DYNAMICS OF ROTATIONAL MOTION

10.1. IDENTIFY:

Fig.(10.4) to calculate the torque direction.
(a) SET Up: Consider Figure 10.1a.

F

(4]
4.00 m wqb =90
axis @e I

-
Figure 10.1a

Use Eq.(10.2) to calculate the magnitude of the torque and use the right-hand rule illustrated in

EXECUTE: 7=F]

[ =rsing =(4.00 m)sin90°
[=4.00 m

7=(10.0 N)(4.00 m) =40.0 N-m

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7 is

directed out of the plane of the figure.
(b) SET Up: Consider Figure 10.1b.

’\
4.00 m b= 120"
_\\

axis @

r

Figure 10.1b

EXECUTE: 7=FI

[ =rsing =(4.00 m)sin120°
[=3.464 m

7=(10.0 N)(3.464 m)=34.6 N-m

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7 is

directed out of the plane of the figure.
(¢) SETUP: Consider Figure 10.1c.

F
4.00 m /§f> =30"
axis @ ,_

r

Figure 10.1c

EXECUTE: 7=FI

[ =rsing =(4.00 m)sin30°
[=2.00m

7=(10.0 N)(2.00 m) =20.0 N-m

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector 7 is

directed out of the plane of the figure.
(d) SET Up: Consider Figure 10.1d.
200 m

- .

axis @

r Yﬁ = 60"

r
Figure 10.1d

the plane of the figure.

EXECUTE: 7=FI
[ =rsing=(2.00 m)sin60°=1.732 m
7=(10.0 N)(1.732 m)=17.3N-m

This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector 7 is directed into

(e) SETUP: Consider Figure 10.1e.
%

axis

Figure 10.1e

EXECUTE: 7=FI|
r=0s0/=0and 7=0
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(f) SETUp: Consider Figure 10.1f.
EXECUTE: 7=FI

F
- [=rsing, ¢=180°,
r O
Ud’z 180 so /=0 and 7=0
Figure 10.1f

axis @e

EVALUATE: The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of the force
passes through the axis.
10.2. IDENTIFY: 7= F[ with /[ =rsing . Add the two torques to calculate the net torque.
SET UP: Let counterclockwise torques be positive.
EXECUTE: 7, =-F, =—(8.00 N)(5.00 m)=—-40.0 N-m. 7, =+F,/, =(12.0 N)(2.00 m)sin30.0°=+12.0 N-m .

Zr =17, +7,=-280N-m. The net torque is 28.0 N-m, clockwise.

EVALUATE: Even though F| < F,, the magnitude of 7, is greater than the magnitude of z,, because £, has a

larger moment arm.
10.3. IDpENTIFY and SET UP: Use Eq.(10.2) to calculate the magnitude of each torque and use the right-hand rule
(Fig.10.4) to determine the directiot\l. Consider Figure 10.3

A s

~ e
s 0.090 m 0.090 m .
¢ = 135"
by = 135°

$3 = 90°
)%
Y
Y

Figure 10.3

Let counterclockwise be the positive sense of rotation.
EXECUTE: 1 =r,=1,= \/(0.090 m)* +(0.090 m)> =0.1273 m
7, =—Fl

[, =rsing =(0.1273 m)sin135°=0.0900 m

7, =—(18.0 N)(0.0900 m) =—1.62 N-m

7, is directed into paper

T, =+F

I, =r,sing, =(0.1273 m)sin135°=0.0900 m

7, =+(26.0 N)(0.0900 m) =+2.34 N-m

7, is directed out of paper

T, =+Fl

I, =r;sing, =(0.1273 m)sin90° =0.1273 m

7, =+(14.0 N)(0.1273 m) =+1.78 N-m

7, is directed out of paper

dr=r+7,+7,=-1.62N-m+234 N-m+1.78 N-m=2.50 N-m

EVALUATE: The net torque is positive, which means it tends to produce a counterclockwise rotation; the vector
torque is directed out of the plane of the paper. In summing the torques it is important to include + or — signs to
show direction.

10.4. IDENTIFY: Use 7= FI/=rFsing to calculate the magnitude of each torque and use the right-hand rule to

determine the direction of each torque. Add the torques to find the net torque.
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10.5.

10.6.

10.7.

10.8.

10.9.

SET UP: Let counterclockwise torques be positive. For the 11.9 N force (F,), »=0. For the 14.6 N force ( F, ),

r=0.350 mand ¢=40.0°. For the 8.50 N force (£} ), »=0.350 mand ¢=90.0°

EXECUTE: 7,=0. 7, =—(14.6 N)(0.350 m)sin40.0°=-3.285 N-m.

7, =+(8.50 N)(0.350 m)sin90.0°=+2.975 N-m. Zr =-3.285N-m+2.975 N-m=-0.31 N-m .The net torque
is 0.31 N-m and is clockwise.

EVALUATE: If we treat the torques as vectors, 7, is into the page and 7, is out of the page.

IDENTIFY and SET UP:  Calculate the torque using Eq.(10.3) and also determine the direction of the torque using
the right-hand rule.

(a) 7 =(=0.450 m)i +(0.150 m) j; F =(=5.00 N)i +(4.00 N)j. The sketch is given in Figure 10.5.

. y
F i

Figure 10.5

EXECUTE: (b) When the fingers of your right hand curl from the direction of 7 into the direction of F (through
the smaller of the two angles, angle ¢) your thumb points into the page (the direction of 7, the —z-direction).

() T=FxF = [(—0.450 m)i+(0.150 m)j'] x [(—5.00 N)i +(4.00 N)j']

7 =+(2.25N-m)i xi —(1.80 N-m)i x j — (0.750 N-m) j xi +(0.600 N -m) j x j
ixi=jxj=0

{X‘;:];, j’xf:—]é

Thus 7 =—(1.80 N-m)k — (0.750 N-m)(— k) = (~1.05 N - m)k.

EVALUATE: The calculation gives that 7 is in the —z-direction. This agrees with what we got from the right-
hand rule.

IDENTIFY: Use 7= FI =rF'sin¢ for the magnitude of the torque and the right-hand rule for the direction.

SET Up: In part (a), »=0.250 mand ¢ =37°

EXECUTE: (a) 7=(17.0 N)(0.250 m)sin37°=2.56 N-m . The torque is counterclockwise.

(b) The torque is maximum when ¢ =90° and the force is perpendicular to the wrench. This maximum torque is
(17.0 N)(0.250 m)=4.25N-m.

EVALUATE: If the force is directed along the handle then the torque is zero. The torque increases as the angle
between the force and the handle increases.

IDENTIFY: Apply Y 7, =Ia, .

SETUP: @, =0. . = (400 revimin)| 229V ) _ 41 9 radss
) 60 s/min
W, — ,, 41.9 rad/s

EXECUTE: 7 =la =1

z

=(2.50 kg.mz)mzls.l N-m,

EVALUATE: In 7, =/c., o mustbe in rad/s®.

IDENTIFY: Use a constant acceleration equation to calculate ¢, and then apply Zz': =la, .
SETUP: [ =2MR’+2mR’, where M =8.40 kg, m=2.00 kg, so [ =0.600 kg-m”’.

®,, =75.0 rpm = 7.854 rad/s; w, = 50.0 rpm =5.236 rad/s; 1 =30.0s.

EXECUTE: o, =0, +o.t gives a, =—0.08726 rad/s>. 7. = Ia, =—0.0524 N-m

EVALUATE: The torque is negative because its direction is opposite to the direction of rotation, which must be
the case for the speed to decrease.

IDENTIFY: Use Zz': =Ia_to calculate o . Use a constant angular acceleration kinematic equation to relate «, ,
®, and t.

SET UpP: For a solid uniform sphere and an axis through its center, 7 = %MR2 . Let the direction the sphere is

spinning be the positive sense of rotation. The moment arm for the friction force is / =0.0150 m and the torque due
to this force is negative.
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10.10.

10.11.

10.12.

EXECUTE: (a) @, = 7. _ —~(0.0200 N)(0.0150 m) _ 14.8 rad/s?

I 2(0.225 kg)(0.0150 m)’

z

-, _ 225 rad/s2 152
a, —14.8 rad/s

EVALUATE: The fact that ¢, is negative means its direction is opposite to the direction of spin. The negative

b) o, —w,, =-225radls. o, =, +a.t gives t = @

o, causes @, to decrease.

IDENTIFY: Apply Zrz = I, to the wheel. The acceleration a of a point on the cord and the angular acceleration
a of the wheel are related by a = Rex .
SETUP: Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and / =1 MR’.

The free-body diagram for the wheel is sketched in Figure 10.10a for a horizontal pull and in Figure 10.10b for a
vertical pull. P is the pull on the cord and F is the force exerted on the wheel by the axle.
EXECUTE: () _7.__(40.0 N)(0.250 m)

= ~=34.8 rad/s’. a=Ra =(0.250 m)(34.8 rad/s*) =8.70 m/s’.
I 1(9.20 kg)(0.250 m)

(b) F,=—P, F,=-Mg . F = \/PZ +(Mg)* = J(4o.o N)? +([9.20 kg][9.80 m/s*])* =98.6 N .

F,| Mg (9.20 kg)(9.80 m/s?)
Fl P 400N

is directed at 66.1° above the horizontal, away from the direction of the pull on the cord.

(¢) The pull exerts the same torque as in part (a), so the answers to part (a) don’t change. In part (b),
F+P=Mgand F=Mg—P=(9.20kg)(9.80 m/s’)—40.0 N =50.2 N . The force exerted by the axle has

magnitude 50.2 N and is upward.
EVALUATE: The weight of the wheel and the force exerted by the axle produce no torque because they act at the
axle.

tang =

and ¢ =66.1° . The force exerted by the axle has magnitude 98.6 N and

y

F
y A P
—4 X
X
_Z» P
Y uyg VMg
(@ (b)

Figure 10.10

IDENTIFY: Use a constant angular acceleration equation to calculate ¢, and then apply ZTZ = I, to the motion
of the cylinder. f, =y n.

SETUP: [=1mR’=1(8.25kg)(0.0750 m)2 =0.02320 kg -m” . Let the direction the cylinder is rotating be
positive. @, =220 rpm =23.04 rad/s; @, =0; € -6, =525 rev=33.0rad .

EXECUTE: o] =w,, +20,(0—0,) gives o, =—8.046 rad/s’ . X7, =7, =—f,R=—unR.Then ) 7, =Ia, gives
la,

4R
EVALUATE: The friction torque is directed opposite to the direction of rotation and therefore produces an angular
acceleration that slows the rotation.

IDENTIFY: Apply 217" = mad to the stone and Zrz = I« to the pulley. Use a constant acceleration equation to

=747N.

—unR=1Io, and n=

find a for the stone.
SET Up: For the motion of the stone take +y to be downward. The pulley has 7 = %MR2 .a=Ra.
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10.13.

10.14.

EXECUTE: (a) y—y,=v,++a,’ gives 12.6 m=1a (3.00 s)2 and a, =2.80 m/s? . Then > F, =ma, applied

to the stone gives mg—T =ma . Y 7. =Ia, applied to the pulley gives TR =1 MR’a =+ MR*(a/R). T =+ Ma .

2
Combining these two equations to eliminate 7 gives

2
oM _a :[I0.0kg 2.820m/s |=2.00ke.
2\ g-a 2 9.80 m/s* —2.80 m/s

1 1
b) T :EMa :5(10.0 kg)(2.80 m/s*) =14.0N

EVALUATE: The tension in the wire is less than the weight mg =19.6 N of the stone, because the stone has a

downward acceleration.

IDENTIFY: Use the kinematic information to solve for the angular acceleration of the grindstone. Assume that the
grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply Eq.(10.7) to
calculate the friction force and use f, = s n to calculate y, .

SETUP:  ,, =850 rev/min(27 rad/l rev)(1 min/60 s) =89.0 rad/s
t=750s; @ =0 (comes torest); a, =?
EXECUTE: o, =, +a.t
0-89.0 rad/s
o =—
7.50s
SET UP: Apply Zz': =Ia, to the grindstone. The free-body diagram is given in Figure 10.13.

fi = e

=-11.9 rad/s’

w..

A\

The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and therefore zero
torque. The only torque on the grindstone is that due to the friction force f, exerted by the ax; for this force the

Figure 10.13

moment arm is / = R and the torque is negative.
EXECUTE: )7, =—f,R=-unR

I=1MR* (solid disk, axis through center)

2
Thus ) 7, =la, gives —pnR= (%MRz)a:
MR .0 kg)(0.2 -11. ?
= a. _ (50.0 kg)(0.260 m)( 9 rad/s”) 0483
2n 2(160 N)
EVALUATE: The friction torque is clockwise and slows down the counterclockwise rotation of the grindstone.

IDENTIFY: Apply sz =ma, to the bucket, with +y downward. Apply Zz'z =/a,_ to the cylinder, with the

direction the cylinder rotates positive.
SET UpP: The free-body diagram for the bucket is given in Fig.10.14a and the free-body diagram for the cylinder

is given in Fig.10.14b. 7 =1 MR’. a(bucket) = Ra(cylinder)
EXECUTE: (a) For the bucket, mg —T =ma . For the cylinder, Zrz =la, gives TR :%MRza . a=alR then

gives T =1 Ma . Combining these two equations gives mg —+Ma =ma and

o Mg 15.0 kg
m+M/2 (15.0kg+6.0kg

T=m(g—a)=(15.0kg)(9.80 m/s* —7.00 m/s*) =42.0 N .
(b) vj = véy +2a,(y—y,) gives v, = \/2(7.00 m/s*)(10.0 m) =11.8 m/s .

j(9.80 m/s®) =7.00 m/s> .

2(y - ) =\/2(10.0 m o
a 7.00 m/s’

y

(©) a,=7.00m/s*, v, =0, y—y,=10.0m. y—y, =v, ++at gives t:\/
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10.15.

10.16.

(d) ZF} = ma, applied to the cylinder gives n—T —Mg =0 and

n=T+mg=42.0 N+(12.0 kg)(9.80 m/s’) =160 N .

EVALUATE: The tension in the rope is less than the weight of the bucket, because the bucket has a downward
acceleration. If the rope were cut, so the bucket would be in free-fall, the bucket would strike the water in

t= f% =1.43 s and would have a final speed of 14.0 m/s. The presence of the cylinder slows the fall of
. s

the bucket.

(@) (b)
Figure 10.14

IDENTIFY: Apply ZF =ma to each book and apply Zrz = I« to the pulley. Use a constant acceleration
equation to find the common acceleration of the books.
SETUP: m, =2.00 kg, m, =3.00 kg. Let 7, be the tension in the part of the cord attached to m, and 7, be the
tension in the part of the cord attached to m, . Let the +x-direction be in the direction of the acceleration of each
book. a=Ra .
2(x—x,) _2(1.20 m)

£ (0.800s)

EXECUTE: (a) x—x, =v,!+Lar gives a, = =3.75m/s>. a,=3.75 m/s’so

T,=ma, =750 Nand 7, =m,(g—a,)=182N.
(b) The torque on the pulley is (T2 -7 )R =0.803 N - m, and the angular acceleration is
a=a,/R=50rad/s’, so [ =7/a=0.016 kg-m’.

EVALUATE: The tensions in the two parts of the cord must be different, so there will be a net torque on the
pulley.

IDENTIFY: Apply ZF = ma to each box and ZZ'Z = I, to the pulley. The magnitude a of the acceleration of

each box is related to the magnitude of the angular acceleration « of the pulley by a = R .
SET UP: The free-body diagrams for each object are shown in Figure 10.16a-c. For the pulley, R =0.250 m and

1= %MR2 . T, and T, are the tensions in the wire on either side of the pulley. m, =12.0 kg , m, =5.00 kg and
M =2.00 kg . F is the force that the axle exerts on the pulley. For the pulley, let clockwise rotation be positive.
EXECUTE: (a) ZFx =ma, for the 12.0 kg box gives T, =m,a . ZE =ma, for the 5.00 kg weight gives
myg —T,=mya. Y 7, =lIa, for the pulley gives (T, ~T))R=({MR*)a . a=Ra and T, —T, =1 Ma . Adding these
three equations gives m,g = (m, +m, ++M)a and
a:( ! ]gz[ 500 kg J(9.80 m/s?) = 2.72 m/s . Then
m+m, ++M 12.0 kg +5.00 kg +1.00 kg
T =ma=(12.0 kg)(2.72 m/s’)=32.6 N. m,g — T, = m,a gives
T, =m,(g —a)=(5.00 kg)(9.80 m/s* —2.72 m/s*) = 35.4 N . The tension to the left of the pulley is 32.6 N and
below the pulley it is 35.4 N.
(b) a=2.72 m/s*
(c) For the pulley, ZFX =ma_gives F, =T, =32.6 N and ZF} =ma, gives
F,=Mg+T,=(2.00 kg)(9.80 m/s’)+354N=550N.
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10.17.

10.18.

10.19.

EVALUATE: The equation m,g = (m, +m, ++M )a says that the external force m,g must accelerate all three
T, i a
¥ a -

" ’ )
+
T,
—x o — x
msg

nmg |

¥ T,
(B) (b) Mg 2

objects.

Figure 10.16

IDENTIFY: Apply Zrz = I, to the post and ZIE' = ma to the hanging mass. The acceleration a of the mass has

the same magnitude as the tangential acceleration a
r=1.75m-0500m=125m.

SET Up: The free-body diagrams for the post and mass are given in Figures 10.17a and b. The post has
I=iML’, with M =15.0kgand L=1.75m.

= ro of the point on the post where the string is attached,

tan

. mr
EXECUTE: (a) Zrz = [«_for the post gives Trz(%MLz)a. a=raso a=2and T={ 3 ja. sz =ma, for

r

the mass gives mg —T = ma . These two equations give mg = (m + ML’ /[3r*])a and

a=( " jg=[ 500 kg ](9.80 m/s?)=3.31 m/s?.

m+ ML /[3r7] 5.00 kg +[15.0 kg][1.75 m]* /3[1.25 m]’
2
a=2 _33lms” 2.65 rad/s®.
r 1.25m

(b) No. As the post rotates and the point where the string is attached moves in an arc of a circle, the string is no
longer perpendicular to the post. The torque due to this tension changes and the acceleration due to this torque is
not constant.

(c) From part (a), @ =3.31 m/s* . The acceleration of the mass is not constant. It changes as « for the post changes.

EVALUATE: At the instant the cable breaks the tension in the string is less than the weight of the mass because

the mass accelerates downward and there is a net downward force on it.
(23

A
T | l(:
T
] :
r=125m [}
J— mg
Mg \|
(@ (b)

Figure 10.17

IDENTIFY: Apply Zz’z = /o, to the rod.

SET UP: For the rod and axis at one end, / = %Ml2 .

¢t Fl _3F
EXECUTE: « =Eo=T=—
I tMP Ml

EVALUATE: Note that o decreases with the length of the rod, even though the torque increases.

IDENTIFY: Since there is rolling without slipping, v, = Re . The kinetic energy is given by Eq.(10.8). The

m

velocities of points on the rim of the hoop are as described in Figure 10.13 in chapter 10.
SETUP: @=3.00 rad/sand R =0.600 m . For a hoop rotating about an axis at its center, = MR’ .
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10.20.

10.21.

10.22.

EXECUTE: (a) v,, = Row=(0.600 m)(3.00 rad/s)=1.80 m/s.
(b) K =1Mv +110” =10 +L(MR*)(v,,,/ R*) = MV}, =(2.20 kg)(1.80 m/s)* =7.13J

cm cm

(¢) 1) v=2v,_, =3.60 m/s. v is to the right. (ii) v=0

(iii) v= \/vfm +vp, = \/vfm +(Rw)’ = \/Evcm =2.55 m/s. ¥ at this point is at 45° below the horizontal.

(d) To someone moving to the right at v=v__, the hoop appears to rotate about a stationary axis at its center.

(1) v=Rw=1.80 m/s, to the right. (ii) v=1.80 m/s, to the left. (iii) v=1.80 m/s , downward.

EVALUATE: For the special case of a hoop, the total kinetic energy is equally divided between the motion of the
center of mass and the rotation about the axis through the center of mass. In the rest frame of the ground, different
points on the hoop have different speed.
IDENTIFY: Only gravity does work, so W,

1 2 1 2
I{f —EMch +7[cma) .

SETUP: Let y,=0,s0 U, =0 and y, =0.750 m. The hoop is released from restso K;=0. v, = Rw . Fora

e =0 and conservation of energy gives K, +U, =K, + U, .

hoop with an axis at its center, 7, = MR>.
EXECUTE: (a) Conservation of energy gives U, =K, . K; =1 MR*®’ + L (MR*)&’ = MR*&’ , so MR’ = Mgy, .
. Jov,  (9.80 m/s)(0.750 m)

R 0.0800 m
(b) v=Rae=(0.0800 m)(33.9 rad/s) = 2.71 m/s

EVALUATE: An object released from rest and falling in free-fall for 0.750 m attains a speed of

=339 rad/s.

2g(0.750 m) =3.83 m/s . The final speed of the hoop is less than this because some of its energy is in kinetic
energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the hoop to be less
than its weight.
IDENTIFY: Apply Eq.(10.8).
SET UP: For an object that is rolling without slipping, v, = Rw .
EXECUTE: The fraction of the total kinetic energy that is rotational is
(1/2)1,,0" B 1 B 1
(12)M2, +(12) 1,0 WM W20 1+(MR*/1,)

(@) 1,, =(1/2)MR?, so the above ratio is 1/3.

(b) I, =(2/5)MR? so the above ratio is 2/7 .

(¢) 1, =(2/3)MR’ so the ratio is 2/5 .

(d) I, =(5/8)MR? so the ratio is 5/13.

EVALUATE: The moment of inertia of each object takes the form 7 = SMR” . The ratio of rotational kinetic

_P
1+1/8 1+

IDENTIFY: Apply ZF = ma to the translational motion of the center of mass and Zrz =/a, to the rotation

energy to total kinetic energy can be written as

. The ratio increases as /3 increases.

about the center of mass.
SETUP: Let +x be down the incline and let the shell be turning in the positive direction. The free-body diagram

for the shell is given in Fig.10.22. From Table 9.2, 1., =2mR>.
EXECUTE: ZFX =ma,_ gives mgsinf— f =ma_, . Zrz =la, gives fR=(ZmR*)a . With a=a,, /R this
becomes f =Z2ma,, . Combining the equations gives mgsin f —3ma,, =ma,, and
_3gsinf 3(9.80 m/s”)(sin38.0°)
o 5 5

=3.62m/s>. [ =2ma,, =2(2.00 kg)(3.62 m/s>) = 4.83 N . The friction is

static since there is no slipping at the point of contact. n=mgcosf=1545N. u = L = 1‘;?51;
n .
(b) The acceleration is independent of m and doesn’t change. The friction force is proportional to m so will double;

f =9.66 N . The normal force will also double, so the minimum , required for no slipping wouldn’t change.

=0.313.
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EVALUATE: If there is no friction and the object slides without rolling, the acceleration is gsin £ . Friction and
rolling without slipping reduce a to 0.60 times this value.

_ mgcosf3
-

Figure 10.22

10.23. IDENTIFY: Apply Zﬁm =ma,, and Zrz =/ _ o to the motion of the ball.
(a) SET Up: The free-body diagram is given in Figure 10.23a.

N\ y EXECUTE: Y F,=ma,
n=mgcosf and f, = umgcosd

x 2F, =ma,

mgcosf smgsinf mgsin@ — yumgcos6 = ma

mg g(sinf -y cosf)=a (eq. 1)
Figure 10.23a

SET Up: Consider Figure 10.23b.

n and mg act at the
center of the ball and
provide no torque

mg

Figure 10.23b

EXECUTE: Y 7=7, =g mgcosOR; I=2mR’

Zz’z =10, gives umgcosOR=imR’a

No slipping means & =a/R, so pgcosf =2a (eq.2)

We have two equations in the two unknowns a and g,. Solving gives a =2gsin& and

4, =3tan6 =2tan 65.0° = 0.613

(b) Repeat the calculation of part (a), butnow / =2mR*. a=2gsin@ and u, =2tand=2tan65.0°=0.858

The value of x4, calculated in part (a) is not large enough to prevent slipping for the hollow ball.

(¢c) EVALUATE: There is no slipping at the point of contact. More friction is required for a hollow ball since for a

given m and R it has a larger / and more torque is needed to provide the same «. Note that the required z, is

independent of the mass or radius of the ball and only depends on how that mass is distributed.
10.24. IDENTIFY: Apply conservation of energy to the motion of the marble.

SETUP: K =1im’+1lw’, with I=2MR*. v, = Ro forno slipping . Let y = 0at the bottom of the bowl. The
marble at its initial and final locations is sketched in Figure 10.24.
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EXECUTE: (a) Motion from the release point to the bottom of the bowl: mgh = %mv2 + %I o .

2
mgh zlmvz +l(ng2j(lj and v= &gh .
2 R 7

2\5
Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction torque on
2 10 h
the marble, ~mv? + K, =mgh' +K,, . K =2 =18"_3
2 2¢ 2g¢ 7

(b) mgh=mgh'so h'=h.

EVALUATE: (c) With friction on both halves, all the initial potential energy gets converted back to potential
energy. Without friction on the right half some of the energy is still in rotational kinetic energy when the marble is
at its maximum height.

H

h

Rough
(no slipping)

Smooth

Figure 10.24

10.25. IDENTIFY: Apply conservation of energy to the motion of the wheel.
SET Up: The wheel at points 1 and 2 of its motion is shown in Figure 10.25.

Wy= 0
y #2
Take y =0 at the center
h of the wheel when it is at
@ =250 rudj'hl'r-\ ] the bottom of the hill.
Nz !
#1

Figure 10.25

The wheel has both translational and rotational motion so its kinetic energy is K =17 o’ +1M2 .
=K, +U,
=-3500J (the friction work is negative)

EXECUTE: K, +U, +W,, .
W o =W,

other fric
K, =110} +1Mv}; v=Ro and I=0.800MR* so
K, =1(0.800)MR’ 0} + L MR’ &} = 0.900MR’ o}
K,=0, U =0, U, =Mgh
Thus 0.900MR*@ +W,,, = Mgh
M =w/g =392 N/(9.80 m/s’) =40.0 kg
_ 0.900MR’w] + Wy,
Mg
~(0.900)(40.0 kg)(0.600 m)*(25.0 rad/s)* —3500 J
(40.0 kg)(9.80 m/s*)
EVALUATE: Friction does negative work and reduces /.
10.26. IDENTIFY: Apply Zr: =/o, and ZF =mad to the motion of the bowling ball.

h

h =11.7m

SETUP: a4, =Ra. f,=un.Let +x be directed down the incline.

EXECUTE: (a) The free-body diagram is sketched in Figure 10.26.
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up the hill.

(b) The friction force results in an angular acceleration, given by /& = fR. ZF = ma applied to the motion of the

center of mass gives mgsin f#— f =ma,, and the acceleration and angular acceleration are related by a,, = Ra .

Combining, mgsinﬂ:ma(l+ ;zj:ma(7/5). a,, =(5/7)gsing.
m
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10.27.

10.28.

(c) From either of the above relations between fand a_,, f = %macm = %mg sinf< un=pumgcosf .

4, >(2/7)tanp.
EvALUATE: If 4, =0, a,, =mgsinf . a_, is less when friction is present. The ball rolls farther uphill when

friction is present, because the friction removes the rotational kinetic energy and converts it to gravitational

potential energy. In the absence of friction the ball retains the rotational kinetic energy that is has initially.
n

w
Figure 10.26

(a) IDENTIFY: Use Eq.(10.7) to find o, and then use a constant angular acceleration equation to find w,.

SET UpP: The free-body diagram is given in Figure 10.27.

EXECUTE: Apply Zrz =/ to find the angular

acceleration:

FR=1Ia.

o _FR _ (18.0 N)(2.40 m)
oI 2100 kg - m’

=0.02057 rad/s?

Figure 10.27

SET UP: Use the constant ¢, kinematic equations to find ,.

o, =7, o, (initially at rest); a, =0.02057 rad/s’; t=15.0's

EXECUTE: o, =@, +a.t=0+(0.02057 rad/s*)(15.0 s) =0.309 rad/s

(b) IDENTIFY and SET UP:  Calculate the work from Eq.(10.21), using a constant angular acceleration equation to
calculate @—6,, or use the work-energy theorem. We will do it both ways.

EXECUTE: (1) W =7, A0 (Eq.(10.21))

AO=0-0,=w,t++a.t> =0+1(0.02057 rad/s*)(15.0 s)* =2.314 rad
t.=FR=(18.0 N)(2.40 m) =432 N-m

Then W =7,A0=(43.2 N-m)(2.314 rad) =100 J.

or
(2) W, =K, —K, (the work-energy relation from chapter 6)
W, =W, the work done by the child

K, =0, K,=110"=1(2100 kg-m*)(0.309 rad/s)’ =100 J
Thus W =100 J, the same as before.

EVALUATE: Either method yields the same result for .
(c) IDENTIFY and SET UP:  Use Eq.(6.15) to calculate P,

EXECUTE: P, _AW_1007
At 150s

EVALUATE: Work is in joules, power is in watts.
IDENTIFY: Apply P=7wand W =7A6 .
SET UP: P must be in watts, A@ must be in radians, and @ must be inrad/s. lrev=27rad. 1hp=746 W .

=6.67 W

7 rad/s =30 rev/min .
P (175 hp)(746 W/hp)
® 7 rad/s j

(2400 rev/min)| — :
30 rev/min

(b) W =7A0=(519 N-m)(27 rad)=3260 ]

=519 N-m.

EXECUTE: (a) 7=
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10.29.

10.30.

10.31.

10.32.

10.33.

EVALUATE: @ =40 rev/s, so the time for one revolution is 0.025s. P=1.306x10° W , so in one revolution,
W = Pt =3260 J , which agrees with our previous result.

IDENTIFY: Apply Zr: = /o, and constant angular acceleration equations to the motion of the wheel.

SETUpP: 1rev=2xrad. x rad/s =30 rev/min .

EXECUTE: (a) 7.=la =1 @ '
((1/2)(1.50 ke)(0.100 m)* ) (1200 rev/min){::) rad]s j
o 2.5 rev/min) o 377 N-m
DS
(600 rev/min)(2.5 s)

b) o, At= =25.0 rev=157 rad.

60 s/min
(©) W=7A60=(0.377 N-m)(157 rad)=59.2 J .

2
@ K =Ll :l((l/z)(l.s kg)(0.100 m)*)| (1200 rev/min)| -~ rad/s j =5927.
2 2 30 rev/min

the same as in part (c).

EVALUATE: The agreement between the results of parts (c) and (d) illustrates the work-energy theorem
IDENTIFY: The power output of the motor is related to the torque it produces and to its angular velocity by
P=r1 0, ,where o, mustbe in rad/s.

z77z

6.00 kJ

SET Up: The work output of the motor in 60.0 s is %(9.00 kJ])=6.00kJ ,so P= 0.0 =100 W .

s
@, =2500 rev/min =262 rad/s .

EXECUTE: 7 :£ 100—W:0.382N-m

@ 262rad/s
EVALUATE: For a constant power output, the torque developed decreases and the rotation speed of the motor
increases.
IDENTIFY: Apply 7=FRand P=1w.
SETUP: 1hp=746 W . 7 rad/s =30 rev/min
EXECUTE: (a) With no load, the only torque to be overcome is friction in the bearings (neglecting air friction),
and the bearing radius is small compared to the blade radius, so any frictional torque can be neglected.

0 ot Plo_ (1.9 hp)(746 Z&;/hp) 5o
R R 0400 rev/min)(” rads j(0.086 m)
30 rev/min

EVALUATE: In P=/Iw, r must be in watts and ® must be in rad/s.
IDENTIFY: Apply Zz'z =/, to the motion of the propeller and then use constant acceleration equations to
analyze the motion. W =A@ .
SETUP: [=1ml’=1(117 kg)(2.08 m)’ =42.2 kg-m”.
1 N-
EXECUTE: (a) o =—= Lmz =46.2 rad/s’.
I 422%kg-m
(b) &’ =], +2a.(0-6,) gives ®=~2a6 = \/2(46.2 rad/s®)(5.0 rev)(2z rad/rev) = 53.9 rad/s.
(c) W =76 =(1950 N -m)(5.00 rev)(2z rad/rev) =6.13x10* J.
4
) 1= o, —@y. _ 539 rad/j —117s. P, _W_613x10"J
a, 46.2 rad/s At 1.17 s
EVALUATE: P=r1w. risconstant and @is linear in ¢, so P, is half the instantaneous power at the end of the
5.00 revolutions. We could also calculate W from W = AK =171’ =1(42.2 kg-m*)(53.9 rad/s)’ =6.13x10" J .

(a) IDENTIFY and SET UP:  Use Eq.(10.23) and solve for 7_.

=525kW.

P=r.w,, where @, mustbe in rad/s

z77z2

EXECUTE: @, =(4000 rev/min)(2z rad/l rev)(1 min/60 s) =418.9 rad/s
_ P 150x10° W

7, =—=————=358N'm
@, 4189 rad/s
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10.34.

10.35.

10.36.

(b) IDENTIFY and SET UP:  Apply ZF =ma to the drum. Find the tension 7 in the rope using 7, from part (a).
The system is sketched in Figure 10.33.

EXECUTE: v constant implies a=0 and T=w

T 7, =TR implies
T T=7,/R=358 N-m/0.200 m=1790 N
v
|:| Thus a weight w=1790 N can be lifted.

I

Figure 10.33

(c) IDENTIFY and SET UP: Use v=Rw.

EXECUTE: The drum has @ =418.9 rad/s, so v=(0.200 m)(418.9 rad/s) =83.8 m/s

EVALUATE: The rate at which T is doing work on the drum is P =T7v = (1790 N)(83.8 m/s) =150 kW. This
agrees with the work output of the motor.

IDENTIFY: L=Iw and I =1, +1

disk woman *

SETUP: ®=0.50rev/s=3.14rad/s. I, =im  R*> and I, =m, .R*.

‘woman woman

EXECUTE: [ =(55kg+50.0 kg)(4.0 m)* =1680 kg-m* . L= (1680 kg-m?*)(3.14 rad/s) =5.28x10° kg-m’/s

EVALUATE: The disk and the woman have similar values of 7, even though the disk has twice the mass.
(a) IDENTIFY: Use L =mvrsing (Eq.(10.25)):

SET Up: Consider Figure 10.35.
. b= 143.1°
‘/\—\ v EXECUTE: L=mvrsing=
i

! (2.00 kg)(12.0 m/s)(8.00 m)sin143.1°
L=115kg-m*/s

m

|
mg

axis
Figure 10.35
To find the direction of L apply the right-hand rule by turning 7 into the direction of ¥ by pushing on it with the

fingers of your right hand. Your thumb points into the page, in the direction of L.
(b) IDENTIFY and SET UP: By Eq.(10.26) the rate of change of the angular momentum of the rock equals the
torque of the net force acting on it.

EXECUTE: 7 =mg(8.00 m)cos36.9° =125 kg-m?/s’
To find the direction of 7 and hence of dL/dt, apply the right-hand rule by turning 7 into the direction of the
gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in the
direction of dL/dt.

EVALUATE: L and dL/dt are in opposite directions, so L is decreasing. The gravity force is accelerating the
rock downward, toward the axis. Its horizontal velocity is constant but the distance / is decreasing and hence L is
decreasing.

IDENTIFY: L =/w,

SETUP: For a particle of mass m moving in a circular path at a distance # from the axis, / =mr*and v=rw . For
a uniform sphere of mass M and radius R and an axis through its center, I = %MR2 . The earth has mass

my, =5.97x10** kg, radius R, = 6.38x10° m and orbit radius »=1.50x10"" m . The earth completes one rotation
on its axis in 24 h =86,400 s and one orbitin 1y =3.156x10" s .

27 rad

3.156x107 s

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for this
calculation.

EXECUTE: (a) L, =Iw, =mr’eo,=(5.97x10* kg)(1.50x10" m)z( j: 2.67x10* kg-m’/s .

27 rad
86,400 s
EVALUATE: The angular momentum associated with each of these motions is very large.

(b) L. =Io, =(2MR*)o=2(5.97x10* kg)(6.38x10° m)z( j: 7.07x10% kg -m*/s
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10.37.

10.38.

10.39.

10.40.

IDENTIFY and SETUP: Use L=1w

EXECUTE: The second hand makes 1 revolution in 1 minute, so
® = (1.00 rev/min)(2 7 rad/1 rev)(1 min/60 s) = 0.1047 rad/s

For a slender rod, with the axis about one end,
I=IML =1(6.00x107 kg)(0.150 m)* =4.50x10° kg-m”
Then L=Iw=(4.50x10" kg-m?*)(0.1047 rad/s) =4.71x10"° kg-m*/s.

EVALUATE: L is clockwise.
IDENTIFY: @, =d@/dt. L =Iw and 7, =dL dt .

SET Up: For a hollow, thin-walled sphere rolling about an axis through its center, / = %MR2 . R=0.240m.

EXECUTE: (a) A=1.50rad/s> and B=1.10 rad/s*, so that @(¢) will have units of radians.

) () . =%9 =2A4t+4B . At t=3.00s, @, =2(1.50 rad/s*)(3.00 s) +4(1.10 rad/s*)(3.00 s)’ =128 rad/s .

L. =(EMR*)w, =2(12.0 kg)(0.240 m)*(128 rad/s) =59.0 kg -m’/s .

9. _ 199, 1044128 and
de dt

. =2(12.0 kg)(0.240 m)*(2[1.50 rad/s’]+12[1.10 rad/s*][3.00 s]") =56.1 N-m.

EVALUATE: The angular speed of rotation is increasing. This increase is due to an acceleration «, that is

(i) 7, =

produced by the torque on the sphere. When [ is constant, as it is here, 7, =dL dt = Idw_/dt = Ia, and

Equations (10.29) and (10.7) are identical.
IDENTIFY: Apply conservation of angular momentum.

SET UpP: For a uniform sphere and an axis through its center, / = %MR2 .

EXECUTE: The moment of inertia is proportional to the square of the radius, and so the angular velocity will be
proportional to the inverse of the square of the radius, and the final angular velocity is

2 5 2
o, =0, R 27 rad 7.0x10" km =4.6x10 rad/s.
R ) | (30 486,400 s/d) )| 16 km

EVALUATE: K =11 o = +Lw. L is constant and @ increases by a large factor, so there is a large increase in the

rotational kinetic energy of the star. This energy comes from potential energy associated with the gravity force
within the star.

IDENTIFY and SET UP: L is conserved if there is no net external torque.
Use conservation of angular momentum to find @ at the new radius and use K =11 @ to find the change in

kinetic energy, which is equal to the work done on the block.
EXECUTE: (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero so this
force exerts no torque and there is no net torque on the block.

(b) L =L, so I, =1,w, Block treated as a point mass, so  =mr’, where r is the distance of the block from the
hole.

2 2
mrl Ct)l —mr2 0)2

2 2
o, = 1| @ =[23%0m Y ) 75 radss) = 7.00 radss
r 0.150 m

2
(©) K, =110 =imriw} =Imv}

v, =K, =(0.300 m)(1.75 rad/s) = 0.525 m/s

K, =1mv} =1(0.0250 kg)(0.525 m/s)* = 0.00345 J
K, =1mv,

v, =@, =(0.150 m)(7.00 rad/s) =1.05 m/s
K, =1mv; =1(0.0250 kg)(1.05 m/s)* =0.01378 J
AK =K, —K,=0.01378 J-0.00345 ] =0.0103 J
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10.41.

10.42.

10.43.

10.44.

10.45.

=AK
=W, the work done by the tension in the cord, so W =0.0103 J

EVALUATE: Smaller » means smaller /. L =/® 1is constant so @ increases and K increases. The work done by
the tension is positive since it is directed inward and the block moves inward, toward the hole.
IDENTIFY: Apply conservation of angular momentum to the motion of the skater.

SETUP: For a thin-walled hollow cylinder 7 =mR? . For a slender rod rotating about an axis through its center,
I=Lml*.

EXECUTE: L, =L; so lw =1,0;.

I, =0.40 kg-m* +5(8.0 kg)(1.8 m)* =2.56 kg -m*. I, =0.40 kg-m’ + (8.0 kg)(0.25 m)* =0.90 kg - m”.

2
o =| L o, =| 220K M 6 40 revisy-1.14 revis .
I 0.90 kg-m

f

@) w,,
But W,

tot

EVALUATE: K =1/0’=1Lw. wincreases and L is constant, so K increases. The increase in kinetic energy

comes from the work done by the skater when he pulls in his hands.
IDENTIFY: Apply conservation of angular momentum to the diver.
SET UP: The number of revolutions she makes in a certain time is proportional to her angular velocity. The ratio

of her untucked to tucked angular velocity is (3.6 kg-m?)/(18 kg-m?) .
EXECUTE: If she had tucked, she would have made (2 rev)(3.6 kg- mz)/ (18 kg-m®)=0.40 rev in the last 1.0s,

so she would have made (0.40 rev)(1.5/1.0)=0.60 rev in the total 1.5 s.

EVALUATE: Untucked she rotates slower and completes fewer revolutions.

IDENTIFY and SET UP: There is no net external torque about the rotation axis so the angular momentum L = /@
is conserved.

EXECUTE: (a) L, =L, gives /@, =1,m,, so o,=,/1,)o,

I, =1, =1 MR* =1(120 kg)(2.00 m)’ =240 kg -m’

I,=1,+1I,=240 kg-m’ + mR* =240 kg-m” + (70 kg)(2.00 m)’ = 520 kg - m’
o, =(1,/1,)®, = (240 kg-m* /520 kg -m*)(3.00 rad/s) =1.38 rad/s

(b) K, =110’ =1(240 kg-m*)(3.00 rad/s)* =1080 J

K, =110 =1(520 kg-m?)(1.38 rad/s)* =495 J

272
EVALUATE: The kinetic energy decreases because of the negative work done on the turntable and the parachutist
by the friction force between these two objects.
The angular speed decreases because / increases when the parachutist is added to the system.
IDENTIFY: Apply conservation of angular momentum to the collision.

SET UP: Let the width of the door be /. The initial angular momentum of the mud is mv(//2) , since it strikes the
=iMPand I,,=m(l/2)".

mud

door at its center. For the axis at the hinge, I,

EXECUTE: w=£= mv(1/2) 5.
I (13)M* +m(1)2)

e (0.500 kg)(12.0 m/s)(0.500 m) ~0.223 rad/s

(1/3)(40.0 kg)(1.00 m)” +(0.500 kg )(0.500 m)* ‘

Ignoring the mass of the mud in the denominator of the above expression gives @ =0.225 rad/s, so the mass of

loor

the mud in the moment of inertia does affect the third significant figure.
EVALUATE: Angular momentum is conserved but there is a large decrease in the kinetic energy of the system.

(a) IDENTIFY and SET UP:  Apply conservation of angular momentum L, with the axis at the nail. Let object 4
be the bug and object B be the bar. Initially, all objects are at rest and L, = 0. Just after the bug jumps, it has
angular momentum in one direction of rotation and the bar is rotating with angular velocity @, in the opposite
direction.
EXECUTE: L, =mvr—I,w, where r=1.00 m and I, =<m,r’
L =L, gives mv,r=imy’w,

_3myy,

@, =—4=0.120 rad/s

mpyr
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10.46.

10.47.

10.48.

() K, =0; K, =%mAvj +%IBQ)§ =
1(0.0100 kg)(0.200 m/s)* +%(%[0.0500 kg][1.00 m]z)(0.120 rad/s)* =3.2x107* J.

The increase in kinetic energy comes from work done by the bug when it pushes against the bar in order to jump.
EVALUATE: There is no external torque applied to the system and the total angular momentum of the system is
constant. There are internal forces, forces the bug and bar exert on each other. The forces exert torques and change
the angular momentum of the bug and the bar, but these changes are equal in magnitude and opposite in direction.
These internal forces do positive work on the two objects and the kinetic energy of each object and of the system
increases.

IDENTIFY: Apply conservation of angular momentum to the system of earth plus asteroid.

SET Up: Take the axis to be the earth’s rotation axis. The asteroid may be treated as a point mass and it has zero
angular momentum before the collision, since it is headed toward the center of the earth. For the earth,

L. =Iw_and I =2MR* ,where M is the mass of the earth and R is its radius. The length of a day is 7 = 27 rad ,

where @ is the earth’s angular rotation rate.
EXECUTE: Conservation of angular momentum applied to the collision between the earth and asteroid gives

2 MR, = (mR* + 1 MR*)a, and m :%M[Mj. T, =1.2507, gives - =220 and @, =1.2500,
wZ wZ a)l

B _0.250. m=2(0.250)M =0.100M .
a)Z
EVALUATE: If the asteroid hit the surface of the earth tangentially it could have some angular momentum with
respect to the earth’s rotation axis, and could either speed up or slow down the earth’s rotation rate.
IDENTIFY: Apply conservation of angular momentum to the collision.
SET UP: The system before and after the collision is sketched in Figure 10.47. Let counterclockwise rotation be

positive. The bar has 7 =1m,L*.

EXECUTE: (a) Conservation of angular momentum: myv,d = -myvd +im,lo .

1[ 90.0 N

(3.00 kg)(10.0 m/s)(1.50 m) = —(3.00 kg)(6.00 m/s)(1.50 m)+— —ZJ(z.oo m)’ o
3(9.80 m/s

®=5.88 rad/s .
(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot exerts an

unbalanced horizontal external force on the system, so the linear momentum is not conserved.

EVALUATE: Kinetic energy is not conserved in the collision.
Before: Pivot After:
<

Vo "y "

Figure 10.47

IDENTIFY: dL=7dt,so dLis in the direction of 7 .
SET UP: The direction of @ 1is given by the right-hand rule, as described in Figure 10.26 in the textbook.
EXECUTE: The sketches are given in Figures 10.48a—d.
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10.49.

10.50.

10.51.

10.52.

EVALUATE: In figures (a) and (c) the precession is counterclockwise and in figures (b) and (d) it is clockwise.

When the direction of either @ or 7 reverses, the direction of precession reverses.
T T

L+dL
dL dL
L
@ (b)
L ’
dL dL
L+dL
-
(0 (d)

Figure 10.48

IDENTIFY: The precession angular velocity is Q= % , where wis in rad/s. Also apply ZF = md to the

gyroscope.

SET UpP: The total mass of the gyroscope is m, + m; =0.140 kg +0.0250 kg =0.165 kg .

27z rad 27z rad
T 2205

EXECUTE: (a) F, =w,

Q= =2.856 rad/s .

. =(0.165 kg)(9.80 m/s*) =1.62 N

) o="" - (0.165 kg)(9.80 m/s”)(0.0400 m)
IQ  (1.20x10™ kg-m?)(2.856 rad/s)

(c) If the figure in the problem is viewed from above, 7 is in the direction of the precession and L is along the
axis of the rotor, away from the pivot.

EVALUATE: There is no vertical component of acceleration associated with the motion, so the force from the
pivot equals the weight of the gyroscope. The larger w is, the slower the rate of precession.

IDENTIFY: The precession angular speed is related to the acceleration due to gravity by Eq.(10.33), with w=mg .

=189 rad/s =1.80x10° rev/min

SETUp: Q. =0.50rad/s, g, =gand g, =0.165g . For the gyroscope, m, r, I, and o are the same on the moon

as on the earth.

mgr €  mr Q Q
Q:i.—:—:constant,so—E:—M.

lo g lIo & &m

EXECUTE:

Q,=Q, [g—Mj =0.165Q, =(0.165)(0.50 rad/s) = 0.0825 rad/s .
8e

EVALUATE: In the limit that g — 0 the precession rate — 0 .

IDENTIFY and SET UP:  Apply Eq.(10.33).

EXECUTE: (a) halved

(b) doubled (assuming that the added weight is distributed in such a way that » and 7 are not changed)
(c) halved (assuming that w and r are not changed)

(d) doubled

(e) unchanged.

EVALUATE: Q is directly proportional to w and » and is inversely proportional to / and ®.
IDENTIFY: Apply Eq.(10.33), where 7 =wr .

SETUP: 1day=86,400s.1yr=3.156x10" s . The earth has mass M =5.97x10* kg and radius

R =6.38x10° m . For a uniform sphere and an axis through its center, / = %MR2 .

EXECUTE: (a) 7=IwQ =(2/5)MR*»Q. Usin a):zn—md and Q= 27 rad , and the mass
@ (2/5) £ “ 86,400 s (26,000 y)(3.156 <107 s/y)

and radius of the earth from Appendix F, 7=54 N-m.
EVALUATE: If the torque is applied by the sun, »=1.5x10" mand F, =3.6x10"' N.
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10.53.

10.54.

10.55.

IDENTIFY: Apply ZT: = /o, and constant acceleration equations to the motion of the grindstone.

SET UP: Let the direction of rotation of the grindstone be positive. The friction force is f = g, n and produces

torque fR L w= 27 rad }('1 min =4rrad. =%MR2 =1.69 kgmz .
Irev 60 s

EXECUTE: (a) The net torque must be
el = 1% % (169 kg-m?)2E2YS 5 36 N,
t 9.00 s
This torque must be the sum of the applied force FR and the opposing frictional torques

7, at the axle and fR = g, nR due to the knife. F :%(r +7; + 4, nR) .
1

0.500 m

(b) To maintain a constant angular velocity, the net torque 7 is zero, and the force F' is

F’ (6.50N-m+24.96 N-m)=62.9 N.

((2.36 N-m)+(6.50 N -m) + (0.60)(160 N)(0.260 m)) = 67.6 N.

- 1
7 0.500 m
(c) The time ¢ needed to come to a stop is found by taking the magnitudes in Eq.(10.27), with 7 =7, constant;
L ol (47radls)(1.69kg-m’)
=—=——=
T T 6.50 N-m
EVALUATE: The time for a given change in @ is proportional to & , which is in turn proportional to the net torque,

236 N-m
6.50N-m’

IDENTIFY: Apply ZT: = /o and use the constant acceleration equations to relate & to the motion.

=3.27s.

so the time in part (c) can also be found as ¢ =(9.00 s)

SET UpP: Let the direction the wheel is rotating be positive. 100 rev/min =10.47 rad/s
®.— @, 10.47 rad/s—0
t 2.00 s

EXECUTE: (a) o, =, +a,t gives a, = =5.23 rad/s’.

Dz, 500N-m
a. 523rad/s’

=0.956 kg-m’

-w,, 0-10.47 rad/s
t 125s

(b) w,, =1047rad/s, @, =0, t=125s. @, =w,, + o t gives o, = 2 =-0.0838 rad/s’

37, = I, =(0.956 kg -m*)(-0.0838 rad/s>) = —0.0801 N-m

© 0 :(”022”’: jt - (10'47 r;d/s - 0}(125 s) =654 rad = 104 rev

EVALUATE: The applied net torque (5.00 N -m ) is much larger than the magnitude of the friction torque
(0.0801 N -m), so the time of 2.00 s that it takes the wheel to reach an angular speed of 100 rev/min is much less
than the 125 s it takes the wheel to be brought to rest by friction.

IDENTIFY and SET UP:  Apply v =rw. v is the tangential speed of a point on the rim of the wheel and equals the
linear speed of the car.

EXECUTE: (a) v=60 mph =26.82 m/s

r=121in.=0.3048 m

w=—~=88.0 rad/s =14.0 rev/s = 840 rpm
r

(b) Same w as in part (a) since speedometer reads same.
r=15in.=0.381m

v=rao=(0.381 m)(88.0 rad/s) =33.5 m/s =75 mph

(¢) v=50 mph =22.35 m/s

r=101in.=0.254 m

=2 =88.0 rad/s. This is the same as for 60 mph with correct tires, so speedometer read 60 mph.
r

EVALUATE: For a given @, v increases when r increases.
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10.56. IDENTIFY: The kinetic energy of the disk is K =1Mv., +1/”. As it falls its gravitational potential energy
decreases and its kinetic energy increases. The only work done on the disk is the work done by gravity, so
K +U =K,+U,.
SETUP: [ =1M(R;+R}),where R, =0.300 mand R, =0.500 m. v, =R,®.Take y, =0, so

em T2
y,=—120m.
EXECUTE: K, +U,=K,+U,. K, =0, U, =0. K,=-U,. tMv} +1I " =-Mgy,.

cm

11,0° =S M(1+[R/R,J' )2, =0.340Mv], . Then 0.840M:7, = -Mgy, and

m cm

2
. gy, :\/—(9.80 ms)(120m) Lo
0.840 0.840

EVALUATE: A point mass in free-fall acquires a speed of 4.85 m/s after falling 1.20 m. The disk has a value of
v, that is less than this, because some of the original gravitational potential energy has been converted to

rotational kinetic energy.

10.57. IDENTIFY: Use Zrz = Ia_to find the angular acceleration just after the ball falls off and use conservation of
energy to find the angular velocity of the bar as it swings through the vertical position.
SETUP:  The axis of rotation is at the axle. For this axis the bar has I =Lm, *, where m,, =3.80 kg and
L =0.800 m . Energy conservation gives K, + U, = K, + U, . The gravitational potential energy of the bar doesn’t
change. Let y,=0,s0 y,=—L/2.
EXECUTE: (a) 7, =my,g(L/2)and [ =1+ 1, =5m I’ +m,(L/2). Y r, =la, gives

2

o - mbzang(L/Z) : _2g m,y, and @, = 2(9.80 m/s )( 2.50 kg 163 rad/s
Tmy L +my (L/12)" L\ my, +my, /3 0.800 m LZ.SO kg +[3.80 kg]/3

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of the bar

decreases.

(© K, +U =K,+U,. 0=K,+U,. %([bar +Iball)a)2 =-—my,;g(—-L/2).

o my 8L _ g dm,, ~19.80 nvs® 4[2.50 kg]
mo L'/ 4+m /12 \ L\ my, +m,, /3 0.800 m { 2.50 kg +[3.80 kg]/3

®=5.70 rad/s .
EVALUATE: As the bar swings through the vertical, the linear speed of the ball that is still attached to the bar is
v =(0.400 m)(5.70 rad/s) = 2.28 m/s . A point mass in free-fall acquires a speed of 2.80 m/s after falling 0.400 m;
the ball on the bar acquires a speed less than this.

10.58. IDENTIFY: Use Zz'z =Ja, tofind «,, and then use the constant ¢, kinematic equations to solve for 7.

SET UP: The door is sketched in Figure 10.58.

S

Fr=220N EXECUTE: 3 7. = FI=(220 N)(1.25 m) =275 N-m

[=125m From Table 9.2(d), 7 =1MI?
—1 2 2 _ 2
oxis at l I=3(750 N/9.80 m/s")(1.25 m)" =39.9 kg-m
hinge
Figure 10.58
D.r.  275N-m
1 39.9 kg-m’
SETUP: «, =6.89 rad/s’; 0—6,=90°(z rad/180°) = z/2 rad; @,, =0 (door initially at rest); ¢ =?

dr.=la, so a,= =6.89 rad/s”

- L, 2
0-0,=0,t+5a.t

EXECUTE: (= \/2(‘9_90) —\/2(”/2 rad) =0.675s
aZ

6.89 rad/s’
EVALUATE: The forces and the motion are connected through the angular acceleration.
10.59. IDENTIFY: 7 =rFsing

SET UP: Let x be the distance from the left end of the rod where the string is attached. For the value of x
where f(x) is a maximum, df /dx=0.
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10.60.

10.61.

10.62.

EXECUTE: (a) From geometric consideration, the lever arm and the sine of the angle between F and 7 are both
maximum if the string is attached at the end of the rod.

(b) In terms of the distance x where the string is attached, the magnitude of the torque is Fxh/ Nx? +h*. This
function attains its maximum at the boundary, where x =/, so the string should be attached at the right end of
the rod.

(¢) As a function of x, [ and 4, the torque has magnitude 7 = F \/xi—h Differentiating 7 with respect to x

(x—1/2)* + i?
and setting equal to zero gives x,, = (l/ 2)(1+(2 h/ 1)*). This will be the point at which to attach the string unless
2h >1, in which case the string should be attached at the furthest point to the right, x =1.

EVALUATE: In part (a) the maximum torque is independent of 4. In part (b) the maximum torque is independent
of [. In part (c) the maximum torque depends on both % and /.

IDENTIFY: Apply Zz’z =Ia_ ,where 7, is due to the gravity force on the object.
SETUP: [=14+1, .1 =+M Inpart(b), I, =ML . Inpart(c), I, =0.

rod clay © o clay clay
EXECUTE: (a) A distance L/4 from the end with the clay.
(b) In this case [ = (4/ 3)ML’ and the gravitational torque is (3L/4)(2Mg)sin = (3Mg L/2)sin@, so
a=(9g/8L)sind.
(¢) In this case 7 = (I/3)ML* and the gravitational torque is (L/4)(2Mg)sin@ = (Mg L/2)sin6, so o =(3g/2L)siné.
This is greater than in part (b).
(d) The greater the angular acceleration of the upper end of the cue, the faster you would have to react to overcome
deviations from the vertical.
EVALUATE: In part (b), / is 4 times larger than in part (¢) and 7 is 3 times larger. @ =7/1, so the net effect is
that « is smaller in (b) than in (c).
IDENTIFY: Calculate W using the procedure specified in the problem. In part (c) apply the work-energy theorem.
In part (d), a,, =Ra and Zz'z =la. . a,=Ro’.
SET UP: Let € be the angle the disk has turned through. The moment arm for F is Rcosé .

EXECUTE: (a) The torque is7 = FRcosf. W = Ioﬂ/z FRcos@ df=FR .

(b) In Eq.(6.14), d! is the horizontal distance the point moves, and so W = F j dl = FR, the same as part (a).

(¢) From K, =W = (MR*/4)a*, @ =[4F/MR.

(d) The torque, and hence the angular acceleration, is greatest when € =0, at which point & =(z/I)=2F/MR , and
so the maximum tangential acceleration is 2F/M.

(e) Using the value for @ found in part (¢), a,, =@’R=4F/M.

EVALUATE: «_ = ®’R is maximum initially, when the moment arm for F is a maximum, and it is zero after the

tan
disk has rotated one-quarter of a revolution. a_, is zero initially and is a maximum at the end of the motion, after
the disk has rotated one-quarter of a revolution.

IDENTIFY: Apply ZF =ma to the crate and Zz'z =/a,_ to the cylinder. The motions are connected by

a(crate) = Ra(cylinder).

SET UP: The force diagram for the crate is given in Figure 10.62a.
¥

EXECUTE: ) F,=ma,

?ﬂ'
T —-mg=ma
T =m(g+a)=50 kg(9.80 m/s> +0.80 m/s*) =530 N

msJ

Figure 10.62a
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10.63.

10.64.

SET Up: The force diagram for the cylinder is given in Figure 10.62b.

EXECUTE: )7, =la,

FI-TR=1Ia_, where [=0.12m and R=0.25m
a=Ra so a.=alR

Fl=TR+1Ia/R

Figure 10.62b

2 2
F=T(§j+%=530 N(o.zs mj+ (2.9 kg-m*)(0.80 m/s’) _ o

0.12m (0.25 m)(0.12 m)

EVALUATE: The tension in the rope is greater than the weight of the crate since the crate accelerates upward. If F
were applied to the rim of the cylinder (/=0.25 m), it would have the value F =567 N. This is greater than T’
because it must accelerate the cylinder as well as the crate. And F is larger than this because it is applied closer to
the axis than R so has a smaller moment arm and must be larger to give the same torque.

IDENTIFY: Apply ZFW =ma,, and Zrz =/ o, to the roll.

SET UP: At the point of contact, the wall exerts a friction force f'directed downward and a normal force n
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero.

EXECUTE: (a) Balancing vertical forces, F, ,cosf = f +w+ F, and balancing horizontal forces

rod

F sin@=n. With f' = g n, these equations become F,

rod

cos@=pun+F+w, F,

rod

sind = n. Eliminating n and
solving for F,, gives

b w+F _(160kg) 980 m/s)+ (400 N)
© cos® -y, sinf cos 30°—(0.25)sin30°

=266 N.

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of the net
torque is (F — f)R, and f = x4, n may be found by insertion of the value found for F, ; into either of the above

relations; i.e., f = pF,,sin@=33.2N. Then,

rod

-2
a:1:(40'0N 31.54 N)(18.20x10 m):4.71rad/s2.
1 (0.260 kg-m~)

EVALUATE: If the applied force F is increased, F, , increases and this causes # and fto increase. The angle

¢ changes as the amount of paper unrolls and this affects « for a given F.

IDENTIFY: Apply Zz’z =/a,_ to the flywheel and ZF =mad to the block. The target variables are the tension in
the string and the acceleration of the block.

(a) SET Upr:  Apply Zrz =/« to the rotation of the flywheel about the axis. The free-body diagram for the
flywheel is given in Figure 10.64a.

EXECUTE: The forces n and Mg act
at the axis so have zero torque.

>z, =TR

TR=Ia.

Mg
Figure 10.64a
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SET UP: Apply ZF =mad to the translational motion of the block. The free-body diagram for the block is given
in Figure 10.64b.
EXECUTE: Y F, =ma,
n—mgcos36.9°=0
n=mgcos36.9°
mg cos i
S = n=p,mgcos36.9°
mg
Figure 10.64b
ZFX = ma)(
mgsin36.9° —T — y, mg c0s36.9°=ma
mg(sin36.9°— 1, c0s36.9°) —T =ma
But we also know that a,, , = Ra,,.., S0 a=a/R. Using this in the ZZ'Z =Ia, equation gives TR =Ia/R and
T =(I/R?)a. Use this to replace T in the ZFx =ma, equation:
mg(sin36.9° — 1, c0s36.9%)—(I/R*)a = ma
g mg(sin36.9° — 1, c0s36.9°)
m+1/R?
2 : o_ o
ue (5.00 kg)(9.80 m/s )(s1n36.92 (0.25)002536.9 ) 112 ms
5.00 kg +0.500 kg - m~/(0.200 m)
2
(b) T :M(l.lz m/s?) =14.0 N
(0.200 m)
EVALUATE: If the string is cut the block will slide down the incline with
a=gsin36.9°— u, g0s36.9°=3.92 m/s’. The actual acceleration is less than this because mgsin36.9° must also
accelerate the flywheel. mgsin36.9°— f, =19.6 N. T'is less than this; there must be more force on the block
directed down the incline than up then incline since the block accelerates down the incline.
10.65. IDENTIFY: Apply ZF = ma to the block and Zz'z = /o, to the combined disks.
SETUP: Foradisk, /,, =2MR?, so I for the disk combination is / =2.25x10" kg-m”’.
EXECUTE: For a tension 7 in the string, mg —T =ma and TR=1a =1 %. Eliminating 7 and solving for a gives
a=g m - = £ —» where m is the mass of the hanging block and R is the radius of the disk to which the
m+I/R* 1+1/mR
string is attached.
(a) With m=1.50 kg and R =2.50x107m, a = 2.88 m/s’.
(b) With m=1.50 kgand R=5.00x10"m, a = 6.13 m/s>.
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is capable
of applying a larger torque.
EVALUATE: w=v/R, where v is the speed of the block and @ is the angular speed of the disks. When R is
larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more speed as it
falls a certain distance and therefore has a larger acceleration.
10.66. IDENTIFY: Apply both ZF =md and Zrz =/« to the motion of the roller. Rolling without slipping means

a., = Ra. Target variables are a_, and f.
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10.67.

10.68.

SET Up: The free-body diagram for the roller is given in Figure 10.66.
.‘.

©

“em EXECUTE: Apply Y F=ma to the
F translational motion of the center of mass:
¥ X z F;( =ma,
J F—-f=Ma,,
] JM\E,’
Figure 10.66

Apply Zrz =/, to the rotation about the center of mass:

Yo - R
thin-walled hollow cylinder: I = MR’

Then ) 7, =Ia, implies fR=MRa.

But o, =Ra, so f=Ma,,.

Using this in the ZFX =ma, equation gives F'—Ma, =Ma_,
a,, =F/2M, and then f=Ma, 6 =M(F/2M)=F/2.

EVALUATE: If the surface were frictionless the object would slide without rolling and the acceleration would be
a,, =F /M. The acceleration is less when the object rolls.

IDENTIFY: Apply ZF = ma to each object and apply Zz': = Ia_to the pulley.
SET UP: Call the 75.0 N weight 4 and the 125 N weight B. Let T, and T, be the tensions in the cord to the left

and to the right of the pulley. For the pulley, / =1 MR*, where Mg =50.0 N and R =0.300 m. The 125 N weight

accelerates downward with acceleration a, the 75.0 N weight accelerates upward with acceleration @ and the pulley
rotates clockwise with angular acceleration « , where ¢ = R .

EXECUTE: ZF = ma applied to the 75.0 N weight gives T, —w, =m,a . ZF = ma applied to the 125.0 N
weight gives w, —T, =m,a . Zz'z = Ia_ applied to the pulley gives (T, —T,)R=(1MR*)a and T, —-T,=1M .

Combining these three equations gives w, —w, = (m +m, + M /2)a and

a= We = Wi gz( 25N-750N jg=0.222g.TAzwA(1+a/g)=l.222wA=91.65N.
W+ Wy +W e /2 T75.0N+I25N+250N

pulley
T,=wy(1-a/g)=0.778w, =97.25 N . 217“ = ma applied to the pulley gives that the force F applied by the hook

=239 N . The force the ceiling applies to the hook is 239 N.

EVALUATE: The force the hook exerts on the pulley is less than the total weight of the system, since the net
effect of the motion of the system is a downward acceleration of mass.

IDENTIFY: This problem can be done either with conservation of energy or with Zﬁe

to the pulley is F =T, +T;+w,

ulley

=ma. We will do it both

Xt
ways.

(a) SETUp: (1) Conservation of energy: K, +U,+W_,. =K, +U,.

ther
Take position 1 to be the location of the disk
at the base of the ramp and 2 to be where the
disk momentarily stops before rolling back
down, as shown in Figure 10.68a.

Figure 10.68a

Take the origin of coordinates at the center of the disk at position 1 and take +y to be upward. Then y, =0 and
v, =dsin30°, where d is the distance that the disk rolls up the ramp. “Rolls without slipping” and neglect rolling
friction says W, =0; only gravity does work on the disk, so W, =0

other
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10.69.

EXECUTE: U, =Mgy, =0
K, =1Mv} +11, 0] (Eq.10.11). But @ =v,/R and I, =1 MR’, so 11, o} =1(LMR*)(v,/R)’ =L Mv]. Thus

2 1
K, =2Mv + My} =3 M.
U, = Mgy, = Mgd sin30°
K, =0 (disk is at rest at point 2).
Thus 2 Mv; = Mgd sin30°
O3 3(2.50 mys)’
4gsin30°  4(9.80 m/s*)sin30°
SET UP: (2) force and acceleration The free-body diagram is given in Figure 10.68b.
.

=0.957T m

EXECUTE: Apply ZFX =ma_ tothe
translational motion of the center of mass:
Mgsin@— f=Ma,_,

Apply Zrz =/a, to the rotation about the
center of mass:

fR=(1MR*)a.

f=1MRa,

2

Mgcost

Mg
Figure 10.68b
But a,, = Ra in this equation gives f =+Ma,,. Use this in the ZFX =ma,_ equation to eliminate f.
Mgsin@ -+ Ma,, =Ma,,
M divides outand 2a,, = gsin6. a,, =2gsin€=2(9.80 m/s*)sin30°=3.267 m/s’
SET UP: Apply the constant acceleration equations to the motion of the center of mass. Note that in our
coordinates the positive x-direction is down the incline.
v, =—2.50 m/s (directed up the incline); a, =+3.267 m/s*;
v, =0 (momentarily comes to rest); x —x, ="?
vi=vi +2a.(x-x,)
2 _2. 2

EXECUTE: x-—x,= Yy (£2:50 m/s)z =-0.957 m

2a, 2(3.267 m/s”)

(b) EVALUATE: The results from the two methods agree; the disk rolls 0.957 m up the ramp before it stops.
The mass M enters both in the linear inertia and in the gravity force so divides out. The mass M and radius R enter
in both the rotational inertia and the gravitational torque so divide out.

IDENTIFY: Apply ZFW =md_, to the motion of the center of mass and apply Zrz =1, a, to the rotation about

the center of mass.
SETUp: = 2(%MR2) = MR? . The moment arm for 7T is b.

EXECUTE: The tension is related to the acceleration of the yo-yo by (2m)g —T = (2m)a, and to the angular

acceleration by Tb=Ia =1 %. Dividing the second equation by b and adding to the first to eliminate 7 yields
2m 2 2 . T .
a=g =g >, a=g >+ - The tension is found by substitution into either of the two
Qm+1/b*) °2+(R/b) 2b+R*/b
equations:

B ~omg (R/b) _ 2mg
2+(R/b) 2+(R/b)*  (2(b/R)* +1)

EVALUATE: a—>0when b—>0.As b—>R, a—>2g/3.

T =(2m)(g —a) = (2mg) [1
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10.70. IDENTIFY: Apply conservation of energy to the motion of the shell, to find its linear speed v at points 4 and B.
Apply ZF = ma to the circular motion of the shell in the circular part of the track to find the normal force exerted

by the track at each point. Since » << R the shell can be treated as a point mass moving in a circle of radius R when
applying ZF = ma . But as the shell rolls along the track, it has both translational and rotational kinetic energy.

SETUpr: K, +U,=K,+U,. Let | be at the starting point and take y = 0to be at the bottom of the track, so

vi=h. K=im’+1w’. I=2mr’and w=v/r,so K=2mv*. During the circular motion, a,, =v*/R.
2
EXECUTE: (a) ZF =ma at point 4 gives n+mg = m% . The minimum speed for the shell not to fall off the

track is when n — 0 and v* = gR . Let point 2 be 4, so y, =2Rand v =mR . Then K, +U, = K, +U, gives
mghy =2mgR +2m(gR). hy=(2+2)R=1R .
(b) Let point 2 be B, so y, =R. Then K, +U, =K, +U, gives mgh, =mgR+2mv; . With h =1IR this gives

2

v =1gR Then ) F =ma at B gives n:m%:%mg.

(c) Now K = %mv2 instead of %mv2 . The shell would be moving faster at 4 than with friction and would still make
the complete loop.
2

(d) In part (c): mgh, =mg(2R)++mv’ . hy =R gives v’ =3gR. Y F =md at point 4 gives mg +n = m% and

2
n= m[% - gJ =2mg . Inpart (a), n =0, since at this point gravity alone supplies the net downward force that is

required for the circular motion.
EVALUATE: The normal force at 4 is greater when friction is absent because the speed of the shell at 4 is greater
when friction is absent than when there is rolling without slipping.
10.71. IDENTIFY: Consider the direction of the net force and the sense of the net torque in each case.
SET UP: The free-body diagram in each case is shown in Figure 10.71.

5
EXECUTE: In the first case, F and the friction force act in opposite directions, and the friction force causes a
larger torque to tend to rotate the yo-yo to the right. The net force to the right is the difference F — f, so the net

force is to the right while the net torque causes a clockwise rotation. For the second case, both the torque and the

friction force tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case, friction tends to

move the yo-yo to the right, and since the applied force is vertical, the yo-yo moves to the right.

EVALUATE: In the first case the torque due to friction must be larger than the torque due to F, so the net torque is

clockwise. In the third case the torque due to /' must be larger than the torque due to f, so the net torque will be clockwise.
F

n n n
3 A

f

Y
W W W

Figure 10.71

10.72. IDENTIFY: Apply le"m =ma,_, to the motion of the center of mass and ZTZ =1, a to the rotation about the

center of mass.

SETUP: Forahoop, / =MR’. For a solid disk, / =1MR*.

EXECUTE: (a) Because there is no vertical motion, the tension is just the weight of the hoop:

T =Mg =(0.180 kg)(9.8 N/kg)=1.76 N,

(b) Use 7 =Ic to find a. The torque is RT, so a :RT/I:RT/MR2 =T/MR=Mg/MR, so

a = g/R=(9.8 m/s*)/(0.08 m)=122.5 rad/s’.

(¢) a=Ra=9.8 m/s’

(d) T would be unchanged because the mass M is the same, o and @ would be twice as great because / is now %MRZ.
EVALUATE: a,, for a point on the rim of the hoop or disk equals a for the free end of the string. Since / is

smaller for the disk, the same value of T produces a greater angular acceleration.
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10.73.

10.74.

10.75.

IDENTIFY: Apply Zr: =/« to the cylinder or hoop. Find a for the free end of the cable and apply constant

acceleration equations.

SET UP: q,, for a point on the rim equals a for the free end of the cable, and a,, = R .
. 1 1 2F 2
EXECUTE: (a) ) 7, =Ia, and a,, = Ra gives FR=—MRa = —MRZ(“ﬂJ . a, =——= 00N _ 50 mys2.,
2 2 R M 4.00kg

. . 1
Distance the cable moves: x—x, =v, f+2a’ gives 50 m :5(50 m/sz)t2 and t=141s.
v, =V, +a,t=0+(50 m/s*)(1.415)=70.5 m/s.

(b) For ahoop, I = MR?, which is twice as large as before, so « and a,,, would be half as large. Therefore the time

tan
would be longer by a factor of ~/2 . For the speed, v> =V, +2a_x,in which x is the same, so v, would be half as

large since a_ is smaller.

EVALUATE: The acceleration a that is produced depends on the mass of the object but is independent of its
radius. But a depends on how the mass is distributed and is different for a hoop versus a cylinder.

IDENTIFY: Use projectile motion to find the speed v the marble needs at the edge of the pit to make it to the level
ground on the other side. Apply conservation of energy to the motion down the hill in order to relate the initial

height to the speed v at the edge of the pit. W, =0 so conservation of energy gives K, +U, =K, +U, .
SET UP: In the projectile motion the marble must travel 36 m horizontally while falling vertically 20 m. Let +y

ther

be downward. For the motion down the hill, let y, =0 so U; =0 and y, =/ . K, =0. Rolling without slipping
means v=Ro. K =11 o’ +1imv’ =1(EmR*)0’ +Tmv’ =Lmv’ .

EXECUTE:  (a) Projectile motion: v, =0. a, =9.80 m/s*. y—y,=20m. y—y, =v, t++ar gives

2(y— : -
t= 20 =x) yo):Z.OZS.Then X—Xx,=v,1! gives vzv(h:x Yo _ 36m =17.8 m/s.
a, : t 2.02s

_ 7V 7(17.8 m/s)’ _5
10g  10(9.80 m/s*)

(b) 11&* =L1mv*, independent of R.  is proportional to R* but @” is proportional to 1/R* for a given

Motion down the hill: U; =K, . mgh=2Lmv’. h 6m.

translational speed v.

(c) The object still needs v =17.8 m/s at the bottom of the hill in order to clear the pit. But now K, = %mv2 and

2
v

h=—=16.6m.

2g
EVALUATE: The answer to part (a) also does not depend on the mass of the marble. But, it does depend on how
the mass is distributed within the object. The answer would be different if the object were a hollow spherical shell.
In part (c) less height is needed to give the object the same translational speed because in (c) none of the energy
goes into rotational motion.
IDENTIFY: Apply conservation of energy to the motion of the boulder.
SETUP: K =1mv’+1/w’and v=Rw when there is rolling without slipping. 7 =2mR”.
EXECUTE: Break into 2 parts, the rough and smooth sections.

v

2
1 1(2 10
Rough: mgh =imv’ +11&® . mgh, =Emv2 +E(§mR2J(EJ v =78h1 :

Bottom

Smooth: Rotational kinetic energy does not change. mgh, + %mv2 +K,, = %mv2 +K,, . gh, +%($ ghlj = %vé .

Vg = \/§ gh +2gh, = g@.so m/s?)(25 m)+2(9.80 m/s*)(25 m) =29.0 m/s .

EVALUATE: If all the hill was rough enough to cause rolling without slipping, v, = f% 2(50 m) =26.5m/s. A

smaller fraction of the initial gravitational potential energy goes into translational kinetic energy of the center of
mass than if part of the hill is smooth. If the entire hill is smooth and the boulder slides without slipping,

vy =4/2g(50 m) =31.3 mV/s . In this case all the initial gravitational potential energy goes into the kinetic energy of
the translational motion.
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IDENTIFY: Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball leaves the
edge of the cliff it moves in projectile motion and constant acceleration equations can be used.

(a) SET Up:  Use conservation of energy to find the speed v, of the ball just before it leaves the top of the cliff.
Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take y =0 at the bottom of the hill, so
» =0 and y,=28.0m.

EXECUTE: K, =U,=K,+U,

Il + 11w} =mgy, +imv; + 1w

Rolling without slipping means @ =v/r and J/0’ = %(% mr? )(v/r)2 =Llmy’

Lmv =mgy, + Lmv;

v, =P —Lgy, =15.26 m/s

SET UP: Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just before it
lands. Take +y to be downward. Use the vertical motion to find the time in the air:

Voy = 0, a,= 9.80 m/s?, y—y,=280m, t=?
EXECUTE:  y—y,=v, t++a’ gives 1=239s

During this time the ball travels horizontally
x—x, =v,,¢t =(15.26 m/s)(2.39 s) =36.5 m.

Just before it lands, v, =v,, +a =234 m/s and v, =v, =153 m/s
v= v +v, =28.0 m/s
(b) EVALUATE: At the bottom of the hill, @ =v/r=(25.0 m/s)/r. The rotation rate doesn’t change while the ball

is in the air, after it leaves the top of the cliff, so just before it lands @ =(15.3 m/s)/r. The total kinetic energy is

the same at the bottom of the hill and just before it lands, but just before it lands less of this energy is rotational
kinetic energy, so the translational kinetic energy is greater.

IDENTIFY: Apply conservation of energy to the motion of the wheel. K = %mv2 +31 o .
SETUP: No slipping means that @ =v/R. Uniform density means m, = A27R and m, = AR , where m, is the

mass of the rim and m, is the mass of each spoke. For the wheel, /=1, +1

rim spokes
1

EXECUTE: (a) mgh:Emv2+%la)z. I=1,+1I_,.=mR +6GmSR2j

. For each spoke, I =imR’ .

rim spokes

Also, m=m_+m,=27RA+6RA = 2R/1(7z + 3) . Substituting into the conservation of energy equation gives

2Rl(7r+3)gh=%(2Rl)(7r+3)(Rw)2+%{2”R/1Rz+6(§”RR2H0)2.

=124 rad/s and v=Rw =26.0 m/s

(z+3)gh (7+3)(9.80 m/s)(58.0 m)
R*(7+2) (0210 m) (7 +2)

(b) Doubling the density would have no effect because it does not appear in the answer. @ is inversely proportional
to R so doubling the diameter would double the radius which would reduce @ by half, but v = Rw would be
unchanged.

EVALUATE: Changing the masses of the rim and spokes by different amounts would alter the speed v at the
bottom of the hill.

IDENTIFY: Apply v=Rw.

SET Up: For the antique bike, v is the same for points on the rim of each wheel and equals the linear speed of the
bike. 1 rev=2x rad.

EXECUTE: (a) The front wheel is turning at @ =1.00 rev/s =27z rad/s. v=ro=(0.330 m)(27z rad/s)=2.07s.

(b) @=v/r=(2.07 m/s)/(0.655 m)=3.16 rad/s =0.503 rev/s
(©) w=v/r=(2.07 m/s)/(0.220 m) =9.41 rad/s =1.50 rev/s

EVALUATE: Since the front wheel has a larger radius for the antique bike, that wheel doesn't have to rotate at as
many rev/s to achieve the same linear speed of the bike.
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IDENTIFY: Apply conservation of energy to the motion of the ball. Once the ball leaves the track the ball moves
in projectile motion.

SETUP: The ball has / =2mR”; the silver dollar has / =3mR’. For the projectile motion take +y downward,
so a, =0and a, =+g .

EXECUTE: (a) The kinetic energy of the ball when it leaves the track (when it is still rolling without slipping) is
(7/10)mv* and this must be the work done by gravity, W =mgh, so v=4/10gh/7. The ball is in the air for a time

t=42y/g, sox=vt=,/20hy/7.

(b) The answer does not depend on g, so the result should be the same on the moon.
(¢) The presence of rolling friction would decrease the distance.

(e) For the dollar coin, modeled as a uniform disc, K =(3/ 4ymv*, and so x = \J8hy/3.
EVALUATE: The sphere travels a little farther horizontally, because its moment of inertia is a smaller fraction of

MR? than for the disk. The result is independent of the mass and radius of the object but it does depend on how
that mass is distributed within the object.

IDENTIFY and SET UP:  Apply conservation of energy to the motion of the ball. The ball ends up with both
translational and rotational kinetic energy. Use Fig.(10.13) in the textbook to relate the speed of different points on
the ball to v,.

EXECUTE: (a) U, =1k’ =1(400 N-m)(0.15 m)’ =4.50 J and K, =0.800U, =3.60J

K, =imv} +1I &’ rolling without slipping says @=v,, /R

[cm = %mRz

Thus K, =imv?, +%(§mR2)(v

and v, = \/IOK‘ _ [ lee0)) 9.34 m/s.
Tm 7(0.0590 kg)
(b) Consider Figure 10.80a.

10 cm

IR =mvl (+1)=Fmv.

From Fig.(10.13) in the textbook,
at the top of the ball
v=2v,  =18.7m/s

Figure 10.80a

(©

w(‘ v From Fig.(10.13) in the textbook,
em v =0 at the bottom of the ball.

v="0
Figure 10.80b
(d) The problem says that U, =0.900K, =3.24 J. Thus U, =mgh=3.24 ] and

3247 32417
= = >—=5.60 m
mg  (0.0590 kg)(9.80 m/s”)
EVALUATE: Not all the potential energy stored in the spring goes into kinetic energy at the base of the ramp or
into gravitational potential energy at the top of the ramp because of loss of mechanical energy due to negative
2 and v, =11.0 m/s. v, is less than this

cm

h

work done by friction. If the ball slides without rolling, then K, =+mv,
when the ball rolls and some of its total kinetic energy is rotational.
IDENTIFY: v, =dx/dt, v =dy/dt. a =dv /dt, a ,=dv /dt.
SETUP: dcos(wt)/dt =—wsin(wt) . dsin(wt)/dt = wcos(wt) .
EXECUTE: (a) The sketch is shown in Figure 10.81.

(b) R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the wheel’s rotation.

2
(c) Differentiating, v, :m 1-cos ﬂ , d, = (2_7[) Rsin [@j and v, :ﬂsin [@j s
T T ’ T T y T T
2
a,= (2—”j R COS(EJ.
’ T T
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27t . . . . .
(d) v,=v, =0 when (Tj =27 or any multiple of 27z, so the times are integer multiples of the period 7. The

47°R
T2

2z 2 (2 A7°R . , . :
(&) a=\la;+a, = (%j R \/ cos’ (%j +sin’ (%j = %, independent of time. This is the magnitude of the

radial acceleration for a point moving on a circle of radius R with constant angular velocity 27 /7 . For motion that

acceleration components at these times are a, =0, a, =

consists of this circular motion superimposed on motion with constant velocity (@ = 0), the acceleration due to the

circular motion will be the total acceleration.

EVALUATE: a is independent of time, but v does depend on time.
y

VAR N\

Figure 10.81

IDENTIFY: Apply the work-energy theorem to the motion of the basketball. K = %mv2 +11 " and v=Rw.
SET UpP: For a thin-walled, hollow sphere 7 = %mR2 .
EXECUTE:  For rolling without slipping, the kinetic energy is (1/ 2)(m +1/R? )v2 =(5/6)mv*; initially, this is

32.0 J and at the return to the bottom it is 8.0 J. Friction has done —24.0 J of work, —12.0 J each going up and
down. The potential energy at the highest point was 20.0 J, so the height above the ground was

20.0J

=3.40 m.

(0.600 kg)(9.80 m/s’)
EVALUATE: All of the kinetic energy of the basketball, translational and rotational, has been removed at the point
where the basketball is at its maximum height up the ramp.
IDENTIFY: Use conservation of energy to relate the speed of the block to the distance it has descended. Then use
a constant acceleration equation to relate these quantities to the acceleration.
SETUP:  For the cylinder, / =1M (2R)*, and for the pulley, / =1 MR*.
EXECUTE: Doing this problem using kinematics involves four unknowns (six, counting the two angular
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the cylinder
both have speed v, the pulley has angular velocity v/R and the cylinder has angular velocity v/2R, the total kinetic
energy is

2 2
K= %{Mvz Jr@(v/zk)2 +%(V/R)z +Mv2} = %Mvz.

This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y, K = Mgy, or

v* =(2/3)gy. For constant acceleration, v’ = 2ay, and comparison of the two expressions gives a = g/3.
EVALUATE: If the pulley were massless and the cylinder slid without rolling, Mg =2Ma and a=g/2. The
rotation of the objects reduces the acceleration of the block.

IDENTIFY: Apply Zz’z = I, to the drawbridge and calculate «, . For part (c) use conservation of energy.
SETUP: The free-body diagram for the drawbridge is given in Fig.10.84. For an axis at the lower end, I =+m!/ 2
~ 32(4.00 m)(cos60.0°)
B (8.00 m)’

(b) o, depends on the angle the bridge makes with the horizontal. ¢, is not constant during the motion and

EXECUTE: (a) Y 7, =Ia, gives mg(4.00 m)(cos60.0°) =<ml’c, and a, =0.919 rad/s>.

@, = w,, + ot cannot be used.
(c) Use conservation of energy. Take y =0 at the lower end of the drawbridge, so y, =(4.00 m)(sin 60.0°) and
v =0. K, +U, =K +U +W,, gives U =K,, mgy, =110’ . mgy, =1(tml*)w’ and

o

. J6gy,  J6(9.80 m/s*)(4.00 m)(sin 60.0°)
! 8.00 m

=1.78 rad/s.
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EVALUATE: If we incorrectly assume that «_ is constant and has the value calculated in part (a), then

! =a). +2a.(0-6,) gives @=139 rad/s . The angular acceleration increases as the bridge rotates and the actual
angular velocity is larger than this.

4.00m

4.00m

Axis mg
Figure 10.84
IDENTIFY: Apply conservation of energy to the motion of the first ball before the collision and to the motion of

the second ball after the collision. Apply conservation of angular momentum to the collision between the first ball
and the bar.

SET Up: The speed of the ball just before it hits the bar is v= \/5 =15.34 m/s. Use conservation of angular
momentum to find the angular velocity @ of the bar just after the collision. Take the axis at the center of the bar.
EXECUTE: L, =mvr = (5.00 kg)(15.34 m/s)(2.00 m) =153.4 kg-m’

Immediately after the collision the bar and both balls are rotating together.

L =10

Lo =5 MP +2mr* =-1(8.00 kg)(4.00 m)* +2(5.00 kg)(2.00 m)* =50.67 kg -m”

L,=1=1534kg-m’

w=L,/1,=3.027 rad/s

Just after the collision the second ball has linear speed v =r@ =(2.00 m)(3.027 rad/s) = 6.055 m/s and is moving

tot

upward. %mv2 =mgy gives y=1.87 m for the height the second ball goes.

EVALUATE: Mechanical energy is lost in the inelastic collision and some of the final energy is in the rotation of the bar
with the first ball stuck to it. As a result, the second ball does not reach the height from which the first ball was dropped.
IDENTIFY: The rings and the rod exert forces on each other, but there is no net force or torque on the system, and
so the angular momentum will be constant.

SETUP: For the rod, [ =-5ML’ . For each ring, I =mr*, where r is their distance from the axis.
EXECUTE: (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular velocity is

LML+ 2mir? , “ keg-m’
given by a)zzwli:a)l{‘z o }— 3.00x10” kg-m _ @

> s =, ~ : , 0w, =7.5 rev/min.
A LML +2mr; 2.00x10” kg-m
(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common angular
velocity will be the same, 7.5 rev/min.
EVALUATE: Note that conversion from rev/min to rad/s was not necessary. The angular velocity of the rod
decreases as the rings move away from the rotation axis.
IDENTIFY: Apply conservation of angular momentum to the collision. Linear momentum is not conserved
because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces no
torque and angular momentum is conserved.
SET UpP: The system before and after the collision is sketched in Figure 10.87.

EXECUTE: (a) m, =+m

rod

axis EXECUTE: L, =mvr :%mrodV(L/z)
L L _1
- L=l +1,)o
(LN L 1 2
Mooy 2 Imd = ?mrodl’
2 2
v=20 NP e Ib:mbr :%mrod(l‘/z)
— 1 2
before after Iy = ﬁmmdl‘

Figure 10.87



Dynamics of Rotational Motion 10-31

10.88.

10.89.

Thus L, =L, gives +m, L =(%m r +%mmdL2)a)

rod

v==Llo
o=3v/L
() K, =im* =1m »*
K, =110’ =1(Iy +1,)0" =4(4m L +Lm, ) (6v/19L)’
2
KZ :%(%)(%) erodv2 :%Wlmd‘}2
K, 3 2
Then —2 =127 _3/19,

> =
Kl B mde

EVALUATE: The collision is inelastic and K, < K.

IDENTIFY: Apply Eq.(10.29).
SET UP: The door has [ = %ml2 . The torque applied by the force is rF,, , where r=1/2.

EXECUTE: ZXr,, =rF, and AL =rF, At=rJ. The angular velocity @is then
AL _rF A (12)F At 3 F At
1 I Lml? 2 ml

, where [ is the width of the door. Substitution of the given numeral

values gives w=0.514rad/s.
EVALUATE: The final angular velocity of the door is proportional to both the magnitude of the average force and

also to the time it acts.
(a) IDENTIFY: Apply conservation of angular momentum to the collision between the bullet and the board:
SET UpP: The system before and after the collision is sketched in Figure 10.89a.

axis @ .

1=0.125m

#1 w

Figure 10.89a

EXECUTE: L =1L,
L, =mvrsing=mvl =(1.90x10~ kg)(360 m/s)(0.125 m) = 0.0855 kg-m*/s
L,=1o,
L =1g + Lo =3 ML +mr?
I, =1(0.750 kg)(0.250 m)” + (1.90x 10~ kg)(0.125 m)* = 0.01565 kg - m’
Then L, =L, gives that o, = L_ ngmzs =5.46 rad/s

I, 0.1565kg-m
(b) IDENTIFY: Apply conservation of energy to the motion of the board after the collision.
SET UP: The position of the board at points 1 and 2 in its motion is shown in Figure 10.89b. Take the origin of

coordinates at the center of the board and +y to be upward, so y,, , =0 and y, , =4, the height being asked for.

. K+U+W,.=K,+U,
o \ EXECUTE: Only gravity does work, so W, =0.
K =11a’
U=mgy,, =0
K,=0

UZ = mgycm,Z = mgh

Figure 10.89b
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Thus 1/w® =mgh.
Io’ (0.01565 kg - m*)(5.46 rad/s)’

“2mg 2(0.750 kg +1.90x10 kg)(9.80 m/s’)

(c) IDENTIFY and SET UP:  The position of the board at points 1 and 2 in its motion is shown in Figure 10.89c.
¥

=0.0317m=3.17 cm

#2

cm Apply conservation of energy as in part (b),
except now we want y_ . =h=0.250 m.

axis@ | v =0250m Solve for the @ after the collision that is
required for this to happen.

cm X

#l
—_—

[

Figure 10.89¢
EXECUTE: 1/w’ =mgh

e [2mgh  [2(0.750 kg +1.90x10™ kg)(9.80 m/s>)(0.250 m)
I 0.01565 kg -m’

®=15.34 rad/s
Now go back to the equation that results from applying conservation of angular momentum to the collision and
solve for the initial speed of the bullet. L, =L, implies my, vl = 1,0,

2
pe Lo, _ (0.01565 kgﬁ}m )(15.34 rad/s) 1010 m/s
Myl (1.90x107 kg)(0.125 m)

EVALUATE: We have divided the motion into two separate events: the collision and the motion after the
collision. Angular momentum is conserved in the collision because the collision happens quickly. The board
doesn’t move much until after the collision is over, so there is no gravity torque about the axis. The collision is
inelastic and mechanical energy is lost in the collision. Angular momentum of the system is not conserved during
this motion, due to the external gravity torque. Our answer to parts (b) and (c) say that a bullet speed of 360 m/s
causes the board to swing up only a little and a speed of 1010 m/s causes it to swing all the way over.

IDENTIFY: Angular momentum is conserved, so [0, = ,®, .

SET UpP: For constant mass the moment of inertia is proportional to the square of the radius.
EXECUTE: Rjw,=R;w,,or Rjw,=(R,+ AR)2 (@, + Aw)=Rj®, + 2R, AR®, + R; Aw, where the terms in
ARA® and (Aw)’ have been omitted. Canceling the R;®, term gives
R, A
AR=-222% _ 1 1cm,
W,

EVALUATE: AR/R,and Aw/w, are each very small so the neglect of terms containing ARA®@ or (A®)” is an
accurate simplifying approximation.
IDENTIFY: Apply conservation of angular momentum to the collision between the bird and the bar and apply
conservation of energy to the motion of the bar after the collision.
SET UP: For conservation of angular momentum take the axis at the hinge. For this axis the initial angular
momentum of the bird is m,;;(0.500 m)v, where m,,, =0.500 kg and v=2.25 m/s . For this axis the moment of
inertia is 7 =1m,, [’ =1(1.50 kg)(0.750 m)* =0.281 kg-m’ . For conservation of energy, the gravitational
potential energy of the bar is U =m,, gy, , where y, is the height of the center of the bar. Take y, , =0, so
Vema =—0.375m .
EXECUTE: (a) L, =L, gives my;,(0.500 m)v = (1m,, ).
- 3m,;,,(0.500 m)v _ 3(0.500 kg)(0.500 m)(2.25 m/s)

S > =2.00 rad/s .
my, L (1.50 kg)(0.750 m)
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(b) U, + K, =U, + K, applied to the motion of the bar after the collision gives 1/@} =m,, g(-0.375 m)+1/w; .

o, = \/a)f +gmbarg(().375 m) . @, = [(2.00 rad/s)’ +;2(1.50 kg)(9.80 m/s*)(0.375 m) = 6.58 rad/s
1 0.281kg-m

EVALUATE: Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after the

collision is less than the kinetic energy of the bird just before the collision.

IDENTIFY: Angular momentum is conserved, since the tension in the string is in the radial direction and therefore

produces no torque. Apply z F = ma to the block, with a = a,, = V.

SET UP: The block’s angular momentum with respect to the hole is L =mvr.
2
EXECUTE: The tension is related to the block’s mass and speed, and the radius of the circle, by T = mv—.

”
2.2 2 2 2
T= mvZl =my % = (mv;;) =——. The radius at which the string breaks is
rooom r mr mr
2 2 ((0.250 kg)(4.00 0.800 m))’
s L _(man) (( g)(4.00 m/s)(0.800 m)) from which r = 0.440 m.
mIl, .~ mI, (0.250 kg)(30.0 N)

0.800 m

EVALUATE: Just before the string breaks the speed of the rock is (4.00 m/s)(0 240
440 m

j: 7.27 m/s . We can

verify that v=7.27 m/s and » =0.440 m do give T =30.0 N..
IDENTIFY and SET UP:  Apply conservation of angular momentum to the system consisting of the disk and train.
SETUP: L, =L,, counterclockwise positive. The motion is sketched in Figure 10.93.

Wy

'} L, =0 (before you switch on the train’s engine;

both the train and the platform are at rest)

(disk)
L,=L

+ Ldisk

train

Figure 10.93

EXECUTE: The train is $(0.95 m)=0.475 m from the axis of rotation, so for it

I, =mR} = (1.20 kg)(0.475 m)’ =0.2708 kg - m’

@, =V /R =(0.600 m/s)/0.475 s =1.263 rad/s

This is the angular velocity of the train relative to the disk. Relative to the earth o, = o, + ®,.
Thus L,
L,=1L says Ly, =—L

‘train

= Ilwt = Il (a)r

el

+w,).

- 1 2
Ly = 1,0, Where I, =5myR;

2
smRio, =1 (0, +,)

el

o (0.2708 kg -m?)(1.263 rad/s)
Im,R;+1,  1(7.00 kg)(0.500 m)* +0.2708 kg - m”
EVALUATE: The minus sign tells us that the disk is rotating clockwise relative to the earth. The disk and train
rotate in opposite directions, since the total angular momentum of the system must remain zero. Note that we
applied L, = L, in an inertial frame attached to the earth.

1o,

w, = =-0.30 rad/s.

IDENTIFY: [ for the wheel is the sum of the values of / for each of its parts, the rim and each spoke. The total
length of wire is constant. The motion is related to the friction torque by Zrz =la, .

SETUP: 4R+27R =L, where R is the radius of the wheel and therefore the length of each of the four spokes.
The mass of a piece is proportional to the length of that piece.

EXECUTE: (a) R= LO . Irim = mrimRz - My, = 2R Mo :( = jMo .
442 LO 44271
, 2z R s ) M
lin =My s = GTIXU ML L =4y R g, =My =20 and
I :MLZ%:(3065X10_4)M0L3 I:]rim+4lspoke :(700X10_3)M0Lf)

spoke 00 3(27Z'+ 4)
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(b) ©. =0, +a.tgives a, = —% .Then ) 7, =Ia, gives 7, = (7.00><10'3)M0Lf)%

EVALUATE: If the wire were bent into a circle, without spokes, the moment of inertia would be
2
2 _ ML,
4+2r)
spokes is closer to the axis than the rim.

IDENTIFY and SET UP:  Use the methods stipulated in the problem.
EXECUTE: (a) The initial angular momentum with respect to the pivot is mvr,and the final total moment of

=(9.46x107)M > . The actual value of I for the wheel is less than this because the mass in the
0 00

inertia is I +mr” , so the final angular velocity is o = mvr/(mr2 + I).

(b) The kinetic energy after the collision is converted to gravitational potential energy, so

1o, 2(M +m)gh
—o (mr-+1)=(M+m)gh,or o= |[————~—.
2 ( ) ( )g (mr2 + 1)
(c) Substitution of 7 = Mr? into the result of part (a) gives @ = ( mM j(v/ r), and into the result of part (b),
m+

@ =+/2gh(1/r), which are consistent with the forms for v.

EVALUATE: I = Mr” applies approximately when the pendulum consists of a heavy catcher mounted on a light

arm. In the actual apparatus some of the mass is distributed closer to the axis and I < M.

IDENTIFY: Apply conservation of momentum to the system of the runner and turntable

SET UP: Let the positive sense of rotation be the direction the turntable is rotating initially.

EXECUTE: The initial angular momentum is /@, — mRv, , with the minus sign indicating that runner’s motion is

opposite the motion of the part of the turntable under his feet. The final angular momentum is @, (7 +mR*), so
lw, —mRy,
I+mR’

W, =

o - (80 kg-m?)(0.200 rad/s)—(55.0 kg)(3.00 m)(2.8 m/s) _
: (80 kg~ m?) +(55.0 kg)(3.00 m)?
EVALUATE: The minus sign indicates that the turntable has reversed its direction of motion. This happened
because the man had the larger magnitude of angular momentum initially.
IDENTIFY: Treat the moon as a point mass, so L =Iw =mr’® , where r is the distance of the moon from the
center of the earth. Conservation of angular momentum says dL/dt =0.

SETUP: dr/dt=3.0 cm/y =3.0x10 m/y . The period of the moon’s orbital motion is 27.3 d=2.36x10° s .
r=3.84x10°m.

-0.776 rad/s .

EXECUTE:  dL/dt = (mre) = max2r) &+ m? 82 20 g0 42 22091
dt dt dt dt rodt
-6
p=2rrd_ 2r rad6 = 2.66x10° radss . 42 - 2(2:66x10 g rad’S) 3.0x10° miy) = ~4.2x10" rad/s per year
T 236x10°s dr 3.84x10° m

do . . T .
’ is negative, so the angular velocity is decreasing.

EVALUATE: L =mr’w.If L is constant, then @ decreases when r increases. The fractional changes in 7 and

 are very, very small.

IDENTIFY: Follow the method outlined in the hint.

SETUP: J=mAv, . AL=J(x-x,,).

EXECUTE: The velocity of the center of mass will change by Av,_ =J/m and the angular velocity will change by
UGt ] EA Gt L2

A a) cm
m I

. The change is velocity of the end of the bat will then be Av, , =Av, —Awx,, =

Setting Av,,, =0 allows cancellation of J and gives / = (x —x,,, )x,,,/m, which when solved for x is

Lo, (5.30x107°kg - m?)
x,m  (0.600 m)(0.800 kg)
EVALUATE: The center of percussion is farther from the handle than the center of mass.

x= +(0.600 m)=0.710 m.
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IDENTIFY and SET UP:  Follow the analysis that led to Eq.(10.33).

EXECUTE: In Figure 10.33a in the textbook, if the vector ¥ and hence the vector L are not horizontal but make
an angle B with the horizontal, the torque will still be horizontal (the torque must be perpendicular to the vertical

weight). The magnitude of the torque will be @rcos £, and this torque will change the direction of the horizontal
component of the angular momentum, which has magnitude L cos f8 . Thus, the situation of Figure 10.35 in the

textbook is reproduced, but with Lo, instead of L. Then, the expression found in Eq. (10.33) becomes

_dg _ |dZ| /|zh°‘iz _ 7 _mgrcosf _wr
Cdr dt _|Zhoriz| " Leosp o

Q

EVALUATE: The torque and the horizontal component of L both depend on £ by the same factor, cos /3 .
IDENTIFY: Apply conservation of energy to the motion of the ball.
SETUP: Inrelating 1mv. and 1/’ instead of v, = Rw use the relation derived in part (a). / =2mR’.

EXECUTE: (a) Consider the sketch in Figure 10.100.
The distance from the center of the ball to the midpoint of the line joining the points where the ball is in contact

with the rails is /R — (a’/2)2 , 50V, =@y R*—d*/4 . When d =0, this reduces to v, =R, the same as rolling

on a flat surface. When d = 2R, the rolling radius approaches zero, and v, — 0 for any w.

2

2
() K =—mv 4+~ Ia? =+| m2, +(2/5)mR?| ——Yen | | e |5, 2
2 2 2 R —(d*/4) 10 (1-a°/4R)
Setting this equal to mgh and solving for v, gives the desired result.
(c¢) The denominator in the square root in the expression for v, is larger than for the case d =0, so v, is smaller.
For a given speed, o is larger than in the d =0 case, so a larger fraction of the kinetic energy is rotational, and the

translational kinetic energy, and hence v__, is smaller.

cm 2

(d) Setting the expression in part (b) equal to 0.95 of that of the d =0 case and solving for the ratio d/R gives
d/R=1.05. Setting the ratio equal to 0.995 gives d/R=0.37.

10gh

EVALUATE: If we set d =0 in the expression in part (b), v, = , the same as for a sphere rolling down a

ramp. When d — 2R, the expression gives v,, =0, as it should.

Figure 10.100

IDENTIFY: Apply me =ma,, and Zrz =1 o, to the motion of the cylinder. Use constant acceleration equations
to relate a, to the distance the object travels. Use the work-energy theorem to find the work done by friction.

SETUP: The cylinder has I, =1 MR’.
EXECUTE: (a) The free-body diagram is sketched in Figure 10.101. The friction force is
. . MgR 2u.g
=un=uMg, so a= . The magnitude of the angular acceleration is R S S .
[ =mn= Mg g g g I~ (W2)MEE R
Ro, Rao, _ Ry,
a+Ra  mg+2pmg 3ug ’

(b) Setting v=at=wR = (6:)O - a)t)R and solving for ¢ gives ¢ =

Ra, ) _ Roy
2

1 1
and d:—atzz—yg[ = .
2 (g) 3ug)  18ug
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(c) The final kinetic energy is (3/ 4)Mv2 = (3/ 4)M (at)2 , so the change in kinetic energy is

2

R 1 1

Ak =3 u g RO | _Lyrear - Lyreer.

4 3u.g 4 6
. : - . IMRey 2 .

EVALUATE:  The fraction of the initial kinetic energy that is removed by friction work is -———-= 3 This
4 Wy

fraction is independent of the initial angular speed o, .

n
] a
—

A

ng
Figure 10.101

IDENTIFY: The vertical forces must sum to zero. Apply Eq.(10.33).
SET UpP: Denote the upward forces that the hands exert as F, and F, . 7 =(F, — F,)r , where r =0.200 m .

. . lo
EXECUTE: The conditions that F, and F}, must satisfy are F, + F, =wand F, — F, = Q—, where the second
r

equation is 7 =QL, divided by r. These two equations can be solved for the forces by first adding and then subtracting,

yielding F, :%(W+ Ql—a)} and F, = %(W—Ql—wj. Using the values w=mg =(8.00 kg)(9.80 m/sz) =78.4 N and
r r

Iw  (8.00 kg)(0.325 m)*(5.00 rev/sx 27z rad/rev)

E (0.200 m)

F, =392 N+Q(66.4N-s), F, =39.2 N-Q(66.4 N -s).

(@) Q=0,F, =F, =392 N.

(b) Q=0.05 rev/s =0.314 rad/s, F, =60.0 N, F, =18.4 N.

() ©=0.3 rev/s=1.89 rad/s, F, =165 N, F, =—86.2 N, with the minus sign indicating a downward force.
392N

e) F,=0 gives Q=—————=0.575 rad/s, which is 0.0916 rev/s.
© F=0¢ 664 N-s / /

EVALUATE: The larger the precession rate Q, the greater the torque on the wheel and the greater the difference
between the forces exerted by the two hands.

IDENTIFY: The answer to part (a) can be taken from the solution to Problem 10.92. The work-energy theorem
says W =AK .

SET UpP: Problem 10.92 uses conservation of angular momentum to show that nv, =rv, .

=132.7 kg-m/s gives

EXECUTE: (a) T =mv)i’[r.
(b) T and dF are always antiparallel. T -dF = —Tdr .

2
r ndr  my 1 1
W:—_[ Talrzmvlzrl2 =L |
N 3 1 2 2
i noy 2 nooh

1 ; L ,
(©) v, =v,(1;/1,), so AK = Em(vz2 ) :m—zv‘[(r1 /r,)? —1} , which is the same as the work found in part (b).

EVALUATE: The work done by T'is positive, since T is toward the hole in the surface and the block moves
toward the hole. Positive work means the kinetic energy of the object increases.



