SOURCES OF MAGNETIC FIELD

28.1.

28.2.

28.3.

IDENTIFY and SET UP:  Use Eq.(28.2) to calculate B at each point.
B=&_q|/';(r =&—qv>3(r , sincef=£.
4 r 4r r r

V= (8.00 x10° m/ s)} and 7 is the vector from the charge to the point where the field is calculated.

EXECUTE: (a) F=(0.500 m)f, r=0.500 m

<l

x?=vrj'xf=—vrle
6.00x107 C)(8.00><106 m/s) R
. k
(0.500 m)

1?:-2‘—0‘1—2V1€=—(1x10*7 T-m/A)(
nr

B=—(1.92x10" T)k

(b) 7 =~(0.500 m)j, r=0.500 m
XF=—vrjx j=0and B=0.

(¢) 7 =(0.500 m)&, =0.500 m

ﬁx?:vr}xlg:vrt:

6 6
6.00x10 C)(S-OO;IO rWS){=+(1.92x10‘5 T)i
(0.500 m)

B=(1x10'7T~nmA)(

(d) 7=—(0.500 m)j+(0.500 m)k, »=1/(0.500 m)’ +(0.500 m)’ =0.7071 m
¥x 7 =(0.500 m)(—}'x}ﬂ‘xlé) =(4.00x10° m*/s)i

6.00x10°° C)(4.00x10° m/s) ,

B=(1x10" T-m/A)( 07071 m) i=+(6.79x10"° T)i
. m

EVALUATE: At each point B is perpendicular to both ¥ and 7. B = 0 along the direction of ¥.
IDENTIFY: A moving charge creates a magnetic field as well as an electric field.

B= ﬂ&inqj, and its electric field is £ = ;i

SET Up: The magnetic field caused by a moving charge is >
ar r dre, r

since g = e.
EXECUTE: Substitute the appropriate numbers into the above equations.
gt gvsing 4z x 107 T-m/A (1.60x107C)(2.2x10°m/s)sin90°

=13 T, out of the page.
P 4x (53x10 'm)’ pag

9 2 2 -19
E= ! %: (0-00x10" N-m /§13(1’620X10 © =5.1x10" N/C, toward the electron.
4re, v (5.3x107" m)

EVALUATE: There are enormous fields within the atom!
IDENTIFY: A moving charge creates a magnetic field.
p=toqv sing

SET Up: The magnetic field due to a moving charge is 4 5
T or
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28.4.

28.5.

28.6.

EXECUTE: Substituting numbers into the above equation gives
@) B _ My qvsing _4zx107 T-m/A (1.6x10™" C)(3.0x10” m/s)sin30°
Ar 7 Ar (2.00x10°° m)* '
B=6.00 x 10°* T, out of the paper, and it is the same at point B.
(b) B=(1.00 x 107 T- m/A)(1.60 x 107" C)(3.00 x 10" m/s)/(2.00 x 10® m)
B=1.20x10"T, out of the page.
(c) B=0 T since sin(180°) = 0.
EVALUATE: Even at high speeds, these charges produce magnetic fields much less than the Earth’s magnetic
field.
IDENTIFY: Both moving charges produce magnetic fields, and the net field is the vector sum of the two fields.
SET Up: Both fields point out of the paper, so their magnitudes add, giving

_ _ MY
B =B+ Bag=
oh ! 4t

(esin40° + 2esin140°)

EXECUTE: Factoring out an e and putting in the numbers gives

g irx 107 T-m/A (1.60x 107" C)(2.50 x 10° m/s)
Ar (1.75x10°m)*

(sin 40° + 2sinl40°)

B=2.52x10" T =2.52 mT, out of the page.
EVALUATE: At distances very close to the charges, the magnetic field is strong enough to be important.
qv xF

3
r

IDENTIFY: Apply B =12
4z
SET UP: Since the charge is at the origin, ¥ = xi +yj+zk.
EXECUTE: (a) v=vi,F=ri; vxF=0,B=0.
(b) ¥ =vi, 7 =rj; ¥xF=vk, r=0.500 m.
B [&j@ (1.0x107 N-s%/C?)(4.80x10° €)(6.80x10° m/s)
4z ) r? (0.500 m)*

q is negative, so B =—(1.31x10"° T)k.
(€) ¥ =vi, 7 =(0.500 m)(i + j); ¥ x# = (0.500 m)vk, r =0.7071 m.

U L (1.0x107 N -s*/C*)(4.80x10™° C)(0.500 m)(6.80x10° m/s)
? :[ﬁj“q”v XFW) B (0.7071 m)’ ’

=1.31x107° T.

B=4.62x107 T. B=—(4.62x107 T)k.

(d) 17=wc,f=r12; 6x?=—vﬁ,r:0.500m

B [&j@ (1.0x107 N-s%/C?)(4.80x10° C)(6.80x 10’ m/s)
4z ) r? (0.500 m)>

A

B=(131x10° T)j.

=131x10° T.

EVALUATE: In each case, B is perpendicular to both 7 and .

IDENTIFY: Apply B= Z—Ow For the magnetic force, apply the results of Example 28.1, except here the two
T r

charges and velocities are different.

17><F|
r3

SET UP: In part (a), » =d and F is perpendicular to v in each case, so = Lz For calculating the force
d
between the charges, r =2d.

. _ Mgy gV
EXECUTE: (a) B, =B+B'= ﬁ(? + 7)

ot (8.0x107° C)(4.5x10° m/s) . (3.0x10™° C)(9.0x10° m/s)
Ar (0.120 m)* (0.120 m)*

The direction of B is into the page.

j: 438x107* T.
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28.7.

28.8.

(b) Following Example 28.1 we can find the magnetic force between the charges:
o —6 —6 6 6
F, _ M99 ;/v —(107 T-m/A) (8.00x10™ C)(3.00x10 C)(4.50;<10 m/s)(9.00 x10°m/s)
4z ¥ (0.240 m)
F,=1.69x107* N. The force on the upper charge points up and the force on the lower charge points down. The

-6 -6
Coulomb force between the charges is F. = kql—zz =(8.99x10° N-m?/C?) (8.0x10 ©)3.0 j 1070 _375N.
Ty (0.240 m)
The force on the upper charge points up and the force on the lower charge points down. The ratio of the Coulomb

2
force to the magnetic force is £ - 375N =2.22x10%; the Coulomb force is much larger.

L vy, L69x10° N
(b) The magnetic forces are reversed in direction when the direction of only one velocity is reversed but the
magnitude of the force is unchanged.
EVALUATE: When two charges have the same sign and move in opposite directions, the force between them is
repulsive. When two charges of the same sign move in the same direction, the force between them is attractive.
qv X F

e For the magnetic force on ¢', use F, =¢'v x B, and for the magnetic force on

IDENTIFY: Apply B =%
4z

quse F,=qvxB,,.

q

SET UP: In part (a), » =d and |‘7:3;| = d—vz

EXECUTE: (a) ¢'=-¢; B, = ’uoz; , into the page; B, = ’Z:z;/ , out of the page.

@ v =§ gives B = ZOTZ‘; (1-4)= 47:'1("2‘1;2) , into the page. (ii))v' =v gives B=0.
Hoqv

iii) V' =2v gives B = , out of the page.
(ii1) g And’ pag
2.1

o F =t sz
47 (2d)

¢’ is toward ¢. The force that ¢' exerts on ¢ is toward ¢'. The force between the two charges is attractive.

(b) The force that ¢ exerts on ¢’ is given by F = ¢'v' x Bq, s . ﬁq is into the page, so the force on

2. 2
Ug v q Fy , 5 2 6
¢c) F,= , F.= SO — = U,V = 3.00x10° m/s)”" =1.00x107".
(©) F, 1ndy T e ay O E, M Ho& ( )
EVALUATE: When charges of opposite sign move in opposite directions, the force between them is attractive. For
the values specified in part (c), the magnetic force between the two charges is much smaller in magnitude than the
Coulomb force between them.
IDENTIFY: Both moving charges create magnetic fields, and the net field is the vector sum of the two. The
magnetic force on a moving charge is £, =qgvBsing and the electrical force obeys Coulomb’s law.
qvsing
—.

SET Up: The magnetic field due to a moving charge is B = f—o
T or

EXECUTE: (a) Both fields are into the page, so their magnitudes add, giving

T\ r, b

B=B.+B,= Z‘—O[e—jf—j}iww

— 22 (1.60x10™"" C)(845,000 m/s), L, —
4z (5.00x10° m)*  (4.00x10” m)

B=139x10° T=1.39 mT, into the page.
(b) Using B= f—om , where = +/41 nm and ¢=180° —arctan(5/4) = 128.7°, we get
T r
' 47x107 T-m/A (1.6x107" C)(845,000 m/s)sin128.7°
4r (J41x107° m)?
(€) F, =qvBsin90°=(1.60x10" C)(845,000 m/s)(2.58x10™* T)=3.48x10"" N, in the +x direction.

(9.00x10° N-m*/C?)(1.60x10™" C)?
(/41x10° m)?

=2.58x10"* T, into the page.

F,.=/4re)e’/r’ =5.62x10"2 N, at 51.3° below the +x-axis measured

clockwise.
EVALUATE: The electric force is much stronger than the magnetic force.
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28.9.

28.10.

28.11.

IDENTIFY: A current segment creates a magnetic field.

SET Up: The law of Biot and Savart gives dB = f—UM
T

EXECUTE: Applying the law of Biot and Savart gives

4nx107 T-m/A (10.0 A)(0.00110 m) sin90°

a) dB = =4.40 x 107 T, out of the paper.

@ 4n (0.0500 m)’ pap

(b) The same as above, except r:\/(S.OO cm)® +(14.0 cm)? and ¢ = arctan(5/14) = 19.65°, givingdB = 1.67 x 10° T,
out of the page.

(¢) dB =0 since ¢=0°.
EVALUATE: This is a very small field, but it comes from a very small segment of current.

IDENTIFY: Apply dB =i‘_01d1 XF _ py Ldl xF
T

r’ 4 P

. . Idlsi
SET Up: The magnitude of the field due to the current element is dB = Z—O dl s21n¢
T

, where ¢ is the angle between

7 and the current direction.
EXECUTE: The magnetic field at the given points is:
Ky Ldlsing _ u, (200 A)(0.000100 m)

dB, = ! S 2.00x10° T.
At 1 4z (0.100 m)
dB, :&Idlszln¢ :ﬂ(ZOO A)(0.000100 n21)51n45 —0.705x10°° T.
4z r 4z 2(0.100 m)
B :ﬂldlszm¢ _ 1 (200 A)(0.0001200 M) X0 T.
4T r 4 (0.100 m)
aB, :&Idls;n¢ :&Idlsuzl(o ):0.
4 r 4 r
g, =l 1dIsing _ 41, (200 AY0.00100 V2 oot

4r 7 4z 3(0.100m)> 3
The field vectors at each point are shown in Figure 28.10.
EVALUATE: In each case dB is perpendicular to the current direction.

/a b

7

Figure 28.10

IDENTIFY and SET UP: The magnetic field produced by an infinitesimal current element is given by Eq.(28.6).

=t )/l >2< F
4 r
Al =0.500 mm length is much smaller than the distances to the field points.

As in Example 28.2 use this equation for the finite 0.500-mm segment of wire since the

o uy INCXF g, TAI XF

B = — 5 == 3
4z r 4z r

[is in the +z-direction, so Al = (0.500>< 10° m)l€

EXECUTE: (a) Field point is at x =2.00 m, y = 0, z = 0 so the vector # from the source point (at the origin) to the

field point is 7 =(2.00 m)i.

AT %7 =(0.500x10" m)(2.00 m)k xi =+(1.00x10" m*)j

7 3 2
_(1x107T m/A)(4.00A2(1.00><10 m )}=(5.00x10*“T)}
(2.00 m)

=11
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28.12.

28.13.

28.14.

28.15.

(b) F=(2OO m)j, r=2.00 m.

AT x7=(0.500x10" m)(2.00 m)k x j=—(1.00x10" m”)i
(1x107 T-m/A)(4.00 A)(1.00x10” m )
(2.00 m)’

(©) F=(2.00 m)(i + j), r=+/2(2.00 m).

=11

(5 00x10™" T)

A xF =(0.500x10" m)(2.00 m)kx (i + ) =(1.00x107 m*)(j -7)

m )(;_;)=(_1.77x10*“ T)(i-J)

_ (1107 T-m/A)(4.00 A)(1.00x10”
) [V2(2.00m)|

(d) 7 =(2.00 m)k, r=2.00 m.

Al xF = (0.500x107 m)(2.00 m)k xk =0; B=0.

EVALUATE: At each point B is perpendicular to both 7 and Al. B = 0 along the length of the wire.
IDENTIFY: A current segment creates a magnetic field.
M, 1dlsing
r
Both fields are into the page, so their magnitudes add.
EXECUTE: Applying the law of Biot and Savart for the 12.0-A current gives

(12.0 A)(0.00150 m)(é.so om

S

SETUP: The law of Biot and Savart gives dB =

47x107 T-m/A
4 (0.0800 m)*

The field from the 24.0-A segment is twice this value, so the total field is 2.64 x 107 T, into the page.

EVALUATE: The rest of each wire also produces field at P. We have calculated just the field from the two

segments that are indicated in the problem.

IDENTIFY: A current segment creates a magnetic field.

M, 1dlsing
T 2

r

cm

dB = J =879x10°T

SET Up: The law of Biot and Savart gives dB = . Both fields are into the page, so their magnitudes add.

EXECUTE: Applying the Biot and Savart law, where r = %\/ (3.00 cm)® +(3.00 cm)* =2.121 cm, we have

4nx107 T-m/A (28.0 A)(0.00200 m)sin 45.0°
4n (0.02121 m)®
EVALUATE: Even though the two wire segments are at right angles, the magnetic fields they create are in the

same direction.
IDENTIFY: A current segment creates a magnetic field.

SETUpP: The law of Biot and Savart gives dB = f 0 1dls1n¢
r 7

dB=2 =1.76 x 10 T, into the paper.

. All four fields are of equal magnitude and into the

page, so their magnitudes add.
4rx107 T-m/A (15.0 A)(0.00120 m) sin90°
4n (0.0500 m)*

EVALUATE: A small current element causes a small magnetic field.
IDENTIFY: We can model the lightning bolt and the household current as very long current-carrying wires.

Ml
nr

EXECUTE: dB=4 =2.88 x 10°° T, into the page.

SET Up: The magnetic field produced by a long wire is B =

EXECUTE: Substituting the numerical values gives
(4nx107" T-m/A)(20,000 A) _

(@B= 8x10°*T
271(5.0 m)
-7
(b) B = @nx107 T-m/A)10A) _, o o5
27(0.050 m)

EVALUATE: The field from the lightning bolt is about 20 times as strong as the field from the household current.



28-6 Chapter 28
28.16. IDENTIFY: The long current-carrying wire produces a magnetic field.
. . 1
SET UP: The magnetic field due to a long wire is B = ;—0 .
r
EXECUTE: First find the current: 7= (3.50 x 10" el/s)(1.60 x 10™"° C/el) = 0.560 A
-7
Now find the magnetic field: @nx10 T-m/A)05604) _ 280x10°T
2m(0.0400 m)
Since electrons are negative, the conventional current runs from east to west, so the magnetic field above the wire
points toward the north.
EVALUATE: This magnetic field is much less than that of the Earth, so any experiments involving such a current
would have to be shielded from the Earth’s magnetic field, or at least would have to take it into consideration.
28.17. IDENTIFY: The long current-carrying wire produces a magnetic field.
SET Up: The magnetic field due to a long wire is B = éuo] .
r
EXECUTE: First solve for the current, then substitute the numbers using the above equation.
(a) Solving for the current gives
I =27rB/y, =27(0.0200 m)(1.00x10™* T)/(4z %107 T-m/A)=10.0 A
(b) The earth’s horizontal field points northward, so at all points directly above the wire the field of the wire would
point northward.
(c) At all points directly east of the wire, its field would point northward.
EVALUATE: Even though the Earth’s magnetic field is rather weak, it requires a fairly large current to cancel this
field.
28.18. IDENTIFY: For each wire B = ;LI (Eq.28.9), and the direction of B is given by the right-hand rule (Fig. 28.6 in

zr
the textbook). Add the field vectors for each wire to calculate the total field.
(a) SET Up: The two fields at this point have the directions shown in Figure 28.18a.

#1 AN EXECUTE: At point P n_lidwayﬂbetween
aI B, the two wires the fields B, and B, due to
P 4'®7 x the two currents are in opposite directions,
" “I B, so B=B,-B,.
_—
1

Figure 28.18a

I
But BI=BZ:2“0 , 50 B=0.
wa

(b) SET UpP: The two fields at this point have the directions shown in Figure 28.18b.

¥

BI ® 0
L ]

aI 3? I EXECI-JTE: ét point Q above the upper
#1 wire B, and B, are both directed out of

a

I | . the page (+z-direction), so B= B, +B,.

]

) p—
1
Figure 28.18b

Bl — ILIOI B — ﬂOI

2ra’ P 27(3a)

B:'U_OI(H_i):z'uOI- 1‘3:2"’_0112

2ra } 3za’ 3rxa
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(¢) SETUP: The two fields at this point have the directions shown in Figure 28.18c.

I

#1 .

aI EXECUTE: At point R below the lower

- X wire B, and B, are both directed into the
X GI I page (—z-direction), so B =B, +B,.

# —

aI R

5®°®h
Figure 28.18¢
Mol B = Mol

" 27Ba)’ ? 27a
B = ol (1_’_%) 2;“01;1}:_2:“01]2

2ra B RY 17} 3ra

EVALUATE: In the figures we have drawn, B due to each wire is out of the page at points above the wire and into

the page at points below the wire. If the two field vectors are in opposite directions the magnitudes subtract.

28.19. IDENTIFY: The total magnetic field is the vector sum of the constant magnetic field and the wire’s magnetic field.

SET UP: For the wire, B, = ol

zr
Figure 28.6 in the textbook. B, = (1.50x107° T)i.

and the direction of B

wire

EXECUTE: (a) At (0,0, 1 m), B =B, — L5 = 1.50x10° )i = £BLOA) 51 0,107 1)i.
277 272(1.00 m)
(b) At (1 m,0,0), B=B, L (1.50x107 T)i+wé.
2ar 27(1.00 m)
B=(1.50x10"° T)i +(1.6x10° T)k =2.19x107° T, at 6 = 46.8° from x to z.
(©) AL(0,0,-0.25 m), B =B, + 215 =(1.50x10° T)i + LB 5 _ 7910 1.
2 272(0.25 m)

is given by the right-hand rule that is illustrated in

EVALUATE: At point c the two fields are in the same direction and their magnitudes add. At point a they are in

opposite directions and their magnitudes subtract. At point b the two fields are perpendicular.

28.20. IDENTIFY and SET UP:  The magnitude of B is given by Eq.(28.9) and the direction is given by the right-hand rule.

(a) EXECUTE: Viewed from above, the current is in the direction shown in Figure 28.20.

N
Directly below the wire the direction of
w E the magnetic field due to the current in
1 l the wire is east.
S
Figure 28.20
potl _ (2x107 T-m/A)( 800 A j =291x10° T
2zr 550 m

(b) EVALUATE: B from the current is nearly equal in magnitude to the earth's field, so, yes, the current really is a

problem.
Mol
r

28.21. IDENTIFY: B=

. The direction of B is given by the right-hand rule in Section 20.7.

SET Up: Call the wires a and b, as indicated in Figure 28.21. The magnetic fields of each wire at points P; and P,

are shown in Figure 28.21a. The fields at point 3 are shown in Figure 28.21b.
EXECUTE: (a) At £, B, =B, and the two fields are in opposite directions, so the net field is zero.

! I = = . o
(b) B, = £ B, = Ho” B, and B, are in the same direction so
2rr, 27y,

=7
B:Ba+Bb:'u—°I l+l _(4zx10"" T-m/A)(4.00 A) 1 N 1 —6.67x10° T
2r\r, 1 2r 0.300m 0.200 m

a

B has magnitude 6.67 xT and is directed toward the top of the page.
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5 cm
cm

(¢) In Figure 28.21b, E,, is perpendicular to 7, and l§b is perpendicular to 7,. tan@ = and 6 =14.04°.

r, =1, =+/(0.200 m)* +(0.050 m)* =0.206 m and B, = B,.

247107 T-m/A)(4.0 A)cos14.04°
27(0.206 m)

B =B, cos@+B,cosd=2B, 0056’:2[’u—01jc036’ =754 uT

nr,
B has magnitude 7.53 ¢T and is directed to the left.
EVALUATE: At points directly to the left of both wires the net field is directed toward the bottom of the page.

Bﬂ'
’ %ﬁ
I
B, B, 1k B s
/ I
By, ‘0 : \\\
a@® Py (OFZ Ta "~ Th
7 I Ay
Pl 7 I8 ‘\
/ I 5
By, / 5 '
5.0 cm 5.0 cm 20,0 cm )/ | Y
OF == Coooooo @
250 cm
a b
(a) (b)
Figure 28.21
28.22. IDENTIFY: Use Eq.(28.9) and the right-hand rule to determine points where the fields of the two wires cancel.

28.23.

(a) SET Up: The only place where the magnetic fields of the two wires are in opposite directions is between the
wires, in the plane of the wires. Consider a point a distance x from the wire carrying 7, =75.0 A. B, will be zero

where B, =B,.

EXECUTE: — *olt o, e

27(0.400 m—x) 27x
1,(0400 m—x)=1x; [,=250A,1,=75.0 A
x=0.300 m; B, =0 along a line 0.300 m from the wire carrying 75.0 A and 0.100 m from the wire carrying
current 25.0 A.
(b) SET UP: Let the wire with /7, =25.0 A be 0.400 m above the wire with 7, =75.0 A. The magnetic fields of
the two wires are in opposite directions in the plane of the wires and at points above both wires or below both
wires. But to have B, = B, must be closer to wire #1 since I, <I,, so can have B, =0 only at points above both

wires. Consider a point a distance x from the wire carrying /, =25.0 A. B, will be zero where B, = B,.

EXECUTE: #Lllz Holy

2zx  27(0.400 m + x)
Lx=1,(0.400 m+x); x=0.200 m
B,, =0 along a line 0.200 m from the wire carrying current 25.0 A and 0.600 m from the wire carrying current
1,=75.0 A.

EVALUATE: For parts (a) and (b) the locations of zero field are in different regions. In each case the points of
zero field are closer to the wire that has the smaller current.
IDENTIFY: The net magnetic field at the center of the square is the vector sum of the fields due to each wire.

. 1 L = . . .
SETUP: For each wire, B = L and the direction of B is given by the right-hand rule that is illustrated in
r

Figure 28.6 in the textbook.
EXECUTE: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of the square cancel.
(c) The fields due to each wire are sketched in Figure 28.23.

B =B, c0s45°+ B, cos45°+ B, cos45°+ B,cos 45°=4B, cos45° =4 [’u—oljcos45° .
mr

=410 cm) + (10 cm)* =105/2 cm = 0.1052 m, s0
-7
_,@x107 T-m/A) (1004)

B
27(0.10+/2 m)

5°=4.0x10" T, to the left.
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28.24.

28.25.

28.26.

EVALUATE: In part (c), if all four currents are reversed in direction, the net field at the center of the square would
be to the right.

a

®

©

c

Figure 28.23

IDENTIFY: Use Eq.(28.9) and the right-hand rule to determine the field due to each wire. Set the sum of the four
fields equal to zero and use that equation to solve for the field and the current of the fourth wire.
SET UP: The three known currents are shown in Figure 28.24.

B ® B, ® B, O

B= i ; #=0.200 m for each wire
27y

10,0 AT | #1

Figure 28.24

EXECUTE: Let © be the positive z-direction. 7, =10.0 A, 7, =8.0 A, 1, =20.0 A. Then B, =1.00x10" T,
B,=0.80x10" T, and B, =2.00x10"" T.

B,,=-1.00x10" T, B,,=-0.80x10"° T, B,, =+2.00x10~° T

B_+B, +B, +B, =0

B,,=—(B_,+B,,+B_)=-2.0x10°T

To give 1§4 in the ® direction the current in wire 4 must be toward the bottom of the page.

w1 s, = rB, _(0.200 m)(2.0x107° T)
2zr (uy!27) (2x107 T-m/A)

EVALUATE: The fields of wires #2 and #3 are in opposite directions and their net field is the same as due to a
current 20.0 A — 8.0 A = 12.0 A in one wire. The field of wire #4 must be in the same direction as that of wire #1,

and 10.0 A+17,=12.0 A.

IDENTIFY: Apply Eq.(28.11).
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors
carrying currents in opposite directions repel each other.

EXECUTE: (a) F = sl L 14,(5-00 A)(2.00 A)(1.20 m)
27r 27(0.400 m)
currents are in opposite directions.

=2.0A

B, =

=6.00x10"° N, and the force is repulsive since the

(b) Doubling the currents makes the force increase by a factor of four to F =2.40x107 N.

EVALUATE: Doubling the current in a wire doubles the magnetic field of that wire. For fixed magnetic field,

doubling the current in a wire doubles the force that the magnetic field exerts on the wire.

IDENTIFY: Apply Eq.(28.11).

SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors

carrying currents in opposite directions repel each other.

Execute: (a) L= 20D gives 1 = E 27 _ (4,010 Njm) 2200250 m)
L 2zxr L pl, 14,(0.60 A)

(b) The two wires repel so the currents are in opposite directions.

EVALUATE: The force between the two wires is proportional to the product of the currents in the wires.

=833 A.



28-10

Chapter 28

28.27.

28.28.

28.29.

28.30.

28.31.

IDENTIFY: The lamp cord wires are two parallel current-carrying wires, so they must exert a magnetic force on
each other.
SET Up: First find the current in the cord. Since it is connected to a light bulb, the power consumed by the bulb is

P = [V. Then find the force per unit length using F/L = ;‘_oﬁ .
Tr

EXECUTE: For the light bulb, 100 W = (120 V) gives / = 0.833 A. The force per unit length is
_ 4nx107 T-m/A (0.833 A)’

2n 0.003 m
Since the currents are in opposite directions, the force is repulsive.
EVALUATE: This force is too small to have an appreciable effect for an ordinary cord.
IDENTIFY: Apply Eq.(28.11) for the force from each wire.

SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors
carrying currents in opposite directions repel each other.

F/L =4.6x10" N/m

2 2
EXECUTE: On the top wire F = L1 =4 of , upward. On the middle wire, the magnetic forces cancel
L 27 \d 2d) 4nd

2 2
so the net force is zero. On the bottom wire 5 = & (—l + L = fol , downward.
L 2r d 2d) 4nd

EVALUATE: The net force on the middle wire is zero because at the location of the middle wire the net magnetic
field due to the other two wires is zero.

IDENTIFY: The wire CD rises until the upward force F, due to the currents balances the downward force of

gravity.
SET Up: The forces on wire CD are shown in Figure 28.29.
R
¢ l b Currents in opposite directions so the force is
mg |r repulsive and F, is upward, as shown.
A — B
1
Figure 28.29

I’L , . . . .
Eq.(28.11) says F, = ,Uzo - where L is the length of wire CD and 4 is the distance between the wires.
T

EXECUTE: mg=ALg

2 2
Thus F} —mg =0 says /lol L :/ILg and & :i.
27ch 2rgh

EVALUATE: The larger / is or the smaller A is, the larger / will be.

IDENTIFY: The magnetic field at the center of a circular loop is B = g—‘}i By symmetry each segment of the loop
that has length A/ contributes equally to the field, so the field at the center of a semicircle is § that of a full loop.

SET Up: Since the straight sections produce no field at P, the field at Pis B = %ﬁ
EXECUTE: B= Z—‘}QI The direction of B is given by the right-hand rule: B is directed into the page.

. . . . . . 1
EVALUATE: For a quarter-circle section of wire the magnetic field at its center of curvature is B = gLR

IDENTIFY: Calculate the magnetic field vector produced by each wire and add these fields to get the total field.
SET Up: First consider the field at P produced by the current /; in the upper semicircle of wire. See Figure 28.31a.

I b Consider the three parts of this wire
'/[ / y N\ a: long straight section,
a o ..
— : — b: SemICII‘Cl.C .
L 1 c: long, straight section
Figure 28.31a

&Idixf=ﬂldixf

3

Apply the Biot-Savart law dB = to each piece.

4z dr r
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EXECUTE: part a See Figure 28.31b.

— s p dl xF =0,
. > so dB=0
Figure 28.31b
The same is true for all the infinitesimal segments that make up this piece of the wire, so B = 0 for this piece.
part ¢ See Figure 28.31c.
dl I
Pe S dl xr =0,
" © so dB=0and B=0 for this piece.
c
Figure 28.31c

part b See Figure 28.31d.

dl xF is directed into the paper for all infinitesimal
segments that make up this semicircular piece, so B
is directed into the paper and B :j dB (the vector sum

of the dB is obtained by adding their magnitudes
since they are in the same direction).

Figure 28.31d

|di xf| =rdlsin@. The angle 0 between dl and 7 is 90° and r = R, the radius of the semicircle. Thus |di x?| =Rdl

dB:&M:MEd,:[MJd,
4z 7 4z R’ 47R*

_ [ ol [ #li _:HLII
B_IdB_(4ﬁR2jj dl_(mszj(”R)_ 4R

(We used that .[ dl is equal to 7R, the length of wire in the semicircle.) We have shown that the two straight

sections make zero contribution to B, so B, = y,I,/4R and is directed into the page.

— ; — For current in the direction shown in
I \ I Figure 28.31e, a similar analysis gives
I, B, = uy1, /4R, out of the paper
Figure 28.31e
- ~ I -1
B, and B, are in opposite directions, so the magnitude of the net field at Pis B = |Bl - Bz| = %

EVALUATE: When [/, =1,, B=0.

28.32. IDENTIFY: Apply Eq.(28.16).

SET UP: At the center of the coil, x =0. a is the radius of the coil, 0.0240 m.
EXECUTE: () B, = sty NI/2a, s0 T =25 2(0‘02?“) (.0580T) _, 774

N  (4rx107 T-m/A) (800)

(b) At the center, B, = x4, NI/2a. At a distance x from the center,

_ :uoNIaz
TP +at)? 2a N\ (x*+ad?)

Since a=0.024m, x=0.0184 m.

(x2+a2) (x* +d%)

HyNI a a4 &
_( 0 j( 7 =B ———=7 | B :%BC says —3/2:%’ and (x2 +a2)3 — 44",

EVALUATE: As shown in Figure 28.41 in the textbook, the field has its largest magnitude at the center of the coil

and decreases with distance along the axis from the center.
28.33. IDENTIFY: Apply Eq.(28.16).
SET UP: At the center of the coil, x =0. a is the radius of the coil, 0.020 m.

NI 14,(600) (0.500 A)

EXECUTE: (a) B, = =9.42x107T.
2a 2(0.020 m)
2 2
(b) B(x) =—€0N1“2 — B(0.08 m)= “0(600)(0'5200 A)(0.020 inz,z =1.34x10* T.
2(x* +d%) 2((0.080 m)” +(0.020 m)?)

EVALUATE: As shown in Figure 28.41 in the textbook, the field has its largest magnitude at the center of the coil

and decreases with distance along the axis from the center.



28-12

Chapter 28

28.34.

28.35.

28.36.

28.37.

28.38.

IDENTIFY and SET UP: The magnetic field at a point on the axis of N circular loops is given by
__ MNla’

_ 2B (x* +a’)’"? _ 2(6.39x10™* T)[(0.0600 m)* + (0.0600 m)*T""* 69

ula’ (47107 T-m/A)(2.50 A)(0.0600 m)® '

Solve for N and set x = 0.0600 m.

EXECUTE: N

EVALUATE: At the center of the coil the field is B, = ,u;_NI =1.8x10" T. The field 6.00 cm from the center is a
a

factor of 1/2*? times smaller.
IDENTIFY: Apply Ampere’s law.
SETUP: =47 x 107 T-m/A

EXECUTE: (a) gﬁé-di = ptol,y =3.83x10" T-m and I, =305 A.

encl

(b) —3.83x10™ T -m since at each point on the curve the direction of d/ is reversed.

EVALUATE: The line integral {f)l} -dI around a closed path is proportional to the net current that is enclosed by

the path.

IDENTIFY: Apply Ampere’s law.

SET UP: From the right-hand rule, when going around the path in a counterclockwise direction currents out of the
page are positive and currents into the page are negative.

EXECUTE: Patha: I, =0= 4)1—2 -dl =0.

encl

encl

Pathb: I, =1, =~4.0 A= B -dl =—41,(4.0 A)=-5.03x10° T-m.

Pathc: I, =—1,+1,=-4.0 A+6.0 A=2.0A:>§[>E-di=ﬂ0(2.o A)=2.51x10°T-m

encl

Path d: /

encl —

141+ 1,=40 A= $B - dl =+11,(4.0 A)=5.03x10° T-m.

EVALUATE: If we instead went around each path in the clockwise direction, the sign of the line integral would be
reversed.

IDENTIFY: Apply Ampere’s law.

SET UP: To calculate the magnetic field at a distance » from the center of the cable, apply Ampere’s law to a

circular path of radius ». By symmetry, 951;’ -dl = B(2zrr) for such a path.
EXECUTE: (a) For a<r<b, I =1:>§)B~di=,14012>327[7’=,u012>3='u—01.

> “encl
r
(b) For r > ¢, the enclosed current is zero, so the magnetic field is also zero.

EVALUATE: A useful property of coaxial cables for many applications is that the current carried by the cable
doesn’t produce a magnetic field outside the cable.

IDENTIFY: Apply Ampere's law to calculate B.
(a) SET Up: For a <r <b the end view is shown in Figure 28.38a.

’ Apply Ampere's law to a circle of radius r,
where a <r < b. Take currents /, and /, to

” be directed into the page. Take this direction

to be positive, so go around the integration
path in the clockwise direction.

Figure 28.38a
EXECUTE: g.)fi-di =l
$B-dl = BQrr), I, =1,

Thus B(27r) = ], and B = Lol
2xr
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28.39.

28.40.

28.41.

28.42.

(b) SETUP: r> c: See Figure 28.38b.

Apply Ampere's law to a circle of
radius r, where r > c¢. Both
currents are in the positive
direction.

Fo—= = -

Figure 28.38b
EXECUTE: @.’? wdl = pl,
gSB di = B(Zﬂ}"), Iencl :II +12

Thus B(Q27r) = p,(I,+1,) and B = 1”0(;1 +1,)
nr

EVALUATE: For a <r<b the field is due only to the current in the central conductor. For » > ¢ both currents
contribute to the total field.

IDENTIFY: The largest value of the field occurs at the surface of the cylinder. Inside the cylinder, the field
increases linearly from zero at the center, and outside the field decreases inversely with distance from the central
axis of the cylinder.

SET UP: At the surface of the cylinder, B = 2’%;
z

, inside the cylinder, Eq. 28.21 gives B = g—"]%, and outside
T

the field is B = oL
2xr

EXECUTE: For points inside the cylinder, the field is half its maximum value when “02 — 1( Hol J which

27 R* 2\ 2zR
. . . ol 1wl Lo
gives » = R/2. Outside the cylinder, we have —— =—| —— |, which gives » =2R.
2zr 2\ 27R

EVALUATE: The field has half its maximum value at all points on cylinders coaxial with the wire but of radius
R/2 and of radius 2R.

IDENTIFY: B = pnl = KNI

SETUP: L=0.150m

. 600) (800A)
(0.150 m)

EVALUATE: The field near the center of the solenoid is independent of the radius of the solenoid, as long as the
radius is much less than the length.

(a) IDENTIFY and SET UP:  The magnetic field near the center of a long solenoid is given by Eq.(28.23), B = y,nl.
EXECUTE: Turns per unit length n = B 79 0270 T =1790 turns/m

Ml (Arx107" T-m/A)(12.0 A)
(b) N =nL =(1790 turns/m)(0.400 m) = 716 turns
Each turn of radius R has a length 27R of wire. The total length of wire required is
N(Q2zR)=(716)(27)(1.40x10 m) =63.0 m.

EVALUATE: A large length of wire is required. Due to the length of wire the solenoid will have appreciable
resistance.

EXECUTE: =0.0402T

. N
IDENTIFY and SET UP: At the center of a long solenoid B = unl = y, f[ .

BL  (0.150 T)(1.40m)

N  (47x107" T-m/A)(4000)
EVALUATE: The magnetic field inside the solenoid is independent of the radius of the solenoid, if the radius is
much less than the length, as is the case here.

EXECUTE: [=
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28.43. IDENTIFY and SET UP: Use the appropriate expression for the magnetic field produced by each current

configuration.
-2
Execute: (a) B=20l o 12278 _ 2”(2'00“(37 mG72T) 5 7x10°A .
27y Mo 47 x107" T-m/A
by 5Nl o 2RB__2(0210 m)(737.2 D) o410’ A
2R Ny, (100)(47x107 T-m/A)
BL _ (372T)(0.320 m)

(c) B:,uoﬁlso 1= = - =
L H,N  (4rx107" T-m/A)(40,000)

EVALUATE: Much less current is needed for the solenoid, because of its large number of turns per unit length.
28.44. IDENTIFY: Example 28.10 shows that outside a toroidal solenoid there is no magnetic field and inside it the

magnetic field is given by B = #oN )

2zr
SETUP: The torus extends from 7 =15.0 cm to , =18.0 cm.
EXECUTE: (a) »=0.12 m, which is outside the torus, so B = 0.
I 250)(8.50 A
() r=0.16m, so B =M _ (2500830 A)
2zr 27(0.160 m)

(¢) = 0.20 m, which is outside the torus, so B = 0.

EVALUATE: The magnetic field inside the torus is proportional to 1/, so it varies somewhat over the cross-

section of the torus.

=2.66x10" T.

p =N
zr

28.45. IDENTIFY: Example 28.10 shows that inside a toroidal solenoid,

SETUP: r=0.070 m
B HeNIT _ 14,(600)(0.650 A)
27xr 27(0.070 m)

EVALUATE: If the radial thickness of the torus is small compared to its mean diameter, B is approximately
uniform inside its windings.
28.46. IDENTIFY: Use Eq.(28.24), with g, replaced by u =K _u,, with K =80.

SET Up: The contribution from atomic currents is the difference between B calculated with g and B calculated

EXECUTE: =1.11x10" T.

with .

B uNI K NI 11,(80)(400)(0.25 A)
2zr 2zxr 27(0.060 m)

(b) The amount due to atomic currents is B' = %B - 5—8(0.0267 T)=0.0263T.

EVALUATE: The presence of the core greatly enhances the magnetic field produced by the solenoid.

Kt NI

28.47. IDENTIFY and SETUP: B= T y— (Eq.28.24, with 4, replaced by K )
nr

EXECUTE: (a) =0.0267 T.

EXECUTE: (a) K, =1400
_ 27zrB_ (2.90x10” m)(0.350 T)

= = - =0.0725 A
uwK N (2x107 T-m/A)(1400)(500)
(b) K, =5200
-2
_2mB _ (290x10° m)(0.350T)  _ oo

K, N (2x107 T-m/A)(5200)(500)
EVALUATE: If the solenoid were air-filled instead, a much larger current would be required to produce the same
magnetic field.

28.48. IDENTIFY: ApplyB:M.

2zr
SETUpP: K, is the relative permeability and y, = K, —1 is the magnetic susceptibility.
2zrB _ 27(0.2500 m)(1.940 T) s
LyNI 14,(500)(2.400 A)
() x,=K,-1=2020.
EVALUATE: Without the magnetic material the magnetic field inside the windings would be B/2021=9.6x10"* T.
The presence of the magnetic material greatly enhances the magnetic field inside the windings.

EXECUTE: (a) K = 021.
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28.49.

28.50.

28.51.

IDENTIFY: The magnetic field from the solenoid alone is B, = yynl. The total magnetic fieldis B=K_B,. M is

given by Eq.(28.29).

SETUP: 1 =6000 turns/m

EXECUTE: (a) (i) B, = unl = 4,(6000m™) (0.15A)=1.13x107 T.

(if) M = K, —IB0 _5199
0 Hy

(iii) B=K, B, =(5200)(1.13x107 T)=5.88 T.

(b) The directions of B, B, and M are shown in Figure 28.49. Silicon steel is paramagnetic and B, and M are in

(1.13x107° T) = 4.68 x 10° A/m.

the same direction.
EVALUATE: The total magnetic field is much larger than the field due to the solenoid current alone.

®_® ® &

= By
-« M

OO ONNO]

Figure 28.49

IDENTIFY: Curie’s law (Eq.28.32) says that 1/M is proportional to 7, so 1/y,, is proportional to 7.
SETUP: The graph of 1/y, versus the Kelvin temperature is given in Figure 28.50.

EXECUTE: The material does obey Curie’s law because the graph in Figure 28.50 is a straight line. M =C ? and

M:B_B0 says that ;(mzc;fo Ay, = T

and the slope of 1/ y,, versus T'is 1/(Cy,) . Therefore, from the

m

Hy Cu,

1 B 1
#y(slope)  44,(5.13K™)
EVALUATE: For this material Curie’s law is valid over a wide temperature range.

1600 ;i :

1200

graph the Curie constant is C = =1.55x10°K-A/T -m.

Susceptibility ' gpq

400

0.00
0.00 400 800 120 160 200 240 280 320
T(K)

Figure 28.50

IDENTIFY: Moving charges create magnetic fields. The net field is the vector sum of the two fields. A charge
moving in an external magnetic field feels a force.

(a) SETUP: The magnetic field due to a moving charge is B = Ho qvSInP s12n¢
4

T

. Both fields are into the paper, so

2 2

their magnitudes add, giving B, =B+ B'= ﬂ(
r r

qvsing . q'v’sin¢'}
4z
EXECUTE: Substituting numbers gives
M {(8.00 #C)(9.00x10° m/s)sin90° , (5.00 uC)(6.50x10* m/s)sin90°}
" Ar (0.300 m)> (0.400 m)>

B, =1.00x10° T=1.004T, into the paper.

(b) SET Up: The magnetic force on a moving charge is F = g¥ x B, and the magnetic field of charge ¢’ at the
location of charge ¢ is into the page. The force on ¢ is

= o= : V X F P V'sin - "Wsing ) 4
FoqixB =(qnix X0 _ i [ Lo 9SOy (o 4GV SING ) 5
4z r 4z r 4z r

where ¢ is the angle between ¥' and #'.
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28.52.

28.53.

28.54.

28.55.

EXECUTE: Substituting numbers gives
4,1 (8:00x107° C)(5.00x107° C)(9.00x 10 m/s)(6.50x10°° m/s)(().4()()ﬂ R

Tan (0.500 m)’ 0.500

F=(7.49x10"N)j.

EVALUATE: These are small fields and small forces, but if the charge has small mass, the force can affect its
motion.
IDENTIFY: The wire creates a magnetic field near it, and the moving electron feels a force due to this field.

SET UP: The magnetic field due to the wire is B = 50]
zr

, and the force on a moving charge is F' = qvBsing.

EXECUTE: F =qgvBsing = (evy,lsing)/2zr. Substituting numbers gives
F=(1.60x107" C)(6.00x10* m/s)(47x107 T-m/A)2.50 A)(sin90°)/[27(0.0450 m)]
F=1.07x10"N
From the right hand rule for the cross product, the direction of ¥ x B is opposite to the current, but since the
electron is negative, the force is in the same direction as the current.
2

EVALUATE: This force is small at an everyday level, but it would give the electron an acceleration of about 10" m/s”.
IDENTIFY: Find the force that the magnetic field of the wire exerts on the electron.

SET Up: The force on a moving charge has magnitude F = |q| vBsin ¢ and direction given by the right-hand rule.

For a long straight wire, B = Al and the direction of B is given by the right-hand rule.

27r
F B sin I
EXECUTE: (a) a=—= |g[vBsing _ ﬂ[ﬂ_t)j
m m m\ 2mr

. (1.6x1077C)(2.50x10° m/s)(4x =107 T-m/A)(25.0 A)

= =1.1x10" m/s’,
(9.11x10™" kg)(27)(0.0200 m)
away from the wire.
b) The electric force must balance the magnetic force. eF =evB , an
he electric ft bal h gnetic f( d
=7
E=vB= v’u—ol _ (250,000 m/s)dz x 10" T-m/A)25.0 A) =62.5 N/C . The magnetic force is directed away from

2zr 27(0.0200 m)

the wire so the force from the electric field must be toward the wire. Since the charge of the electron is negative,
the electric field must be directed away from the wire to produce a force in the desired direction.

EVALUATE: (¢) mg =(9.11x107"" kg)(9.8 m/s’) =10 N. F, =eE =(1.6x107" C)(62.5 N/C) ~10"" N.

F,~10" F,.» SO We can neglect gravity.
IDENTIFY: Use Eq.(28.9) and the right-hand rule to calculate the magnetic field due to each wire. Add these field
vectors to calculate the net field and then use Eq.(27.2) to calculate the force.

SET Up: Let the wire connected to the 25.0 Q resistor be #2 and the wire connected to the 10.0 Q resistor be #1.

Both 7, and /, are directed toward the right in the figure, so at the location of the proton B, is ® and B, =O.
I I, .
B, :% and B, :%, with »=0.0250 m. /, =(100.0 V)/(10.0 Q)=10.0 A and 7, =(100.0 V)/(25.0 Q)=4.00 A
r r
EXECUTE: B, =8.00x10" T, B,=3.20x10" Tand B=B,— B, =4.80x10" T and in the direction ©.

v
I , Force is to the right.
B F

Figure 28.54
F=qvB=(1.602x10"" C)(650x10* m/s)(4.80x107° T)=5.00x107"* N

EVALUATE: The force is perpendicular to both ¥ and B. The magnetic force is much larger than the gravity

force on the proton.

IDENTIFY: Find the net magnetic field due to the two loops at the location of the proton and then find the force

these fields exert on the proton.

. o . IR’

SET UP: For a circular loop, the field on the axis, a distance x from the center of the loop is B = W
+x

R=0.200 m and x=0.125 m.
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IR?
EXECUTE: The fields add, so B=B, + B, =28, =2 —élo 27372 |°
2(R”+x%)

 (4mx107 T-m/A)(1.50 A)(0.200 m)’
[(0.200 m)* +(0.125 m)* T2
=|g|vBsing = (1.6 x10™"" C)(2400 m/s)(5.75x10°° T) sin 90°=2.21x 107> N, perpendicular to the line ab and

to the velocity.
EVALUATE: The weight of a proton is w=mg =1.6x107* N, so the force from the loops is much greater than

=5.75x10"° T.

the gravity force on the proton.
28.56. IDENTIFY: The net magnetic field is the vector sum of the fields due to each wire.

Vi ~
SETUP:  B=2%" The direction of B is given by the right-hand rule.
r

EXECUTE: (a) The currents are the same so points where the two fields are equal in magnitude are equidistant
from the two wires. The net field is zero along the dashed line shown in Figure 28.56a.

(b) For the magnitudes of the two fields to be the same at a point, the point must be 3 times closer to the wire with
the smaller current. The net field is zero along the dashed line shown in Figure 28.56b.

(¢) As in (a), the points are equidistant from both wires. The net field is zero along the dashed line shown in
Figure 28.56c.

EVALUATE: The lines of zero net field consist of points at which the fields of the two wires have opposite
directions and equal magnitudes.

N n slj)pc = +1.00
-
N 10.0AT slope = +1 ///
N : 200A || -
~ il 1004 - 2040 .
. ~ —_— X ”," [ - ]
e = — a
IO,UAl s slope = —1.00 T 3.0A il lzn_()A
\\ //
.
- ~ L —
@@ (b) ©
Figure 28.56
28.57. IDENTIFY: B= &&;r
4z r
SETUP: #=i and r=0.250 m, so Vo X F =V, j =, k.
EXECUTE: E——i(w vy, k) =(6.00x10 T) . v, =0. —1VOZ =6.00x10° T and
4z r 7 4r

_ 4m(6.00 x 107° T)(0.25 m)
14,(=7.20x107 C)
The sign of v, isn’t determined.

= = -521m/s. vy, = £ Jvp — vt~} = £(800 m/s)? — (=521 m/s)? =607 ms.

y_

(b) Now 7 = j and 7 =0.250 m. B—Z—OM 2o 9 (v ke —v,.d).

/lo Iq\ ¥ ,UO \ql 1, (720107 C) .
N =Ll IR00m/s=9.20x107° T.
0 T 4 (0250 my

EVALUATE: The magnetlc field in part (b) doesn’t depend on the sign of v .
28.58. IDENTIFY and SETUP: B = B,(x/a)i

ol

L Apply Gauss's law for magnetic fields to
a cube with side length L, one corner at
L the origin, and sides parallel to the x, y

y and z axes, as shown in Figure 28.58.

Figure 28.58
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EXECUTE: Since B is parallel to the x-axis the only sides that have nonzero flux are the front side (parallel to
the yz-plane at x = L) and the back side (parallel to the yz-plane at x = 0.)

front @, = [ B-dd = B,(xla)[ dA(i -i) = B,(x/a)[ dA

x =L on this face so B-dA = B,(L/a)dA

®, = B(Lla)[ d4 = B,(Lla)L’ = B,(L'/a)

back On the back face x = 0 so B= 0 and ®,=0. The total flux through the cubical Gaussian surface is ® , = B, (L*/a).
EVALUATE: This violates Eq.(27.8), which says that @, =0 for any closed surface. The claimed B is

impossible because it has been shown to violate Gauss's law for magnetism.

28.59. IDENTIFY: Use Eq.(28.9) and the right-hand rule to calculate the magnitude and direction of the magnetic field at
P produced by each wire. Add these two field vectors to find the net field.
(a) SETUpP: The directions of the fields at point P due to the two wires are sketched in Figure 28.59a.

L= 600A
1.00 m - —
EXECUTE: B, and B, must be equal and
I opposite for the resultant field at P to be zero.
‘ : Ez is to the right so 7, is out of the page.
0.50 m
>
B, P 32
Figure 28.59a

B—ﬂoll—ﬁ(&OOAJ B—ﬂ0[2:ﬂ( 1, )

" 27zr 272\1.50m > 27r, 27\050m

B] = B2 says ﬂ[600 Aj :ﬂ[ [2 j

27z \1.50m /) 27\0.50 m

_{0.50 m
> {1.50m
(b) SET UP: The directions of the fields at point Q are sketched in Figure 28.59b.

j(6.00 A)=2.00 A

Execute: B =4

Hg“_.Q_"B] 271'}’1
0.50 .
" BI:(2><107T-m/A)[600Aj=2.40x106T
I 0.50 m
_ M,
1.00 m B, = 27,
1, B, =(2x107 T-m/A) 2LA )5 675107 T
1.50 m
Figure 28.59b

B, and B, are in opposite directions and B, > B, so
B=B,—B,=240x10° T-2.67x107 T=2.13x10° T, and B is to the right.
(¢) SETUP: The directions of the fields at point S are sketched in Figure 28.59c.

0.60 m :uoll
EXECUTE: B, =—"+
1@ v

B
2 S
B, =(2x107 T-m/A)(GOO Aj =2.00x10°T
5 0.60 m
1.00m ! Bz _ #0[2
0.80m 2z,
2.00 A
I, B,=(2x107 T-m/A =5.00x10" T
© 2= ( )(0.80 mj
Figure 28.59¢

ﬁl and ﬁz are right angles to each other, so the magnitude of their resultant is given by

B=1/B>+ B2 =4/(2.00x10° T)> +(5.00x10” T)* =2.06x10° T
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28.60.

28.61.

28.62.

28.63.

EVALUATE: The magnetic field lines for a long, straight wire are concentric circles with the wire at the center.

The magnetic field at each point is tangent to the field line, so B is perpendicular to the line from the wire to the

point where the field is calculated.

IDENTIFY: Find the vector sum of the magnetic fields due to each wire.

mol
r

to the line from the wire to the point where then field is calculated.

EXECUTE: (a) The magnetic field vectors are shown in Figure 28.60a.

L a___ M

2zr 71'\/x2+a2 \/x2+a2 n(x’ +a’)
(¢) The graph of B versus x/a is given in Figure 28.60b.

EVALUATE: (d) The magnetic field is a maximum at the origin, x = 0.
(e) When x >>a, B~ #la

3.
X

SET Up: For a long straight wire B = . The direction of B is given by the right-hand rule and is perpendicular

(b) At a position on the x-axis B, , in the positive x-direction.

1

nel

= i~
()
-
=~}
%
:’U‘r

=300 -200 -1.00 0.00 1.00 2.00 3.00
C)] (b)
Figure 28.60
IDENTIFY: Apply F = [IBsin ¢, with the magnetic field at point P that is calculated in problem 28.60.
SET UP: The net field of the first two wires at the location of the third wire is B = %, in the +x-direction.
z(x"+a
EXECUTE: (a) Wire is carrying current into the page, so it feels a force in the —y-direction .
2
iy ﬁol“ _|= #,(6.00 Az) (0.400 m) —=1.11x10" N/m.
L x(x*+a’) n((0.600 m)~ + (0.400 m) )

(b) If the wire carries current out of the page then the force felt will be in the opposite direction as in part (a). Thus
the force will be 1.11x107° N/m, in the +y-direction.

EVALUATE: We could also calculate the force exerted by each of the first two wires and find the vector sum of
the two forces.
IDENTIFY: The wires repel each other since they carry currents in opposite directions, so the wires will move
away from each other until the magnetic force is just balanced by the force due to the spring.
. . o I’L
SET UP: The force of the spring is kx and the magnetic force on each wire is Fyy,, = 5—0—
T X

EXECUTE: Call x the distance the springs each stretch. On each wire, F, = Fi,, and there are two spring forces

. I’L ) ] [ 2
on each wire. Therefore 2kx = &—, which gives x = &E .
2w x 2z

EVALUATE: Since y,/27 is small, x will likely be much less than the length of the wires.
IDENTIFY: Apply ZF =0 to one of the wires. The force one wire exerts on the other depends on / so ZF =0

gives two equations for the two unknowns 7 and 1.
SET Up: The force diagram for one of the wires is given in Figure 28.63.

Tcos B p— - -
2
The force one wire exerts on the other is F = Ml L,
F 27r
® rsiné where 7 = 2(0.040 m)sin@ =8.362x107° m is the

mg distance between the two wires.

Figure 28.63



28-20

Chapter 28

28.64.

28.65.

28.66.

28.67.

EXECUTE: ZE =0 gives T'cosd =mg and T =mg/cosO
ZFX =0 gives F =Tsin@ = (mg/cosf)sinf = mgtan &
And m=AL, so F = ALgtan@

2
[&JL =ALgtan@
27r

= Agrtan@

\ (1, /27)
_1(0.0125 kg/m)(9.80 m/s)’(tan 6.00°)(8.362x10"° m)

2x107T-m/A

EVALUATE: Since the currents are in opposite directions the wires repel. When [ is increased, the angle € from
the vertical increases; a large current is required even for the small displacement specified in this problem.
IDENTIFY: Consider the forces on each side of the loop.
SET Up: The forces on the left and right sides cancel. The forces on the top and bottom segments of the loop are
in opposite directions, so the magnitudes subtract.

EXECUTE: F:F{_Fb:(MJ I_I_I_Z :M l_l .
2z v, W 2w ron

t T

.00 A)(0.2 14.0 A 1 1 .

(3.00 A)(0.200 m)( ) - =7.97x107° N. The force on the top segment is away
2 0.100m 0.026 m

from the wire, so the net force is away from the wire.

EVALUATE: The net force on a current loop in a uniform magnetic field is zero, but the magnetic field of the wire

is not uniform, it is stronger closer to the wire.

1 =232A

F::uo

IDENTIFY: Find the magnetic field of the first loop at the location of the second loop and apply 7 = | Hx E| and

U=—fi-B tofind gand U.
SET UP: Since x is much larger than o', assume B is uniform over the second loop and equal to its value on the
axis of the first loop.

Ny la* . Nuyla®
2(x* +a*)*? 2x°

N,u013a2 jsin g NN gl T'a’a”sing

EXECUTE: (a) x>>a=>B=

r:|y><B|:,uBsm6=(NIA)( > o
NN'uzll'a*a” cos@

- 2x* '

EVALUATE: (c) Having x >> a allows us to simplify the form of the magnetic field, whereas assuming x >>a'

means we can assume that the magnetic field from the first loop is constant over the second loop.

- Idl <7
IDENTIFY: Apply dB = &w .
4 r

- Ny, la’
(b) U=—ji-B=-uBcos@=—~(NTra?) Dd 050 =
2 3
x

SET UP: The two straight segments produce zero field at P. The field at the center of a circular loop of radius R is
B= g_(;:’ so the field at the center of curvature of a semicircular loop is B = ’Z—‘;:
EXECUTE: The semicircular loop of radius a produces field out of the page at P and the semicircular loop of
radius b produces field into the page. Therefore, B=B, — B, = )1 1Y _ sl -2 , out of page.
20 2 a b 4a b

EVALUATE: Ifa=b, B=0.
IDENTIFY: Find the vector sum of the fields due to each loop.

Hola’
2(x2 + 02)3/2 °
along the x-axis from between them means that the “x” in the formula is different for each case:
EXECUTE:

SET UP: For a single loop B = Here we have two loops, each of N turns, and measuring the field

u,Nla*

a
Leftcoil: x > x+—=B = .
b2((x+a)/2)? +a*)?

a NIa’
Right coil: x > x——=B, = Lo 2, 2
2 A(x—a/2) +a’)
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28.68.

28.69.

So, the total field at a point a distance x from the point between them is

_ HNIa? 1 N 1
2 ((x+a/2)2+az)3/2 ((x_a/z)z +a2)3/2 .

(b) B versus x is graphed in Figure 28.67. Figure 28.67a is the total field and Figure 27.67b is the field from the
right-hand coil.

32
(¢) Atpoint P, x=0and B = ,uONIaZ ! + ! = 'uONIaZ = (i HNT
5 2 ((a/2)2 + a2)3/2 ((_ a/2)2 + a2)3/2 (5(12/4)3/2 5 a

32 32
) B= (%) NI _ [ij #,(300)(6.00 A) _ 0.0202 T.
a

5 (0.080 m)
2 p— — —
© dB _ p,Nla 3()c-|—2a/2)2 - 3(x 2a/2)2 | Atx=o0,
dx 2 (((x+a/2) +a)?  (x—a/2)’ +a*)!
dB u,Nla* -3(a/2) -3(-a/2)
Fn = 2 2752 + 2 2752 =0
el 2 (@2 +a)” (-a/2)" +a")
d’B  u,NIa’ -3 6(x +a/2)*(5/2) -3 6(x —a/2)*(5/2)
2 - 2 25/2+ 2 27/2+ 2 NI 2 2N7/2
dx 2 (x+a/2)* +a*) ((x+a/2)* +a*) ((x—a/2)* +a*) ((x—a/2)* +a*)
2 2 _ 2 _ _ 2
At x=0, ’ l2;| = el ( 2 : PRCEI 6(“/3) (52/27)/2 + 2 > PTE I « a/zz) (5/72/)2]:
' 2 (a2 +d>) (@2 +a’)? (@/2) +a)? (a/2) +a)
EVALUATE: Since both first and second derivatives are zero, the field can only be changing very slowly.
B B

xla

xla

000 0.100 0200 0300 0400 0.500 ~0.500 0400 —0.300 —0.200 —0.100 _ 0.00
@ (b)
Figure 28.67

IDENTIFY: A current-carrying wire produces a magnetic field, but the strength of the field depends on the shape
of the wire.

SET Up: The magnetic field at the center of a circular wire of radius a is B = y,//2a, and the field a distance x
Ml 2a
A7 x\x* +a?

EXECUTE: (a) Since the diameter D = 2a, we have B = y,I/2a = y,I/D.

from the center of a straight wire of length 2a is B =

(b) In this case, the length of the wire is equal to the diameter of the circle, so 2a =zD, giving a=xzD/2, and

2(zD/2
x = D/2. Therefore B:’u—ol (7[ ) Ml

Ar (D/2WD 14+ 2°D* 14 D1+2?

EVALUATE: The field in part (a) is greater by a factor of ~/1+ 7> . It is reasonable that the field due to the
circular wire is greater than the field due to the straight wire because more of the current is close to point 4 for the
circular wire than it is for the straight wire.

o 1dl x 7

IDENTIFY: Apply dB = -
4 r

SETUP: The contribution from the straight segments is zero since dl x r = 0. The magnetic field from the curved
wire is just one quarter of a full loop.

EXECUTE: B= %[g—‘gJ = ’;—‘; and is directed out of the page.
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28.70.

28.71.

28.72.

EVALUATE: It is very simple to calculate B at point P but it would be much more difficult to calculate B at other
points.

= Idl x 7
IDENTIFY: Apply dB = ﬂ# .

4
SETUP: The horizontal wire yields zero magnetic field since dl x 7 =0. The vertical current provides the
magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point in the
same direction, so there is no vector addition or components to worry about.)

tol

1 .
EXECUTE: B= %(ﬁj = fLR and is directed out of the page.
7T, T

EVALUATE: In the equation preceding Eq.(28.8) the limits on the integration are 0 to a rather than —a to a and
this introduces a factor of 1 into the expression for B.

(a) IDENTIFY: Consider current density J for a small concentric ring and integrate to find the total current in
terms of « and R.

SETUP: We can'tsay I =.J4=JzR?, sinceJ varies across the cross section.

To integrate J over the cross section of
the wire divide the wire cross section up
into thin concentric rings of radius » and
width dr, as shown in Figure 28.71.

Figure 28.71

EXECUTE: The area of such a ring is dA4, and the current through it is dI =JdA; dA=2zrdr and
dl = JdA=ar(Rrardr)=2rar’dr

1=[dl =2naf rdr=27a(R 13) so a = 23;
T

(b) IDENTIFY and SETUP: (i) »<R
Apply Ampere's law to a circle of radius » < R. Use the method of part (a) to find the current enclosed by the
Ampere's law path.

EXECUTE: 951? ol = C_[)B dl = B@dl = B(27r), by the symmetry and direction of B. The current passing through

: . - 2zar’ 2 ! Ir’
= J. dl, where the integration is from O tor. 1, = 272'0,’.[0 Pdr =2 ——7[( 3 jr3 = % Thus

the path is [

encl

3 3 \2zR?
3

o ) Ir wlr
$B-dl = py1.,,, gives BQar) =y, [?j andB=0 %

(ii) IDENTIFY and SETUP: >R
Apply Ampere’s law to a circle of radius » > R.

EXECUTE: <j)l§ -dl = 953 dl = B(f)dl = B(2xr)

= [; all the current in the wire passes through this path. Thus 951? ol = Hol o gives B(2zr)= p,l and B = ;—01

r

1

encl

EVALUATE: Note that at » = R the expression in (i) (for » < R ) gives B = ZﬂLR At r = R the expression in (ii)
T

. Mol
for ¥ >R ) gives B =
( )g -

, which is the same.

IDENTIFY: Apply Ampere’s law to a circle of radius 7 in each case.
SET UP: Assume that the currents are uniform over the cross sections of the conductors.

2 2
EXECUTE: (a) r<a= I, =1| = |=1[" | $B-dil = Bamr = 1y = il | 5
A a a

tholr

5.

When

Jand B=

2ra

a

r=a,B= ;Ll, which is just what was found in part (a) of Exercise 28.37.
a
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2 2 2 2 2 2
(b)b<r<c:>lem]=1—l[%j=1(l—” b J 9Sl§~di=32nr=ﬂol[l—r2 ;J:w[c . J and

2 2 2 2
b—c ¢ —b c ¢ =b

2mr | ? —b?

part (b) of Exercise 28.37.
EVALUATE: Unlike E, B is not zero within the conductors. B varies across the cross section of each conductor.

28.73. IDENTIFY: Apply 951?-51;1 =0.

SET Up: Take the closed gaussian surface to be a cylinder whose axis coincides with the wire.

EXECUTE: If there is a magnetic field component in the z-direction, it must be constant because of the symmetry
of the wire. Therefore the contribution to a surface integral over a closed cylinder, encompassing a long straight
wire will be zero: no flux through the barrel of the cylinder, and equal but opposite flux through the ends. The
radial field will have no contribution through the ends, but through the barrel:

0=(B-dA=§B,-di=| B -dA=[ BdA=B A4, =0 Therefore, B, =0.

barrel " barrel

2 2
B= ,u_ol [C il j When r=5b,B = 5"2 , just as in part (a) of Exercise 28.37 and when r =c¢, B=0, just as in
0e

EVALUATE: The magnetic field of a long straight wire is everywhere tangent to a circular area whose plane is
perpendicular to the wire, with the wire passing through the center of the circular area. This field produces zero
flux through the cylindrical gaussian surface.

28.74. IDENTIFY: Apply Ampere’s law to a circular path of radius 7.
SET UP: Assume the current is uniform over the cross section of the conductor.

EXECUTE: (a) r<a=1,,=0=B=0.
2_ 2 2_ 2 . ~ 22 2_ 2
by a<r<b=I. =1 Ao | g 7r(r2 az) :1(72 az),(ﬁB'dl:Ban:,Ltol%andB:ﬂ—ol%-
A, ., n(b” —a”) b —a”) (b"—a’) 2zar (b° —a”)

oo I
© r>b= 1, =1 $B-dl = B2ar =y, and B=L".
2z

EVALUATE: The expression in part (b) gives B=0at » =a and this agrees with the result of part (a). The

Lo . 1
expression in part (b) gives B = £y
27h

at r = b and this agrees with the result of part (c).

28.75. IDENTIFY: Use Ampere's law to find the magnetic field at » =2a from the axis. The analysis of Example 28.9
shows that the field outside the cylinder is the same as for a long, straight wire along the axis of the cylinder.

SET UP:
EXECUTE: Apply Ampere's law to a circular
path of radius 2a, as shown in Figure 28.75.
’. B(Zﬂ.) = IUOIencl
b 2a) — a2
L= @D =9 ) 38
(Ba) —a
Figure 28.75
= % ; . this is the magnetic field inside the metal at a distance of 2a from the cylinder axis. Outside the
ma

cylinder, B = ;—OI The value of r where these two fields are equal is given by 1/7 =3/(16a) and r =16a/3.
r

EVALUATE: For r <3aq, as r increases the magnetic field increases from zero at ¥ =0 to x4,/ /(27 (3a)) atr=3a.

For r > 3a the field decreases as r increases so it is reasonable for there to be a » > 3a where the field is the same as
atr=2a.
28.76. IDENTIFY: The net field is the vector sum of the fields due to the circular loop and to the long straight wire.

SET UP: For the long wire, B = ’ULI‘ , and for the loop, B = ‘u‘)—lz .
2xD 2R

EXECUTE: At the center of the circular loop the current /, generates a magnetic field that is into the page, so the

current /, must point to the right. For complete cancellation the two fields must have the same magnitude:

2zD 2R
EVALUATE: If | is to the left the two fields add.

Mol _ ol s, =D
Thus, £, =227,
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28.77. IDENTIFY: Use the current density J to find dI through a concentric ring and integrate over the appropriate cross
section to find the current through that cross section. Then use Ampere's law to find B at the specified distance

from the center of the wire.
(a) SET UpP:

Divide the cross section of the cylinder into
thin concentric rings of radius » and width
dr, as shown in Figure 28.77a. The current
through each ring is dI =JdA=J2xrdr.

Figure 28.77a
21, . a1, . N . .
EXECUTE: dI =—% [1 —(r/a) }27[1’ dr = —2[1 —(r/a) }r dr. The total current / is obtained by integrating d/
7a a
_ a 4 \pa 41 \['1 1 ¢
over the cross section / :j dl = (—;’jj (l—r2 /az)r dr :(—;J[—rz ——r4/a2} =1,, as was to be shown.
0 a )70 a 2 4 0

(b) SET UP: Apply Ampere's law to a path that is a circle of radius » > a, as shown in Figure 28.77b.

g‘)l} dl = BQ2rr)
1

encl

=1, (the path encloses the entire cylinder)

Figure 28.77b

o 1
EXECUTE: SBB-dl = w1, says BQ2zr) = u,l, and B:%.
zr

(c) SET Up:
Divide the cross section of the cylinder into concentric
rings of radius #' and width dr’, as was done in part (a).

See Figure 28.77c. The current dI through each ring

N2
W is dl = 4—12{1 - [”—j }' dr'
a a
Figure 28.77¢

EXECUTE: The current / is obtained by integrating dI from »' =0 to 7' =r:

Cs AT O 0 o Y A TSRS ¢
1=Id1:a—fjo{l—[;j :lr dr =—2°B(r )2—%(}’ )4/a2J0

a
41 17 r

I=—20(1’2/2—}’4/4112)=—°2 [2——2J
a a a

(d) SET Up: Apply Ampere's law to a path that is a circle of radius < a, as shown in Figure 28.77d.

B -di = B(27r)

2 2
I,.= 1“—’;[2 ! ] (from part (c))
a

2
a

Figure 28.77d

[ 2
" (2-r*/a’) and B:“zo—jﬁ(z—rz/az)

EXECUTE: S[)B-df = w1, says BQ2xr) =y,
a

EVALUATE: Result in part (b) evaluated at r =a: B = ';0—10 Result in part (d) evaluated at
za

r=a:.B=

1, a 1
th'o —@2-d*/a*) = % The two results, one for 7 > a and the other for < a, agree at r = a.
a ra

28.78. IDENTIFY: Apply Ampere’s law to a circle of radius 7.
SET UpP: The current within a radius 7 is [ = _[ J -dA , where the integration is over a disk of radius r.



Sources of Magnetic Field 28-25

28.79.

28.80.

28.81.

’ = 271'b5(1 - e"’m).

0

EXECUTE: (a) ], = j J-dd= j [ée("”)/5jrdrdc9 = 27zbj :e("*“)”dr =27hd e
r

I, =2m(600 A/m) (0.025 m) (1— ") =81.5 A.

Ml

(b) For r>a, S[}Ewﬁ: B2ar =yl
2y

=uyl, and B=

encl

r

(¢c)For r<a, I(r)= J. J-dA :I (ﬁ,e(r’a)/djr'dr'dﬁ _ 2ﬁbJUr SV g — bS8
r

0

1o
I(r)=2mbo(e’" "’ —e ") = 2mbde "’ (" —1) and I(r)=1, %.
¥ —
~ . (er/(Y _1) ,LIOIO (el‘/§ _1)
d) For r<a, OB-dl =B(r)2ar=pu,l_ = pyl,——— and B="—"———=,
( ) @ ( ) IUO encl luO 0 (ea/5 _1) 2727"(80/5 _1)

=1.75x10"T.

() At r=6=0.025m, B= Holy(e=1) _ H,(8L.5A) (e-1)
. s 276(e” 7 —1)  272(0.025 m) ("7 1)

alo
Atr=a=0050m, g=Hlol@ D _ MBLSA) o0 1o
27za (¢’ =1) 27(0.050 m)

At r=2a=0.100m, B="0l _ tBLSA)
2zr  22(0.100 m)

EVALUATE: At points outside the cylinder, the magnetic field is the same as that due to a long wire running

along the axis of the cylinder.

IDENTIFY: Evaluate the integral as specified in the problem.

=1.63x10*T.

Hola’
2(x2+a2)3/2 :

2
EXECUTE: I B dx :J % X = o _21 372
- 2 2(x"+a’) 2 Y= ((x/a)” +1)

SETUP: Eq.(28.15) says B =

d(x/a).

ol = dz * ol (72 ol .
B= TJ‘%W = J—m B dx = TJ:mcos 0dl = T(SIné’) o =ul,
where we used the substitution z =tan € to go from the first to second line.
EVALUATE: This is just what Ampere’s Law tells us to expect if we imagine the loop runs along the x-axis
closing on itself at infinity: SBB dl = ol
IDENTIFY: Follow the procedure specified in the problem.
SET Up: The field and integration path are sketched in Figure 28.80.

EXECUTE: 4)1? -dl =0 (no currents in the region). Using the figure, let B = Bof for y<0and B=0 for y > 0.

Then I B-dl=B,L-B,L=0. B,=0,s0 B,L=0.But we have assumed that B,, # 0. This is a contradiction
abede

and violates Ampere’s Law.

EVALUATE: It is often convenient to approximate B as confined to a particular region of space, but this result

tells us that the boundary of such a region isn’t sharp.

d

]

|

i

i
=18

I
=

R B S —
[ SN Y A
r

Figure 28.80

IDENTIFY: Use what we know about the magnetic field of a long, straight conductor to deduce the symmetry of
the magnetic field. Then apply Ampere's law to calculate the magnetic field at a distance a above and below the
current sheet.
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SET UP: Do parts (a) and (b) together.
B
1

Consider the individual currents in pairs,
where the currents in each pair are equidistant
on either side of the point where B is being

— x calculated. Figure 28.81a shows that for each
pair the z-components cancel, and that above
the sheet the field is in the —x-direction and
that below the sheet it is in the +x-direction.

2]

Figure 28.81a

Also, by symmetry the magnitude of B a distance a above the sheet must equal the magnitude of B a distance a
below the sheet. Now that we have deduced the symmetry of B, apply Ampere's law. Use a path that is a rectangle,
as shown in Figure 28.81b.

CJSE -dl = Hol ey

Figure 28.81b

1 is directed out of the page, so for / to be positive the integral around the path is taken in the counterclockwise
direction.

EXECUTE: Since B is parallel to the sheet, on the sides of the rectangle that have length 2a, S[)B -dl =0. On the

long sides of length L, B is parallel to the side, in the direction we are integrating around the path, and has the
same magnitude, B, on each side. Thus 4)1? -dl =2BL. n conductors per unit length and current / out of the page in

each conductor gives

encl
EVALUATE: Note that B is independent of the distance a from the sheet. Compare this result to the electric field
due to an infinite sheet of charge (Example 22.7).

28.82. IDENTIFY: Find the vector sum of the fields due to each sheet.

SET UP:  Problem 28.81 shows that for an infinite sheet B =7 u,/n . If I is out of the page, B is to the left above

= InL. Ampere's law then gives 2BL = y InL and B = % y1,In.

the sheet and to the right below the sheet. If / is into the page, B is to the right above the sheet and to the left
below the sheet. B is independent of the distance from the sheet. The directions of the two fields at points P, R and
S are shown in Figure 28.82.

EXECUTE: (a) Above the two sheets, the fields cancel (since there is no dependence upon the distance from the
sheets).

(b) In between the sheets the two fields add up to yield B = y,nl, to the right.

(c) Below the two sheets, their fields again cancel (since there is no dependence upon the distance from the sheets).
EVALUATE: The two sheets with currents in opposite directions produce a uniform field between the sheets and
zero field outside the two sheets. This is analogous to the electric field produced by large parallel sheets of charge
of opposite sign.

< s >
e
[0 X X0 XXX K]
- b [
Figure 28.82

28.83. IDENTIFY and SET UP: Use Eq.(28.28) to calculate the total magnetic moment of a volume V of the iron. Use the
density and atomic mass of iron to find the number of atoms in this volume and use that to find the magnetic dipole
moment per atom.
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28.84.

28.85.

EXECUTE: M = %, S0 .., =MV The average magnetic moment per atom is g, =t/ N =MV /N,

where N is the number of atoms in volume V. The mass of volume V'is m = pV, where p is the density.

(Pyon = 7-8%10° kg/m?). The number of moles of iron in volume ¥ is

- m _ pV
55.847x107° kg/mol 55.847x107 kg/mol

of iron from appendix D. N =nN,, where N, =6.022x10” atoms/mol is Avogadro's number. Thus

PVN,

, where 55.847x107 kg/mol is the atomic mass

N=nN, = = .
55.847x10~ kg/mol
_My MV 55.847x107 kg/mol _ M (55.847 % 107 kg/mol)
atom N pVNA pNA °

_(6.50x10* A/m)(55.847x10" kg/mol)
Hatom (7.8x10° kg/m*)(6.022 x10* atoms/mol)

Lyon =7-73x107 A-m* =7.73x107 J/T

1y =9.274x107* A-m®, so p,,, =0.0834 4.

EVALUATE: The magnetic moment per atom is much less than one Bohr magneton. The magnetic moments of
each electron in the iron must be in different directions and mostly cancel each other.

IDENTIFY: The force on the cube of iron must equal the weight of the iron cube. The weight is proportional to the
density and the magnetic force is proportional to x, which is in turn proportional to K.

SETUP: The densities if iron, aluminum and silver are p,, =7.8x10’ kg/m’, p, =2.7x10’ kg/m’ and
Pag =10.5x 10° kg/m’. The relative permeabilities of iron, aluminum and silver are K, =1400, K,, =1.00022 and
K,, =1.00-2.6x107.

EXECUTE: (a) The microscopic magnetic moments of an initially unmagnetized ferromagnetic material
experience torques from a magnet that aligns the magnetic domains with the external field, so they are attracted to
the magnet. For a paramagnetic material, the same attraction occurs because the magnetic moments align
themselves parallel to the external field. For a diamagnetic material, the magnetic moments align antiparallel to the
external field so it is like two magnets repelling each other.

(b) The magnet can just pick up the iron cube so the force it exerts is

F,, =m, g = p.a’g=(7.8x10" kg/m*)(0.020 m)*(9.8 m/s*) = 0.612 N. If the magnet tries to lift the aluminum

Fe =
cube of the same dimensions as the iron block, then the upward force felt by the cube is

F, = %(0.612 N)= %(0.612 N)=4.37x10"* N. The weight of the aluminum cube is

Fe

w,

Al

\=myg =pua’g =(2.7x10° kg/m?*)(0.020 m)*(9.8 m/s*) = 0.212 N. Therefore, the ratio of the magnetic force

437x10*N
0.212N

(c) If the magnet tries to lift a silver cube of the same dimensions as the iron block, then the downward force felt

(1.00-2.6x107%)

on the aluminum cube to the weight of the cube is =2.1x10" and the magnet cannot lift it.

K
by the cube is F,, = KAg (0.612N) = (0.612N)=4.37x10"* N. But the weight of the silver cube

1400
Fe
is W,, =m,,g = p,,a’g =(10.5x10° kg/m*)(0.020 m)*(9.8 m/s*) = 0.823 N. So the ratio of the magnetic force on
, . . 437x10° N i ,
the silver cube to the weight of the cube is TO0RBN 5.3x 107" and the magnet’s effect would not be

noticeable.
EVALUATE: Silver is diamagnetic and is repelled by the magnet. Aluminum is paramagnetic and is attracted by
the magnet. But for both these materials the force is much less that the force on a similar cube of ferromagnetic
iron.
IDENTIFY: The current-carrying wires repel each other magnetically, causing them to accelerate horizontally.
Since gravity is vertical, it plays no initial role.

. . . F r . .
SET UP: The magnetic force per unit length is 7 = ;—07 , and the acceleration obeys the equation F/L = m/L a.

V4

The rms current over a short discharge time is 7, / V2.
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EXECUTE: (a) First get the force per unit length:
2
F_uw P ﬁ_:%[zz oY
L 2rd 22d\N2) 4zd\R 47rd RC

. F . .
Now apply Newton’s second law using the result above: 7 = %a =Aa= and ( %) j Solving for a gives
T

2 2
= % From the kinematics equation v, =v, +a,t, we have v, =at =aRC = _ MO
47ARCd ’ o 47ARCd

2
[ #,9 j s
47ARCd :
(b) Conservation of energy gives 2mv; = mgh and h=—"-= \amARCd ) V[ mQn .
2g 2g 2g\ 47ARCd

EVALUATE: Once the wires have swung apart, we would have to consider gravity in applying Newton’s second law.
28.86. IDENTIFY: Approximate the moving belt as an infinite current sheet.
SET UP: Problem 28.81 shows that B = % H,In for an infinite current sheet. Let L be the width of the sheet, so n=1/L.

AQ | Ax

EXECUTE: The amount of charge on a length Ax of the belt is AQ = LAxc, so I = A LEU Lve.

p=tol _ oo

Approximating the belt as an infinite sheet . Bis directed out of the page, as shown in Figure 28.86.

EVALUATE: The field is uniform above the sheet, for points close enough to the sheet for it to be considered infinite.

57 0

Figure 28.86

28.87. IDENTIFY: The rotating disk produces concentric rings of current. Calculate the field due to each ring and
integrate over the surface of the disk to find the total field.
Mol
2
Qrdr

SET UP: At the center of a circular ring carrying current /, B =

EXECUTE: The charge on aring of radius ris g =04 =02nrdr =

. If the disk rotates at n turns per

second, then the current from that ring is dI = 9q =ndq = 20 nrdr . Therefore, dB = ol = &%:dr = &?dr
dt r 2r a a
We integrate out from the center to the edge of the disk and find B = I dB = J. ,uOner M
a

EVALUATE: The magnetic field is proportional to the total charge on the disk and to its rotation rate.
28.88. IDENTIFY: There are two parts to the magnetic field: that from the half loop and that from the straight wire

segment running from —a to a.

SET UP: Apply Eq.(28.14). Let the ¢ be the angle that locates d/ around the ring.

. _ ula®
EXECUTE: B (rlng) loop m
I d . laxsing d
dB,(ring) = dB sin @ sin ¢ = Hot al —sing 2% and
4r (X* +a*) (P +a*)" 4x(x* +a®)!
Holaxsingd ¢ tolax . Holax
B (rin dB rin, = cosp| =—————.
(ring) = -[ (ring) = IU Ar(x* +a’y"?  4n(x*+a*)? ¢0 27(x* +a*)”?
uola .
B (rod) =——="———, using Eq. (28.8). The total field components are:
L (rod) o 1) g Eq. (28.8) p
B —_ u,la’ ndB = Hola _ x’ _ ula’
Ax* +a*)’”? Y 2ax(xP+a*)”? ¥ +at) 2mx(x*+a?)?

2a I I
EVALUATE: B, =———B B, decreases faster than B, as x increases. For very small x, B, = _HL and B = ’u—o.
A 4a Y 2ra

In this limit B, is the field at the center of curvature of a semicircle and B, is the field of a long straight wire.



