendental equation that must be solved numerically for different values of the length L  and 

the ratio 0.E U  

40.57. (a)
2

( ) ( ) 2 ( ( )).
2

p
E K U x U x p m E U x

m
= + = + ⇒ = −  ( ) .

2 ( ( ))

h h
x

p m E U x
λ λ= ⇒ =

−
 

(b) As ( ) gets larger (i.e., ( ) approachesU x U x E from below—recall 0), ( )k E U x≥ −  
gets smaller, so ( ) gets larger.xλ  

(c) When ( ), ( ) 0, so ( ) .E U x E U x xλ= − = → ∞  

(d) 
1

2 ( ( ))
( ) 22 ( ( ))

b b b

a a a

dx dx n
m E U x dx

x hh m E U xλ
= = − =

−∫ ∫ ∫  2 ( ( )) .
2

b

a

hn
m E U x dx⇒ − =∫  

(e) ( ) 0 for 0 with classical turning points at 0 and .So,U x x L x x L= < < = =  

0 0

2 2 2

2

2 ( ( )) 2 2 2 .So, from part (d),

1
2

2 2 2 8 .

b L L

a
m E U x dx mEdx mE dx mEL

hn hn h n
mEL E

m L mL

− = = =

⎛ ⎞= ⇒ = =⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

(f ) Since ( ) 0U x =  in the region between the turning points at 0 and , thex x L= = results is the same as part (e). 

The height 0U  never enters the calculation. WKB is best used with smoothly varying potentials ( ).U x  

40.58. (a) At the turning points 2
TP TP

1 2
.

2

E
E k x x

k
′= ⇒ = ±

′
 

(b) 22 /

2 /

1
2 .

2 2

E k

E k

nh
m E k x dx

+

−

′

′
⎛ ⎞′− =⎜ ⎟
⎝ ⎠∫  To evaluate the integral, we want to get it into a form that matches the 

standard integral given. 2 2 2 21 2 2
2 2 .

2

mE E
m E k x mE mk x mk x mk x

mk k
⎛ ⎞′ ′ ′ ′− = − = − = −⎜ ⎟ ′ ′⎝ ⎠

 

Letting 2 2 2 2
, ,and

E E E
A a b

k k k
= = − = +

′ ′ ′
 

2 2 2 2 2

0

2 arcsin
2

22 2 2 2 2
arcsin arcsin (1) 2 .

22

b

b

a

mk x
mk A x dx x A x A

A

E kE E E E E m π
mk mk E

k k k k k kE k

⎡ ⎤⎛ ⎞′′⇒ − = − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞′ ⎛ ⎞′ ′= − + = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′′ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

Using WKB, this is equal to , so . Recall , so .
2 2 2

hn m hn k h
E π ω E ωn ωn

k m π
′

= = = =
′

 

(c) We are missing the zero-point-energy offset of
1

recall .
2 2

ω
E ω n

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 However, our approximation isn’t 

bad at all! 

40.59. (a) At the turning points TP TP .
E

E A x x
A

= ⇒ = ±  

(b) 
/ /

/ 0
2 ( ) 2 2 ( ) . Let 2 ( )

E A E A

E A
m E A x dx m E Ax dx y m E Ax

+

−
− = − = − ⇒∫ ∫  

2 when , 0, and when 0, 2 . So
E

dy mA dx x y x y mE
A

= − = = = =  

0
0 1 2 3 2 3 2

0 2
2

1 2 2
2 2 ( ) (2 ) .

3 3

E

A

mE
mE

m E Ax dx y dy y mE
mA mA mA

− = − = − =∫ ∫  Using WKB, this is equal to .
2

hn
 So, 

2 3
3 2 2 32 1 3

(2 ) .
3 2 2 4

hn mAh
mE E n

mA m
⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠
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(c) The difference in energy decreases between successive levels. For example: 
2 3 2 3 2 3 2 3 3 2 3 21 0 1, 2 1 0.59, 3 2 0.49,...− = − = − =  

• A sharp ∞ step gave ever-increasing level differences 2(~ ).n  

• A parabola 2(~ ) gave evenly spaced levels (~ ).x n  

• Now, a linear potential 2 3(~ ) gives ever-decreasing level differences (~ ).x n  

Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola, then the 
level differences will increase. If the curvature is less than a parabola, the differences will decrease. 


