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PHOTONS, ELECTRONS, AND ATOMS 

 38.1. IDENTIFY and SET UP: The stopping potential V0 is related to the frequency of the light by 0

h
V f

e e

φ= − .  The 

slope of  V0 versus f is h/e.  The value fth of f when 0 0V =  is related to φ by thhfφ = . 

EXECUTE: (a) From the graph, 15
th 1.25 10  Hzf = × . Therefore, with the value of h from part (b), 

th 4.8 eVhfφ = = . 

(b) From the graph, the slope is 153.8 10  V s−× ⋅ . 16 15 34( )(slope) (1.60 10  C)(3.8 10  V s) 6.1 10  J sh e − − −= = × × ⋅ = × ⋅  

(c) No photoelectrons are produced for thf f< . 

(d) For a different metal fth and φ are different.  The slope is h/e so would be the same, but the graph would be 
shifted right or left so it has a different intercept with the horizontal axis. 
EVALUATE: As the frequency f of the light is increased above fth the energy of the photons in the light increases 
and more energetic photons are produced.  The work function we calculated is similar to that for gold or nickel. 

 38.2. IDENTIFY and SET UP: c f λ=  relates frequency and wavelength and E hf=  relates energy and frequency for a 

photon.  83.00 10  m/sc = × .  161 eV 1.60 10  J−= × . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s
5.94 10  Hz

505 10  m

c
f

λ −

×= = = ×
×

 

(b) 34 14 19(6.626 10  J s)(5.94 10  Hz) 3.94 10  J 2.46 eVE hf − −= = × ⋅ × = × =  

(c) 21
2K mv=  so 

19

15

2 2(3.94 10  J)
9.1 mm/s

9.5 10  kg

K
v

m

−

−

×= = =
×

 

 38.3. 
8

14
7

3.00 10 m s
5.77 10 Hz

λ 5.20 10  m

c
f −

×= = = ×
×

 

34
27

7

27 8 19

6.63 10 J s
1.28 10  kg m s

λ 5.20 10 m

(1.28 10 kg m s) (3.00 10 m s) 3.84 10 J 2.40 eV.

h
p

E pc

−
−

−

− −

× ⋅= = = × ⋅
×

= = × ⋅ × = × =
 

 38.4. IDENTIFY and SET UP: av

energy
P

t
= .  191 eV 1.60 10  J−= × .  For a photon, 

hc
E hf

λ
= = .  346.63 10  J sh −= × ⋅ . 

EXECUTE: (a) 3 2 16
avenergy (0.600 W)(20.0 10  s) 1.20 10  J 7.5 10  eVP t − −= = × = × = ×  

(b) 
34 8

19
9

(6.63 10  J s)(3.00 10  m/s)
3.05 10  J 1.91 eV

652 10  m

hc
E

λ

−
−

−

× ⋅ ×= = = × =
×

 

(c) The number of photons is the total energy in a pulse divided by the energy of one photon:  
2

16
19

1.20 10  J
3.93 10  photons

3.05 10  J/photon

−

−

× = ×
×

. 

EVALUATE: The number of photons in each pulse is very large. 
 38.5. IDENTIFY and SET UP: Eq.(38.2) relates the photon energy and wavelength. c f λ=  relates speed, frequency and 

wavelength for an electromagnetic wave. 

EXECUTE: (a) E hf=  so 
6 19

20
34

(2.45 10  eV)(1.602 10  J/1 eV)
5.92 10  Hz

6.626 10  J s

E
f

h

−

−

× ×= = = ×
× ⋅

 

(b) c f λ=  so 
8

13
20

2.998 10  m/s
5.06 10  m

5.92 10  Hz

c

f
λ −×= = = ×

×
 

(c) EVALUATE: λ  is comparable to a nuclear radius. Note that in doing the calculation the energy in MeV was 
converted to the SI unit of Joules. 

38



38-2 Chapter 38 

 38.6. IDENTIFY and SET UP: th 272 nmλ = .  c f λ= .  2
max

1

2
mv hf φ= − .  At the threshold frequency, thf , max 0v → .  

154.136 10  eV sh −= × ⋅ . 

EXECUTE: (a) 
8

15
th 9

th

3.00 10  m/s
1.10 10  Hz

272 10  m

c
f

λ −

×= = = ×
×

.  

(b) 15 15
th (4.136 10  eV s)(1.10 10  Hz) 4.55 eVhfφ −= = × ⋅ × = . 

(c) 2 15 15
max

1
(4.136 10  eV s)(1.45 10  Hz) 4.55 eV 6.00 eV 4.55 eV 1.45 eV

2
mv hf φ −= − = × ⋅ × − = − =  

EVALUATE: The threshold wavelength depends on the work function for the surface. 

 38.7. IDENTIFY and SET UP: Eq.(38.3): 2
max

1
.

2

hc
mv hf φ φ

λ
= − = −  Take the work function φ  from Table 38.1. Solve 

for max .v  Note that we wrote f as / .c λ  

EXECUTE: 
34 8

2 19
max 9

1 (6.626 10  J s)(2.998 10  m/s)
(5.1 eV)(1.602 10  J/1 eV)

2 235 10  m
mv

−
−

−

× ⋅ ×= − ×
×

 

2 19 19 20
max

1
8.453 10  J 8.170 10  J 2.83 10  J

2
mv − − −= × − × = ×  

20
5

max 31

2(2.83 10  J)
2.49 10  m/s

9.109 10  kg
v

−

−

×= = ×
×

 

EVALUATE: The work function in eV was converted to joules for use in Eq.(38.3). A photon with 235 nmλ =  
has energy greater then the work function for the surface. 

 38.8. IDENTIFY and SET UP: th
th

hc
hfφ

λ
= = .  The minimum φ corresponds to the minimum λ . 

EXECUTE: 
15 8

9
th

(4.136 10  eV s)(3.00 10  m/s)
1.77 eV

700 10  m

hcφ
λ

−

−

× ⋅ ×= = =
×

 

 38.9. IDENTIFY and SET UP: c f λ= .  The source emits (0.05)(75 J) 3.75 J= of energy as visible light each second.  

E hf= , with 346.63 10  J sh −= × ⋅ . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s
5.00 10  Hz

600 10  m

c
f

λ −

×= = = ×
×

 

(b) 34 14 19(6.63 10  J s)(5.00 10  Hz) 3.32 10  JE hf − −= = × ⋅ × = × .  The number of photons emitted per second is 

19
19

3.75 J
1.13 10  photons

3.32 10  J/photon− = ×
×

. 

(c) No.  The frequency of the light depends on the energy of each photon.  The number of photons emitted per 
second is proportional to the power output of the source. 

38.10. IDENTIFY: In the photoelectric effect, the energy of the photon is used to eject an electron from the surface, and 
any excess energy goes into kinetic energy of the electron. 
SET UP: The energy of a photon is E = hf, and the work function is given by φ = hf0, where f0 is the threshold frequency. 
EXECUTE: (a) From the graph, we see that Kmax = 0 when λ = 250 nm, so the threshold wavelength is 250 nm. 
Calling f0 the threshold frequency, we have 

f0 = c/λ0 = (3.00 × 108 m/s)/(250 nm) = 1.2 × 1015 Hz. 

(b) φ = hf0 = (4.136 × 10–15 eV s⋅ )(1.2 × 1015 Hz) = 4.96 eV = 5.0 eV 
(c) The graph (see Figure 38.10) is linear for λ < λ0 (1/λ > 1/λ0), and linear graphs are easier to interpret than curves. 
EVALUATE: If the wavelength of the light is longer than the threshold wavelength (that is, if 1/λ < 1/λ0), the 
kinetic energy of the electrons is really not defined since no photoelectrons are ejected from the metal. 

 
Figure 38.10 
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38.11. IDENTIFY: Protons have mass and photons are massless. 
(a) SET UP: For a particle with mass, 2 / 2 .K p m=  

EXECUTE: 2 12p p=  means 2 14 .K K=  

(b) SET UP: For a photon, .E pc=  

EXECUTE: 2 12p p=  means 2 12 .E E=  

EVALUATE: The relation between E and p is different for particles with mass and particles without mass. 

38.12. IDENTIFY and SET UP: 2
0 max

1

2
eV mv= , where 0V is the stopping potential.  The stopping potential in volts equals 

0eV in electron volts.  2
max

1

2
mv hf φ= − . 

EXECUTE: (a) 2
0 max

1

2
eV mv= so 

15 8

0 9

(4.136 10  eV s)(3.00 10  m/s)
2.3 eV 4.96 eV 2.3 eV 2.7 eV

250 10  m
eV hf φ

−

−

× ⋅ ×= − = − = − =
×

.  The stopping potential 

is 2.7 electron volts. 

(b) 2
max

1
2.7 eV

2
mv =  

(c) 
19

5
max 31

2(2.7 eV)(1.60 10  J/eV)
9.7 10  m/s

9.11 10  kg
v

−

−

×= = ×
×

 

38.13. (a) IDENTIFY: First use Eq.(38.4) to find the work function .φ  

SET UP: 0eV hf φ= −  so 0 0

hc
hf eV eVφ

λ
= − = −  

EXECUTE: 
34 8

19
9

(6.626 10  J s)(2.998 10  m/s)
(1.602 10  C)(0.181 V)

254 10  m
φ

−
−

−

× ⋅ ×= − ×
×

 

19 20 19 197.821 10  J 2.900 10  J 7.531 10  J(1 eV/1.602 10 J) 4.70 eVφ − − − −= × − × = × × =  

IDENTIFY and SET UP: The threshold frequency thf  is the smallest frequency that still produces photoelectrons. 

It corresponds to max 0K =  in Eq.(38.3), so th .hf φ=  

EXECUTE: 
c

f
λ

=  says 
th

hc φ
λ

=  

34 8
7

th 19

(6.626 10  J s)(2.998 10  m/s)
2.64 10  m 264 nm

7.531 10  J

hcλ
φ

−
−

−

× ⋅ ×= = = × =
×

 

(b) EVALUATE: As calculated in part (a), 4.70 eV.φ =  This is the value given in Table 38.1 for copper. 
38.14. IDENTIFY and SET UP: A photon has zero rest mass, so its energy and momentum are related by Eq.(37.40). 

Eq.(38.5) then relates its momentum and wavelength. 
EXECUTE: (a) 28 8 19(8.24 10  kg m/s)(2.998 10  m/s) 2.47 10  JE pc − −= = × ⋅ × = × =  

19 19(2.47 10  J)(1 eV/1.602 10  J)− −× × = 1.54 eV  

(b) 
h

p
λ

=  so 
34

7
28

6.626 10  J s
8.04 10  m 804 nm

8.24 10  kg m/s

h

p
λ

−
−

−

× ⋅= = = × =
× ⋅

 

EVALUATE: This wavelength is longer than visible wavelengths; it is in the infrared region of the 
electromagnetic spectrum. To check our result we could verify that the same E is given by Eq.(38.2), using the λ  
we have calculated. 

38.15. IDENTIFY and SET UP: Balmer’s formula is 
2 2

1 1 1
.

2
R

nλ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For the Hγ  spectral line 5.n =  Once we have ,λ  

calculate f from /f c λ=  and E from Eq.(38.2). 

EXECUTE: (a) 
2 2

1 1 1 25 4 21
.

2 5 100 100
R R R

λ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Thus 7
7

100 100
 m 4.341 10  m 434.1 nm.

21 21(1.097 10 )R
λ −= = = × =

×
 

(b) 
8

14
7

2.998 10  m/s
6.906 10  Hz

4.341 10  m

c
f

λ −

×= = = ×
×
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(c) 34 14 19(6.626 10  J s)(6.906 10  Hz) 4.576 10  J 2.856 eVE hf − −= = × ⋅ × = × =  

EVALUATE: Section 38.3 shows that the longest wavelength in the Balmer series (H )α  is 656 nm and the 

shortest is 365 nm. Our result for Hγ  falls within this range. The photon energies for hydrogen atom transitions are 

in the eV range, and our result is of this order. 
38.16. IDENTIFY and SET UP: For the Lyman series the final state is 1n = and the wavelengths are given by 

2 2

1 1 1
,  2,3,....

1
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

  For the Paschen series the final state is 3n =  and the wavelengths are given by 

2 2

1 1 1
,  4,5,....

3
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

  7 11.097 10  mR −= × .  The longest wavelength is for the smallest n and the shortest 

wavelength is for n → ∞ . 

EXECUTE: Lyman  Longest:  
2 2

1 1 1 3

1 2 4

R
R

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

.  
7 1

4
121.5 nm

3(1.097 10  m )
λ −= =

×
. 

Shortest: 
2 2

1 1 1

1
R R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

.  
7 1

1
91.16 nm

1.097 10  m
λ −= =

×
 

Paschen  Longest:  
2 2

1 1 1 7

3 4 144

R
R

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

.  
7 1

144
1875 nm

7(1.097 10  m )
λ −= =

×
. 

Shortest: 
2 2

1 1 1

3 9

R
R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

. 

38.17. (a) 
34 8

19
7

(6.63 10  J s) (3.00 10 m s)
2.31 10  J 1.44 eV.

λ 8.60 10 m

hc
Eγ

−
−

−

× ⋅ ×= = = × =
×

 

So the internal energy of the atom increases by 1.44 eV to 6.52 eV 1.44 eVE = − + = 5.08 eV.−  

(b) 
34 8

19
7

(6.63 10 J s) (3.00 10 m s)
4.74 10  J 2.96 eV.

λ 4.20 10  m

hc
Eγ

−
−

−

× ⋅ ×= = = × =
×

 

So the final internal energy of the atom decreases to 2.68 eV 2.96 eV 5.64 eV.E = − − = −  

38.18. IDENTIFY and SET UP: The ionization threshold is at 0E = .  The energy of an absorbed photon equals the 
energy gained by the atom and the energy of an emitted photon equals the energy lost by the atom. 
EXECUTE: (a) 0 ( 20 eV) 20 eVEΔ = − − =  

(b) When the atom in the 1n = level absorbs a 18 eV photon, the final level of the atom is 4n = .  The possible 
transitions from 4n = and corresponding photon energies are 4 3,  3 eVn n= → = ; 4 2,  8 eVn n= → = ; 

4 1,  18 eVn n= → = .  Once the atom has gone to the 3n = level, the following transitions can occur:  
3 2,  5 eVn n= → = ; 3 1,  15 eVn n= → = .  Once the atom has gone to the 2n = level, the following transition 

can occur:  2 1,  10 eVn n= → = .  The possible energies of emitted photons are: 3 eV, 5 eV, 8 eV, 10 eV, 15 eV, 
and 18 eV. 
(c) There is no energy level 8 eV higher in energy than the ground state, so the photon cannot be absorbed. 
(d) The photon energies for 3 2n n= → =  and for 3 1n n= → = are 5 eV and 15 eV.  The photon 
energy for 4 3n n= → = is 3 eV.  The work function must have a value between 3 eV and 5 eV. 

38.19. IDENTIFY and SET UP: The wavelength of the photon is related to the transition energy i fE E−  of the atom by 

i f

hc
E E

λ
− =  where 61.240 10  eV mhc −= × ⋅ . 

EXECUTE: (a) The minimum energy to ionize an atom is when the upper state in the transition has 0E = , so 

1 17.50 eVE = − .  For 5 1n n= → = , 73.86 nmλ =  and 
6

5 1 9

1.240 10  eV m
16.79 eV

73.86 10  m
E E

−

−

× ⋅− = =
×

.  

5 17.50 eV 16.79 eV 0.71 eVE = − + = − .  For 4 1n n= → = , 75.63 nmλ =  and 4 1.10 eVE = − .  For 

3 1n n= → = , 79.76 nmλ =  and 3 1.95 eVE = − .  For 2 1n n= → = , 94.54 nmλ =  and 2 4.38 eVE = − . 

(b) i f 4 2 1.10 eV ( 4.38 eV) 3.28 eVE E E E− = − = − − − = and 
6

i f

1.240 10  eV m
378 nm

3.28 eV

hc

E E
λ

−× ⋅= = =
−

 

EVALUATE: The 4 2n n= → =  transition energy is smaller than the 4 1n n= → =  transition energy so the 
wavelength is longer.  In fact, this wavelength is longer than for any transition that ends in the 1n =  state. 
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38.20. (a) Equating initial kinetic energy and final potential energy and solving for the separation radius r, 
19

14
6

0 0

1 (92 ) (2 ) 1 (184) (1.60 10 C)
5.54 10 m.

4 4 (4.78 10 J C)

e e
r

Kπ π

−
−×= = = ×

×P P
 

(b) The above result may be substituted into Coulomb’s law, or, the relation between the magnitude of the force 
and the magnitude of the potential energy in a Coulombic field is 

6 19

14

(4.78 10 eV) (1.6 10 J ev)
13.8 N.

(5.54 10 m)

K
F

r

−

−

× ×= = =
×

 

38.21. (a) IDENTIFY: If the particles are treated as point charges, 1 2

0

1
.

4

q q
U

rπ
=

P
 

SET UP: 1 2q e=  (alpha particle); 2 82q e=  (gold nucleus); r is given so we can solve for U. 

EXECUTE: 
19 2

9 2 2 13
14

(2)(82)(1.602 10  C)
(8.987 10  N m /C ) 5.82 10  J

6.50 10  m
U

−
−

−

×= × ⋅ = ×
×

 

13 19 65.82 10  J(1 eV/1.602 10  J) 3.63 10  eV 3.63 MeVU − −= × × = × =  

(b) IDENTIFY: Apply conservation of energy: 1 1 2 2.K U K U+ = +  

SET UP: Let point 1 be the initial position of the alpha particle and point 2 be where the alpha particle 
momentarily comes to rest. Alpha particle is initially far from the lead nucleus implies 1r ≈ ∞  and 1 0.U =  Alpha 

particle stops implies 2 0.K =  

EXECUTE: Conservation of energy thus says 13
1 2 5.82 10  J 3.63 MeV.K U −= = × =  

(c) 21

2
K mv=  so 

13
7

27

2 2(5.82 10  J)
1.32 10  m/s

6.64 10  kg

K
v

m

−

−

×= = = ×
×

 

EVALUATE: / 0.044,v c =  so it is ok to use the nonrelativistic expression to relate K and v. When the alpha 
particle stops, all its initial kinetic energy has been converted to electrostatic potential energy. 

38.22. (a), (b) For either atom, the magnitude of the angular momentum is 
2

h

π
= 34 21.05 10 kg m s.−× ⋅  

38.23. IDENTIFY and SET UP: Use the energy to calculate n for this state. Then use the Bohr equation, Eq.(38.10), to 
calculate L. 

EXECUTE: 2(13.6 eV)/ ,nE n= −  so this state has 13.6/1.51 3.n = =  In the Bohr model. L n= U  so for this state 
34 23 3.16 10  kg m /s.L −= × ⋅U =  

EVALUATE: We will find in Section 41.1 that the modern quantum mechanical description gives a different 
result. 

38.24. IDENTIFY and SET UP: For a hydrogen atom 
2

13.6 eV
nE

n
= − .  

hc
E

λ
Δ = , where EΔ is the magnitude of the 

energy change for the atom and λ is the wavelength of the photon that is absorbed or emitted. 

EXECUTE: 4 1 2 2

1 1
(13.6 eV) 12.75 eV

4 1
E E E

⎛ ⎞Δ = − = − − = +⎜ ⎟
⎝ ⎠

.  

15 8(4.136 10  eV s)(3.00 10  m/s)
97.3 nm

12.75 eV

hc

E
λ

−× ⋅ ×= = =
Δ

.  153.08 10  Hz
c

f
λ

= = × . 

38.25. IDENTIFY: The force between the electron and the nucleus in 3+Be  is 
2

2
0

1
,

4

Ze
F

rπ
=

P
 where 4Z =  is the nuclear 

charge. All the equations for the hydrogen atom apply to 3+Be  if we replace 2e  by 2.Ze  
(a) SET UP: Modify Eq.(38.18). 

EXECUTE: 
4

2 2
0

1

8n

me
E

n h
= −
P

 (hydrogen) becomes 

2 2 4
2 2 3+

2 2 2 2 2
0 0

1 ( ) 1 13.60 eV
(for Be )

8 8n

m Ze me
E Z Z

n h n h n

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠P P

 

The ground-level energy of 3+Be  is 1 2

13.60 eV
16 218 eV.

1
E

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

EVALUATE: The ground-level energy of 3+Be  is 2 16Z =  times the ground-level energy of H. 
(b) SET UP: The ionization energy is the energy difference between the n → ∞  level energy and the 1n =  level 
energy. 
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EXECUTE: The n → ∞  level energy is zero, so the ionization energy of 3+Be  is 218 eV. 
EVALUATE: This is 16 times the ionization energy of hydrogen. 

(c) SET UP: 
2 2
1 2

1 1 1
R

n nλ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 just as for hydrogen but now R has a different value. 

EXECUTE: 
4

7 1
H 3

0

1.097 10  m
8

me
R

h c
−= = ×

P
 for hydrogen becomes 

4
2 7 1 8 1

Be 3
0

16(1.097 10  m ) 1.755 10  m
8

me
R Z

h c
− −= = × = ×

P
 for 3+Be .  

For 2n =  to Be 2 2

1 1 1
1,  3 /4.

1 2
n R R

λ
⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

8 1 94 /(3 ) 4 /(3(1.755 10  m )) 7.60 10  m 7.60 nm.Rλ − −= = × = × =  

EVALUATE: This wavelength is smaller by a factor of 16 compared to the wavelength for the corresponding 
transition in the hydrogen atom. 

(d) SET UP: Modify Eq.(38.12): 
2 2

0 2n

n h
r

meπ
= P  (hydrogen). 

EXECUTE: 
2 2

0 2( )n

n h
r

m Zeπ
= P  3+(Be ).  

EVALUATE: For a given n the orbit radius for 3+Be  is smaller by a factor of 4Z =  compared to the 
corresponding radius for hydrogen. 

38.26. (a) We can find the photon’s energy from Eq. 38.8 

34 8 7 1 19
2 2 2 2

1 1 1 1
(6.63 10 J s) (3.00 10 m s) (1.097 10 m ) 4.58 10 J.

2 2 5
E hcR

n
− − −⎛ ⎞ ⎛ ⎞= − = × ⋅ × × − = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
The 

corresponding wavelength is λ 434 nm.
E

hc
= =  

(b) In the Bohr model, the angular momentum of an electron with principal quantum number n is given by  

Eq. 38.10: .
2

h
L n

π
=  Thus, when an electron makes a transition from n = 5 to n = 2 orbital, there is the following 

loss in angular momentum (which we would assume is transferred to the photon): 
34

343(6.63 10 J s)
(2 5) 3.17 10 J s.

2 2

h
L

ππ

−
−× ⋅Δ = − = − = − × ⋅  

However, this prediction of the Bohr model is wrong (as shown in Chapter 41). 

38.27. (a) 
2 19 2

6
1 34

0 0

1 (1.60 10 C)
: 1 2.18 10 m/s

2 2 (6.63 10 J s)n

e
v n v

nh

−

−

×= = ⇒ = = ×
× ⋅P P

 

6 51 1
2 32 1.09 10 m s.  3 7.27 10 m s.

2 3

v v
h v h v= ⇒ = = × = ⇒ = = ×  

(b) Orbital period 
2 2 2 2 3 3

0 0
2 4

0

2 2 4

1 2
n

n

r n h me n h

v e nh me

π= = =
⋅

P P
P

 

2 34 3
160

1 31 19 4

3 15 3 15
2 1 3 1

4 (6.63 10 J s)
1 1.53 10 s

(9.11 10 kg) (1.60 10 C)

2 : (2) 1.22 10 s.  3 : (3) 4.13 10 s.

n T

n T T n T T

−
−

− −

− −

× ⋅= ⇒ = = ×
× ×

= = = × = = = ×

P
 

(c) number of orbits 
8

6
15

1.0 10 s
8.2 10 .

1.22 10 s

−

−

×= = ×
×

 

38.28. IDENTIFY and SET UP: 
2

13.6 eV
nE

n
= −  

EXECUTE: (a) 
2

13.6 eV
nE

n
= −  and +1 2

13.6 eV

( 1)nE
n

= −
+

 

2 2

1 2 2 2 2

1 1 ( 1)
( 13.6 eV) (13.6 eV)

( 1) ( )( 1)n n

n n
E E E

n n n n+
⎡ ⎤ − +Δ = − = − − = −⎢ ⎥+ +⎣ ⎦

 

2 2

2 1
(13.6 eV)

( )( 1)

n
E

n n

+Δ =
+

  As n becomes large, 
4 3

2 2
(13.6 eV) (13.6 eV)

n
E

n n
Δ → =  
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Thus EΔ  becomes small as n becomes large. 
(b) 2

1nr n r=  so the orbits get farther apart in space as n increases. 

38.29. IDENTIFY and SET UP: The number of photons emitted each second is the total energy emitted divided by the 
energy of one photon. The energy of one photon is given by Eq.(38.2). E Pt=  gives the energy emitted by the 
laser in time t. 

EXECUTE: In 1.00 s the energy emitted by the laser is 3 3(7.50 10  W)(1.00 s) 7.50 10  J.− −× = ×  

The energy of each photon is 
34 8

20
6

(6.626 10  J s)(2.998 10  m/s)
1.874 10  J.

10.6 10  m

hc
E

λ

−
−

−

× ⋅ ×= = = ×
×

 

Therefore 
3

17
20

7.50 10  J/s
4.00 10  photons/s

1.874 10  J/photon

−

−

× = ×
×

 

EVALUATE: The number of photons emitted per second is extremely large. 
38.30. IDENTIFY and SET UP: Visible light has wavelengths from about 400 nm to about 700 nm.  The energy of each 

photon is 
251.99 10  J mhc

E hf
λ λ

−× ⋅= = = .  The power is the total energy per second and the total energy Etot is the 

number of photons N times the energy E of each photon. 
EXECUTE: (a) 193 nm is shorter than visible light so is in the ultraviolet. 

(b) 181.03 10  J 6.44 eV
hc

E
λ

−= = × =  

(c) totE NE
P

t t
= =  so 

3 9
7

18

(1.50 10  W)(12.0 10  s)
1.75 10  photons

1.03 10  J

Pt
N

E

− −

−

× ×= = = ×
×

 

EVALUATE: A very small amount of energy is delivered to the lens in each pulse, but this still corresponds to a 
large number of photons. 

38.31. IDENTIFY: Apply Eq.(38.21): 5 3( ) /5

3

s pE E kTs

p

n
e

n
− −=  

SET UP: From Fig.38.24a in the textbook, 5 320.66 eV and 18.70 eVs pE E= =  

EXECUTE: 19 19
5 3 20.66 eV 18.70 eV 1.96 eV(1.602 10  J/1 eV) 3.140 10  Js pE E − −− = − = × = ×  

(a) 
19 23(3.140 10  J)/[(1.38 10  J/K)(300 K)] 75.79 335

3

1.2 10s

p

n
e e

n

− −− × × − −= = = ×  

(b) 
19 23(3.140 10  J)/[(1.38 10  J/K)(600 K)] 37.90 175

3

3.5 10s

p

n
e e

n

− −− × × − −= = = ×  

(c) 
19 23(3.140 10  J)/[(1.38 10  J/K)(1200 K)] 18.95 95

3

5.9 10s

p

n
e e

n

− −− × × − −= = = ×  

(d) EVALUATE: At each of these temperatures the number of atoms in the 5s excited state, the initial state for the 
transition that emits 632.8 nm radiation, is quite small. The ratio increases as the temperature increases. 

38.32. 3 2 2 3 2 2 1 2

1/ 2

2 ( )

2

.P PP E E KT

P

n
e

n
− −=  

From the diagram 
34 8

19
3/ 2 g 7

1

(6.626 10  J)(3.000 10 m s)
3.375 10 J.

λ 5.890 10 m

hc
E

−
−

− −

× ×Δ = = = ×
×

 

34 8
19 19 19

1 2 g 3/ 2 1/ 27
2

(6.626 10  J)(3.000 10 m s)
3.371 10 J. so 3.375 10 J 3.371 10 J

λ 5.896 10 m

hc
E E

−
− − −

− −−

× ×Δ = = = × Δ = × − × =
×

224.00 10 J.−×
22 23

3/ 2

1/ 2

2 (4.00 10 J) (1.38 10 J / K 500 K).

2

0.944.P

P

n
e

n

− −− × × ⋅= =  So more atoms are in the 1 22 p  state. 

38.33. AC max
minλ

hceV hf= =  

34 8
10

min 19
AC

(6.63 10 J s)(3.00 10 m s)
λ 3.11 10 m

(1.60 10 C)(4000 V)

hc

eV

−
−

−

× ⋅ ×
⇒ = = = ×

×
 

This is the same answer as would be obtained if electrons of this energy were used. Electron beams are much more 
easily produced and accelerated than proton beams. 
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38.34. IDENTIFY and SET UP: 
hc

eV
λ

= , where λ is the wavelength of the x ray and V is the accelerating voltage. 

EXECUTE: (a) 
34 8

19 9

(6.63 10  J s)(3.00 10  m/s)
8.29 kV

(1.60 10  C)(0.150 10  m)

hc
V

eλ

−

− −

× ⋅ ×= = =
× ×

 

(b) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s)
4.14 10  m 0.0414 nm

(1.60 10  C)(30.0 10  V)

hc

eV
λ

−
−

−

× ⋅ ×= = = × =
× ×

 

(c) No.  A proton has the same magnitude of charge as an electron and therefore gains the same amount of kinetic 
energy when accelerated by the same magnitude of potential difference. 

38.35. IDENTIFY: The initial electrical potential energy of the accelerated electrons is converted to kinetic energy which 
is then given to a photon. 
SET UP: The electrical potential energy of an electron is eVAC, where VAC

  is the accelerating potential, and the 
energy of a photon is hf. Since the energy of the electron is all given to a photon, we have eVAC = hf. For any wave, 
fλ = v. 
EXECUTE: (a) eVAC = hfmin gives 

fmin = eVAC/h = (1.60 × 10–19 C)(25,000 V)/(6.626 × 10–34 J s⋅ ) = 6.037 × 1018 Hz 

= 6.04 × 1018 Hz, rounded to three digits 

(b) λmin = c/fmax = (3.00 × 108 m/s)/(6.037 × 1018 Hz) = 4.97 × 10–11 m = 0.0497 nm 
(c) We assume that all the energy of the electron produces only one photon on impact with the screen. 
EVALUATE: These photons are in the x-ray and γ-ray part of the electromagnetic spectrum (see Figure 32.4 in the 
textbook) and would be harmful to the eyes without protective glass on the screen to absorb them. 

38.36. IDENTIFY and SET UP: The wavelength of the x rays produced by the tube is give by 
hc

eV
λ

= .  

(1 cos )
h

mc
λ λ φ′ = + − .  122.426 10  m

h

mc
−= × .  The energy of the scattered x ray is 

hc

λ′
. 

EXECUTE: (a) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s)
6.91 10  m 0.0691 nm

(1.60 10  C)(18.0 10  V)

hc

eV
λ

−
−

−

× ⋅ ×= = = × =
× ×

 

(b) 11 12(1 cos ) 6.91 10  m (2.426 10  m)(1 cos45.0 )
h

mc
λ λ φ − −′ = + − = × + × − ° . 

116.98 10  m 0.0698 nmλ −′ = × = . 

(c) 
15 8

11

(4.136 10  eV s)(3.00 10  m/s)
17.8 keV

6.98 10  m

hc
E

λ

−

−

× ⋅ ×= = =
′ ×

 

EVALUATE: The incident x ray has energy 18.0 keV.  In the scattering event, the photon loses energy and its 
wavelength increases. 

38.37. IDENTIFY: Apply Eq.(38.23): C(1 cos ) (1 cos )
h

mc
λ λ φ λ φ′ − = − = −  

SET UP: Solve for C: (1 cos )λ λ λ λ φ′ ′ = + −  

The largest λ′  corresponds to 180 ,φ = °  so cos 1.φ = −  

EXECUTE: 9 12 11
C2 0.0665 10  m 2(2.426 10  m) 7.135 10  m 0.0714 nm.λ λ λ − − −′ = + = × + × = × =  This wavelength 

occurs at a scattering angle of 180 .φ = °  
EVALUATE: The incident photon transfers some of its energy and momentum to the electron from which it 
scatters. Since the photon loses energy its wavelength increases, .λ λ′ >  

38.38. (a) From Eq. (38.23), 
λ

cos 1 ,
( )h mc

φ Δ= − and so λ 0.0542 nm 0.0500 nm,Δ = −  

0.0042 nm
cos 1 0.731, and 137 .

0.002426 nm
φ φ= − = − = °  

(b) 
0.0021 nm

λ 0.0521 nm 0.0500 nm. cos 1 0.134. 82.3 .
0.002426 nm

φ φΔ = − = − = = °  

(c) λ 0,Δ = the photon is undeflected, cos 1φ =  and 0.φ =  

38.39. IDENTIFY and SET UP: The shift in wavelength of the photon is (1 cos )
h

mc
λ λ φ′ − = −  where λ′  is the 

wavelength after the scattering and 12
c 2.426 10  m

h

mc
λ −= = × .  The energy of a photon of wavelength λ is 
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61.24 10  eV mhc
E

λ λ

−× ⋅= = .  Conservation of energy applies to the collision, so the energy lost by the photon 

equals the energy gained by the electron. 
EXECUTE: (a) 12 13 4

c (1 cos ) (2.426 10  m)(1 cos35.0 ) 4.39 10  m 4.39 10  nmλ λ λ φ − − −′ − = − = × − = × = ×°  

(b) 4 44.39 10  nm  0.04250 nm 4.39 10  nm 0.04294 nmλ λ − −′ = + × = + × =  

(c) 42.918 10  eV
hc

Eλ λ
= = × and 42.888 10  eV

hc
Eλ λ′ = = ×

′
 so the photon loses 300 eV of energy. 

(d) Energy conservation says the electron gains 300 eV of energy. 
38.40. The change in wavelength of the scattered photon is given by Eq. 38.23 

Δλ
(1 cos ) λ (1 cos ).

Δλλ λ

λ

h h

mc mc
φ φ= − ⇒ = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, 
34

14
27 8

(6.63 10 J s)
λ (1 1) 2.65 10 m.

(1.67 10 kg)(3.00 10 m/s)(0.100)

−
−

−

× ⋅= + = ×
× ×

 

38.41. The derivation of Eq.(38.23) is explicitly shown in Equations (38.24) through (38.27) with the final substitution of 

λ and λ yielding λ λ (1 cos ).
h

p h p h
mc

φ′ ′ ′= = − = −  

38.42. From Eq. (38.30), (a) 
3

m
m

2.898 10 m K
λ 0.966 mm, and

3.00 K λ

c
f

−× ⋅= = = = 113.10 10 Hz.×  Note that a more precise 

value of the Wien displacement law constant has been used.  
(b) A factor of 100 increase in the temperature lowers mλ by a factor of 100 to 9.66 mμ  and raises the frequency 

by the same factor, to 133.10 10 Hz.×   

(c) Similarly, mλ 966 nm=  14and 3.10 10  Hz.f = ×  

38.43. (a) 4 2;H AeσT A r lπ= =  
1 41 4

3 8 2 4

100 W

2 (0.20 10 m)(0.30 m)(0.26)(5.671 10 W m K )

H
T

Aeσ π − −

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ × × ⋅⎝ ⎠ ⎝ ⎠
 

32.06 10 KT = ×  

(b) 3
m mλ 2.90 10 m K; λ 1410 nmT −= × ⋅ =  

Much of the emitted radiation is in the infrared. 

38.44. 
3 3

3
9

m

2.90 10 m K 2.90 10 m K
7.25 10 K.

400 10 m
T

λ

− −

−

× ⋅ × ⋅= = = ×
×

 

38.45. IDENTIFY and SET UP: The wavelength mλ  where the Planck distribution peaks is given by Eq.(38.30). 

EXECUTE: 
3

3
m

2.90 10  m K
1.06 10  m 1.06 mm.

2.728 K
λ

−
−× ⋅= = × =  

EVALUATE: This wavelength is in the microwave portion of the electromagnetic spectrum. This radiation is often 
referred to as the “microwave background” (Section 44.7). Note that in Eq.(38.30), T must be in kelvins. 

38.46. IDENTIFY: Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law and Wien’s displacement 
law. 
SET UP: The Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the total radiated power 
is P = σAT 4. Wien’s displacement law tells us that the peak-intensity wavelength is λm = (constant)/T. 
EXECUTE: (a) The hot and cool stars radiate the same total power, so the Stefan-Boltzmann law gives σAhTh

4 = 

σAcTc
4  ⇒  4πRh

2Th
4 = 4πRc

2Tc
4 = 4π(3Rh)

2Tc
4 ⇒ Th

4 = 9T 4  ⇒ h 3T T=  = 1.7T, rounded to two significant digits. 

(b) Using Wien’s law, we take the ratio of the wavelengths, giving 

m c

m h

(hot) 1

(cool) 3 3

T T

T T

λ
λ

= = =  = 0.58, rounded to two significant digits. 

EVALUATE: Although the hot star has only 1/9 the surface area of the cool star, its absolute temperature has to be 
only 1.7 times as great to radiate the same amount of energy. 

38.47. (a) Let / .hc kTα =  To find the maximum in the Planck distribution: 
2 2 2 2

5 5 5 2

2 (2 ) 2 ( )
0 5

λ λ λ ( 1) λ ( 1) λ ( 1)λ

dI d hc hc hc λ
d d e e eα λ α λ α

π π π α⎛ ⎞ −= = = − −⎜ ⎟− − −⎝ ⎠
 

λ λ5( 1)λ   5 5 λ   Solve 5 5 where .
λ λ

x hc
e e x e x

kT
α α αα α⇒ − − = ⇒ − + = ⇒ − = = =  
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Its root is 4.965, so 4.965 λ .
λ (4.965)

α hc

kT
= ⇒ =  

(b) 
34 8

3
m 23

(6.63 10 J s)(3.00 10 m s)
λ 2.90 10 m K.

(4.965) (4.965)(1.38 10 J K)

hc
T

k

−
−

−

× ⋅ ×= = = × ⋅
×

 

38.48. IDENTIFY: Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law. 
SET UP: The Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the total radiated power 
is P = σAT 4. 

EXECUTE: (a) I = σT 4 = (5.67 × 10–8 2 4W/m K⋅ )(24,000 K)4 = 1.9 × 1010 W/m2 
(b) Wien’s law gives  λm = (0.00290 m K⋅ )/(24,000 K) = 1.2 × 10–7 m = 120 nm 
This is not visible since the wavelength is less than 400 nm. 
(c) P = AI ⇒ 4πR2 = P/I = (1.00 × 1025 W)/(1.9 × 1010 W/m2) 
which gives RSirius = 6.51 × 106 m = 6510 km. 
RSirius/Rsun = (6.51 × 106 m)/(6.96 × 109 m) = 0.0093, which gives 

RSirius = 0.0093 Rsun ≈ 1% Rsun 

(d) Using the Stefan-Boltzmann law, we have 
2 44 2 4

sun sun sun sun sun sun sun
4 2 4

Sirius Sirius Sirius Sirius Sirius Sirius Sirius

4

4

P A T R T R T

P A T R T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞
= = = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 4

sun sun

Sirius sun

5800 K
39

0.00935 24,000 K

P R

P R

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: Even though the absolute surface temperature of Sirius B is about 4 times that of our sun, it radiates 
only 1/39 times as much energy per second as our sun because it is so small. 

38.49. Eq. (38.32): 
2 2

5

2
( ) but 1 1 for

λ ( 1) 2
x

hc λkT

hc x
I λ e x x

e

π= = + + + ≈ +
−

 

2

5 4

2 2
1 ( ) Eq.

λ ( λ ) λ

hc ckT
x I λ

hc kT

π π
⇒ ≈ = =V (38.31), which  is Rayleigh’s distribution. 

38.50. (a) Wien’s law: mλ
k
T

= .  
3

8
m

2.90 10 K m
λ 9.7 10 m 97 nm

30,000 K

−
−× ⋅= = × =  

This peak is in the ultraviolet region, which is not visible. The star is blue because the largest part of the visible 
light radiated is in the blue violet part of the visible spectrum 

(b) 4P σAT= (Stefan-Boltzmann law) 

26 8 2 4
2 4

9

W
(100, 000)(3.86 10 W) 5.67 10 (4 )(30,000 K)

m K

8.2 10 m

R

R

π−⎛ ⎞× = ×⎜ ⎟
⎝ ⎠

= ×
 

9

star sun 8

8.2 10 m
12

6.96 10 m
R R

×= =
×

 

(c) The visual luminosity is proportional to the power radiated at visible wavelengths. Much of the power is 
radiated nonvisible wavelengths, which does not contribute to the visible luminosity. 

38.51. IDENTIFY and SET UP: Use c f λ=  to relate frequency and wavelength and use E hf=  to relate photon energy 

and frequency. 
EXECUTE: (a) One photon dissociates one AgBr molecule, so we need to find the energy required to dissociate a 
single molecule. The problem states that it requires 51.00 10  J×  to dissociate one mole of AgBr, and one mole 

contains Avogadro’s number 23(6.02 10 )×  of molecules, so the energy required to dissociate one AgBr is 
5

19
23

1.00 10  J/mol
1.66 10  J/molecule.

6.02 10  molecules/mol
−× = ×

×
 

The photon is to have this energy, so 19 191.66 10  J(1eV/1.602 10  J) 1.04 eV.E − −= × × =  

(b) 
hc

E
λ

=  so 
34 8

6
19

(6.626 10  J s)(2.998 10  m/s)
1.20 10  m 1200 nm

1.66 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
×

 

(c) c f λ=  so 
8

14
6

2.998 10  m/s
2.50 10  Hz

1.20 10  m

c
f

λ −

×= = = ×
×

 

(d) 34 6 26(6.626 10  J s)(100 10  Hz) 6.63 10  JE hf − −= = × ⋅ × = ×  
26 19 76.63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= × × = ×  
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(e) EVALUATE: A photon with frequency 100 MHzf =  has too little energy, by a large factor, to dissociate a 

AgBr molecule. The photons in the visible light from a firefly do individually have enough energy to dissociate 
AgBr. The huge number of 100 MHz photons can’t compensate for the fact that individually they have too little 
energy. 

38.52. (a) Assume a non-relativistic velocity and conserve momentum 
λ

h
mv⇒ = ⇒ .

λ

h
v

m
=  

(b) 
2 2

2
2

1 1

2 2 λ 2 λ

h h
K mv m

m m
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

(c) 
2

2

λ
.

2 λ 2 λ

K h h

E m hc mc
= ⋅ =   Recoil becomes an important concern for small m and small λ  since this ratio 

becomes large in those limits. 

(d) 
34 8

7
19

(6.63 10 J s)(3.00 10 m s)
10.2 eV λ 1.22 10 m 122 nm.

(10.2 eV)(1.60 10 J eV)

hc
E

E

−
−

−

× ⋅ ×= ⇒ = = = × =
×

 

34 2
27 8

27 7 2

8
9

(6.63 10 J s)
8.84 10 J 5.53 10 eV.

2(1.67 10 kg)(1.22 10 m)

5.53 10 eV
5.42 10 . This is quite small so recoil can be neglected.

10.2 eV

K

K

E

−
− −

− −

−
−

× ⋅= = × = ×
× ×

×= = ×
 

38.53. IDENTIFY and SET UP: 
c

f
λ

= .  The 0( , )f V values are:  14(8.20 10  Hz,  1.48 V)× , 14(7.41 10  Hz,  1.15 V)× , 

14(6.88 10  Hz,  0.93 V)× , 14(6.10 10  Hz,  0.62 V)× , 14(5.49 10  Hz,  0.36 V)× , 14(5.18 10  Hz,  0.24 V)× .  The graph 

of 0V versus f is given in Figure 38.53. 

EXECUTE: (a) The threshold frequency, thf , is f where 0 0V = .  From the graph this is 14
th 4.56 10  Hzf = × . 

(b) 
8

th 14
th

3.00 10  m/s
658 nm

4.56 10  Hz

c

f
λ ×= = =

×
 

(c) 15 14
th (4.136 10  eV s)(4.56 10  Hz) 1.89 eVhfφ −= = × ⋅ × =  

(d) 0eV hf φ= − so 0

h
V f

e
φ⎛ ⎞= −⎜ ⎟

⎝ ⎠
.  The slope of the graph is 

h

e
. 

15
14 14

1.48 V 0.24 V
4.11 10  V/Hz

8.20 10  Hz 5.18 10  Hz

h

e
−−⎛ ⎞= = ×⎜ ⎟× − ×⎝ ⎠

 and 

15 19 34(4.11 10  V/Hz)(1.60 10  C) 6.58 10  J sh − − −= × × = × ⋅ . 

 
Figure 38.53 

38.54. (a) 
14

( ) (200 W)(0.10)

( ) (5.00 10 Hz)

dN dE dt P

dt dE dN hf h
= = = =

×
196.03 10 photons sec.×  

(b) Demand 11 2
2

( )
1.00 10 photons sec cm .

4

dN dt

rπ
= × ⋅  

Therefore, 
1/ 219

11 2

6.03 10 photons sec
6930 cm 69.3 m.

4 (1.00 10 photons sec cm )
r

π
⎛ ⎞×= = =⎜ ⎟× ⋅⎝ ⎠

 

38.55. (a) IDENTIFY: Apply the photoelectric effect equation, Eq.(38.4). 
SET UP: 0 ( / ) .eV hf hcφ λ φ= − = −  Call the stopping potential 01V  for 1λ  and 02V  for 2.λ  Thus 

01 1( / )eV hc λ φ= −  and 02 2( / ) .eV hc λ φ= −  Note that the work function φ  is a property of the material and is 

independent of the wavelength of the light. 

EXECUTE: Subtracting one equation from the other gives 1 2
02 01

1 2

( ) .e V V hc
λ λ
λ λ

⎛ ⎞−− = ⎜ ⎟
⎝ ⎠
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(b) 
34 8 9 9

0 19 9 9

(6.626 10  J s)(2.998 10  m/s) 295 10  m 265 10  m
0.476 V.

1.602 10  C (295 10  m)(265 10  m)
V

− − −

− − −

⎛ ⎞× ⋅ × × − ×Δ = =⎜ ⎟× × ×⎝ ⎠
 

EVALUATE: 0 ,e VΔ  which is 0.476 eV, is the increase in photon energy from 295 nm to 265 nm. The stopping 

potential increases when λ  deceases because the photon energy increases when the wavelength decreases. 
38.56. IDENTIFY: The photoelectric effect occurs, so the energy of the photon is used to eject an electron, with any 

excess energy going into kinetic energy of the electron. 
SET UP: Conservation of energy gives hf = hc/λ = Kmax + φ. 
EXECUTE: (a) Using hc/λ = Kmax + φ, we solve for the work function: 

φ = hc/λ – Kmax = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(124 nm) – 4.16 eV = 5.85 eV 

(b) The number N of photoelectrons per second is equal to the number of photons per second that strike the metal 
per second.  N × (energy of a photon) = 2.50 W. N(hc/λ) = 2.50 W. 
N = (2.50 W)(124 nm)/[(6.626 × 10–34 J s⋅ )(3.00 × 108 m/s)] = 1.56 × 1018 electrons/s 
(c) N is proportional to the power, so if the power is cut in half, so is N, which gives 

N = (1.56 × 1018 el/s)/2 = 7.80 × 1017 el/s 

(d) If we cut the wavelength by half, the energy of each photon is doubled since E = hc/λ. To maintain the same 
power, the number of photons must be half of what they were in part (b), so N is cut in half to 7.80 × 1017 el/s. We 
could also see this from part (b), where N is proportional to λ. So if the wavelength is cut in half, so is N. 
EVALUATE: In part (c), reducing the power does not reduce the maximum kinetic energy of the photons; it only 
reduces the number of ejected electrons. In part (d), reducing the wavelength does change the maximum kinetic 
energy of the photoelectrons because we have increased the energy of each photon. 

38.57. IDENTIFY and SET UP: The energy added to mass m of the blood to heat it to f 100 CT = °  and to vaporize it is 

f i v( )Q mc T T mL= − + , with 4190 J/kg Kc = ⋅  and 6
v 2.256 10  J/kgL = × .  The energy of one photon is 

251.99 10  J mhc
E

λ λ

−× ⋅= = . 

EXECUTE: (a) 9 9 6(2.0 10  kg)(4190 J/kg K)(100 C 33 C) (2.0 10  kg)(2.256 10  J/kg)Q − −= × ⋅ − + × × =° °  35.07 10  J−×  

The pulse must deliver 5.07 mJ of energy. 

(b) 
3

6

energy 5.07 10  J
11.3 W

450 10  s
P

t

−

−

×= = =
×

 

(c) One photon has energy  
25

19
9

1.99 10  J m
3.40 10  J

585 10  m

hc
E

λ

−
−

−

× ⋅= = = ×
×

.  The number N of photons per pulse is the 

energy per pulse divided by the energy of one photon:  
3

16
19

5.07 10  J
1.49 10  photons

3.40 10  J/photon
N

−

−

×= = ×
×

 

38.58. (a) 0λ ,
hc

E
=  and the wavelengths are: cesium: 590 nm, copper: 264 nm, potassium: 539 nm, zinc: 288 nm.  

b) The wavelengths of copper and zinc are in the ultraviolet, and visible light is not energetic enough to overcome 
the threshold energy of these metals. 

38.59. (a) IDENTIFY and SET UP: Apply Eq.(38.20): p1 2
r

1 2 p

207

207
e

e

m mm m
m

m m m m
= =

+ +
 

EXECUTE: 
31 27

28
r 31 27

207(9.109 10  kg)(1.673 10  kg)
1.69 10  kg

207(9.109 10  kg) 1.673 10  kg
m

− −
−

− −

× ×= = ×
× + ×

 

We have used em  to denote the electron mass. 

(b) IDENTIFY: In Eq.(38.18) replace em m=  by 
4

r
r 2 2 2

0

1
: .

8n

m e
m E

n h
= −
P

 

SET UP: Write as 
4

r H
2 2 2

H 0

1
,

8n

m m e
E

m n h

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠P

 since we know that 
4

H
2 2
0

1
13.60 eV.

8

m e

h
=

P
 Here Hm  denotes the 

reduced mass for the hydrogen atom; 31 31
H 0.99946(9.109 10  kg) 9.104 10  kg.m − −= × = ×  

EXECUTE: r
2

H

13.60 eV
n

m
E

m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

28

1 31

1.69 10  kg
( 13.60 eV) 186( 13.60 eV) 2.53 keV

9.104 10  kg
E

−

−

×= − = − = −
×
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(c) SET UP: From part (b), r H
2

H

,n

m R ch
E

m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 where 7 1
H 1.097 10  mR −= ×  is the Rydberg constant for the 

hydrogen atom. Use this result in i f

hc
E E

λ
= −  to find an expression for 1/ .λ  The initial level for the transition is 

the 2in =  level and the final level is the 1fn =  level. 

EXECUTE:  r H H
2 2

H i f

hc m R ch R ch

m n nλ
⎛ ⎞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

r
H 2 2

H f i

1 1 1m
R

m n nλ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

28
7 1 9 1

31 2 2

1 1.69 10  kg 1 1
(1.097 10  m ) 1.527 10  m

9.104 10  kg 1 2λ

−
− −

−

× ⎛ ⎞= × − = ×⎜ ⎟× ⎝ ⎠
 

0.655 nmλ =  
EVALUATE: From Example 38.6 the wavelength of the radiation emitted in this transition in hydrogen is 122 nm. 

The wavelength for muonium is 3H

r

5.39 10
m

m
−= ×  times this. The reduced mass for hydrogen is very close to the 

electron mass because the electron mass is much less then the proton mass: p e/ 1836.m m =  The muon mass is 
28

e207 1.886 10  kg.m −= ×  The proton is only about 10 times more massive than the muon, so the reduced mass is 

somewhat smaller than the muon mass. The muon-proton atom has much more strongly bound energy levels and 
much shorter wavelengths in its spectrum than for hydrogen. 

38.60. (a) The change in wavelength of the scattered photon is given by Eq. 38.23 

34
9

31 8

λ λ (1 cos ) λ λ (1 cos )

(6.63 10 J s)
(0.0830 10 m) (1 1) 0.0781 nm.

(9.11 10 kg)(3.00 10 m s)

h h

mc mc
φ φ

−
−

−

′ ′− = − ⇒ = − − =

× ⋅× − + =
× ×

 

(b) Since the collision is one-dimensional, the magnitude of the electron’s momentum must be equal to the 
magnitude of the change in the photon’s momentum. Thus, 

34 9 1
e

23 23

1 1 1 1
(6.63 10 J s) (10  m )

λ λ 0.0781 0.0830

1.65 10  kg m s 2 10  kg m s.

p h − −

− −

−⎛ ⎞ ⎛ ⎞= − = × ⋅ +⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
= × ⋅ ≈ × ⋅

 

(c) Since the electron is non relativistic ( 0.06),β =
2

16 16e
e 1.49 10 J 10 J.

2

p
K

m
− −= = × ≈  

38.61. IDENTIFY and SET UP: (1 cos )
h

mc
λ λ φ′ = + −  

180φ = °  so 
2

0.09485 m.
h

mc
λ λ′ = + =  Use Eq.(38.5) to calculate the momentum of the scattered photon. Apply 

conservation of energy to the collision to calculate the kinetic energy of the electron after the scattering. The 
energy of the photon is given by Eq.(38.2), 
EXECUTE: (a) 24/ 6.99 10  kg m/s.p h λ −′ ′= = × ⋅  

(b) e e;  / /E E E hc hc Eλ λ′ ′= + = +  

16
e

1 1
( ) 1.129 10  J 705 eVE hc hc

λ λ
λ λ λλ

−′ −⎛ ⎞= − = = × =⎜ ⎟′ ′⎝ ⎠
 

EVALUATE: The energy of the incident photon is 13.8 keV, so only about 5% of its energy is transferred to the 
electron. This corresponds to a fractional shift in the photon’s wavelength that is also 5%. 

38.62. (a) 
2

180 so (1 cos ) 2 λ 0.0049 nm, so λ 0.1849 nm.
h

mc
φ φ ′= ° − = ⇒ Δ = = =  

(b) 171 1
2.93 10 J 183 eV.

λ λ
E hc −⎛ ⎞Δ = − = × =⎜ ⎟′⎝ ⎠

 This will be the kinetic energy of the electron. 

(c) The kinetic energy is far less than the rest mass energy, so a non-relativistic calculation is adequate; 
62 8.02 10 m s.v K m= = ×  
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38.63. IDENTIFY and SET UP: The Hα line in the Balmer series corresponds to the 3n = to 2n = transition.  

2

13.6 eV
nE

n
= − .  

hc
E

λ
= Δ . 

EXECUTE: (a) The atom must be given an amount of energy 3 1 2 2

1 1
(13.6 eV) 12.1 eV

3 1
E E

⎛ ⎞− = − − =⎜ ⎟
⎝ ⎠

. 

(b) There are three possible transitions.  3 1n n= → = :  12.1 eVEΔ = and 103 nm
hc

E
λ = =

Δ
; 

3 2n n= → = :  
2 2

1 1
(13.6 eV) 1.89 eV

3 2
E

⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

and 657 nmλ = ; 2 1n n= → = :  

2 2

1 1
(13.6 eV) 10.2 eV

2 1
E

⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

and 122 nmλ = . 

38.64. 
( )

ex g( ) ex g2

1 2 1

( )
.

ln /
E E kT E En

e T
n k n n

− − − −
= ⇒ =  

18
ex 2 g ex g

13.6 eV
3.4 eV.  13.6 eV.  10.2 eV 1.63 10 J.

4
E E E E E −−= = = − = − − = = ×  

(a) 122

1

10 .
n

n
−=  

18

23 12

(1.63 10 J)
4275 K.

(1.38 10 J K) ln(10 )
T

−

− −

− ×= =
×

 

(b) 82

1

10 .
n

n
−=  

18

23 8

(1.63 10 J)
6412 K.

(1.38 10 J K ) ln(10 )
T

−

− −

− ×= =
×

 

(c) 42

1

10 .
n

n
−=  

18

23 4

(1.63 10 J)
12824 K.

(1.38 10 J K ) ln(10 )
T

−

− −

− ×= =
×

 

(d) For absorption to take place in the Balmer series, hydrogen must start  in the 2n =  state. From part (a), colder 
stars have fewer atoms in this state leading to weaker absorption lines. 

38.65. (a) IDENTIFY and SET UP: The photon energy is given to the electron in the atom. Some of this energy 
overcomes the binding energy of the atom and what is left appears as kinetic energy of the free electron. Apply 

f i ,hf E E= −  the energy given to the electron in the atom when a photon is absorbed. 

EXECUTE: The energy of one photon is 
34 8

9

(6.626 10  J s)(2.998 10  m/s)

85.5 10  m

hc

λ

−

−

× ⋅ ×=
×

 

18 192.323 10  J(1 eV/1.602 10  J) 14.50 eV.
hc

λ
− −= × × =  

The final energy of the electron is f i .E E hf= +  In the ground state of the hydrogen atom the energy of the electron 

is i 13.60 eV.E = −  Thus f 13.60 eV 14.50 eV 0.90 eV.E = − + =  

(b) EVALUATE: At thermal equilibrium a few atoms will be in the 2n =  excited levels, which have an energy of 
13.6 eV/4 3.40 eV, 10.2 eV− = − greater than the energy of the ground state. If an electron with 3.40 eVE = −  

gains 14.5 eV from the absorbed photon, it will end up with 14.5 eV 3.4 eV 11.1 eV− = of kinetic energy. 
38.66. IDENTIFY: The diffraction grating allows us to determine the peak-intensity wavelength of the light. Then 

Wien’s displacement law allows us to calculate the temperature of the blackbody, and the Stefan-Boltzmann law 
allows us to calculate the rate at which it radiates energy. 
SET UP: The bright spots for a diffraction grating occur when d sin θ = mλ. Wien’s displacement law is 

3

peak

2.90 10 m K

T
λ

−× ⋅= , and the Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the 

total radiated power is P = σAT 4. 
EXECUTE: (a) First find the wavelength of the light: 

λ = d sin θ = [1/(385,000 lines/m)] sin(11.6°) = 5.22 × 10–7 m 

Now use Wien’s law to find the temperature: T = (2.90 × 10–3 m K⋅ )/(5.22 × 10–7 m) = 5550 K. 
(b) The energy radiated by the blackbody is equal to the power times the time, giving 
U = Pt = IAt = σAT 4t, which gives 

t = U/(σAT 4) = (12.0 × 106 J)/[(5.67 × 10–8 2 4W/m K⋅ )(4π)(0.0750 m)2(5550 K)4] = 3.16 s. 
EVALUATE: By ordinary standards, this blackbody is very hot, so it does not take long to radiate 12.0 MJ of 
energy. 
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38.67. IDENTIFY: Assuming that Betelgeuse radiates like a perfect blackbody, Wien’s displacement and the Stefan-
Boltzmann law apply to its radiation. 

SET UP: Wien’s displacement law is 
3

peak

2.90 10 m K

T
λ

−× ⋅= , and the Stefan-Boltzmann law says that the 

intensity of the radiation is I = σT 4, so the total radiated power is P = σAT 4. 
EXECUTE: (a) First use Wien’s law to find the peak wavelength: 

λm = (2.90 × 10–3 m K⋅ )/(3000 K) = 9.667 × 10–7 m 

Call N the number osf photons/second radiated. N × (energy per photon) = IA = σAT 4. 

N (hc/λm) = σAT 4.  
4

m AT
N

hc

λ σ= . 

7 8 2 4 8 2 4

34 8

(9.667 10  m)(5.67 10  W/m K )(4 )(600 6.96 10  m) (3000 K)

(6.626 10  J s)(3.00 10  m/s)
N

π− −

−

× × ⋅ × ×=
× ⋅ ×

. 

N = 5 × 1049 photons/s. 

(b) 
2 44 2 4

B B B B B B S
4 2 4

S S S S S S S

4 600 3000 K

4 5800 K

I A A T R T R

I A A T R T R

σ π
σ π

⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 = 3 × 104 

EVALUATE: Betelgeuse radiates 30,000 times as much energy per second as does our sun! 
38.68. IDENTIFY: The blackbody radiates heat into the water, but the water also radiates heat back into the blackbody. 

The net heat entering the water causes evaporation. Wien’s law tells us the peak wavelength radiated, but a 
thermophile in the water measures the wavelength and frequency of the light in the water. 

SET UP: By the Stefan-Boltzman law, the net power radiated by the blackbody is ( )4 4
sphere water

dQ
A T T

dt
σ= − . Since 

this heat evaporates water, the rate at which water evaporates is v

dQ dm
L

dt dt
= . Wien’s displacement law is 

3

m

2.90 10 m K

T
λ

−× ⋅= , and the wavelength in the water is λw = λ0/n. 

EXECUTE: (a) The net radiated heat is  ( )4 4
sphere water

dQ
A T T

dt
σ= −  and the evaporation rate is v

dQ dm
L

dt dt
= , where 

dm is the mass of water that evaporates in time dt. Equating these two rates gives ( )4 4
v sphere water

dm
L A T T

dt
σ= − . 

( )( )2 4 4
sphere water

v

4 R T Tdm

dt L

σ π −
= . 

( )( )8 2 4 2 4 4

4
3

5.67 10  W/m K 4 (0.120 m) (498 K) (373 K)
1.92 10  kg/s 0.193 g/s

2256 10  J/Kg

dm

dt

π−
−

⎡ ⎤× ⋅ −⎣ ⎦= = × =
×

 

(b) (i) Wien’s law gives λm = (0.00290 m K⋅ )/(498 K) = 5.82 × 10–6 m 
But this would be the wavelength in vacuum. In the water the thermophile organism would measure λw = λ0/n

 = 
(5.82 × 10–6 m)/1.333 = 4.37 × 10–6 m = 4.37 µm 
(ii) The frequency is the same as if the wave were in air, so 

f = c/λ0 = (3.00 ×108 m/s)/(5.82 × 10–6 m) = 5.15 × 1013 Hz 

EVALUATE: An alternative way is to use the quantities in the water:
0

/

/

c n
f

nλ
=  = c/λ0, which gives the same 

answer for the frequency. An organism in the water would measure the light coming to it through the water, so the 
wavelength it would measure would be reduced by a factor of 1/n. 

38.69. IDENTIFY: The energy of the peak-intensity photons must be equal to the energy difference between the n = 1 
and the n = 4 states. Wien’s law allows us to calculate what the temperature of the blackbody must be for it to 
radiate with its peak intensity at this wavelength. 

SET UP: In the Bohr model, the energy of an electron in shell n is 
2

13.6 eV
nE

n
= − , and Wien’s displacement law 

is 
3

m

2.90 10 m K

T
λ

−× ⋅= . The energy of a photon is E = hf = hc/λ.  

EXECUTE: First find the energy (ΔE) that a photon would need to excite the atom. The ground state of the atom 
is n = 1 and the third excited state is n = 4. This energy is the difference between the two energy levels. Therefore 
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ΔE = ( ) 2 2

1 1
13.6  eV

4 1
⎛ ⎞− −⎜ ⎟
⎝ ⎠

 = 12.8 eV. Now find the wavelength of the photon having this amount of energy.  

hc/λ = 12.8 eV and 

λ = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(12.8 eV) = 9.73 ×10–8 m 

Now use Wien’s law to find the temperature. T = (0.00290 m K⋅ )/(9.73 × 10–8 m) = 2.98 × 104 K. 
EVALUATE: This temperature is well above ordinary room temperatures, which is why hydrogen atoms are not in 
excited states during everyday conditions. 

38.70. IDENTIFY and SET UP: Electrical power is VI.  Q mc T= Δ . 

EXECUTE: (a) 3 3(0.010) (0.010)(18.0 10  V)(60.0 10  A) 10.8 W 10.8 J/sVI −= × × = =  

(b) The energy in the electron beam that isn’t converted to x rays stays in the target and appears as thermal energy.  

For 1.00 st = , 3(0.990) (1.00 s) 1.07 10  JQ VI= = × and 
31.07 10  J

32.9 K
(0.250 kg)(130 J/kg K)

Q
T

mc

×Δ = = =
⋅

.  The 

temperature rises at a rate of 32.9 K/s. 
EVALUATE: The target must be made of a material that has a high melting point. 

38.71. IDENTIFY: Apply conservation of energy and conservation of linear momentum to the system of atom plus 
photon. 
(a) SET UP: Let trE  be the transition energy, phE  be the energy of the photon with wavelength ,λ′  and rE  be 

the kinetic energy of the recoiling atom. Conservation of energy gives ph r tr .E E E+ =  

ph

hc
E

λ
=

′
 so tr r

hc
E E

λ
= −

′
 and 

tr r

.
hc

E E
λ′ =

−
 

EXECUTE: If the recoil energy is neglected then the photon wavelength is tr/ .hc Eλ =  

tr r tr tr r tr

1 1 1
1

1 /

hc
hc

E E E E E E
λ λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞′Δ = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

1

r r

r tr tr tr

1
1 1

1 / E

E E

E E E

−
⎛ ⎞

= − ≈ +⎜ ⎟− ⎝ ⎠
 since r

tr

1
E

E
V  

(We have used the binomial theorem, Appendix B.) 

Thus r

tr tr

,
hc E

E E
λ

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 or since 2r

tr / ,  .
E

E hc
hc

λ λ λ⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

 

SET UP: Use conservation of linear momentum to find r :E  Assuming that the atom is initially at rest, the 

momentum rp  of the recoiling atom must be equal in magnitude and opposite in direction to the momentum 

ph /p h λ=  of the emitted photon: r/ .h pλ =  

EXECUTE: 
2
r

r ,
2

p
E

m
=  where m is the mass of the atom, so 

2

r 2
.

2

h
E

mλ
=  

Use this result in the above equation: 
2 2

2r
2

;
2 2

E h h

hc m hc mc

λλ λ
λ

⎛ ⎞⎛ ⎞⎛ ⎞Δ = = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

note that this result for λΔ  is independent of the atomic transition energy. 

(b) For a hydrogen atom pm m=  and 
34

16
27 8

p

6.626 10  J s
6.61 10  m

2 2(1.673 10  kg)(2.998 10  m/s)

h

m c
λ

−
−

−

× ⋅Δ = = = ×
× ×

 

EVALUATE: The correction is independent of n. The wavelengths of photons emitted in hydrogen atom 

transitions are on the order of 7100 nm 10  m,−= so the recoil correction is exceedingly small. 

38.72. (a) 1 1 2 2λ ( )(1 cos ), λ ( )(1 cos ),h mc θ h mc θΔ = − Δ = −  and so the overall wavelength shift is 

1 2λ ( )(2 cos cos ).h mc θ θΔ = − −  

(b) For a single scattering through angle s, λ ( )(1 cos ).θ h mc θΔ = −  For two successive scatterings through an 

angle of 2θ  for each scattering, 

tλ 2( )(1 cos 2).h mc θΔ = −  

2 2
s

2
s t

1 cos 2(1 cos ( 2)) and λ ( )2(1 cos ( 2))

cos( 2) 1so1 cos ( 2) (1 cos( 2)) and λ λ

θ θ h mc θ
θ θ θ

− = − Δ = −

≤ − ≥ − Δ ≥ Δ
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Equality holds only when 180 .θ = °  
(c) ( )2(1 cos30.0 ) 0.268( ).h mc h mc− ° =   

(d) ( )(1 cos60 ) 0.500( ),h mc h mc− ° = which is indeed greater than the shift found in part (c). 

38.73. IDENTIFY and SET UP: Find the average change in wavelength for one scattering and use that in λΔ  in 
Eq.(38.23) to calculate the average scattering angle .φ  
EXECUTE: (a) The wavelength of a 1 MeV photon is 

15 8
12

6

(4.136 10  eV s)(2.998 10  m/s)
1 10  m

1 10  eV

hc

E
λ

−
−× ⋅ ×= = = ×

×
 

The total change in wavelength therefore is 9 12 9500 10  m 1 10  m 500 10  m.− − −× − × = ×  

If this shift is produced in 2610  Compton scattering events, the wavelength shift in each scattering event is 
9

33
26

500 10  m
5 10  m.

1 10
λ

−
−×Δ = = ×

×
 

(b) Use this λΔ  in (1 cos )
h

mc
λ φΔ = −  and solve for .φ  We anticipate that φ  will be very small, since λΔ  is 

much less than / ,h mc  so we can use 2cos 1 / 2.φ φ≈ −  

2 2(1 (1 / 2))
2

h h

mc mc
λ φ φΔ = − − =  

33
11 9

12

2 2(5 10  m)
6.4 10  rad (4 10 )

( / ) 2.426 10  mh mc

λφ
−

− −
−

Δ ×= = = × = × °
×

 

φ  in radians is much less than 1 so the approximation we used is valid. 
(c) IDENTIFY and SET UP: We know the total transit time and the total number of scatterings, so we can calculate 
the average time between scatterings. 
EXECUTE: The total time to travel from the core to the surface is 6 7 13(10  y)(3.156 10  s/y) 3.2 10  s.× = ×  There are 

2610  scatterings during this time, so the average time between scatterings is 
13

13
26

3.2 10  s
3.2 10  s.

10
t −×= = ×  

The distance light travels in this time is 8 13(3.0 10  m/s)(3.2 10  s) 0.1 mmd ct −= = × × =  

EVALUATE: The photons are on the average scattered through a very small angle in each scattering event. The 
average distance a photon travels between scatterings is very small. 

38.74. (a) The final energy of the photon is ,and ,
λ

hc
E E E K′ ′= = +

′
 where K is the kinetic energy of the electron after 

the collision. Then, 

2

2 2 1 2

λ
λ .

( λ ) ( λ ) ( 1) λ 1
1 1

(1 )

hc hc hc

E K hc K hc mc mc

h v c

γ
′

= = = =
′ ′ ′ ′+ + + − ⎡ ⎤

+ −⎢ ⎥−⎣ ⎦

 

2( ( 1)K mc γ= −  since the relativistic expression must be used for three-figure accuracy). 

(b) arccos(1 λ ( )).h mcφ = − Δ  

(c) 
( )( )

12
1 221.80

3.00

1
1 1 1.25 1 0.250, 2.43 10 m

1

h

mc
γ −− = − = − = = ×

−
 

3
3

12 31 8

34

5.10 10 mm
λ 3.34 10 nm

(5.10 10 m)(9.11 10 kg)(3.00 10 m s)(0.250)
1

(6.63 10 J s)

−
−

− −

−

×
⇒ = = ×

× × ×+
× ⋅

. 

12 12

12

(5.10 10 m 3.34 10 m)
arccos 1 74.0 .

2.43 10 m
φ

− −

−

⎛ ⎞× − ×= − = °⎜ ⎟×⎝ ⎠
 

38.75. (a) IDENTIFY and SET UP: Conservation of energy applied to the collision gives e ,E E Eλ λ′= +  where eE  is the 

kinetic energy of the electron after the collision and Eλ  and Eλ′  are the energies of the photon before and after the 

collision. The energy of a photon is related to its wavelength according to Eq.(38.2). 



38-18 Chapter 38 

EXECUTE: e

1 1
E hc hc

λ λ
λ λ λλ

′ −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
 

9
34 8

e 9 9

0.0032 10  m
(6.626 10  J s)(2.998 10  m/s)

(0.1100 10  m)(0.1132 10  m)
E

−
−

− −

⎛ ⎞×= × ⋅ × ⎜ ⎟× ×⎝ ⎠
 

17
e 5.105 10  J 319 eVE −= × =  

2
e

1

2
E mv=  so 

17
7e

31

2 2(5.105 10  J)
1.06 10  m/s

9.109 10  kg

E
v

m

−

−

×= = = ×
×

 

(b) The wavelength λ  of a photon with energy eE  is given by e /E hc λ=  so 
34 8

17
e

(6.626 10  J s)(2.998 10  m/s)
3.89 nm

5.105 10  J

hc

E
λ

−

−

× ⋅ ×= = =
×

 

EVALUATE: Only a small portion of the incident photon’s energy is transferred to the struck electron; this is why 
the wavelength calculated in part (b) is much larger than the wavelength of the incident photon in the Compton 
scattering. 

38.76. IDENTIFY: Apply the Compton scattering formula c(1 cos ) (1 cos )
h

mc
λ λ λ φ λ φ′ − = Δ = − = −  

(a) SET UP: Largest λΔ  is for 180 .φ = °  

EXECUTE: For c180 ,  2 2(2.426 pm) 4.85 pm.φ λ λ= ° Δ = = =  

(b) SET UP: c (1 cos )λ λ λ φ′ − = −  

Wavelength doubles implies 2λ λ′ =  so .λ λ λ′ − =  Thus C (1 cos ). λ λ φ λ= −  is related to E by Eq.(38.2). 

EXECUTE: / ,E hc λ=  so smallest energy photon means largest wavelength photon, so 180φ = °  and 

c2 4.85 pm.λ λ= =  Then 
34 8

14 19
12

(6.626 10  J s)(2.998 10  m/s)
4.096 10  J(1 eV/1.602 10  J)

4.85 10  m

hc
E

λ

−
− −

−

× ⋅ ×= = = × × =
×

 

0.256 MeV.  
EVALUATE: Any photon Compton scattered at 180φ = °  has a wavelength increase of c2 4.85 pm.λ =  4.85 pm is 

near the short-wavelength end of the range of x-ray wavelengths. 

38.77. (a) 
2

5 λ

2
(λ) but λ

λ ( 1)hc kT

hc c
I

e f

π= =
−

 

2 5

5 3

2 2
( )

( ) ( 1) ( 1)hf kT hf kT

hc hf
I f

c f e c e

π π
⇒ = =

− −
 

(b) 
0

20
(λ) ( )

c
I d I f df

f
λ

∞

∞

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

∫ ∫  

3 4 3 4 5 4 5 4 4
4

2 2 3 2 3 3 2 2 30 0

2 2 ( ) 2 ( ) 1 (2 ) ( ) 2
(2 )

( 1) 1 240 240 15hf kT x

hf df kT x kT kT k T
dx

c e c h e c h h c c h

π π π π ππ
∞ ∞

= = = = =
− −∫ ∫  

(c) The expression 
5 4 4

3 2

2

15

k T

h c

π σ=  as shown in Eq. (38.36). Plugging in the values for the constants we get 

8 2 45.67 10 W m Kσ −= × ⋅ . 

38.78. 4, , and ; combining,I σT P IA E Pt= = Δ =  

3
4 6 2 8 2 4 4

(100 J)
8.81 10  s 2.45 hrs.

(4.00 10 m )(5.67 10 W m K )(473 K)

E
t

A Tσ − −

Δ= = = × =
× × ⋅

 

38.79. (a) The period was found in Exercise 38.27b: 
2 3 3
0

4

4 n h
T

me
= P

 and frequency is just 
4

2 3 3
0

1
.

4

me
f

T n h
= =

P
 

(b) Eq. (38.6) tells us that 2 1

1
( ).f E E

h
= −  So 

4

2 3 2 2
0 2 1

1 1

8

me
f

h n n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
 (from Eq. (38.18)). 

If 2 1 2 2 2 2
2 1

1 1 1 1
and 1, then

( 1)
n n n n

n n n n
= = + − = −

+
 

4

2 2 2 3 2 3 3
0

1 1 1 2 2
1 1 1 for large .

(1 1 ) 4

me
n f

n n n n n n h

⎛ ⎞ ⎛ ⎞⎛ ⎞= − ≈ − − + = ⇒ ≈⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠ P
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38.80. Each photon has momentum ,
λ

h
p =  and if the rate at which the photons strike the surface is ( ),dN dt  the force 

on the surface is ( λ)( ),h dN dt  and the pressure is ( λ)( ) .h dN dt A  The intensity is 

( )( ) ( )( λ) ,I dN dt E A dN dt hc A= =  and comparison of the two expressions gives the pressure as ( ).I c  

38.81. Momentum:  ( )p P p P p P p P′ ′ ′ ′ ′ ′⇒ − = − − ⇒ = − +p + P = p + P  

energy: pc E p c E′ ′+ = + 2 2 2( ) ( )p c P c mc′ ′= + +  
2 2 2 2( ) ( ) ( )pc p c E P c mc′ ′⇒ − + = + 2 2 2 2 2( ) (( ) ) 2 ( ) ( )Pc p p c P p p c mc′ ′= + + − + +  

2 2 2 2 2 2( ) ( ) 2( )( ) 2 ( ) 4 2 ( )pc p c E E pc p c Pc p p Ec p p pp c Ec p p′ ′ ′ ′ ′ ′− + = + + − + + − − + −  

22( )( ) 0Pc p p′+ + =  

2 2 2

2

2 2

( 2 ) ( )

2 2 ( )

2 λ ( ) 2
λ λ λ

(λ( ) 2 )
λ

p Pc pc Ec p Ec Pc

Ec Pc E Pc
p p p

pc Ec Pc pc E Pc

hc E Pc E Pc hc

E Pc E Pc E Pc

E Pc hc

E Pc

′⇒ − − = − −
+ +′⇒ = =

+ − + −
+ − −⎛ ⎞ ⎛ ⎞′⇒ = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

− +′⇒ =
+

 

If
22

2 2 2 2, ( ) 1
mc

E mc Pc E mc E
E

⎛ ⎞
= − = − ⎜ ⎟

⎝ ⎠
W  

221
1

2

mc
E

E

⎛ ⎞⎛ ⎞⎜ ⎟≈ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 21 ( )

2

mc
E Pc

E
⇒ − ≈

2 2 2 4

1

( ) λ
λ 1

2 (2 ) 4

λ mc hc hc m c

E E E E hcE

⎛ ⎞
⇒ ≈ + = +⎜ ⎟

⎝ ⎠
 

(b) If 6 0 9
λ 10.6 10 m, 1.00 10 eV 1.60 10 JE− 1 −= × = × = ×  

31 2 4 6

9 9

(9.11 10 kg) (10.6 10 m)
λ 1

1.60 10 J 4 (1.6 10 J)

hc c

hc

− −

− −

⎛ ⎞× ×′⇒ ≈ +⎜ ⎟× ×⎝ ⎠
 

16 15(1.24 10 m)(1 56.0) 7.08 10 m.− −= × + = ×  

(c) These photons are gamma rays. We have taken infrared radiation and converted it into gamma rays! Perhaps 
useful in nuclear medicine, nuclear spectroscopy, or high energy physics: wherever controlled gamma ray sources 
might be useful. 



 

 


