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MAGNETIC FIELD AND MAGNETIC FORCES 

 27.1. IDENTIFY and SET UP: Apply Eq.(27.2) to calculate .F
!

 Use the cross products of unit vectors from Section 1.10. 
EXECUTE: ( ) ( )4 4� �4.19 10  m/s 3.85 10  m/s= + × + − ×v i j!  

(a) ( ) �1.40 T=B i
!

 

( )( ) ( ) ( )8 4 4� � � �1.24 10  C 1.40 T 4.19 10  m/s 3.85 10  m/sq − ⎡ ⎤= × = − × × × − × ×⎣ ⎦F v B i i j i
! !!

 

� � � � �0,  × = × = −i i j i k  

( )( )( )( ) ( )8 4 4� �1.24 10  C 1.40 T 3.85 10  m/s 6.68 10  N− −= − × − × − = − ×F k k
!

 

EVALUATE: The directions of  and v B
!!  are shown in Figure 27.1a. 

 

The right-hand rule gives that ×v B
!!  is directed 

out of the paper (+z-direction). The charge is 
negative so F

!
 is opposite to ;×v B

!!  

Figure 27.1a  

F
!

 is in the -z− direction. This agrees with the direction calculated with unit vectors. 
(b) EXECUTE: ( ) �1.40 T=B k

!
 

( )( ) ( ) ( )8 4 4� � � �1.24 10  C 1.40 T 4.19 10  m/s 3.85 10  m/sq − ⎡ ⎤= × = − × + × × − × ×⎣ ⎦F v B i k j k
! !!

 

� � � � � �,  × = − × =i k j j k i  

( )( ) ( ) ( ) ( )4 4 4 4� � � �7.27 10  N 6.68 10  N 6.68 10  N 7.27 10  N− − − −⎡ ⎤= − × − + × = × + ×⎣ ⎦F j i i j
!

 

EVALUATE: The directions of  and v B
!!  are shown in Figure 27.1b. 

 

The direction of F
!

 is opposite to ×v B
!!

 since  
q is negative. The direction of F

!
 computed 

from the right-hand rule agrees qualitatively 
with the direction calculated with unit vectors. 

Figure 27.1b  
 27.2. IDENTIFY: The net force must be zero, so the magnetic and gravity forces must be equal in magnitude and 

opposite in direction. 
SET UP: The gravity force is downward so the force from the magnetic field must be upward. The charge�s 
velocity and the forces are shown in Figure 27.2. Since the charge is negative, the magnetic force is opposite to the 
right-hand rule direction. The minimum magnetic field is when the field is perpendicular to v! . The force is also 
perpendicular to B

!
, so B
!

is either eastward or westward. 
EXECUTE: If B

!
is eastward, the right-hand rule direction is into the page and BF

!
is out of the page, as required. 

Therefore, B
!

is eastward. sinmg q vB φ= . 90φ = ° and 
3 2

4 8

(0.195 10  kg)(9.80 m/s ) 1.91 T
(4.00 10  m/s)(2.50 10  C)

mgB
v q

−

−

×
= = =

× ×
. 
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EVALUATE: The magnetic field could also have a component along the north-south direction, that would not 
contribute to the force, but then the field wouldn�t have minimum magnitude. 

 
Figure 27.2 

 27.3. IDENTIFY: The force F
!

on the particle is in the direction of the deflection of the particle. Apply the right-hand 
rule to the directions of v!  and B

!
. See if your thumb is in the direction of F

!
, or opposite to that direction. Use 

sinF q vB φ=  with 90φ = °  to calculate F. 

SET UP: The directions of v! , B
!

 and F
!

 are shown in Figure 27.3. 
EXECUTE: (a) When you apply the right-hand rule to v!  and B

!
, your thumb points east. F

!
 is in this direction, 

so the charge is positive. 
(b) 6 3sin (8.50 10  C)(4.75 10  m/s)(1.25 T)sin90 0.0505 NF q vB φ −= = × × =°  

EVALUATE: If the particle had negative charge and v! and B
!

are unchanged, the particle would be deflected 
toward the west. 

 
Figure 27.3 

 27.4. IDENTIFY: Apply Newton�s second law, with the force being the magnetic force. 
SET UP: � � �× −j i = k  

EXECUTE: m q ×F = a = v B
! !! ! gives q

m
×

=
v Ba
!!! and  

8 4

3

� �(1.22 10  C)(3.0 10  m/s)(1.63 T) ( ) �(0.330 m/s ) .
1.81 10  kg

−
2

−

× × ×
−

×
j ia = = k!  

EVALUATE: The acceleration is in the -directionz− and is perpendicular to both v! and B
!

. 
 27.5. IDENTIFY:  Apply sinF q vB φ= and solve for v. 

SET UP: An electron has 191.60 10  Cq −= − × . 

EXECUTE: 
15

6
19 3

4.60 10  N 9.49 10 m s
sin (1.6 10  C)(3.5 10  T)sin 60

Fv
q B φ

−

− −

×
= = = ×

× × °
 

EVALUATE: Only the component sinB φ  of the magnetic field perpendicular to the velocity contributes to the 
force. 

 27.6. IDENTIFY: Apply Newton�s second law and sinF q vB φ= . 

SET UP: φ is the angle between the direction of v! and the direction of B
!

. 
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EXECUTE: (a) The smallest possible acceleration is zero, when the motion is parallel to the magnetic field. The 
greatest acceleration is when the velocity and magnetic field are at right angles: 

19 6 2
216

31

(1.6 10 C)(2.50 10 m s )(7.4 10 T) 3.25 10 m s .
(9.11 10 kg)

qvBa
m

− −

−

× × ×
= = = ×

×
 

(b) If 16 21
4

sin(3.25 10  m/s ) ,qvBa
m

φ
= × =  then sin 0.25φ = and 14.5 .φ = °  

EVALUATE: The force and acceleration decrease as the angleφ approaches zero. 
 27.7. IDENTIFY: Apply q ×F = v B

! !! . 

SET UP: �
yvv = j! , with 33.80 10 m syv = − × . 37.60 10 N, 0,x yF F−= + × = and 35.20 10 NzF −= − × . 

EXECUTE: (a) ( )x y z z y y zF q v B v B qv B= − = . 
3 6 3(7.60 10 N) ([7.80 10 C)( 3.80 10 m s )] 0.256 Tz x yB F qv − −= = × × − × = −  

( ) 0,y z x x zF q v B v B= − =  which is consistent with F
!

as given in the problem. There is no force component along 
the direction of the velocity. 

( )z x y y x y xF q v B v B qv B= − = − . 0.175 Tx z yB F qv= − = − . 

(b) yB is not determined. No force due to this component of B
!

along v! ; measurement of the force tells us nothing 

about .yB  

(c) 3 3( 0.175 T)(+7.60 10  N) ( 0.256 T)( 5.20 10  N)x x y y z zB F B F B F − −⋅ = + + = − × + − − ×B F
! !

 

0⋅ =B F
! !

. B
!

and F
!

are perpendicular (angle is 90 )° . 

EVALUATE: The force is perpendicular to both v! and B
!

, so ⋅v F
!! is also zero. 

 27.8. IDENTIFY and SET UP: � � � � � � � �[ ( ) ( ) ( )] [ ( ) ( )].z x y z z x yq qB v v v qB v v× × + × + × − +F = v B = i k j k k k = j i
! !!  

EXECUTE: (a) Set the expression for F
!

equal to the given value of F
!

to obtain: 
7

9

(7.40 10 N) 106 m s
( 5.60 10 C)( 1.25 T)

y
x

z

F
v

qB

−

−

×
= = = −

− − − × −
 

7

9

(3.40 10 N) 48.6 m s.
( 5.60 10 C)( 1.25 T)

x
y

z

Fv
qB

−

−

− ×
= = = −

− × −
 

(b) zv does not contribute to the force, so is not determined by a measurement of F
!

. 

(c) 0; 90 .y x
x x y y z z x y

z z

F Fv F v F v F F F
qB qB

θ⋅ = + + = + = = °
−

v F
!!  

EVALUATE: The force is perpendicular to both v! and B
!

, so ⋅B F
! !

is also zero. 
 27.9. IDENTIFY: Apply q= ×F v B

! !! to the force on the proton and to the force on the electron. Solve for the 

components of B
!

. 
SET UP: F

!
is perpendicular to both v! and B

!
. Since the force on the proton is in the +y-direction, 0yB = and 

� �
x zB B+B = i k

!
. For the proton, �(1.50 km/s)v = i! . 

EXECUTE: (a) For the proton, 3 3� � � �(1.50 10  m/s) ( ) (1.50 10  m/s) ( ).x z zq B B q B× × + = × −F = i i k j
!

 16 �(2.25 10  N) ,−×F = j
!

 

so 
16

19 3

2.25 10  N 0.938 T
(1.60 10  C)(1.50 10  m/s)zB

−

−

×
= − = −

× ×
. The force on the proton is independent of xB . For the 

electron, �(4.75 km/s)( )−v = k! . 3 3� � � �( )(4.75 10  m/s)( ) ( ) (4.75 10  m/s)x z xq e B B e B= × = − × − × + + ×F v B k i k = j
! !! .  

The magnitude of the force is 3(4.75 10  m/s) xF e B= × . Since 168.50 10  NF −= × , 
16

19 3

8.50 10  N 1.12 T
(1.60 10  C)(4.75 10  m/s)xB

−

−

×
= =

× ×
. 1.12 TxB = ± . The sign of xB is not determined by measuring  

the magnitude of the force on the electron. 2 2 2( 1.12 T) ( 0.938 T) 1.46 Tx zB B B= + = ± + − = . 

0.938 Ttan
1.12 T

z

x

B
B

θ −
= =

±
. 40θ = ± ° . B

!
is in the xz-plane and is either at 40°  from the +x-direction toward the 

-directionz− or 40° from the -directionx− toward the -directionz− . 
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(b) � �
x zB B+B = i k

!
. �(3.2 km/s)( )−v = j! . 

3� � � � �( )(3.2 km/s)( ) ( ) (3.2 10  m/s)( ( ) )x z x zq e B B e B B= × = − − × + = × − +F v B j i k k i
! !! . 

3 16 16� � � �(3.2 10  m/s)( [ 1.12 T] [0.938 T] ) (4.80 10  N) (5.73 10  N)e − −× − ± − = − × ± ×F = k i i k
!

2 2 167.47 10  Nx zF F F −= + = × . 
16

16

5.73 10  Ntan
4.80 10  N

z

x

F
F

θ
−

−

± ×
= =

− ×
. 50.0θ = ± ° . The force is in the xz-plane and is 

directed at 50.0° from the -axisx−  toward either the +z or z−  axis, depending on the sign of xB . 
EVALUATE: If the direction of the force on the first electron were measured, then the sign of xB would be 
determined. 

27.10. IDENTIFY: Magnetic field lines are closed loops, so the net flux through any closed surface is zero. 
SET UP: Let magnetic field directed out of the enclosed volume correspond to positive flux and magnetic field 
directed into the volume correspond to negative flux. 
EXECUTE: (a) The total flux must be zero, so the flux through the remaining surfaces must be 0.120− Wb. 
(b) The shape of the surface is unimportant, just that it is closed. 
(c) One possibility is sketched in Figure 27.10. 
EVALUATE: In Figure 27.10 all the field lines that enter the cube also exit through the surface of the cube. 

 
Figure 27.10 

27.11. IDENTIFY and SET UP: B dΦ = ⋅∫ B A
!!

 

Circular area in the xy-plane, so ( )22 20.0650 m 0.01327 mA rπ π= = =  and dA
!

 is in the z-direction. Use 
Eq.(1.18) to calculate the scalar product. 
EXECUTE: (a) ( ) �0.230 T ;  and d=B k B A

!! !
 are parallel ( )0φ = °  so .d B dA⋅ =B A

!!
 

B is constant over the circular area so 2 3(0.230 T)(0.01327 m ) 3.05 10  WbB d B dA B dA BA −Φ = ⋅ = = = = = ×∫ ∫ ∫B A
!!

 

(b) The directions of  and dB A
!!

 are shown in Figure 27.11a. 

 

cos
with 53.1

d B dAφ
φ

⋅ =
= °

B A
!!

 

Figure 27.11a  
B and φ  are constant over the circular area so cos cos cosB d B dA B dA B Aφ φ φΦ = ⋅ = = =∫ ∫ ∫B A

!!
 

( ) ( )2 30.230 T cos53.1 0.01327 m 1.83 10  WbB
−Φ = ° = ×  

(c) The directions of  and dB A
!!

 are shown in Figure 27.11b. 

 

0 since and  are perpendicular ( 90 )d d φ⋅ = = °B A A B
! !! !

 

0.B dΦ = ⋅ =∫ B A
!!

 

Figure 27.11b  
EVALUATE: Magnetic flux is a measure of how many magnetic field lines pass through the surface. It is 
maximum when B

!
 is perpendicular to the plane of the loop (part a) and is zero when B

!
 is parallel to the plane of 

the loop (part c). 
27.12. IDENTIFY: When B

!
is uniform across the surface, cosB BA φΦ = ⋅ =B A

!!
. 

SET UP: A
!

 is normal to the surface and is directed outward from the enclosed volume. For surface abcd, 
�A−A = i

!
. For surface befc, �A−A = k

!
. For surface aefd, cos 3/5φ = and the flux is positive. 
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EXECUTE: (a) ( ) 0.B abcdΦ = ⋅ =B A
!!

 
(b) ( ) (0.128 T)(0.300 m)(0.300 m) 0.0115 Wb.B befcΦ = ⋅ = − = −B A

!!
 

(c) 3
5( ) cos (0.128 T)(0.500 m)(0.300 m) 0.0115 Wb.B aefd BA φΦ = ⋅ = = = +B A

!!
 

(d) The net flux through the rest of the surfaces is zero since they are parallel to the x-axis. The total flux is the 
sum of all parts above, which is zero. 
EVALUATE: The total flux through any closed surface, that encloses a volume, is zero. 

27.13. IDENTIFY: The total flux through the bottle is zero because it is a closed surface.  
SET UP: The total flux through the bottle is the flux through the plastic plus the flux through the open cap, so the 
sum of these must be zero. plastic cap 0.Φ + Φ =  

( )2
plastic cap cos cosB A B rπΦ = −Φ = − Φ = − Φ  

EXECUTE: Substituting the numbers gives plasticΦ  = � (1.75 T)π(0.0125 m)2 cos 25° = �7.8 × 10�4 Wb 
EVALUATE: It would be impossible to calculate the flux through the plastic directly because of the complicated 
shape of the bottle, but with a little thought we can find this flux through a simple calculation. 

27.14. IDENTIFY: p mv=  and L Rp= , since the velocity and linear momentum are tangent to the circular path. 
SET UP: 2 /q vB mv R= . 

EXECUTE: (a) 3 19 21(4.68 10  m)(6.4 10  C)(1.65 T) 4.94 10  kg m/s.RqBp mv m RqB
m

− − −⎛ ⎞= = = = × × = ×⎜ ⎟
⎝ ⎠

 

(b) 2 3 2 19 23 2(4.68 10 m) (6.4 10 C)(1.65 T) 2.31 10 kg m s.L Rp R qB − − −= = = × × = × ⋅  

EVALUATE: p!  is tangent to the orbit and L
!

is perpendicular to the orbit plane. 

27.15. (a) IDENTIFY: Apply Eq.(27.2) to relate the magnetic force F
!

 to the directions of  and .v B
!!  The electron has 

negative charge so F
!

 is opposite to the direction of .×v B
!!  For motion in an arc of a circle the acceleration is 

toward the center of the arc so F
!

 must be in this direction. 2 / .a v R=  
SET UP:  

 

As the electron moves in the semicircle, 
its velocity is tangent to the circular path. 
The direction of 0 ×v B

!!
 at a point along 

the path is shown in Figure 27.15. 

Figure 27.15  
EXECUTE: For circular motion the acceleration of the electron rada!  is directed in toward the center of the circle. 
Thus the force BF

!
 exerted by the magnetic field, since it is the only force on the electron, must be radially inward. 

Since q is negative, BF
!

 is opposite to the direction given by the right-hand rule for 0 .×v B
!!

 Thus B
!

 is directed 

into the page. Apply Newton's 2nd law to calculate the magnitude of :B
!

 rad gives m F ma= =∑ ∑F a
! !  

2( / )BF m v R=  
2sin ,  so ( / )BF q vB q vB q vB m v Rφ= = =  

31 6
4

19

(9.109 10  kg)(1.41 10  m/s) 1.60 10  T
(1.602 10  C)(0.050 m)

mvB
q R

−
−

−

× ×
= = = ×

×
 

(b) IDENTIFY and SET UP: The speed of the electron as it moves along the path is constant. ( BF
!

 changes the 
direction of v!  but not its magnitude.) The time is given by the distance divided by 0.v  

EXECUTE: The distance along the semicircular path is ,Rπ  so 7
6

0

(0.050 m) 1.11 10  s
1.41 10  m/s

Rt
v

π π −= = = ×
×

 

EVALUATE: The magnetic field required increases when v increases or R decreases and also depends on the mass 
to charge ratio of the particle. 

27.16. IDENTIFY: Newton�s second law gives 2 /q vB mv R= . The speed v is constant and equals 0v . The direction of 
the magnetic force must be in the direction of the acceleration and is toward the center of the semicircular path. 
SET UP: A proton has 191.60 10  Cq −= + × and 271.67 10  kgm −= × . The direction of the magnetic force is given 
by the right-hand rule. 
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EXECUTE: (a) 
27 6

19

(1.67 10 kg)(1.41 10 m s) 0.294 T
(1.60  10 C)(0.0500 m)

mvB
qR

−

−

× ×
= = =

×
 

The direction of the magnetic field is out of the page (the charge is positive), in order for F
!

to be directed to the 
right at point A. 
(b) The time to complete half a circle is 7

0/ 1.11 10 s.t R vπ −= = ×  
EVALUATE: The magnetic field required to produce this path for a proton has a different magnitude (because of 
the different mass) and opposite direction (because of opposite sign of the charge) than the field required to 
produce the path for an electron. 

27.17. IDENTIFY and SET UP: Use conservation of energy to find the speed of the ball when it reaches the bottom of the 
shaft. The right-hand rule gives the direction of F

!
 and Eq.(27.1) gives its magnitude. The number of excess 

electrons determines the charge of the ball. 
EXECUTE: ( )( )8 19 114.00 10 1.602 10  C 6.408 10  Cq − −= × − × = − ×  

speed at bottom of shaft: 21
2 ;  2 49.5 m/smv mgy v gy= = =  

v!  is downward and B
!

 is west, so ×v B
!!  is north. Since 0,  q < F

!
 is south. 

( )( )( )11 10sin 6.408 10  C 49.5 m/s 0.250 T sin90 7.93 10  NF q vB θ − −= = × ° = ×  

EVALUATE: Both the charge and speed of the ball are relatively small so the magnetic force is small, much less 
than the gravity force of 1.5 N. 

27.18. IDENTIFY: Since the particle moves perpendicular to the uniform magnetic field, the radius of its path is 
mvR
q B

= . The magnetic force is perpendicular to both v! and B
!

. 

SET UP: The alpha particle has charge 192 3.20 10  Cq e −= + = × . 

EXECUTE: (a) 
27 3

4
19

(6.64 10  kg)(35.6 10  m/s) 6.73 10  m 0.673 mm
(3.20 10  C)(1.10 T)

R
−

−
−

× ×
= = × =

×
. The alpha particle moves in a 

circular arc of diameter 2 1.35 mmR = . 
(b) For a very short time interval the displacement of the particle is in the direction of the velocity. The magnetic 
force is always perpendicular to this direction so it does no work. The work-energy theorem therefore says that the 
kinetic energy of the particle, and hence its speed, is constant. 

(c) The acceleration is 
19 3

12 2
27

sin (3.20 10  C)(35.6 10  m/s)(1.10 T)sin90 1.88 10  m/s .
6.64 10  kg

B q vBFa
m m

φ −

−

× ×
= = = = ×

×
°  We can 

also use 
2va

R
= and the result of part (a) to calculate 

3 2
12 2

4

(35.6 10  m/s) 1.88 10  m/s
6.73 10  m

a −

×
= = ×

×
, the same result. The 

acceleration is perpendicular to v! and B
!

and so is horizontal, toward the center of curvature of the particle�s path. 
EVALUATE: (d) The unbalanced force ( BF

!
) is perpendicular to v! , so it changes the direction of v! but not its 

magnitude, which is the speed. 
27.19. IDENTIFY: In part (a), apply conservation of energy to the motion of the two nuclei. In part (b) apply 2/ .q vB mv R=  

SET UP: In part (a), let point 1 be when the two nuclei are far apart and let point 2 be when they are at their 
closest separation. 
EXECUTE: (a) 1 1 2 2K U K U+ = + . 1 2 0,U K= = so 1 2K U=  and 2 21

2 mv ke r= . 

19 7
27 15

2 2(1.602 10 C) 1.2 10 m s
(3.34 10 kg)(1.0 10 m)

k kv e
mr

−
− −= = × = ×

× ×
 

(b) m∑F = a
""! !

 gives 2qvB mv r= . 
27 7

19

(3.34 10 kg)(1.2 10 m/s) 0.10 T
(1.602 10 C)(2.50 m)

mvB
qr

−

−

× ×
= = =

×
. 

EVALUATE: The speed calculated in part (a) is large, 4% of the speed of light. 
27.20. IDENTIFY: sinF q vB φ= . The direction of F

!
is given by the right-hand rule. 

SET UP: An electron has q e= − . 

EXECUTE: (a) sinF q vB φ= . 
9

19

0.00320 10  N 5.00 T.
sin 8(1.60 10  C)(500,000 m/s)sin90
FB

q v φ

−

−

×
= = =

× °
 If the angleφ  is 

less than 90 ,° a larger field is needed to produce the same force. The direction of the field must be toward the south 
so that ×v B

!!  is downward. 
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(b) sinF q vB φ= . 
12

7
19

4.60 10 N 1.37 10 m s
sin (1.60 10 C)(2.10 T) sin 90

Fv
q B φ

−

−

×
= = = ×

× °
. If φ  is less than 90 ,° the 

speed would have to be larger to have the same force. The force is upward, so ×v B
!!  must be downward since the 

electron is negative, and the velocity must be toward the south. 
EVALUATE: The component of B

!
along the direction of v! produces no force and the component of v! along the 

direction of B
!

produces no force. 
27.21. (a) IDENTIFY and SET UP: Apply Newton's 2nd law, with 2 /a v R=  since the path of the particle is circular. 

EXECUTE: ( )2 says /m q vB m v R= =∑F a
! !  

( )( )( )19 3
5

27

1.602 10  C 2.50 T 6.96 10  m
8.35 10  m/s

3.34 10  kg
q BR

v
m

− −

−

× ×
= = = ×

×
 

(b) IDENTIFY and SET UP: The speed is constant so t = distance/v. 

EXECUTE: 
( )3

8
5

6.96 10  m
2.62 10  s

8.35 10  m/s
Rt
v

ππ −
−

×
= = = ×

×
 

(c) IDENTIFY and SET UP: kinetic energy gained = electric potential energy lost 
EXECUTE: 21

2 mv q V=  

( )( )
( )

227 52
3

19

3.34 10  kg 8.35 10  m/s
7.27 10  V 7.27 kV

2 2 1.602 10  C
mvV

q

−

−

× ×
= = = × =

×
 

EVALUATE: The deutron has a much larger mass to charge ratio than an electron so a much larger B is required 
for the same v and R. The deutron has positive charge so gains kinetic energy when it goes from high potential to 
low potential. 

27.22. IDENTIFY: For motion in an arc of a circle, 
2va

R
= and the net force is radially inward, toward the center of the 

circle. 
SET UP: The direction of the force is shown in Figure 27.22. The mass of a proton is 271.67 10  kg−× . 

EXECUTE: (a) F
!

is opposite to the right-hand rule direction, so the charge is negative. m=F a
! ! gives 

2

sin vq vB m
R

φ = . 90φ = ° and 
19

6
27

3(1.60 10  C)(0.250 T)(0.475 m) 2.84 10  m/s
12(1.67 10  kg)

q BR
v

m

−

−

×
= = = ×

×
. 

(b) 19 6 13sin 3(1.60 10  C)(2.84 10  m/s)(0.250 T)sin90 3.41 10  NBF q vB φ − −= = × × = ×° . 
27 2 2512(1.67 10  kg)(9.80 m/s ) 1.96 10  Nw mg − −= = × = × . The magnetic force is much larger than the weight of the 

particle, so it is a very good approximation to neglect gravity. 
EVALUATE: (c) The magnetic force is always perpendicular to the path and does no work. The particles move 
with constant speed. 

 
Figure 27.22 

27.23. IDENTIFY: Example 27.3 shows that 2m fB
q
π

= , where f is the frequency, in Hz, of the electromagnetic waves 

that are produced. 
SET UP: An electron has charge q e= − and mass 319.11 10  kg.m −= ×  A proton has charge q e= + and mass 

271.67 10  kg.m −= ×  

EXECUTE: (a) 
31 12

19

2 (9.11 10 kg)2 (3.00 10 Hz) 107 T.
(1.60 10 C)

m πf πB
q

−

−

× ×
= = =

×
 This is about 2.4 times the greatest 

magnitude of magnetic field yet obtained on earth. 
(b) Protons have a greater mass than the electrons, so a greater magnetic field would be required to accelerate them 
with the same frequency and there would be no advantage in using them. 
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EVALUATE: Electromagnetic waves with frequency 3.0 THzf = have a wavelength in air of 

43.0 10  m.v
f

λ −= = ×  The shorter the wavelength the greater the frequency and the greater the magnetic field that 

is required. B depends only on f and on the mass-to-charge ratio of the particle that moves in the circular path. 
27.24. IDENTIFY: The magnetic force on the beam bends it through a quarter circle. 

SET UP: The distance that particles in the beam travel is s = Rθ, and the radius of the quarter circle is R = mv/qB. 
EXECUTE: Solving for R gives R = s/θ  = s/(π/2) = 1.18 cm/(π/2) = 0.751 cm. Solving for the magnetic field:  
B = mv/qR = (1.67 × 10�27 kg)(1200 m/s)/[(1.60 × 10�19 C)(0.00751 m)] = 1.67 × 10�3 T 
EVALUATE: This field is about 10 times stronger than the Earth�s magnetic field, but much weaker than many 
laboratory fields. 

27.25. IDENTIFY: When a particle of charge e− is accelerated through a potential difference of magnitude V, it gains 

kinetic energy eV. When it moves in a circular path of radius R, its acceleration is 
2v

R
. 

SET UP: An electron has charge 191.60 10  Cq e −= − = − ×  and mass 319.11 10  kg−× . 

EXECUTE: 21
2 mv eV= and 

19 3
7

31

2 2(1.60 10  C)(2.00 10  V) 2.65 10  m/s
9.11 10  kg

eVv
m

−

−

× ×
= = = ×

×
. m=F a
! ! gives 

2

sin vq vB m
R

φ = . 90φ = ° and 
31 7

4
19

(9.11 10  kg)(2.65 10  m/s) 8.38 10  T
(1.60 10  C)(0.180 m)

mvB
q R

−
−

−

× ×
= = = ×

×
. 

EVALUATE: The smaller the radius of the circular path, the larger the magnitude of the magnetic field that is 
required. 

27.26. IDENTIFY: After being accelerated through a potential difference V the ion has kinetic energy qV. The 
acceleration in the circular path is 2 / .v R  
SET UP: The ion has charge q e= + . 

EXECUTE: .K qV eV= = +  21
2 mv eV= and 

19
4

26

2 2(1.60 10  C)(220 V) 7.79 10  m/s.
1.16 10  kg

eVv
m

−

−

×
= = = ×

×
 sin .BF q vB φ=  

90φ = ° . m=F a
! ! gives 

2vq vB m
R

= . 
26 4

3
19

(1.16 10  kg)(7.79 10  m/s) 7.81 10  m 7.81 mm.
(1.60 10  C)(0.723 T)

mvR
q B

−
−

−

× ×
= = = × =

×
 

EVALUATE: The larger the accelerating voltage, the larger the speed of the particle and the larger the radius of its 
path in the magnetic field. 

27.27. (a) IDENTIFY and SET UP: Eq.(27.4) gives the total force on the proton. At 0,t =  

( )� � � �.x z x z xq q v v B qv B= × = + × =F v B i k i j
! !!  ( )( )( ) ( )19 5 14� �1.60 10  C 2.00 10  m/s 0.500 T 1.60 10  N .− −= × × = ×F j j

!
 

(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton is 
positive and there is a component of acceleration in this direction. 
(c) EXECUTE: In the plane perpendicular to B

!
 (the yz-plane) the motion is circular. But there is a velocity 

component in the direction of ,B
!

 so the motion is a helix. The electric field in the �+i  direction exerts a force in 

the �+i  direction. This force produces an acceleration in the �+i  direction and this causes the pitch of the helix to 
vary. The force does not affect the circular motion in the yz-plane, so the electric field does not affect the radius of 
the helix. 
(d) IDENTIFY and SET UP: Eq.(27.12) and 2 /T π ω=  to calculate the period of the motion. Calculate xa  
produced by the electric force and use a constant acceleration equation to calculate the displacement in the x-
direction in time T/2. 
EXECUTE: Calculate the period T: /q B mω =  

( )
( )( )

27
7

19

2 1.67 10  kg2 2 1.312 10  s.
1.60 10  C 0.500 T

mT
q B

ππ π
ω

−
−

−

×
= = = = ×

×
 Then 8/ 2 6.56 10  s.t T −= = ×  5

0 1.50 10  m/sxv = ×  

( )( )19 4
12 2

27

1.60 10  C 2.00 10  V/m
1.916 10  m/s

1.67 10  kg
x

x
Fa
m

−

−

× ×
= = = + ×

×
 

21
0 0 2x xx x v t a t− = +  

( )( ) ( )( )25 8 12 2 81
0 21.50 10  m/s 6.56 10  s 1.916 10  m/s 6.56 10  s 1.40 cmx x − −− = × × + × × =  

EVALUATE: The electric and magnetic fields are in the same direction but produce forces that are in 
perpendicular directions to each other. 
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27.28. IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP: /v E B= for no deflection. With only the magnetic force, 2 /q vB mv R=  

EXECUTE: (a) 4 3 6(1.56 10 V m ) (4.62 10 T) 3.38 10 m s.v E B −= = × × = ×  

(b) The directions of the three vectors ,v!  E
!

and B
!

are sketched in Figure 27.28. 

(c) 
31 6

3
19 3

(9.11 10  kg)(3.38 10  m/s) 4.17 10  m.
(1.60 10  C)(4.62 10  T)

mvR
q B

−
−

− −

× ×
= = = ×

× ×
 

3
9

6

2 2 2 (4.17 10 m) 7.74 10 s.
(3.38 10 m s )

m RT
q B v
π π π −

−×
= = = = ×

×
 

EVALUATE: For the field directions shown in Figure 27.28, the electric force is toward the top of the page and 
the magnetic force is toward the bottom of the page. 

 
Figure 27.28 

27.29. IDENTIFY: For the alpha particles to emerge from the plates undeflected, the magnetic force on them must 
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on the alpha 
particles. 
SET UP: First use energy conservation to find the speed of the alpha particles as they enter the plates: qV = 1/2 mv2. 
The electric field between the plates due to the battery is E =Vbd. For the alpha particles not to be deflected, the 
magnetic force must cancel the electric force, so qvB = qE, giving B = E/v. 
EXECUTE: Solve for the speed of the alpha particles just as they enter the region between the plates. Their charge 
is 2e. 

( )19
5

27

4 1.60 10 C (1750 V)2(2 ) 4.11 10 m/s
6.64 10 kg

e Vv
mα

−

−

×
= = = ×

×
 

The electric field between the plates, produced by the battery, is 
E = Vb /d = (150 V)/(0.00820 m) = 18,300 V 

The magnetic force must cancel the electric force: 
B = E/vα  = (18,300 V)/(4.11 × 105 m/s) = 0.0445 T 

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the electric field 
points upward, the magnetic field is out of the page. 
EVALUATE: The sign of the charge of the alpha particle does not enter the problem, so negative charges of the 
same magnitude would also not be deflected. 

27.30. IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP: /v E B= for no deflection. 
EXECUTE: To pass undeflected in both cases, 3(5.85 10 m s)(1.35 T) 7898 N C.E vB= = × =  

(a) If 90.640 10 C,q −= ×  the electric field direction is given by � � �( ( )) ,− × −j k = i  since it must point in the opposite 
direction to the magnetic force. 
(b) If 90.320 10 C,q −= − ×  the electric field direction is given by � � �(( ) ( )) ,− × − =j k i  since the electric force must 
point in the opposite direction as the magnetic force. Since the particle has negative charge, the electric force is 
opposite to the direction of the electric field and the magnetic force is opposite to the direction it has in part (a). 
EVALUATE: The same configuration of electric and magnetic fields works as a velocity selector for both 
positively and negatively charged particles. 

27.31. IDENTIFY and SET UP: Use the fields in the velocity selector to find the speed v of the particles that pass through. 
Apply Newton's 2nd law with 2 /a v R=  to the circular motion in the second region of the spectrometer. Solve for 
the mass m of the ion. 
EXECUTE: In the velocity selector .q E q vB=  

5
51.12 10  V/m 2.074 10  m/s

0.540 T
Ev
B

×
= = = ×  
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In the region of the circular path givesm=∑F a
! !  2( / ) so /q vB m v R m q RB v= =  

Singly charged ion, so 191.602 10  Cq e −= + = ×  
19

25
5

(1.602 10  C)(0.310 m)(0.540 T) 1.29 10  kg
2.074 10  m/s

m
−

−×
= = ×

×
 

Mass number = mass in atomic mass units, so is 
25

27

1.29 10  kg 78.
1.66 10  kg

−

−

×
=

×
 

EVALUATE: Appendix D gives the average atomic mass of selenium to be 78.96. One of its isotopes has atomic 
mass 78. 

27.32. IDENTIFY and SET UP: For a velocity selector, .E vB=  For parallel plates with opposite charge, .V Ed=  
EXECUTE: (a) 6 6(1.82 10 m s)(0.650 T) 1.18 10 V m.E vB= = × = ×  

(b) 6 3(1.18 10 V m)(5.20 10 m) 6.14 kV.V Ed −= = × × =  

EVALUATE: Any charged particle with 61.82 10 m sv = × will pass through undeflected, regardless of the sign 
and magnitude of its charge. 

27.33. IDENTIFY: The magnetic force is sin .F IlB φ=  For the wire to be completely supported by the field requires that 
F mg= and that F

!
and w! are in opposite directions. 

SET UP: The magnetic force is maximum when 90φ = °.  The gravity force is downward. 

EXECUTE: (a) .IlB mg=  
2

4
4

(0.150 kg)(9.80 m/s ) 1.34 10  A.
(2.00 m)(0.55 10  T)

mgI
lB −= = = ×

×
 This is a very large current and ohmic 

heating due to the resistance of the wire would be severe; such a current isn�t feasible. 
(b) The magnetic force must be upward. The directions of I, B

!
 and F

!
 are shown in Figure 27.33, where we have 

assumed that B
!

is south to north. To produce an upward magnetic force, the current must be to the east. The wire 
must be horizontal and perpendicular to the earth�s magnetic field. 
EVALUATE: The magnetic force is perpendicular to both the direction of I and the direction of .B

!
 

 
Figure 27.33 

27.34. IDENTIFY: Apply sin .F IlB φ=  
SET UP: 0.0500 ml =  is the length of wire in the magnetic field. Since the wire is perpendicular to ,B

!
 90φ = °.  

EXECUTE: (10.8 A)(0.0500 m)(0.550 T) 0.297 N.F IlB= = =  
EVALUATE: The force per unit length of wire is proportional to both B and I. 

27.35. IDENTIFY: Apply sin .F IlB φ=  
SET UP: Label the three segments in the field as a, b, and c. Let x be the length of segment a. Segment b has 
length 0.300 m and segment c has length 0.600 cm .x−  Figure 27.35a shows the direction of the force on each 
segment. For each segment, 90φ = °.  The total force on the wire is the vector sum of the forces on each segment. 
EXECUTE: (4.50 A) (0.240 T).aF IlB x= =  (4.50 A)(0.600 m )(0.240 T).cF x= −  Since aF

!
 and cF

!
 are in the 

same direction their vector sum has magnitude (4.50 A)(0.600 m)(0.240 T) 0.648 Nac a cF F F= + = =  and is 
directed toward the bottom of the page in Figure 27.35a. (4.50 A)(0.300 m)(0.240 T) 0.324 NbF = =  and is 

directed to the right. The vector addition diagram for acF
!

 and bF
!

 is given in Figure 27.35b. 

2 2 2 2(0.648 N) (0.324 N) 0.724 N.ac bF F F= + = + =  0.648 Ntan
0.324 N

ac

b

F
F

θ = =  and 63.4θ = °.  The net force has 

magnitude 0.724 N and its direction is specified by 63.4θ = ° in Figure 27.35b. 
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EVALUATE: All three current segments are perpendicular to the magnetic field, so 90φ = ° for each in the force 
equation. The direction of the force on a segment depends on the direction of the current for that segment. 

  
Figure 27.35 

27.36. IDENTIFY and SET UP: sinF IlB φ= . The direction of F
!

is given by applying the right-hand rule to the 
directions of I and B

!
. 

EXECUTE: (a) The current and field directions are shown in Figure 27.36a. The right-hand rule gives that F
!

is 
directed to the south, as shown. 90φ = ° and 2 3(1.20A)(1.00 10  m)(0.588 T) 7.06 10  NF − −= × = × . 

(b) The right-hand rule gives that F
!

is directed to the west, as shown in Figure 27.36b. 90φ = ° and 
37.06 10  NF −= × , the same as in part (a). 

(c) The current and field directions are shown in Figure 27.36c. The right-hand rule gives that F
!

is 60.0° north of 
west. 90φ = ° so 37.06 10  NF −= × , the same as in part (a). 
EVALUATE: In each case the current direction is perpendicular to the magnetic field. The magnitude of the 
magnetic force is the same in each case but its direction depends on the direction of the magnetic field. 

   
Figure 27.36 

27.37. IDENTIFY: sinF IlB φ= . 
SET UP: Since the field is perpendicular to the rod it is perpendicular to the current and 90φ = ° . 

EXECUTE: 0.13 N 9.7 A
(0.200 m)(0.067 T)

FI
lB

= = =  

EVALUATE: The force and current are proportional. We have assumed that the entire 0.200 m length of the rod is 
in the magnetic field. 

27.38. IDENTIFY: Apply I
→

×F = l B
!!

. 
SET UP: The magnetic field of a bar magnet points away from the north pole and toward the south pole. 
EXECUTE: Between the poles of the magnet, the magnetic field points to the right. Using the fingertips of your 
right hand, rotate the current vector by 90°  into the direction of the magnetic field vector. Your thumb points 
downward�which is the direction of the magnetic force. 
EVALUATE If the two magnets had their poles interchanged, then the force would be upward. 

27.39. IDENTIFY and SET UP: The magnetic force is given by Eq.(27.19). IF mg=  when the bar is just ready to levitate. 
When I becomes larger,  and I IF mg F mg> −  is the net force that accelerates the bar upward. Use Newton's 2nd 
law to find the acceleration. 
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(a) EXECUTE: 
( )( )
( )( )

20.750 kg 9.80 m/s
,  32.67 A

0.500 m 0.450 T
mgIlB mg I
lB

= = = =  

( )( )32.67 A 25.0 817 VIR= = Ω =E  

(b) ( ) ( )2.0 ,  / 816.7 V / 2.0 408 AR I R= Ω = = Ω =E  

92 NIF IlB= =  

( ) 2/ 113 m/sIa F mg m= − =  

EVALUATE: I increases by over an order of magnitude when R changes to IF mg>>  and a is an order of 
magnitude larger than g. 

27.40. IDENTIFY: The magnetic force BF
!

must be upward and equal to mg. The direction of BF
!

is determined by the 
direction of I in the circuit. 

SET UP: sinBF IlB φ= , with 90φ = ° . VI
R

= , where V is the battery voltage. 

EXECUTE: (a) The forces are shown in Figure 27.40. The current I in the bar must be to the right to produce 

BF
!

upward. To produce current in this direction, point a must be the positive terminal of the battery. 

(b) BF mg= . IlB mg= . 2

(175 V)(0.600 m)(1.50 T) 3.21 kg
(5.00 )(9.80 m/s )

IlB VlBm
g Rg

= = = =
Ω

. 

EVALUATE: If the battery had opposite polarity, with point a as the negative terminal, then the current would be 
clockwise and the magnetic force would be downward. 

 
Figure 27.40 

27.41. IDENTIFY: Apply I ×F = l B
!! !

to each segment of the conductor: the straight section parallel to the x axis, the 
semicircular section and the straight section that is perpendicular to the plane of the figure in Example 27.8. 
SET UP: �

xBB = i
!

. The force is zero when the current is along the direction of B
!

. 
EXECUTE: (a) The force on the straight section along the �x-axis is zero. For the half of the semicircle at 
negative x the force is out of the page. For the half of the semicircle at positive x the force is into the page. The net 
force on the semicircular section is zero. The force on the straight section that is perpendicular to the plane of the 
figure is in the �y-direction and has magnitude F ILB.=  The total magnetic force on the conductor is ,ILB in the  
�y-direction. 
EVALUATE: (b) If the semicircular section is replaced by a straight section along the x -axis, then the magnetic 
force on that straight section would be zero, the same as it is for the semicircle. 

27.42. IDENTIFY: sinIABτ φ= . The magnetic moment of the loop is IAμ = . 
SET UP: Since the plane of the loop is parallel to the field, the field is perpendicular to the normal to the loop and 

90φ = ° . 
EXECUTE: (a) 3(6.2 A)(0.050 m)(0.080 m)(0.19 T) 4.7 10  N mIABτ −= = = × ⋅  

(b) 2(6.2 A)(0.050 m)(0.080 m) 0.025 A mIAμ = = = ⋅  
EVALUATE: The torque is a maximum when the field is in the plane of the loop and 90φ = ° . 

27.43. IDENTIFY: The period is 2 /T r vπ= , the current is /Q t and the magnetic moment is IAμ =  

SET UP: The electron has charge e− . The area enclosed by the orbit is 2rπ . 
EXECUTE: (a) 162 1.5 10 sT r vπ −= = ×  
(b) Charge e− passes a point on the orbit once during each period, so 1.1 mAI Q t e t= = = . 

(c) 2 24 29.3 10 A mIA I rμ π −= = = × ⋅  
EVALUATE: Since the electron has negative charge, the direction of the current is opposite to the direction of 
motion of the electron. 
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27.44. IDENTIFY: sinIABτ φ= , where φ  is the angle between B
!

and the normal to the loop. 
SET UP: The coil as viewed along the axis of rotation is shown in Figure 27.44a for its original position and in 
Figure 27.44b after it has rotated 30.0° . 
EXECUTE: (a) The forces on each side of the coil are shown in Figure 27.44a. 1 2 0+ =F F

! !
and 3 4 0+ =F F

! !
. The 

net force on the coil is zero. 0φ = ° and sin 0φ = , so 0τ = . The forces on the coil produce no torque. 
(b) The net force is still zero. 30.0φ = ° and the net torque is 

(1)(1.40 A)(0.220 m)(0.350 m)(1.50 T)sin30.0 0.0808 N mτ = = ⋅° . The net torque is clockwise in Figure 27.44b 
and is directed so as to increase the angleφ . 
EVALUATE: For any current loop in a uniform magnetic field the net force on the loop is zero. The torque on the 
loop depends on the orientation of the plane of the loop relative to the magnetic field direction. 

  
Figure 27.44 

27.45. IDENTIFY: The magnetic field exerts a torque on the current-carrying coil, which causes it to turn. We can use 
the rotational form of Newton�s second law to find the angular acceleration of the coil. 
SET UP: The magnetic torque is given by = × B

!! !τ μ , and the rotational form of Newton�s second law is 
Iτ α=∑ . The magnetic field is parallel to the plane of the loop. 

EXECUTE: (a) The coil rotates about axis A2 because the only torque is along top and bottom sides of the coil. 
(b) To find the moment of inertia of the coil, treat the two 1.00-m segments as point-masses (since all the points in 
them are 0.250 m from the rotation axis) and the two 0.500-m segments as thin uniform bars rotated about their 
centers. Since the coil is uniform, the mass of each segment is proportional to its fraction of the total perimeter of 
the coil. Each 1.00-m segment is 1/3 of the total perimeter, so its mass is (1/3)(210 g) = 70 g = 0.070 kg. The mass 
of each 0.500-m segment is half this amount, or 0.035 kg. The result is 

2 2 21
122(0.070 kg)(0.250 m) 2 (0.035 kg)(0.500 m) 0.0102 kg mI = + = ⋅  

The torque is 
 = sin90 (2.00 A)(0.500 m)(1.00 m)(3.00 T) = 3.00 N mIAB= × ° = ⋅B
!! !τ μ  

Using the above values, the rotational form of Newton�s second law gives 
2290 rad/s

I
τα = =  

EVALUATE: This angular acceleration will not continue because the torque changes as the coil turns. 
27.46. IDENTIFY: = × B

!! !τ μ  and cosU Bμ φ= − , where NIBμ = . sinBτ μ φ= . 

SET UP: φ  is the angle between B
!

and the normal to the plane of the loop. 
EXECUTE: (a) � � �90 .  sin(90 ) , direction .  cos 0.τ NIAB NIAB U Bφ μ φ= ° = ° = × − = − =k j = i  
(b) 0. sin(0) 0, no direction. cos .τ NIAB U B NIABφ μ φ= = = = − = −  
(c) � � �90 .  sin(90 ) , direction .  cos 0.τ NIAB NIAB U Bφ μ φ= ° = ° = − × = − =k j = i  
(d) 180 : sin(180 ) 0, no direction, cos(180 ) .τ NIAB U B NIABφ μ= ° = ° = = − ° =  
EVALUATE: When τ is maximum, 0U = . When U  is maximum, 0τ = . 

27.47. IDENTIFY and SET UP: The potential energy is given by Eq.(27.27): .U = ⋅ B
!!μ  The scalar product depends on 

the angle between and .B
!!μ  

EXECUTE: For  and  parallel, 0  and cos .B Bφ μ φ μ= ° ⋅ = =B B
! !! !μ μ  For and  antiparallel,B

!!μ  
180  and cos .B Bφ μ φ μ= ° ⋅ = = −

!! Bμ  
1 2,  U B U Bμ μ= + = −  

2
2 1 2 2(1.45 A m )(0.835 T) 2.42 JU U U BμΔ = − = − = − ⋅ = −  

EVALUATE: U is maximum when and B
!!μ  are antiparallel and minimum when they are parallel. When the coil 

is rotated as specified its magnetic potential energy decreases. 
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27.48. IDENTIFY: Apply Eq.(27.29) in order to calculate I. The power drawn from the line is supplied abP IV= . The 

mechanical power is the power supplied minus the 2I r  electrical power loss in the internal resistance of the motor. 
SET UP: 120VabV = , 105 V=E , and 3.2 r = Ω . 

EXECUTE: (a) 
120 V 105 V 4.7 A.

3.2 Ω
ab

ab
VV Ir I

r
− −

= + ⇒ = = =
EE  

(b) supplied (4.7 A)(120 V) 564 W.abP IV= = =  

(c) 2 2
mech 564 W (4.7 A) (3.2Ω) 493 W.abP IV I r= − = − =  

EVALUATE: If the rotor isn�t turning, when the motor is first turned on or if the rotor bearings fail, then 0=E  

and 
120V 37.5 A
3.2 

I = =
Ω

. This large current causes large 2I r  heating and can trip the circuit breaker. 

27.49. IDENTIFY: The circuit consists of two parallel branches with the potential difference of 120 V applied across 
each. One branch is the rotor, represented by a resistance rR  and an induced emf that opposes the applied 
potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents through the 
field coil and through the rotor to the 4.82 A supplied to the motor. 
SET UP: The circuit is sketched in Figure 27.49. 

 

E  is the induced emf developed by 
the motor. It is directed so as to 
oppose the current through the rotor. 

Figure 27.49  
EXECUTE: (a) The field coils and the rotor are in parallel with the applied potential difference f f,  so .V V I R=  

f
f

120 V 1.13 A.
106 

VI
R

= = =
Ω

 

(b) Applying the junction rule to point a in the circuit diagram gives f r 0.I I I− − =  

r f 4.82 A 1.13 A 3.69 A.I I I= − = − =  
(c) The potential drop across the rotor, r r ,I R + E  must equal the applied potential difference r r:V V I R= + E  

( )( )r r 120 V 3.69 A 5.9 98.2 VV I R= − = − Ω =E  
(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical energy in 
the resistance of the motor: 
electrical power input to the motor 

( )( )in 4.82 A 120 V 578 WP IV= = =  
electrical power loss in the two resistances 

( ) ( ) ( ) ( )2 22 2
loss f f f 1.13 A 106 3.69 A 5.9 216 WP I R I R= + = Ω + Ω =  

mechanical power output 
out in loss 578 W 216 W 362 WP P P= − = − =  

The mechanical power output is the power associated with the induced emf E  
( )( )out r 98.2 V 3.69 A 362 W,P P I= = = =E E  which agrees with the above calculation. 

EVALUATE: The induced emf reduces the amount of current that flows through the rotor. This motor differs from 
the one described in Example 27.12. In that example the rotor and field coils are connected in series and in this 
problem they are in parallel. 

27.50. IDENTIFY: The field and rotor coils are in parallel, so f f r rabV I R I R= = +E and f r ,I I I= +  where I is the current 
drawn from the line. The power input to the motor is .abP V I=  The power output of the motor is the power input 
minus the electrical power losses in the resistances and friction losses. 
SET UP: 120 V.abV =  4.82 A.I =  

EXECUTE: (a) Field current f
120 V 0.550 A.
218Ω

I = =  

(b) Rotor current r total f 4.82 A 0.550 A 4.27 A.I I I= − = − =  
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(c) r rV I R= +E  and r r 120 V (4.27 A)(5.9 Ω) 94.8 V.V I R= − = − =E  
(d) 2 2

f f f (0.550 A) (218Ω) 65.9 W.P I R= = =  
(e) 2 2

r r r (4.27 A) (5.9Ω) 108 W.P I R= = =  
(f ) Power input = (120 V) (4.82 A) = 578 W. 

(g) Efficiency = output

input

(578 W 65.9 W 108 W 45 W) 359 W 0.621.
578 W 578 W

P
P

− − −
= = =  

EVALUATE: 2I R losses in the resistance of the rotor and field coils are larger than the friction losses for this 
motor. 

27.51. IDENTIFY: The drift velocity is related to the current density by Eq.(25.4). The electric field is determined by the 
requirement that the electric and magnetic forces on the current-carrying charges are equal in magnitude and 
opposite in direction. 
(a) SET UP: The section of the silver ribbon is sketched in Figure 27.51a. 

 

dxJ n q v=   

so d
xJv

n q
=  

Figure 27.51a  

EXECUTE: 7 2
3

1 1

120 A 4.42 10  A/m
(0.23 10  m)(0.0118 m)x

I IJ
A y z −= = = = ×

×
 

( )( )
7 2

3
d 28 3 19

4.42 10  A/m 4.7 10  m/s 4.7 mm/s
5.85 10 / m 1.602 10  C

xJv
n q

−
−

×
= = = × =

× ×
 

(b) magnitude of E
!

 

dz yq E q v B=  
3 3

d (4.7 10  m/s)(0.95 T) 4.5 10  V/mz yE v B − −= = × = ×  

direction of E
!

 
The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.51b. 

 

× ↑v B
!!  

B q e= × = − × ↓F v B v B
! ! !! !

 

Figure 27.51b  
The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.51c. 

 

EF
!

 must oppose BF
!

 so EF
!

 
is in the -directionz−  

Figure 27.51c  
 so E q e= = −F E E E

! ! ! !
 is opposite to the direction of EF

!
 and thus E

!
 is in the -direction.z+  

(c) The Hall emf is the potential difference between the two edges of the strip (at z = 0 and z = 1z ) that results from 
the electric field calculated in part (b). 3

Hall 1 (4.5 10  V/m)(0.0118 m) 53 VEz μ−= = × =E  
EVALUATE: Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is more 
than an order of magnitude larger than in Example 27.13. In this problem the magnetic field and current density are 
larger than in the example, and this leads to a larger Hall emf. 

27.52. IDENTIFY: Apply Eq.(27.30). 
SET UP: 1 1.A y z=  1/ .E z= E  .q e=  

EXECUTE: 1

1

x y y y y

z z

J B IB IB z IB
n

q E A q E A q y q
= = = =E E  

28 3
4 19 4

(78.0 A)(2.29 T) 3.7 10 electrons / m
(2.3 10 m)(1.6 10 C)(1.31 10 V)

n − − −= = ×
× × ×

 

EVALUATE: The value of n for this metal is about one-third the value of n calculated in Example 27.12 for copper. 
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27.53. (a) IDENTIFY: Use Eq.(27.2) to relate ,  ,  and .v B F
! !!  

SET UP: The directions of 1 1 and v F
!!  are shown in Figure 27.53a. 

 

q= ×F v B
! !!  says that F

!
 is perpendicular 

to and .v B
!!  The information given here 

means that B
!

 can have no z-component. 

Figure 27.53a  

The directions of 2 2 and v F
!!  are shown in Figure 27.53b. 

 

F
!

 is perpendicular to and ,v B
!!  so B

!
 can 

have no x-component. 

Figure 27.53b  
Both pieces of information taken together say that B

!
 is in the y-direction; �.yB=B j

!
 

EXECUTE: Use the information given about 2F
!

 to calculate 2 2 2 2
� � �:   ,  ,  .y yF F v B= = =F i v k B j

! !!  

2 2 2 2 2 2 2
� � � � says ( ) and y y yq F qv B qv B F qv B= × = × = − = −F v B i k j i

! !!  

2 2 2 1 2 1/( ) /( ).  has the maginitude /( ) and is in the -direction.yB F qv F qv B F qv y= − = − −
!

 

(b) 1 1 2sin / 2 / 2yF qvB qv B Fφ= = =  

EVALUATE: 1 2 2. v v= v!  is perpendicular to B
!

 whereas only the component of 1v!  perpendicular to B
!

 contributes 
to the force, so it is expected that 2 1,F F>  as we found. 

27.54. IDENTIFY: Apply .q= ×F v B
! !!  

SET UP: 0.450 T,xB =  0yB = and 0.zB =  
EXECUTE: ( ) 0.x y z z yF q v B v B= − =  

8 4 3( ) (9.45 10  C)(5.85 10  m/s)(0.450 T) 2.49 10  N.y z x x zF q v B v B − −= − = × × = ×  
8 4 3( ) (9.45 10  C)( 3.11 10  m/s)(0.450 T) 1.32 10  N.z x y y xF q v B v B − −= − = − × − × = ×  

EVALUATE: F
!

is perpendicular to both v! and .B
!

 We can verify that 0.⋅ =F v
! !  Since B

!
 is along the x-axis, 

xv does not affect the force components. 
27.55. IDENTIFY: The sum of the magnetic, electrical, and gravitational forces must be zero to aim at and hit the target. 

SET UP: The magnetic field must point to the left when viewed in the direction of the target for no net force. The 
net force is zero, so 0B EF F F mg= − − =∑  and qvB � qE � mg = 0. 
EXECUTE: Solving for B gives 

6 2

6

(2500 10  C)(27.5 N/C) + (0.0050 kg)(9.80 m/s ) 3.7 T
(2500 10  C)(12.8 m/s)

qE mgB
qv

−

−

+ ×
= = =

×
 

The direction should be perpendicular to the initial velocity of the coin. 
EVALUATE: This is a very strong magnetic field, but achievable in some labs. 

27.56. IDENTIFY: Apply /R mv q B= . /v Rω =  
SET UP: 191 eV 1.60 10  J−= ×  
EXECUTE: (a) 6 19 132.7 MeV (2.7 10 eV) (1.6 10 J/eV) 4.32 10 J.K − −= = × × = ×  

13
7

27

2 2(4.32 10 J) 2.27 10 m/s
1.67 10 kg

Kv
m

−

−

×
= = = ×

×
. 

27 7

19

(1.67 10 kg) (2.27 10 m/s) 0.068 m.
(1.6 10 C) (3.5 T)

mvR
qB

−

−

× ×
= = =

×

7
82.27 10 m/sAlso, 3.34 10 rad/s.

0.068 m
vω
R

×
= = = ×  

(b) If the energy reaches the final value of 5.4 MeV, the velocity increases by 2 , as does the radius, to 0.096 m. 
The angular frequency is unchanged from part (a) so is 83.34 10× rad/s. 
EVALUATE: /q B mω = , so ω is independent of the energy of the protons. The orbit radius increases when the 
energy of the proton increases. 
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27.57. (a) IDENTIFY and SET UP: The maximum radius of the orbit determines the maximum speed v of the protons. 
Use Newton's 2nd law and 2/ca v R=  for circular motion to relate the variables. The energy of the particle is the 

kinetic energy 21
2 .K mv=  

EXECUTE: m∑F = a
! !  gives 2( / )q vB m v R=  

19
7

27

(1.60 10  C)(0.85 T)(0.40 m) 3.257 10  m/s.
1.67 10  kg

q BR
v

m

−

−

×
= = = ×

×
 The kinetic energy of a proton moving with this 

speed is 2 27 7 2 131 1
2 2 (1.67 10  kg)(3.257 10  m/s) 8.9 10  J 5.6 MeVK mv − −= = × × = × =  

(b) The time for one revolution is the period 8
7

2 2 (0.40 m) 7.7 10  s
3.257 10  m/s

RT
v
π π −= = = ×

×
 

(c) 
2 2 2 2

21 1 1
2 2 2

2. Or, .
q BR q B R KmK mv m B

m m q R
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 B is proportional to ,K  so if K is increased by a 

factor of 2 then B must be increased by a factor of 2.  2(0.85 T) 1.2 T.B = =   

(d) 
19

7
27

(3.20 10  C)(0.85 T)(0.40 m) 1.636 10  m/s
6.65 10  kg

q BR
v

m

−

−

×
= = = ×

×
 

2 27 7 2 131 1
2 2 (6.65 10  kg)(1.636 10  m/s) 8.9 10  J 5.5 MeV,K mv − −= = × × = × =  the same as the maximum energy for 

protons. 
EVALUATE: We can see that the maximum energy must be approximately the same as follows: From part (c), 

2

1
2 .

q BR
K m

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 For alpha particles q  is larger by a factor of 2 and m is larger by a factor of 4 (approximately). 

Thus 2 /q m  is unchanged and K is the same. 

27.58. IDENTIFY: Apply .q= ×F v B
! !!  

SET UP: �v−v = j!  

EXECUTE: (a) � � � � � � � �[ ( ) ( ) ( )]x y z x zqv B B B qvB qvB= − × + × + × = −F j i j j j k k i
!

 

(b) 0, 0, sign of doesn't matter.x z yB B B> <  

(c) � �
x xq vB q vB−F = i k

!
 and 2 .xq vB=F

!
 

EVALUATE: F
!

is perpendicular to v! , so F
!

 has no y-component. 
27.59. IDENTIFY: The contact at a will break if the bar rotates about b. The magnetic field is directed out of the page, so 

the magnetic torque is counterclockwise, whereas the gravity torque is clockwise in the figure in the problem. The 
maximum current corresponds to zero net torque, in which case the torque due to gravity is just equal to the torque 
due to the magnetic field. 
SET UP: The magnetic force is perpendicular to the bar and has moment arm / 2l , where 0.750 ml =  is the 

length of the bar. The gravity torque is cos60.0
2
lmg ⎛ ⎞

⎜ ⎟
⎝ ⎠

°  

EXECUTE: gravity Bτ τ=  and cos60.0 sin90 .
2 2
l lmg IlB= °°  This gives 

( )2(0.458 kg) 9.80 m/s (cos60.0 )cos60.0 1.93 A
sin90 (0.750 m)(1.55 T)(1)

mgI
lB

= = =
°

°°  

EVALUATE: Once contact is broken, the magnetic torque ceases. The 90.0°  angle in the expression for Bτ is the 

angle between the direction of I and the direction of .B
!

 

27.60. IDENTIFY: Apply mvR
q B

= . 

SET UP: Assume D R<<  
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EXECUTE: (a) The path is sketched in Figure 27.60. 
(b) Motion is circular: 2 2 2 2 2

1x y R x D y R D+ = ⇒ = ⇒ = −  (path of deflected particle) 

2y R=  (equation for tangent to the circle, path of undeflected particle).  
2 2

2 2
2 1 2 21 1 1D Dd y y R R D R R R

R R

⎡ ⎤
= − = − − = − − = − −⎢ ⎥

⎣ ⎦
. If R D>> , 

2 2

2

11 1
2 2

D Dd R
R R

⎡ ⎤⎛ ⎞
≈ − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. For a 

particle moving in a magnetic field, .mvR
qB

=  But 21
2

1 2,  so .mVmv qV R
B q

= =  Thus, the deflection 

2 2

.
2 2 2 2

D B q D B ed
mV mV

≈ =  

(c) 
2 5 19

31

(0.50 m) (5.0 10 T) (1.6 10 C) 0.067 m 6.7 cm.
2 2(9.11 10 kg)(750 V)

d
− −

−

× ×
= = =

×
 13% of ,d D≈  which is fairly 

significant. 

EVALUATE: In part (c), 
21 2 3.7

2 2
mV D DR D D

B e d d
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 and 
2

14R
D

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, so the approximation made in 

part (b) is valid. 

 
Figure 27.60 

27.61. IDENTIFY and SET UP: Use Eq.(27.2) to relate , ,  and .q v B F
! !!  The force and F a

! !  are related by Newton's 2nd law. 
6� � � �(0.120 T) , (1.05 10  m/s)( 3 4 12 ),  1.25 NF= − = × − + + =B k v i j k

! !
 

(a) EXECUTE: q= ×F v B
! !!  

6 � � � � � �( 0.120 T)(1.05 10  m/s)( 3 4 12 )q= − × − × + × + ×F i k j k k k
!

 
� � � � � � � �, , 0× = − × = × =i k j j k i k k  

5 5� � � �(1.26 10  N/C)( 3 4 ) (1.26 10  N/C)( 4 3 )q q= − × + + = − × + +F j i i j
!

 

The magnitude of the vector 2 2� �4 3  is 3 4 5.+ + + =i j  Thus 5(1.26 10  N/C)(5).F q= − ×  

6
5 5

1.25 N 1.98 10  C
5(1.26 10  N/C) 5(1.26 10  N/C)

Fq −= − = − = − ×
× ×

 

(b)  so /m m= =∑F a a F
! !! !  

5 6 5� � � �(1.26 10  N/C)( 4 3 ) ( 1.98 10  C)(1.26 10  N/C)( 4 3 )q −= − × + + = − − × × + +F i j i j
! � �0.250 N(+4 3 )= + +i j  

Then 13 2
15

0.250 N � � � �/ ( 4 3 ) (9.69 10  m/s )( 4 3 )
2.58 10  kg

m −

⎛ ⎞
= = + + = × + +⎜ ⎟×⎝ ⎠

a F i j i j
!!  

(c) IDENTIFY and SET UP: F
!

 is in the xy-plane, so in the z-direction the particle moves with constant speed 
612.6 10  m/s.×  In the xy-plane the force F

!
 causes the particle to move in a circle, with F

!
 directed in towards the 

center of the circle. 
EXECUTE: 2 2 gives ( / ) and /m F m v R R mv F= = =∑F a

! !  
2 2 2 6 2 6 2 13 2 2( 3.15 10  m/s) ( 4.20 10  m/s) 2.756 10  m /sx yv v v= + = − × + + × = ×  

2 2 2 2(0.250 N) 4 3 1.25 Nx yF F F= + = + =  
2 15 13 2 2(2.58 10  kg)(2.756 10  m /s ) 0.0569 m 5.69 cm

1.25 N
mvR
F

−× ×
= = = =  
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(d) IDENTIFY and SET UP: By Eq.(27.12) the cyclotron frequency is / 2 / 2 .f v Rω π π= =  

EXECUTE: The circular motion is in the xy-plane, so 2 2 65.25 10  m/s.x yv v v= + = ×  
6

7 75.25 10  m/s 1.47 10  Hz, and 2 9.23 10  rad/s
2 2 (0.0569 m)

vf f
R

ω π
π π

×
= = = × = = ×  

(e) IDENTIFY and SET UP Compare t to the period T of the circular motion in the xy-plane to find the x and y 
coordinates at this t. In the z-direction the particle moves with constant speed, so 0 .zz z v t= +  

EXECUTE: The period of the motion in the xy-plane is given by 8
7

1 1 6.80 10  s
1.47 10  Hz

T
f

−= = = ×
×

 

In t = 2T the particle has returned to the same x and y coordinates. The z-component of the motion is motion with a 
constant velocity of 612.6 10  m/s.zv = + ×  Thus 6 8

0 0 (12.6 10  m/s)(2)(6.80 10  s) 1.71 m.zz z v t −= + = + × × = +  
The coordinates at 2  are , 0, 1.71 m.t T x R y z= = = = +  
EVALUATE: The circular motion is in the plane perpendicular to .B

!
 The radius of this motion gets smaller when 

B increases and it gets larger when v increases. There is no magnetic force in the direction of B
!

 so the particle 
moves with constant velocity in that direction. The superposition of circular motion in the xy-plane and constant 
speed motion in the z-direction is a helical path. 

27.62. IDENTIFY: The net magnetic force on the wire is the vector sum of the force on the straight segment plus the 
force on the curved section. We must integrate to get the force on the curved section. 

SET UP: straight, top curved straight, bottomF F F F= + +∑ and straight, top straight, bottom straight .F F iL B= =  curved, 
0

sin 2xF iRB d iRB
π

θ θ= =∫  

(the same as if it were a straight segment 2R long) and Fy = 0 due to symmetry. Therefore, F = 2iLstraightB + 2iRB  
EXECUTE: Using Lstraight = 0.55 m, R = 0.95 m, i = 3.40 A, and B = 2.20 T gives F = 22 N, to right. 
EVALUATE: Notice that the curve has no effect on the force. In other words, the force is the same as if the wire 
were simply a straight wire 3.00 m long. 

27.63. IDENTIFY: sinNIABτ φ= . 
SET UP: The area A is related to the diameter D by 21

4A Dπ= . 

EXECUTE: 21
4( ) sinNI D Bτ π φ= . τ is proportional to 2D . Increasing D by a factor of 3 increases τ by a factor of 

23 9= . 
EVALUATE: The larger diameter means larger length of wire in the loop and also larger moment arms because 
parts of the loop are farther from the axis. 

27.64. IDENTIFY: Apply q= ×F v B
! !!

 
SET UP: �vv = k!  
EXECUTE: (a) � �.y xqvB qvB− +F = i j

!
 But 0 0

� �3 4F F+F = i j
!

, so 03 yF qvB= −  and 04 xF qvB=  

Therefore, 03
y

FB
qv

= − , 04
x

FB
qv

= and zB is undetermined. 

(b) 
2 2

2 2 2 2 20 0 0

0 0

6 9 16 25 ,x y z z z
F F qv F qvB B B B B B

qv qv F qv F
⎛ ⎞ ⎛ ⎞= = + + = + + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 so 011
z

FB
qv

= ± ⋅ 

EVALUATE: The force doesn�t depend on zB , since v!  is along the z-direction. 

27.65. IDENTIFY: For the velocity selector, E vB= . For the circular motion in the field B′ , mvR
q B

=
′
. 

SET UP: 0.701 T.B B′= =  

EXECUTE: 
4

41.88 10  N/C 2.68 10  m/s.
0.701 T

Ev
B

×
= = = ×  mvR

qB
=

′
, so 

27 4

82 19

82(1.66 10  kg)(2.68 10  m/s) 0.0325 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

27 4

84 19

84(1.66 10  kg)(2.68 10  m/s) 0.0333 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

27 4

86 19

86(1.66 10  kg)(2.68 10  m/s) 0.0341 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

The distance between two adjacent lines is 1.6 mmRΔ = . 
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EVALUATE: The distance between the 82 Kr line and the 84 Kr line is 1.6 mm and the distance between the 
84 Kr line and the 86 Kr line is 1.6 mm. Adjacent lines are equally spaced since the 82 Kr  versus 84 Kr and 84 Kr versus 
86 Kr mass differences are the same. 

27.66. IDENTIFY: Apply conservation of energy to the acceleration of the ions and Newton�s second law to their motion 
in the magnetic field. 
SET UP: The singly ionized ions have q e= + . A 12C ion has mass 12 u and a 14C ion has mass 14 u, where 

271 u 1.66 10  kg−= ×  

EXECUTE: (a) During acceleration of the ions, 21
2qV mv=  and 2 .qVv

m
=  In the magnetic field, 

2 /m qV mmvR
qB qB

= =  and 
2 2

2
qB Rm

V
= . 

(b) 
2 2 19 2 2

4
27

(1.60 10 C)(0.150 T) (0.500 m) 2.26 10 V
2 2(12)(1.66 10 kg)

qB RV
m

−

−

×
= = = ×

×
 

(c) The ions are separated by the differences in the diameters of their paths. 2

22 2 VmD R
qB

= = , so 

( )14 12 2 2 2
14 12

2 2 2 (1 u)2 2 2 14 12Vm Vm VD D D
qB qB qB

Δ = − = − = − . 

( )
4 27

2
19 2

2(2.26 10  V)(1.66 10  kg)2 14 12 8.01 10  m.
(1.6 10  C)(0.150 T)

D
−

−
−

× ×
Δ = − = ×

×
 This is about 8 cm and is easily distinguishable. 

EVALUATE: The speed of the 12C ion is 
19 4

5
27

2(1.60 10  C)(2.26 10 V) 6.0 10  m/s
12(1.66 10  kg)

v
−

−

× ×
= = ×

×
. This is very fast, but 

well below the speed of light, so relativistic mechanics is not needed. 
27.67. IDENTIFY: The force exerted by the magnetic field is given by Eq.(27.19). The net force on the wire must be zero. 

SET UP: For the wire to remain at rest the force exerted on it by the magnetic field must have a component directed 
up the incline. To produce a force in this direction, the current in the wire must be directed from right to left in 
Figure 27.61 in the textbook. Or, viewing the wire from its left-hand end the directions are shown in Figure 27.67a. 

 
Figure 27.67a 

The free-body diagram for the wire is given in Figure 27.67b. 

 

EXECUTE: 0yF =∑  

cos sin 0IF Mgθ θ− =  
sinIF ILB φ=  

90  since  isφ = ° B
!

perpendicular 
to the current direction.  

Figure 27.67b  

Thus (ILB) cos sin 0Mgθ θ− =  and tanMgI
LB

θ
=  

EVALUATE: The magnetic and gravitational forces are in perpendicular directions so their components parallel to 
the incline involve different trig functions. As the tilt angle θ  increases there is a larger component of Mg down 
the incline and the component of IF  up the incline is smaller; I must increase with θ  to compensate. As 

0,  0 and as 90 , .I Iθ θ→ → → ° → ∞  
27.68. IDENTIFY: The current in the bar is downward, so the magnetic force on it is vertically upwards. The net force on 

the bar is equal to the magnetic force minus the gravitational force, so Newton�s second law gives the acceleration. 
The bar is in parallel with the 10.0-Ω resistor, so we must use circuit analysis to find the initial current through it. 
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SET UP: First find the current. The equivalent resistance across the battery is 30.0 Ω, so the total current is 4.00 A, 
half of which goes through the bar. Applying Newton�s second law to the bar gives .BF ma F mg iLB mg= = − = −∑  
EXECUTE: Solving for the acceleration gives 

2
2

(2.0 A)(1.50 m)(1.60 T)  3.00 N 5.88 m/s .
(3.00 N/9.80 m/s )

iLB mga
m
− −

= = =  

The direction is upward. 
EVALUATE: Once the bar is free of the conducting wires, its acceleration will become 9.8 m/s2 downward since 
only gravity will be acting on it. 

27.69. IDENTIFY: Calculate the acceleration of the ions when they first enter the field and assume this acceleration is 
constant. Apply conservation of energy to the acceleration of the ions by the potential difference. 
SET UP: Assume �

xvv = i! and neglect the y-component of v! that is produced by the magnetic force. 

EXECUTE: (a) 21
2 ,xmv qV=  so 2 .x

qVv
m

=  Also, x
y

qv Ba
m

= and .
x

xt
v

=  

2 2 1/ 2 1/ 22
2 21 1

2 2
1 1 .
2 2 2 8

x
y y

x x

x qv B x qBx m qy a t a Bx
v m v m qV mV

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(b) This can be used for isotope separation since the mass in the denominator leads to different locations for 
different isotopes. 
EVALUATE: For 0.1 T,B =  41 10  m/s,v = ×  q e= + and 2612 u 2.0 10  kg,m −= = ×  2 2(1.0 m ) .y x−=  The 
approximation y x<< is valid as long as x is on the order of 10 cm or less. 

27.70. IDENTIFY: Turning the charged loop creates a current, and the external magnetic field exerts a torque on that 
current. 
SET UP: The current is I = q/T = q/(1/f ) = qf = q(ω/2π) = qω/2π. The torque is sin .Bτ μ φ=  
EXECUTE: In this case,  and µ = ,ABφ = 90°  giving .IABτ =  Combining the results for the torque and current 

and using A = πr2 gives 2 21
22

q r B q r Bωτ π ω
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE: Any moving charge is a current, so turning the loop creates a current causing a magnetic force. 

27.71. IDENTIFY: 
mvR
q B

= . 

SET UP: After completing one semicircle the separation between the ions is the difference in the diameters of 
their paths, or 13 122( )R R− . A singly ionized ion has charge e+ . 

EXECUTE: (a) 
26 3

3
19

(1.99 10  kg)(8.50 10  m/s) 8.46 10  T
(1.60 10  C)(0.125 m)

mvB
q R

−
−

−

× ×
= = = ×

×
. 

(b) The only difference between the two isotopes is their masses. constantR v
m q B

= = and 12 13

12 13

R R
m m

= . 

26
13

13 12 26
12

2.16 10  kg(12.5 cm) 13.6 cm.
1.99 10  kg

mR R
m

−

−

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 The diameter is 27.2 cm. 

(c) The separation is 13 122( ) 2(13.6 cm 12.5 cm) 2.2 cm.R R− = − =  This distance can be easily observed. 
EVALUATE: Decreasing the magnetic field increases the separation between the two isotopes at the detector. 

27.72. IDENTIFY: The force exerted by the magnetic field is sinF ILB φ= . /a F m= and is constant. Apply a constant 
acceleration equation to relate v and d. 
SET UP: 90φ = °.  The direction of F

!
is given by the right-hand rule. 

EXECUTE: (a) F = ILB, to the right. 

(b) 2 2
0 02 ( )x x xv v a x x= + − gives 2 2v ad= and 

2 2

.
2 2
v v md
a ILB

= =  

(c) 
4 2

6(1.12 10 m/s) (25 kg) 3.14 10 m 3140 km
2(2000 A)(0.50 m)(0.50 T)

d ×
= = × =  

EVALUATE: 
3

2(20 10  A)(0.50 m)(0.50 T) 20 m/s .
25 kg

ILBa
m

×
= = =  The acceleration due to gravity is not negligible. 

27.73. IDENTIFY: Apply sinF IlB φ=  to calculate the force on each segment of the wire that is in the magnetic field. 
The net force is the vector sum of the forces on each segment. 
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SET UP: The direction of the magnetic force on each current segment in the field is shown in Figure 27.73. By 
symmetry, .a bF F=  aF

!
and bF

!
are in opposite directions so their vector sum is zero. The net force equals .cF  For 

,cF  90φ = ° and 0.450 m.l =  
EXECUTE: (6.00 A)(0.450 m)(0.666 T) 1.80 NcF IlB= = = . The net force is 1.80 N, directed to the left. 
EVALUATE: The shape of the region of uniform field doesn�t matter, as long as all of segment c is in the field and 
as long as the lengths of the portions of segments a and b that are in the field are the same. 

 
Figure 27.73 

27.74. IDENTIFY: Apply .I ×F = l B
!! !

 
SET UP: �l=l k

!
 

EXECUTE: (a) � � �( ) ( ) ( ) .y xI l Il B B⎡ ⎤× − +⎣ ⎦F = k B = i j
! !

 This gives 

(9.00 A) (0.250 m)( 0.985 T) 2.22 Nx yF IlB= − = − − =  and (9.00 A)(0.250 m)( 0.242 T) 0.545 N.y xF IlB= = − = − . 
0zF = , since the wire is in the z-direction. 

(b) 2 2 2 2(2.22 N) (0.545 N) 2.29 N.x yF F F= + = + =  

EVALUATE: F
!

must be perpendicular to the current direction, so F
!

has no z component. 
27.75. IDENTIFY: For the loop to be in equilibrium the net torque on it must be zero. Use Eq.(27.26) to calculate the 

torque due to the magnetic field and use Eq.(10.3) for the torque due to the gravity force. 
SET UP: See Figure 27.75a. 

 

Use 0,Aτ =∑  where 
point A is at the origin. 

Figure 27.75a  

EXECUTE: See Figure 27.75b. 

 

sin (0.400 m)sin30.0mg mgr mgτ φ= = °  

The torque is clockwise; mgτ!  is 
directed into the paper.  

Figure 27.75b  
For the loop to be in equilibrium the torque due to B

!
 must be counterclockwise (opposite to mg

!τ ) and it must be 
that .B mgτ τ=  See Figure 27.75c. 

 

.B = × B
!! !τ μ  For this torque to be 

counterclockwise ( B
!τ  directed out of the 

paper), B
!

 must be in the -direction.y+  

Figure 27.75c  
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sin sin60.0B B IABτ μ φ= = °  

( ) gives sin60.0 0.0400 m sin30.0B mg IAB mgτ τ= ° = °  

( ) ( ) 30.15 g/cm 2 8.00 cm 6.00 cm 4.2 g 4.2 10  kgm −= + = = ×  

( )( ) 3 20.800 m 0.0600 m 4.80 10  mA −= = ×  

( )( )0.0400 m sin30.0
sin 60.0

mg
B

IA
°

=
°

 

( )( )( )3 2

3 2

4.2 10  kg 9.80 m/s 0.0400 m sin30.0
0.024 T

(8.2 A)(4.80 10  m )sin 60.0
B

−

−

× °
= =

× °
 

EVALUATE: As the loop swings up the torque due to B
!

 decreases to zero and the torque due to mg increases 
from zero, so there must be an orientation of the loop where the net torque is zero. 

27.76. IDENTIFY: The torque exerted by the magnetic field is .= ×B
!! !τ μ  The torque required to hold the loop in place is .−

!τ  
SET UP: .IAμ =  !μ  is normal to the plane of the loop, with a direction given by the right-hand rule that is 
illustrated in Figure 27.32 in the textbook. sin ,IABτ φ=  where φ  is the angle between the normal to the loop and 
the direction of .B

!
 

EXECUTE: (a) sin 60 (15.0 A)(0.060 m)(0.080 m)(0.48 T)sin 60 0.030 N mτ IAB= ° = ° = ⋅ , in the �− j  direction. 

To keep the loop in place, you must provide a torque in the �+ j  direction. 

(b) sin 30 (15.0 A)(0.60 m)(0.080 m)(0.48 T)sin30 0.017 N m,τ IAB= ° = ° = ⋅  in the �+ j  direction. You must 

provide a torque in the �− j  direction to keep the loop in place. 
EVALUATE: (c) If the loop was pivoted through its center, then there would be a torque on both sides of the loop 
parallel to the rotation axis. However, the lever arm is only half as large, so the total torque in each case is identical 
to the values found in parts (a) and (b). 

27.77. IDENTIFY: Use Eq.(27.20) to calculate the force and then the torque on each small section of the rod and 
integrate to find the total magnetic torque. At equilibrium the torques from the spring force and from the magnetic 
force cancel. The spring force depends on the amount x the spring is stretched and then 21

2U kx=  gives the energy 
stored in the spring. 
(a) SET UP:  

 

Divide the rod into infinitesimal sections of 
length dr, as shown in Figure 27.77. 

Figure 27.77  

EXECUTE: The magnetic force on this section is IdF IBdr=  and is perpendicular to the rod. The torque dτ  due to 

the force on this section is .Id rdF IBr drτ = =  The total torque is 21
20

0.0442 N m, clockwise.
l

d IB rdr Il Bτ = = = ⋅∫ ∫  

(b) SET UP: IF  produces a clockwise torque so the spring force must produce a counterclockwise torque. The 
spring force must be to the left; the spring is stretched. 
EXECUTE: Find x, the amount the spring is stretched: 

0,τ =∑  axis at hinge, counterclockwise torques positive 
21

2( ) sin53 0kx l Il B° − =  

( )( )( )
( )

6.50 A 0.200 m 0.340 T
0.05765 m

2 sin53.0 2 4.80 N/m sin53.0
IlBx

k
= = =

° °
 

2 31
2 7.98 10  JU kx −= = ×  

EVALUATE: The magnetic torque calculated in part (a) is the same torque calculated from a force diagram in 
which the total magnetic force IF IlB=  acts at the center of the rod. We didn't include a gravity torque since the 
problem said the rod had negligible mass. 
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27.78. IDENTIFY: Apply I
→

×F = l B
!!

 to calculate the force on each side of the loop. 
SET UP: The net force is the vector sum of the forces on each side of the loop. 
EXECUTE: (a) (5.00 A)(0.600 m)(3.00 T)sin(0 ) 0 NPQF = =° . 

(5.00 A) (0.800 m) (3.00 T) sin(90 ) 12.0 NRPF = ° = , into the page. 

( )(5.00 A)(1.00 m)(3.00 T) 0.800/1.00 12.0 NQRF = = , out of the page. 
(b) The net force on the triangular loop of wire is zero. 
(c) For calculating torque on a straight wire we can assume that the force on a wire is applied at the wire�s center. 
Also, note that we are finding the torque with respect to the PR-axis (not about a point), and consequently the lever 
arm will be the distance from the wire�s center to the x-axis. sinrFτ φ=  gives (0 N) 0PQτ r= = , 

(0 m) sin 0RPτ F φ= =  and (0.300 m)(12.0 N)sin(90 ) 3.60 N mQRτ = ° = ⋅ . The net torque is 3.60 N m⋅ . 

(d) According to Eq.(27.28), ( )1
2sin (1)(5.00 A) (0.600 m)(0.800 m)(3.00 T)sin(90 ) 3.60 N mτ NIAB φ= = ° = ⋅ , 

which agrees with part (c). 
(e) Since QRF  is out of the page and since this is the force that produces the net torque, the point Q will be rotated 
out of the plane of the figure. 
EVALUATE: In the expression sinNIABτ φ= , φ  is the angle between the plane of the loop and the direction of 
B
!

. In this problem, 90φ = ° . 
27.79. IDENTIFY: Use Eq.(27.20) to calculate the force on a short segment of the coil and integrate over the entire coil 

to find the total force. 
SET UP: See Figure 27.79a. 

 

Consider the force dF
!

 on a short segment dl at 
the left-hand side of the coil, as viewed in Figure 
27.69 in the textbook. The current at this point is 
directed out of the page. dF

!
 is perpendicular both 

to B
!

 and to the direction of I.  

Figure 27.79a  
See Figure 27.79b. 

 

Consider also the force d ′F
!

 on a short segment 
on the opposite side of the coil, at the right-hand 
side of the coil in Figure 27.69 in the textbook. 
The current at this point is directed into the page. 

Figure 27.79b  
The two sketches show that the x-components cancel and that the y-components add. This is true for all pairs of 
short segments on opposite sides of the coil. The net magnetic force on the coil is in the y-direction and its 
magnitude is given by .yF dF= ∫  

EXECUTE: sin .dF Idl B φ=  But B
!

 is perpendicular to the current direction so 90 .φ = °   

cos30.0 cos30.0ydF dF IB dl= = °  

cos30.0yF dF IB dl= = °∫ ∫  

But ( )2 ,dl N rπ=∫  the total length of wire in the coil.  

( ) ( )( )( )( ) ( )cos30.0 2 0.950 A 0.200 T cos30.0 50 2 0.0078 mF IB N rπ π= ° = ° ( ) �0.444 N and 0.444 N= = −F j
!

 

EVALUATE: The magnetic field makes a constant angle with the plane of the coil but has a different direction at 
different points around the circumference of the coil so is not uniform. The net force is proportional to the 
magnitude of the current and reverses direction when the current reverses direction. 
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27.80. IDENTIFY: Conservation of energy relates the accelerating potential difference V to the final speed of the ions. In 
the magnetic field region the ions travel in an arc of a circle that has radius mvR

q B
= . 

SET UP: The quarter-circle paths of the two ions are shown in Figure 27.80. The separation at the detector is 
18 16r R RΔ = − . Each ion has charge q e= + . 

EXECUTE: (a) Conservation of energy gives 21
2q V mv= and 

2 q V
v

m
= . 

22 q mVq VmR
q B m q B

= = . 

q e= for each ion. 18 16 18 16
2 ( )eVr R R m m
eB

Δ = − = − . 

(b) 
( ) ( ) ( )

2 2 2 19 2 2 2

2 2 2
26 26

18 16 18 16

( ) ( ) (1.60 10  C)(4.00 10  m) (0.050 T)

2 2 2 2.99 10  kg 2.66 10  kg

reB e r BV
e m m m m

− −

− −

Δ Δ × ×
= = =

− − × − ×
 

33.32 10  VV = × . 
EVALUATE: The speed of the 16 O ion after it has been accelerated through a potential difference of 

33.32 10  VV = × is 52.00 10  m/s× . Increasing the accelerating voltage increases the separation of the two isotopes 
at the detector. But it does this by increasing the radius of the path for each ion, and this increases the required size 
of the magnetic field region. 

 
Figure 27.80 

27.81. IDENTIFY: Apply d Id ×F = l B
!! !

 to each side of the loop. 
SET UP: For each side of the loop, dl

!
is parallel to that side of the loop and is in the direction of I. Since the loop 

is in the xy-plane, 0z =  at the loop and 0yB = at the loop. 
EXECUTE: (a) The magnetic field lines in the yz-plane are sketched in Figure 27.81. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
02

0 0

� �.
L L B y dyId I B LI

L
×∫ ∫F = l B = i = i
!! !

 

Side 2, that runs from (0,L) to (L,L): 0
0

0, 0,

� �
L L

y L y L

B y dxId I IB L
L= =

× −∫ ∫F = l B = j = j
!! !

. 

Side 3, that runs from (L,L) to (L,0): 
0 0

0 1
02

, ,

� �( )
L x L L x L

B y dyId I IB L
L= =

= × − −∫ ∫F l B = i = i
!! !

. 

Side 4, that runs from (L,0) to (0,0): 
0 0

0

, 0 , 0

� 0.
L y L y

B y dxId I
L= =

× =∫ ∫F = l B = j
!! !

 

(c) The sum of all forces is total 0
�.IB L−F = j

!
 

EVALUATE: The net force on sides 1 and 3 is zero. The force on side 4 is zero, since 0y = and 0z =  at that side 
and therefore 0B = there. The net force on the loop equals the force on side 2. 

 
Figure 27.81 
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27.82. IDENTIFY: Apply d Id ×F = l B
!! !

 to each side of the loop. = ×r F
!!!τ . 

SET UP: For each side of the loop, dl
!

is parallel to that side of the loop and is in the direction of I. 
EXECUTE: (a) The magnetic field lines in the xy-plane are sketched in Figure 27.82. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
02

0 0

 � �( )
L L B y dyId I B LI

L
× − −∫ ∫F = l B = k = k
!! !

. 

Side 2, that runs from (0,L) to (L,L): 0 1
02

0 0

 � �.
L L B x dxId I IB L

L
×∫ ∫F = l B = k = k
!! !

 

Side 3, that runs from (L,L) to (L,0): 0 1
02

0 0

� �
L L B ydyId I IB L

L
× +∫ ∫F = l B = k = k
!! !

 

Side 4, that runs from (L,0) to (0,0): 0 1
02

0 0

� �( ) .
L L B xdxId I IB L

L
× − −∫ ∫F = l B = k = k
!! !

 

(c) If free to rotate about the x-axis, the torques due to the forces on sides 1 and 3 cancel and the torque due to the 

forces on side 4 is zero. For side 2, �L=r j! . Therefore, 
2

0 1
02

� �
2

IB L IAB×= r F = i = i
!!!τ . 

(d) If free to rotate about the y-axis, the torques due to the forces on sides 2 and 4 cancel and the torque due to the 

forces on side 1 is zero. For side 3, �L=r i! . Therefore, 
2

0 1
02

� �
2

IB L IAB× −= r F = j = j
!!!τ . 

EVALUATE: (e) The equation for the torque ×= B
!! !τ μ  is not appropriate, since the magnetic field is not constant. 

 
Figure 27.82 

27.83. IDENTIFY: While the ends of the wire are in contact with the mercury and current flows in the wire, the magnetic 
field exerts an upward force and the wire has an upward acceleration. After the ends leave the mercury the 
electrical connection is broken and the wire is in free-fall. 
(a) SET UP: After the wire leaves the mercury its acceleration is g, downward. The wire travels upward a total 
distance of 0.350 m from its initial position. Its ends lose contact with the mercury after the wire has traveled 
0.025 m, so the wire travels upward 0.325 m after it leaves the mercury. Consider the motion of the wire after it 
leaves the mercury. Take +y to be upward and take the origin at the position of the wire as it leaves the mercury. 

2
09.80 m/s ,  0.325 m, 0y ya y y v= − − = + =  (at maximum height), 0 ?yv =  

( )2 2
0 02y y yv v a y y= + −  

EXECUTE: 2
0 02 ( ) 2( 9.80 m/s )(0.325 m) 2.52 m/sy yv a y y= − − = − − =  

(b) SET UP: Now consider the motion of the wire while it is in contact with the mercury. Take +y to be upward 
and the origin at the initial position of the wire. Calculate the acceleration: 0 00.025 m, 0yy y v− = + =  (starts from 

rest), 2.52 m/syv = + (from part (a)), ?ya =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 
2 2

2

0

(2.52 m/s) 127 m/s
2( ) 2(0.025 m)

y
y

v
a

y y
= = =

−
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SET UP: The free-body diagram for the wire is given in Figure 27.83. 

 

EXECUTE: y yF ma=∑  

B yF mg ma− =  

( )yIlB m g a= +  

( )ym g a
I

lB
+

=  

Figure 27.83  
l is the length of the horizontal section of the wire; l = 0.150 m 

5 2 2(5.40 10  kg)(9.80 m/s 127 m/s ) 7.58 A
(0.150 m)(0.00650 T)

I
−× +

= =  

(c) IDENTIFY and SET UP: Use Ohm's law. 

EXECUTE: 1.50 V so 0.198 
7.58 A

VV IR R
I

= = = = Ω  

EVALUATE: The current is large and the magnetic force provides a large upward acceleration. During this 
upward acceleration the wire moves a much shorter distance as it gains speed than the distance is moves while in 
free-fall with a much smaller acceleration, as it loses the speed it gained. The large current means the resistance of 
the wire must be small. 

27.84. IDENTIFY and SET UP: Follow the procedures specified in the problem. 
EXECUTE: (a) �d dll = t

!
, where �t  is a unit vector in the tangential direction. � �sin cos .d Rdθ θ θ⎡ ⎤− +⎣ ⎦l = i j

!
 Note 

that this implies that when 0,θ = the line element points in the +y-direction, and when the angle is 90 ,°  the line 
element points in the �x-direction. This is in agreement with the diagram. 

[ ]� � � �sin cos ( ) cosx xd Id IRdθ θ θ B IB Rdθ θ⎡ ⎤× − + × −⎣ ⎦F = l B = i j i = k
!! !

. 

(b) 
2 2

0 0

� �cos  cos 0.
π π

x xIB R dθ IB R θdθθ− − =∫ ∫F = k = k
""!

 

(c) 2 2� � � � �(cos sin ) (  [ cos ]) (sin cos cos )x xd d R θ θ IB R dθ θ R IB dθ θ θ θ× + × − − −= r F = i j k = i j
!!!τ  

(d) 
22 2

2 2 2

00 0

sin 2� � �sin cos cos
2 4

ππ π

x x
θ θd R IB θ θdθ θdθ IR B

⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫τ = τ i j = j! ! . 2 2� � � �
x x xIR B π IπR B IA B×τ = j = j = k i!

 

and .= × B
!! !τ μ  

EVALUATE: Section 27.7 of the textbook derived = × B
!! !τ μ  for the case of a rectangular coil. This problem 

shows that the same result also applies to a circular coil. 
27.85. (a) IDENTIFY: Use Eq.(27.27) to relate ,   and U μ B

!
 and use Eq.(27.26) to relate ,   and .B

!! !τ μ  We also know that 
2 2 2 2
0 .x y zB B B B= + +  This gives three equations for the three components of .B

!
 

SET UP: The loop and current are shown in Figure 27.85. 

 

!μ  is into the plane of the 
paper, in the �z-direction 

Figure 27.85  
� �IAμ= − = −k k!μ  

(b) EXECUTE: � �( 4 3 ),D= + −i j!τ  where 0.D >  
� � � �,  x y yIA B B B− + += =k B i j k
!!μ  

� � � � � � � �( )( )x y z y xIA B B B IAB IABμ= × = − × + × + × = −B k i k j k k i j
!! !τ  

Compare this to the expression given for :!τ  4  so 4 /  and 3  so 3 /y y x xIAB D B D IA IAB D B D IA= = − = − =  

zB  doesn't contribute to the torque since !μ  is along the z-direction. But 0B B=  and 2 2 2 2
0 ;x y zB B B B+ + =  with 

0 13 / .B D IA=  Thus ( ) ( )2 2 2
0 / 169 9 16 12 /z x yB B B B D IA D IA= ± − − = ± − − = ±  

That U = − ⋅ B
!!μ  is negative determines the sign of :zB  � � � �( ) ( )x y z zU IA B B B IAB= − ⋅ = − − ⋅ + + = +B k i j k

!!μ  

So U negative says that zB  is negative, and thus 12 / .zB D IA= −  
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EVALUATE: 
!μ  is along the z-axis so only and x yB B  contribute to the torque. xB  produces a y-component of !τ  

and yB  produces an x-component of .!τ  Only zB  affects U, and U is negative when  and zB
!!μ  are parallel. 

27.86. IDENTIFY: qI
t

Δ
=

Δ
 and .IAμ =  

SET UP: The direction of !μ is given by the right-hand rule that is illustrated in Figure 27.32 in the textbook. I is 
in the direction of flow of positive charge and opposite to the direction of flow of negative charge. 

EXECUTE: (a) .
2 3

u
u

dq q q v evI
dt t r rπ π

Δ
= = = =

Δ
 

(b) 2 .
3 3u u
ev evrI A r

r
μ π

π
= = =  

(c) Since there are two down quarks, each of half the charge of the up quark, u .
3d

evrμ μ= =  Therefore, total
2 .

3
evrμ =  

(d) 
27 2

7
19 15

3 3(9.66 10 A m ) 7.55 10 m s.
2 2(1.60 10 C)(1.20 10 m)
μv
er

−

− −

× ⋅
= = = ×

× ×
 

EVALUATE: The speed calculated in part (d) is 25% of the speed of light. 
27.87. IDENTIFY: Eq.(27.8) says that the magnetic field through any closed surface is zero. 

SET UP: The cylindrical Gaussian surface has its top at z L= and its bottom at 0z = . The rest of the surface is 
the curved portion of the cylinder and has radius r and length L. 0B = at the bottom of the surface, since 0z =  
there. 
EXECUTE: (a) 

top curved top curved

( ) 0.z r rd B dA B dA βL dA B dA⋅ = + = + =∫ ∫ ∫ ∫B A
!!ú  This gives 20 2rL r B rLβ π π= + , and 

( ) .
2r
βrB r = −  

(b) The two diagrams in Figure 27.87 show views of the field lines from the top and side of the Gaussian surface. 
EVALUATE: Only a portion of each field line is shown; the field lines are closed loops. 

 
Figure 27.87 

27.88. IDENTIFY: U = − ⋅ B
!!μ . In part (b) apply conservation of energy. 

SET UP: The kinetic energy of the rotating ring is 21
2K Iω= . 

EXECUTE: (a) f i f i 0
� � � � � �( ) ( ) ( ( 0.8 0.6 )) (12 3 4 )U μ B⎡ ⎤ ⎡ ⎤Δ = − ⋅ − ⋅ = − − ⋅ = − − − − + ⋅ + −⎣ ⎦ ⎣ ⎦μ B μ B μ μ B k i j i j k

"!! !! ! ! ! . 
4 2

0[( 0.8)( 12) (0.6)( 3) ( 1)( 4)] (12.5 A)(4.45 10 m )(0.0115 T)( 11.8).U IAB −Δ = − + + + + + − = × −  
47.55 10 JU −Δ = − × . 

(b) 21
2

K IωΔ = . 
4

7 2

2 2(7.55 10 J) 42.1 rad/s.
8.50 10 kg m

Kω
I

−

−

Δ ×
= = =

× ⋅
 

EVALUATE: The potential energy of the ring decreases and its kinetic energy increases. 

27.89. IDENTIFY and SET UP: In the magnetic field, mvR
qB

= . Once the particle exits the field it travels in a straight line. 

Throughout the motion the speed of the particle is constant. 

EXECUTE: (a) 
11 5

6

(3.20 10 kg)(1.45 10 m/s) 5.14 m.
(2.15 10 C)(0.420 T)

mvR
qB

−

−

× ×
= = =

×
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(b) See Figure 27.89. The distance along the curve, ,d is given by d Rθ= . 0.35 msin ,
5.14 m

θ =  so 

2.78 0.0486 rad.θ = =°  (5.14 m)(0.0486 rad) 0.25 m.d Rθ= = =  And 6
5

0.25 m 1.72 10 s.
1.45 10  m/s

dt
v

−= = = ×
×

 

(c) 3
1 tan( / 2) (0.25 m)tan (2.79 / 2) 6.08 10 m.x d θ −Δ = = ° = ×  

(d) 1 2x x xΔ = Δ + Δ , where 2xΔ is the horizontal displacement of the particle from where it exits the field region to 

where it hits the wall. 2 (0.50 m) tan 2.79 0.0244 m.xΔ = =°  Therefore, 36.08 10  m 0.0244 m 0.0305 m.x −Δ = × + =  
EVALUATE: d is much less than R, so the horizontal deflection of the particle is much smaller than the distance it 
travels in the y-direction. 

 
Figure 27.89 

27.90. IDENTIFY: The current direction is perpendicular to B
!

, so F IlB= . If the liquid doesn�t flow, a force 
( )p AΔ from the pressure difference must oppose F. 
SET UP: / ,J I A=  where .A hw=  
EXECUTE: (a) / / .p F A IlB A JlBΔ = = =  

(b) 
5

6 2(1.00 atm)(1.013 10  Pa/atm) 1.32 10 A/m .
(0.0350 m)(2.20 T)

pJ
lB
Δ ×

= = = ×  

EVALUATE: A current of 1 A in a wire with diameter 1 mm corresponds to a current density of 
6 21.36 10  A/m ,J = ×  so the current density calculated in part (c) is a typical value for circuits. 

27.91. IDENTIFY: The electric and magnetic fields exert forces on the moving charge. The work done by the electric 

field equals the change in kinetic energy. At the top point, 
2

y
va
R

=  and this acceleration must correspond to the net 

force. 
SET UP: The electric field is uniform so the work it does for a displacement y in the y-direction is .W Fy qEy= =  

At the top point, BF
!

 is in the -directiony− and EF
!

is in the +y-direction. 
EXECUTE: (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius of curvature is 
greatest there. Once the motion is beyond the top, the particle is being slowed by the electric field. As it returns 
to 0,y =  the speed decreases, leading to a smaller magnetic force, until the particle stops completely. Then the 
electric field again provides the acceleration in the y-direction of the particle, leading to the repeated motion. 

(b) 21
2

W qEy mv= =  and 2 .qEyv
m

=  

(c) At the top, 
2 2 .

2y
mv m qEyF qE qvB qE
R y m

= − = − = − = −  2qE qvB= and 2 .Ev
B

=  

EVALUATE: The speed at the top depends on B because B determines the y-displacement and the work done by 
the electric force depends on the y-displacement. 


