ROTATION OF RIGID BODIES

9.1.

9.2.

9.3.

9.4.

IDENTIFY: s =r6@,with @ inradians.
SETUP: 7 rad=180°.

EXECUTE:  (a) 0 =2 =120 _ 600 rad = 34.4°
r 2.50m
() r=2 14.0 cm -6.27 cm

"0 (128°)(x rad/180°)
(¢) s=rf=(1.50 m)(0.700 rad) =1.05 m

EVALUATE: An angle is the ratio of two lengths and is dimensionless. But, when s =78 is used, & must be in
radians. Or, if @ =s/ris used to calculate &, the calculation gives & in radians.

IDENTIFY: 6-6, = ot since the angular velocity is constant.

SETUP: 1 rpm=(27/60) rad/s .

EXECUTE: (a) o= (1900)(27 rad/60 s) =199 rad/s

0-6, 0.611rad

(b) 35°=(35°)(7/180°)=0.611rad . ¢ = =3.1x107 s

10} 199 rad/s
EVALUATE: In ¢= -6, we must use the same angular measure (radians, degrees or revolutions) for both
1)
0—-6,and w.
IDENTIFY: ¢« (f)= djz . Writing Eq.(2.16) in terms of angular quantities gives 8 -6 = I : w.dt.
t h
d n n-1 n 1 n+l
SETUP:  —"=nt""and [¢'dt=—rit
dt n+1

EXECUTE: (a) 4 must have units of rad/s and B must have units of rad/s’.
(b) a.(t)=2Bt=(3.00 rad/s’)t . (i) For t=0, a.=0. (ii) For t=5.00s, a. =15.0 rad/s’ .

() 6,-0, = j (A+Bt*)dt = A(t, —1,)+ 1 B(& =1) . For ,=0and £, =2.00 s ,

0, -6, =(2.75 rad/s)(2.00 s) +1(1.50 rad/s*)(2.00 s)’ =9.50 rad .
EVALUATE: Both ¢, and o, are positive and the angular speed is increasing.
Aw,

IDENTIFY: o, =do,/dt. o, v
t

SET Up: i(tz) =2t
dt

dw

dt

() a.(3.0 5)= (—~1.60 rad/s*)(3.0 s) = —4.80 rad/s’.

o - ©,(3.05) - »,(0) _-2.20 rad/s —5.00 rad/s _ 2240 rad/s?,

30s 30s

which is half as large (in magnitude) as the acceleration at ¢ =3.0 s.

o (0)+a.(3.05)
2

EXECUTE: () o, (1)=—==-2ft =(-1.60 rad/s*).

EVALUATE: ¢, () increases linearly with time, so o, ., (0)=0.
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9.5.

9.6.

9.7.

9.8.

IDENTIFY and SET UP:  Use Eq.(9.3) to calculate the angular velocity and Eq.(9.2) to calculate the average
angular velocity for the specified time interval.

EXECUTE: 6 =yt+ fBt; y=0.400rad/s, f=0.0120 rad/s’
(@) o =ﬁ=y+3/¥t2
Toodt
(b) At t=0, o, =y =0.400 rad/s
(¢) At 1=5.00s, @ =0.400 rad/s+3(0.0120 rad/s*)(5.00 s)* =1.30 rad/s
_A0_0,-6
At -
For t,=0, 6,=0.
For 6,=5.00s, 6, =(0.400 rad/s)(5.00 s)+(0.012 rad/s*)(5.00 s)’ =3.50 rad
3.50 rad—-0
SO wav-z T
5.00s-0

EVALUATE: The average of the instantaneous angular velocities at the beginning and end of the time interval is
+(0.400 rad/s +1.30 rad/s) = 0.850 rad/s. This is larger than @, ,, because w,(¢) is increasing faster than linearly.

do do. AO
IDENTIFY: o () =—. o, ()=—=. 0, , =—.
dt dt At
SETUP: . =(250 rad/s)—(40.0 rad/s®)t —(4.50 rad/s’)* . &, =—(40.0 rad/s*)—(9.00 rad/s*)z .
EXECUTE: (a) Setting w, =0 results in a quadratic in ¢. The only positive rootis t=4.23 s.
(b) At 1=423s, a. =-78.1 rad/s”.
() At t=4.23s, =586 rad=93.3 rev.
(d) At 1=0, w_=250rad/s .

_586rad _
©) o, =273 =138 rad/s.

EVALUATE: Between t=0and 1 =4.23 s, o, decreases from 250 rad/s to zero. @, is not linear in ¢, so @, _is

=0.700 rad/s.

v-z 2

not midway between the values of @, at the beginning and end of the interval.

IDENTIFY: @ () =§ Lo ()= djz . Use the values of #and @, at t=0and «, at 1.50 s to calculate a, b,
t t

and c.
d .
SETUP: —¢" =nt""
dt

EXECUTE: (a) @ (t)=b-3ct’. a.(t)=—6ct. At t=0, O=a=r/4radand @, =b=2.00 rad/s . At t=1.50s,
a. =—6¢(1.50 s) =1.25 rad/s* and ¢ =-0.139 rad/s’.
(b) #=n/4radand o, =0at t=0.

2
(©) @ =3.50 rad/sat 1= == _350rads’ 06 Aci=420 s,

6c  6(=0.139 rad/s®)

o =% rad + (2.00 rad/s)(4.20 s) —(—0.139 rad/s*)(4.20 s)* =19.5 rad .

o, =2.00 rad/s —3(~0.139 rad/s*)(4.20 s)* =9.36 rad/s .

EVALUATE: @, o_ and «, all increase as ¢ increases.

do - . oo .
IDENTIFY: ¢, = 7 =.0-0,=w,.t. When o, is linear in ¢, @, for the time interval ¢, to ¢, is
. t
— wzl + sz
av-z tz _ tl :

SETUp: From the information given, w,(¢) =—6.00 rad/s +(2.00 rad/s*)t

EXECUTE: (a) The angular acceleration is positive, since the angular velocity increases steadily from a negative
value to a positive value.
(b) It takes 3.00 seconds for the wheel to stop (e, = 0) . During this time its speed is decreasing. For the next

4.00 s its speed is increasing from 0 rad/s to +8.00 rad/s.
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—6.00 rad/s +8.00 rad/s

5 =1.00 rad/s . -6, =, .t then leads to

(¢) The average angular velocity is

displacement of 7.00 rad after 7.00 s.
EVALUATE: When «, and o, have the same sign, the angular speed is increasing; this is the case for 1 =3.00 s to
t=7.00s. When ¢, and @, have opposite signs, the angular speed is decreasing; this is the case between

t=0and t=3.00s.
9.9. IDENTIFY: Apply the constant angular acceleration equations.
SET UP: Let the direction the wheel is rotating be positive.

EXECUTE: (a) @, =@, +a.t =1.50 rad/s+(0.300 rad/s*)(2.50 s) =2.25 rad/s.
(b) 0-6, =a,.t ++a.t’ =(1.50 rad/s)(2.50 s)++(0.300 rad/s*)(2.50 )’ =4.69 rad .

EVALUATE: 6-6, = (w‘)’; @ jt = (1'50 rad/s ; 2.25 rad’s J(Z.SO s) =4.69 rad , the same as calculated with

another equation in part (b).
9.10. IDENTIFY: Apply the constant angular acceleration equations to the motion of the fan.
(a) SETUr:  @,, =(500 rev/min)(1 min/60 s) =8.333 rev/s, @, =(200 rev/min)(l min/60 s) =3.333 rev/s,
t=4.00s, a =?
0, =0, +ot
o, -, 3.333rev/s—8.333 rev/s
EXECUTE: «. = =

8 =-1.25 rev/s’
t 4.00 s

0-06,="?

0-0,=w,.t +La.t’ =(8.333 rev/s)(4.00 s) ++(—1.25 rev/s*)(4.00 s)* = 23.3 rev

(b) SETUP: @, =0 (comes to rest); @, =3.333 rev/s; a, =-1.25 rev/s’;

t=7?

0, =0, +a.t

ExgcutE: {2 Zem P _ 0-3.333 revz/s _
a, —1.25 rev/s

EVALUATE: The angular acceleration is negative because the angular velocity is decreasing. The average angular

velocity during the 4.00 s time interval is 350 rev/min and 6 -6, = w, .t gives 6—6, =23.3 rev, which checks.

2.67s

9.11. IDENTIFY: Apply the constant angular acceleration equations to the motion. The target variables are ¢ and 6—6,.
SETUP: (a) . =1.50 rad/s’; @,. =0 (starts from rest); w. =36.0 rad/s; ¢="?
0, =, +a.t
EXEcUTE: (=" %= 36.0 rad’s _20 =24.0s
a 1.50 rad/s

z

() 6-6,="
-0, =, t+iat’ =0+L(1.50 rad/s*)(2.40 s)* =432 rad
6 —6, =432 rad(1 rev/2x rad) = 68.8 rev

EVALUATE: We could use 6 -6, =% (@, +@,,)t to calculate §—6, =+(0+36.0 rad/s)(24.0 s) =432 rad, which

checks.
9.12. IDENTIFY: In part (b) apply the equation derived in part (a).

SET UP: Let the direction the propeller is rotating be positive.
a)z — a)Oz

EXECUTE: (a) Solving Eq. (9.7) for ¢ gives ¢ = . Rewriting Eq. (9.11) as -6, =t(w,, + T @,t) and

z

substituting for ¢ gives

0_00 = [wz _a)oz j(Q)OZ +l(a)z _a)Oz)j :L(a)z _a)fJZ)(a)Z +a)02j
a, 2 a

1
= g(wg - wéz),

z

2

z

which when rearranged gives Eq. (9.12).

1 1
(b) a. = %{ 7T j(af -~ ;) =g(7.00 radj((w.o rad/s)’ —(12.0 rad/s)z) =8.00 rad/s®
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9.13.

9.14.

9.15.

9.16.

9.17.

EVALUATE: We could also use -6, = (%Jt to calculate £ =0.500s. Then o, =@, +a,t gives

a. =8.00 rad/s®, which agrees with our results in part (b).
IDENTIFY: Use a constant angular acceleration equation and solve for @,_.

SET UpP: Let the direction of rotation of the flywheel be positive.
-6, |, 60.0 rad

2. =

4.00 s
EVALUATE: At the end of the 4.00 s interval, o, =@,, + ot =19.5 rad/s .
0-0, - (a)()z +o, jt _ (10.5 rad/s +19.5 rad/s
2

IDENTIFY: Apply the constant angular acceleration equations.

SET UP: Let the direction of the rotation of the blade be positive. @,, =0 .

®,—®,, 140 rad/s-0

t 6.00 s

(0—90):(”02;”’2}:(0”43 rad/s](aoo s) = 420 rad

EVALUATE: We could also use 6—6, =®,.t +La.* . This equation gives

0 -6, =1(23.3 rad/s*)(6.00 s)* =419 rad , in agreement with the result obtained above.
IDENTIFY: Apply constant angular acceleration equations.

SET Up: Let the direction the flywheel is rotating be positive.

0 -8, =200 rev, @,. =500 rev/min =8.333 rev/s, t=30.0s.

EXECUTE: 0-0, =, t+1a’ gives o, = —1(2.25 rad/s*)(4.00 s) =10.5 rad/s .

j(4.00 s) =60.0 rad , which checks.

=23.3 rad/s®.

EXECUTE: o, =@, +a, gives o, =

EXECUTE: (a) -0, = (%ZTW} gives m, =5.00 rev/s =300 rpm
(b) Use the information in part (a) to find @.: @. = a,, +a.t gives a. =-0.1111 rev/s’ . Then @, =0,
a,=-0.1111 rev/s2 , @,, =8.333 rev/s in w. =@,, +a.t gives t=75.0sand -6, = (%ZTJFQJZJI gives

0-6,=312rev.

EVALUATE: The mass and diameter of the flywheel are not used in the calculation.

IDENTIFY: Use the constant angular acceleration equations, applied to the first revolution and to the first two
revolutions.

SET Up: Let the direction the disk is rotating be positive. 1 rev =2z rad . Let ¢ be the time for the first revolution.
The time for the first two revolutions is #+0.750 s .

EXECUTE: (a) 0-0,=w,.t +La.t* applied to the first and to the first two revolutions gives 27 rad =1a.t* and

27 rad
t2

4z rad=1a_ (t+0.750 s)* . Eliminating &, between these equations gives 47 rad = (t+0.750 s5)* .

0.750 s

V2-1

=1.81s.

22 = (¢t+0.750 5)>. \/2t =+(¢+0.750 s) . The positive root is ¢ =

(b) 27 rad=1a.t* and t=1.81s gives a, =3.84 rad/s’
EVALUATE: At the start of the second revolution, @,, =(3.84 rad/s*)(1.81 s) = 6.95 rad/s . The distance the disk

rotates in the next 0.750 s is 6 —6, = @t +a.t> =(6.95 rad/s)(0.750 s) +1(3.84 rad/s*)(0.750 s)* =6.29 rad ,
which is two revolutions.

IDENTIFY: Apply Eq.(9.12) to relate w_to 6—6,.

SET Up: Establish a proportionality.

EXECUTE: From Eq.(9.12), with @,, =0, the number of revolutions is proportional to the square of the initial
angular velocity, so tripling the initial angular velocity increases the number of revolutions by 9, to 9.00 rev.
EVALUATE: We don't have enough information to calculate «, ; all we need to know is that it is constant.
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9.18. IDENTIFY: In each case we apply constant acceleration equations to determine 6(¢) and w_(¢) .
SETUP: Let 6, =0. The following table gives the revolutions and the angle @ (in degrees) through which the
wheel has rotated for each instant in time (in seconds) and each of the three situations:

t (@) (b) ©
rev o rev 1 rev o
0.05 0.50 180 0.03 11.3 0.44 158
0.10 1.00 360 0.13 45 0.75 270
0.15 1.50 540 0.28 101 0.94 338
0.20 2.00 720 0.50 180 1.00 360
EXECUTE: The 6 and o, graphs for each case are given in Figures 9.18 a—c.
EVALUATE: The slope of the 6(¢) graphis w,(t) and the slope of the w,_(¢) graphis «_ (¢).
2
0 (rev) w, (5 10
1
(- 5 9.95 -
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
1(s) 1(s)
(a)
0.4 : : . 4
6 (rev) o, (55%)
0.2 2
0 é 5 0 I A
0 0.05 0.1 0.15 0.2 0 0.05 0.1
1(s) 1(s)
(b)
) \\
N
f(rev) 0.5 w, (&5
0 P 0 N N E
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
1(s) 1(s)
(©

Figure 9.18
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9.19.

9.20.

9.21.

IDENTIFY: Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s and
2.00 s until the wheel stops.
(a) SET Up: Consider the motion from ¢t =0 to t=2.00s:

0-6,=? w, =24.0r1ad/s; o =30.0rad/s’; t=2.00s

EXECUTE: 0-0, =@t +Lat’ =(24.0 rad/s)(2.00 s) +1(30.0 rad/s*)(2.00 s)’

6 -6, =48.0 rad + 60.0 rad =108 rad

Total angular displacement from ¢ =0 until stops: 108 rad +432 rad = 540 rad

Note: At t=2.00s, ®,=a,,+a.t=24.0rad/s+(30.0rad/s*)(2.00s)=84.0rad/s; angular speed when breaker trips.

(b) SET UP: Consider the motion from when the circuit breaker trips until the wheel stops. For this calculation let
t =0 when the breaker trips.

t=7? 6-6,=432rad; o, =0; o, =84.0rad/s (from part (a))

0-6,= (—%;w Jl

_20-6) _ 2(432rad) _

=103s
w,,+®, 84.0rad/s+0

EXECUTE: ¢

The wheel stops 10.3 s after the breaker trips so 2.00 s+10.3 s =12.3 s from the beginning.
(¢) SETUP: ¢, =7?; consider the same motion as in part (b):
0, =0, +a.t
o, —o, 0-84.0 rad/s
EXECUTE: «, = L=
t 103s
EVALUATE: The angular acceleration is positive while the wheel is speeding up and negative while it is slowing

o’ —w). _0-(84.0 rad/s)’
2(0-6,)  2(432rad)

=-8.16 rad/s’

down. We could also use @’ = ;. +2¢c.(0—6,) to calculate . = =-8.16 rad/s’ for

the acceleration after the breaker trips.

IDENTIFY: The linear distance the elevator travels, its speed and the magnitude of its acceleration are equal to the
tangential displacement, speed and acceleration of a point on the rim of the disk. s=r8, v=rwand a=ra . In
these equations the angular quantities must be in radians.

SETUP: lrev=2zrad. 1rpm=0.1047 rad/s. 7 rad =180°. For the disk, » =1.25m.

EXECUTE: (a) v=0.250 m/s so w=z=w=0.200 rad/s =1.91 rpm .
r 1.25m
2
(b) a=1g=1225m/s’. q =@ L2 600 adis? |
r 1.25m
(© s=325m. 0=2=32M _5 60 rad = 149°
r 1.25m

EVALUATE: When weuse s=rf, v=rwand a,, =ra tosolve for 8, wand «, the results are in rad, rad/s

and rad/s® .

IDENTIFY: When the angular speed is constant, @ =0/t. v, =r®, a,, =raand a,, =ro’ . In these equations
radians must be used for the angular quantities.

SETUP: The radius of the earth is R, =6.38x10° m and the earth rotates once in 1day==86,400s . The orbit radius

of the earth is 1.50x10'"" m and the earth completes one orbitin 1y =3.156x10" s. When wis constant, @ =6/t .

EXECUTE: (a) @=1rev=27radin £=3.156x10" s . a):zﬁ—rad7=1.99x10'7 rad/s .
3.156x10” s
(b) O=1rev=27radin 1=86.400's. ®=—2"2% 727410 radss
86,400 s

(c) v=row=(1.50x10" m)(1.99x107 rad/s) =2.98x10* m/s .

(d) v=ro=(6.38x10° m)(7.27x107° rad/s) = 464 m/s .

€ a,, =ro’ =(6.38x10° m)(7.27x107° rad/s)* =0.0337 m/s*. a,, =ra =0. a =0 since the angular velocity is
constant.

EVALUATE: The tangential speeds associated with these motions are large even though the angular speeds are
very small, because the radius for the circular path in each case is quite large.
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9.22.

9.23.

9.24.

9.25.

IDENTIFY: Linear and angular velocities are related by v=rw. Use @, =®,, + .t to calculate o, .

SETUP: w=v/r gives win rad/s.

EXECUTE: (a) %:50.0 rad’s, %=21.6 rad/s.
25.0 x10” m 58.0 x10™ m

(b) (1.25 m/s) (74.0 min) (60 s/min) = 5.55 km.

_21.55rad/s—50.0 rad/s _ _ 3 2
© a = (740 min) (60 s/min) 6.41x107 rad/s".

EVALUATE: The width of the tracks is very small, so the total track length on the disc is huge.

IDENTIFY: Use constant acceleration equations to calculate the angular velocity at the end of two revolutions.

v=ro.
SETUP: 2rev=4rrad. »r=0.200 m.

EXECUTE: (a) @ =l +2a.(0—0,). o.=2a.(0—0,) =+/2(3.00 rad/s>)(47 rad) =8.68 rad/s.
a,, =ro* =(0.200 m)(8.68 rad/s)* =15.1 m/s’.

> (1.74 ’

(b) v=ro=(0.200 m)(8.68 rad/s) =1.74 m/s. a,, _y (7w 15.1 my/s’.
r 0.200 m

EVALUATE: r@” and v’ /r are completely equivalent expressions for a_, .

IDENTIFY: a_, =r®’, with @ inrad/s. Solve for @ .

SETUP: 1 rpm=(27/60) rad/s

2
EXECUTE: o=, /M = \/(400’000)(9'80 ms) 1.25x10" rad/s =1.20x10° rpm
r 0.0250 m

EVALUATE: In a,, =r®’, @must be in rad/s.

IDENTIFY and SET UP:  Use constant acceleration equations to find @ and « after each displacement. The use

Egs.(9.14) and (9.15) to find the components of the linear acceleration.
EXECUTE: (a) at the start 1 =0

flywheel starts from rest so @, = ®,, =0

a,, =ra =(0.300 m)(0.600 rad/s’) =0.180 m/s’
a, =ro’ =0

a=+la’,+a., =0.180 m/s®

(b) 6-6,=060°

a,, =ra="0.180 m/s’

Calculate

0 -6, =60°(z rad/180°) =1.047 rad; w,. =0; «, =0.600 rad/s’; @, =?
o’ =w). +2a.(0-6,)

o, = m = \/2(0.600 rad/s*)(1.047 rad) =1.121 rad/s and o= ..
Then a,, =reo” =(0.300 m)(1.121 rad/s)* =0.377 m/s’.

a=1Ja2,+a2, =J(0.377 m/s?)> +(0.180 m/s*)> = 0.418 m/s>

(c) 6-6,=120°

a. =ra=0.180 m/s?

tan

Calculate @:

0 -0, =120°(r rad/180°) =2.094 rad; @,.=0; «. =0.600 rad/s’; @, =?
o =w), +2a.(0-0,)

. =\[20.(0—6,) =+/2(0.600 rad/s*)(2.094 rad) =1.585 rad/s and &= ..
Then a_, = r@” =(0.300 m)(1.585 rad/s)’ = 0.754 m/s’.

a=+Jal, +a>, =(0.754 m/s>)* +(0.180 m/s*)* =0.775 m/s*

EVALUATE: « is constant so «

is constant. @ increases so a,,, increases.

tan



9-8 Chapter 9

9.26. IDENTIFY: Apply constant angular acceleration equations. v =r® . A point on the rim has both tangential and
radial components of acceleration.

SETUP: a, =ra and a,, =ro’.

EXECUTE: (a) @, = @, +a.t = 0.250 rev/s +(0.900 rev/s*)(0.200 s) = 0.430 rev/s

(Note that since @,, and «, are given in terms of revolutions, it’s not necessary to convert to radians).
(b) w,,.At=(0.340 rev/s)(0.2 s)=0.068 rev .

(¢) Here, the conversion to radians must be made to use Eq. (9.13), and

v=ro= (@)(0.430 rev/s)(2x rad/rev)=1.01 m/s.

(d) Combining equations (9.14) and (9.15),
a=vlal,+al, =(@r) +(ar) .

a= \/[((0.430 rev/s)(2z rad/rev))*(0.375 m)f +[(0.900 rev/s*)(27 rad/rev)(0.375 m) |

2

a=3.46 m/s’.
EVALUATE: If the angular acceleration is constant, a
9.27. IDENTIFY: Use Eq.(9.15) and solve for .

SETUP: a,, =rw’ so r=a,,/®’, where @ must be in rad/s

EXECUTE: a,, =3000g =3000(9.80 m/s*) = 29,400 m/s’

is constant but a,, increases as @ increases.

tan

@ = (5000 rev/min) (lm_mj (Mj =523.6 rad/s
60 s 1 rev
2
Then 7= %as - 29-800m/s” 107 )

o (523.6 rad/s)?

EVALUATE: The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is nof realistic.
9.28. IDENTIFY: In part (b) apply the result derived in part (a).

SETUP: a,, =rw’and v=re; combine to eliminate 7.

v
EXECUTE: () a,,= 0’7 = @ [_j = o
[

_a, _0.500 m/s’ _
(b) From the result of part (a), @ = S T 200ms mfs - 0.250 rad/s.

EVALUATE: a,, =7’ and v =re both require that @ be in rad/s, so in a,, = @v, @is in rad/s.
9.29. IDENTIFY: v=rwand a,=reo’ =v/r.
SETUp: 27 rad=1rev, so x rad/s =30 rev/min .

12.7x10m
2

EXECUTE: (a) or = (1250 rev/min )( 3 Oﬁréi%iin )[

]:0.831 m/s.

v (0.831 m/s)’

7 (127x10° m)/2
EVALUATE: In v=rw, @wmustbe in rad/s.

9.30. IDENTIFY: a

(b) =109 m/s.

=ra,v=roand a,,=v'/r.0-0,=w,.t.

tan

SET UP: When c, is constant, @, = D=9 | et the direction the wheel is rotating be positive.
_ 2
EXECUTE: (a) a= Gian %Om/s =-50.0 rad/s2
.200 m
a a v _50.0 m/s _ 3
(b) At 1=3.00s, v=50.0 m/s and w= = 0200m - 250 rad/s andat t =0,

v=50.0 m/s+(—10.0 m/s*)(0-3.00 s) =80.0 m/s , @ =400 rad/s.
(©) w,,.t=(325 rad/s)(3.00 s) =975 rad =155 rev .
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9.31.

9.32.

9.33.
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d) v=\ja,r= \/(9.80 m/s*)(0.200m) =1.40 m/s. This speed will be reached at time 50.0 rlnéso—;]./40 m's =4.86s
. s

after 1=3.00 s, orat =7.86 s. (There are many equivalent ways to do this calculation.)

EVALUATE: At ¢=0, a, =ro’ =3.20x10" m/s*. At t=3.00 s, a,, =1.25x10" m/s*. For a,, = g the wheel
must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s.

IDENTIFY and SET UP:  Use Eq.(9.15) to relate @ to a,, and ZF =ma torelate a,, to F,,. Use Eq.(9.13) to

¥

relate @ and v, where v is the tangential speed.
EXECUTE: (a) a,,=r®" and F,

rad

Foas :[&jz :(640 rev/min}2 —229

F. o 423 rev/min

_ _ 2
=ma,, =mre

b) v=ro
ﬁ_&_640rev/min_1 51
v, @ 423rev/min

©) v=ro

o= (640 rev/min)(1 mmj( 27 rad

60 s 1 rev
Then v =rw=(0.235 m)(67.0 rad/s) =15.7 m/s.

a,y =r®’ =(0.235 m)(67.0 rad/s)* = 1060 m/s’

a,, 1060 m/s’
g 9.80 m/s’
EVALUATE: In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert @ to rad/s.

In part (c), vand a,, are calculated from @, and @ must be in rad/s.

j =67.0 rad/s

=108; a=108g

IDENTIFY: v=rwand a, =ra.

SET UpP: The linear acceleration of the bucket equals a, for a point on the rim of the axle.

tan

EXECUTE: (a) v=Rw. 2.00 cm/s =R 75 .I‘EV 1 min )27 rad gives R=2.55cm.
min 60 s 1 rev

D=2R=5.09 cm.
2

(b) atan:Ra. QZM:M
R 0.0255m

EVALUATE: In v=Rwand a

=15.7 rad/s .

=Ra , wand o must be in radians.

tan
IDENTIFY: Apply v=rw.
SET UpP: Points on the chain all move at the same speed, so 7@, =r; .

&=M=15.15 rad/s.
r  0330m

The angular velocity of the front wheel is @; = 0.600 rev/s =3.77 rad/s. r. =r.(@;/®,)=2.99 cm .

EXECUTE: The angular velocity of the rear wheel is @, =

EVALUATE: The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel have
the same angular velocity. r@ is the same for both, so the rear sprocket has a smaller radius since it has a larger

angular velocity. The speed of a point on the chain is v=r,@, =(2.99x10~ m)(15.15 rad/s) =0.453 m/s . The linear
speed of the bicycle is 5.50 m/s.

IDENTIFY and SET UP:  Use Eq.(9.16). Treat the spheres as point masses and ignore / of the light rods.
EXECUTE: The object is shown in Figure 9.34a.

(@
0.400 m

-_— =

0.200 kg
0.200 kg : :
YA ]0.200 m r= \/(0.200 m)> +(0.200 m)° =0.2828 m
1= Zm,;;.2 =4(0.200 kg)(0.2828 m)*

2 v
0.200 kg 0.200 kg
Figure 9.34a
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(b) The object is shown in Figure 9.34b.
0.200 ke 0.200 kg
I 0.200 m r=0.200 m
axis _ N 1=Y mr’ =4(0.200 kg)(0.200 m)
I 0.200 m 1=0.0320 kg-m’
0.200 kg 0.200 kg
Figure 9.34b
(c¢) The object is shown in Figure 9.34c.
~ d)".l‘s
0.200 kg
0200 kg r=0.2828 m
1= mr’ =2(0.200 kg)(0.2828 m)°
- .2
0.200 ke 1=0.0320 kg-m
0.200 kg
Figure 9.34c

EVALUATE: In general / depends on the axis and our answer for part (a) is larger than for parts (b) and (c). It just
happens that / is the same in parts (b) and (c).

IDENTIFY: Use Table 9.2. The correct expression to use in each case depends on the shape of the object and the
location of the axis.

SETUP: In each case express the mass in kg and the length in m, so the moment of inertia will be in kg-m?.
EXECUTE: (a) (i) I =1ML =1(2.50 kg)(0.750 m)* =0.469 kg-m” .

(ii) 1 =5ML* =1(0.469 kg-m>)=0.117 kg-m’. (iii) For a very thin rod, all of the mass is at the axis and /=0.
(b) (i) 1=2MR*>=2(3.00 kg)(0.190 m)* =0.0433 kg-m’.

(i) 1=2MR*>=%(0.0433 kg-m’)=0.0722 kg-m" .

(c) (i) T =MR* =(8.00 kg)(0.0600 m)* = 0.0288 kg-m”.

(ii) 7 =1MR*=1(8.00 kg)(0.0600 m)’> =0.0144 kg-m”.

EVALUATE: [ depends on how the mass of the object is distributed relative to the axis.

IDENTIFY: Treat each block as a point mass, so for each block 7 = mr*®, where r is the distance of the block from
the axis. The total 7 for the object is the sum of the 7 for each of its pieces.

SET UpP: In part (a) two blocks are a distance L/2 from the axis and the third block is on the axis. In part (b) two
blocks are a distance L/4 from the axis and one is a distance 3L /4 from the axis.

EXECUTE: (a) [=2m(L/2) =iml’.
(b) I =2m(L/4)* +m(3L/4)* = I ml*(2+9) = —;mLz

EVALUATE: For the same object / is in general different for different axes.
IDENTIFY: [ for the object is the sum of the values of I for each part.
SET UP: For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2. For a

point mass, I =mr”, where r is the distance of the mass from the axis.

2
EXECUTE:  (a) [ =1, + 1y, = 12 M barL2 + 2y, (%j .

=%(4.00 kg)(2.00 m)” +2(0.500 kg)(1.00 m)’ =2.33 kg-m’

(b) 1 :%mbmﬁ + iy L =§(4.00 kg)(2.00 m)” +(0.500 kg) (2.00 m)’ =7.33 kg-m*

(¢) I =0 because all masses are on the axis.
(d) All the mass is a distance d =0.500 m from the axis and

I=my,d*+2m,d* =M, ,d° =(5.00 kg)(0.500 m)* =1.25 kg-m”’.

Total

EVALUATE: [ for an object depends on the location and direction of the axis.
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IDENTIFY and SET UP:  According to Eq.(9.16), I for the entire object equals the sum of 7 for each piece, the rod
plus the end caps. The object is shown in Figure 9.38.

| axis
. M ; EXECUTEZ: I=1,+ 22 I, 2
E IR [ =5 ML +2(m)(L1/2)" = (M +4m)L
Figure 9.38

EVALUATE: Table 9.2 was used for 7, and 7 =mr* for the end caps, since they are treated as point particles.

IDENTIFY and SETUP: [ =) mys’ implies /=1, +1

spokes

EXECUTE: I, = MR® =(1.40 kg)(0.300 m)* =0.126 kg-m’

Each spoke can be treated as a slender rod with the axis through one end, so
Ly = 8(4 ML) =£(0.280 kg)(0.300 m) =0.0672 kg -m’

spokes

I1=1, +1 =0.126 kg-m” +0.0672 kg-m’ =0.193 kg-m’

spokes
EVALUATE: Our result is smaller than m, R* = (3.64 kg)(0.300 m)* =0.328 kg-m”, since the mass of each

spoke is distributed between » =0 and r =R.

IDENTIFY: Compare this object to a uniform disk of radius R and mass 2M.

SET UpP: With an axis perpendicular to the round face of the object at its center, / for a uniform disk is the same
as for a solid cylinder.

EXECUTE: (a) The total / for a disk of mass 2M and radius R, [ =3(2M YR® = MR* . Each half of the disk has the
same /, so for the half-disk, / =1MR*.

(b) The same mass M is distributed the same way as a function of distance from the axis.
(¢) The same method as in part (a) says that / for a quarter-disk of radius R and mass M is half that of a half-disk of

radius R and mass 2M, so 1 =+(1[2M]R*) =1 MR* .

EVALUATE: [ depends on how the mass of the object is distributed relative to the axis, and this is the same for
any segment of a disk.
IDENTIFY: [ for the compound disk is the sum of 7 of the solid disk and of the ring.

SETUp: For the solid disk, 7 =1m,r; . For the ring, I, =1m, (" +1;) , where 7 =50.0 cm, , =70.0 cm. The
mass of the disk and ring is their area times their area density.
EXECUTE: [=1,+1, .

Disk: m, =(3.00 g/em’)zr} =23.56 kg . I, =%mdrd2 =2.945kg-m>.

Ring: m, =(2.00 g/cm®) (1} —r?)=15.08 kg . I, :%mr(rlz+r22):5.580 kg-m?.

I=1,+1 =852kg-m’.

EVALUATE: Even though m_<m,, I > I, since the mass of the ring is farther from the axis.
IDENTIFY: K =1/@’. Use Table 9.2b to calculate /.

SETUP: [=LML. 1 rpm=0.1047 rad/s

0.1047 rad/s

EXECUTE: (a) /=(117 kg)(2.08 m)’ =42.2 kg-m* . @ =(2400 rev/min) -
1 rev/min

j: 251 rad/s .

K =1l =1(42.2 kg-m*)(251 rad/s)* =1.33x10° J .
) K, =M Lo}, K,=:5M,Lo;, . L=L,and K, =K,,s0o M@’ =M,w; .

®, =0, % = (2400 rpm) /% =2770 rpm
2 . 1

EVALUATE: The rotational kinetic energy is proportional to the square of the angular speed and directly
proportional to the mass of the object.

IDENTIFY: K =1/@’. Use Table 9.2 to calculate /.
SETUP: [=2MR’. For the moon, M =7.35x10% kgand R=1.74x10° m . The moon moves through
lrev=27radin27.3d. 1d=8.64x10"s.
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EXECUTE: (a) [ =2(7.35x10% kg)(1.74x10° m)* =8.90x10* kg-m*.
. 27 rad
(27.3 d)(8.64x10" s/d)

K=1lo"=1(8.90x10™ kg-m*)(2.66x10™° rad/s)* =3.15x107 J .

3.15x10% J
5(4.0x10% J)

does not seem like a worthwhile scheme for only 158 years worth of energy.
EVALUATE: The moon has a very large amount of kinetic energy due to its motion. The earth has even more, but
changing the rotation rate of the earth would change the length of a day.

IDENTIFY: K =1/@’. Use Table 9.2 to relate / to the mass M of the disk.
SETUP:  45.0 rpm =4.71 rad/s . For a uniform solid disk, / =1MR*.
2K 2(0.250 1))

EXECUTE: (a) [=—"—=—""""""2_—-0.0225kg-m’.
@ @ (4.71rad/s)? &

2
(b) [=iMRand M =2 - 2000225ke-m) 505,
R (0.300 m)
EVALUATE: No matter what the shape is, the rotational kinetic energy is proportional to the mass of the object.
IDENTIFY: K =1/ ®*, with @ in rad/s. Solve for /.

SETUP: 1rev/min=(27/60) rad/s. AK =-5001J
EXECUTE: @, =650 rev/min = 68.1 rad/s. @, =520 rev/min =54.5rad/s . AK =K, — K, =11(w} — ) and
In 2(AK) _ 2(-5001J)

o} —@  (54.5rad/s)’ —(68.1 rad/s)’

=2.66x107° rad/s.

(b)

=158 years . Considering the expense involved in tapping the moon’s rotational energy, this

=0.600 kg-m*.

EVALUATE: In K =1/®’, @must be in rad/s.
IDENTIFY: The work done on the cylinder equals its gain in kinetic energy.
SET UP:  The work done on the cylinder is PL, where L is the length of the rope. K, =0. K, =1/0’ .

I=Lmr? :%[1}’2 .
g

2 2
EXECUTE: PL :lﬂvz, or P= Lwy = (40.0 N)(6'200 m/s) =147
2g 2g L 2(9.80 m/s*)(5.00 m)
EVALUATE: The linear speed v of the end of the rope equals the tangential speed of a point on the rim of the

cylinder. When K is expressed in terms of v, the radius 7 of the cylinder doesn't appear.
IDENTIFY and SET UP: Combine Eqs.(9.17) and (9.15) to solve for K. Use Table 9.2 to get /.

EXECUTE: K =1l&’

Gy = RO?, 50 @=1[a, /R =+/(3500 m/s>)/1.20 m = 54.0 rad/s
For a disk, /=1 MR*=1(70.0 kg)(1.20 m)* =50.4 kg-m’

Thus K =170 =1(50.4 kg-m?)(54.0 rad/s)’ = 7.35x10" J

EVALUATE: The limiton a,, limits @ which in turn limits K.

IDENTIFY: Repeat the calculation in Example 9.9, but with a different expression for /.

SETUP:  For the solid cylinder in Example 9.9, 7 =1 MR’ For the thin-walled, hollow cylinder, / = MR*.
2gh

1+M/m

(b) This expression is smaller than that for the solid cylinder; more of the cylinder’s mass is concentrated at its

edge, so for a given speed, the kinetic energy of the cylinder is larger. A larger fraction of the potential energy is
converted to the kinetic energy of the cylinder, and so less is available for the falling mass.

EXECUTE: (a) With 7 = MR?, the expression for vis v=

EVALUATE: When M is much larger than m, v is very small. When M is much less than m, v becomes v=./2gh ,
the same as for a mass that falls freely from a height 4.
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IDENTIFY: Apply conservation of energy to the system of stone plus pulley. v = rw relates the motion of the
stone to the rotation of the pulley.

SET UP:  For a uniform solid disk, / =1MR’. Let point 1 be when the stone is at its initial position and point 2 be
when it has descended the desired distance. Let +) be upward and take y = 0 at the initial position of the stone, so
y,=0and y, =—h , where & is the distance the stone descends.

EXECUTE: (a) K, =411 o, I, =+M R*=1(2.50 kg)(0.200 m)* =0.0500 kg-m’.

2K, 2(4.50J)
o= =,|—————— =13.4 rad/s . The stone has speed v=Rw =(0.200 m)(13.4 rad/s) = 2.68 m/s . The
I, 0.0500 kg-m

stone has kinetic energy K, =1mv’ =1(1.50 kg)(2.68 m/s)’ =539 ). K, +U, =K, +U, gives 0=K, +U, .

0=4.501+539 J+mg(~h) . h= 989 —=0.673m.
(1.50 kg)(9.80 m/s?)
K
(b) K, =K, +K =989 ~0 = H30T_ 4550
Pl K, 9891

tot
EVALUATE: The gravitational potential energy of the pulley doesn’t change as it rotates. The tension in the wire
does positive work on the pulley and negative work of the same magnitude on the stone, so no net work on the
system.

IDENTIFY: K =31 @’ for the pulley and K, =1 mv’ for the bucket. The speed of the bucket and the rotational
speed of the pulley are related by v=Rw .

SETUP: K =71K,

EXECUTE: 1/’ =1(Emv’)=imR’e’. I=1mR’.

EVALUATE: The result is independent of the rotational speed of the pulley and the linear speed of the mass.
IDENTIFY: The general expression for / is Eq.(9.16). K =11a’.

SET UpP: R will be multiplied by f.

EXECUTE: (a) In the expression of Eq. (9.16), each term will have the mass multiplied by f* and the distance

multiplied by f, and so the moment of inertia is multiplied by f*(f)* = f°.

(b) (2.5 1)(48)’ =6.37x10° I.
EVALUATE: Mass and volume are proportional to each other so both scale by the same factor.
IDENTIFY: The work the person does is the negative of the work done by gravity. W

grav = grav,1 -

U

grav,2 *
Ugrav = ngcm °

SET UP: The center of mass of the ladder is at its center, 1.00 m from each end.

Vemy = (1.00 m)sin53.0°=0.799 m. y,_ ,=1.00m.

EXECUTE: ¥, =(9.00 kg)(9.80 m/s*)(0.799 m —1.00 m) =—17.7 J . The work done by the person is 17.7 J.

grav
EVALUATE: The gravity force is downward and the center of mass of the ladder moves upward, so gravity does
negative work. The person pushes upward and does positive work.

IDENTIFY: U=Mgy, . AU=U,-U,.

SET UP: Half the rope has mass 1.50 kg and length 12.0 m. Let y =0 at the top of the cliff and take +» to be

upward. The center of mass of the hanging section of rope is at its center and y_, , =-6.00 m.

EXECUTE: AU =U, U, =mg(¥ s~ Vem,) = (1.50 kg)(9.80 m/s*)(—6.00 m—0)=-88.2J .

EVALUATE: The potential energy of the rope decreases when part of the rope moves downward.

IDENTIFY: Apply Eq.(9.19), the parallel-axis theorem.

SET UpP: The center of mass of the hoop is at its geometrical center.

EXECUTE: InEq. (9.19), I,, = MR’ andd =R*, so I, = 2MR”.

EVALUATE: [is larger for an axis at the edge than for an axis at the center. Some mass is closer than distance R
from the axis but some is also farther away. Since / for each piece of the hoop is proportional to the square of the

distance from the axis, the increase in distance has a larger effect.
IDENTIFY: Use Eq.(9.19) to relate I for the wood sphere about the desired axis to / for an axis along a diameter.

SETUp: For a thin-walled hollow sphere, axis along a diameter, / =2MR”.

For a solid sphere with mass M and radius R, I, =2MR?, for an axis along a diameter.
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EXECUTE: Find d such that 1, =1, +Md* with I, =2MR”:
2MR® =2 MR’ + Md®
The factors of M divide out and the equation becomes (2-2)R* =d’

d =+J(10-6)/15R =2R//15 =0.516R.

The axis is parallel to a diameter and is 0.516R from the center.
EVALUATE: [ (lead) >/, (wood) even though M and R are the same since for a hollow sphere all the mass is a
(lead).
IDENTIFY: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an axis through its
end and perpendicular to the rod.
SETUP: The center of mass of the rod is at its center, and /., =ML .
2

EXECUTE: [, =1 +Md’ My L) oM

’ 12 2 3

EVALUATE: [is larger when the axis is not at the center of mass.
IDENTIFY and SET UP:  Use Eq.(9.19). The cm of the sheet is at its geometrical center. The object is sketched in
Figure 9.57.

EXECUTE: [,=1, +Md".

distance R from the axis. Eq.(9.19) says 1, > [

cm?

so there must be a d where /,(wood) =1

cm

LZ

From part (c) of Table 9.2,
I, =5M(a +b%).

cm

L}n b The distance d of P from
jb “ b2 the cm is
- | _ 5 2
B d=+(al2)"+(b/2)".
Figure 9.57

Thus 1, =1, +Md” =5M(a* +b*)+ M (4a* +1b*) = (L+ )M (@’ +b7) =
LM (a® +b%)
EVALUATE: [, =4/ For an axis through P mass is farther from the axis.

IDENTIFY: Consider the plate as made of slender rods placed side-by-side.
SET UpP: The expression in Table 9.2(a) gives / for a rod and an axis through the center of the rod.

EXECUTE: (a) [ is the same as for a rod with length a: [ =5Ma” .

(b)  is the same as for a rod with length b: 1 = %sz .

EVALUATE: [is smaller when the axis is through the center of the plate than when it is along one edge.
IDENTIFY: Use the equations in Table 9.2. [ for the rod is the sum of 7 for each segment. The parallel-axis

theorem says 1, =1, +Md’ .

SET UP: The bent rod and axes a and b are shown in Figure 9.59. Each segment has length L/2and mass M /2.
EXECUTE: (a) For each segment the moment of inertia is for a rod with mass M /2, length L/2 and the axis

2
through one end. For one segment, /, = YMALY s For the rod, I, =21 = L.
302 )\ 2 24 12

(b) The center of mass of each segment is at the center of the segment, a distance of L/4 from each end. For each

2
segment, [ :%(%j(é) = 91—6ML2 . Axis b is a distance L/4 from the cm of each segment, so for each

2
segment the parallel axis theorem gives / for axis b to be I :%ML2 +%(§j = %ML2 and I, =21, :éMLZ :
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EVALUATE: [ for these two axes are the same.

leLf4 >

cm 4l

Figure 9.59
IDENTIFY: Apply the parallel-axis theorem.

SETUP: InEq.(9.19), I, :%L2 and d=(L/2—h).

2
EXECUTE: [, =M iL2+ 5—}1) =M LL2+1L2—Lh+h2 =M lLZ—Lh+h2 ,
12 2 12 4 3

which is the same as found in Example 9.11.

EVALUATE: Example 9.11 shows that this result gives the expected result for #=0, h=Land h=L/2.
IDENTIFY: Apply Eq.(9.20).

SETUP: dm = pdV = p(2zrL dr), where L is the thickness of the disk. M = zLpR* .

EXECUTE: The analysis is identical to that of Example 9.12, with the lower limit in the integral being zero and
the upper limit being R. The result is 7 =1 MR”.

EVALUATE: Our result agrees with Table 9.2(f).

IDENTIFY: Eq.(9.20), [ = j ¥ dm

SET UP:

dx
— — X
- ] — =

Figure 9.62

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and width
dx, as shown in Figure 9.62. The mass per unit length for this rod is M /L, so the mass of this slice is

dm=(M/L) dx.
L L
EXECUTE: [= jo (M /L) dx = (M/L)j0 X dx=(M/L)L/3) =i ML

EVALUATE: This result agrees with Table 9.2.
IDENTIFY: Apply Eq.(9.20).
SET Up: For this case, dm =y dx.

L 2
EXECUTE: (a) M =Idm =j;/x dx = 7/%
0

0
L ¥ L I
() I= J.xz(j/x)dx = 7/7 = 77 = %Lz. This is larger than the moment of inertia of a uniform rod of the same
0 0
mass and length, since the mass density is greater further away from the axis than nearer the axis.
L 2 3 4 4
L' M
¢) I=[(L—x)yxdx=y[(Px—2L +x)dx=y| PZ—20+ 2 = _Zp
()!()yy!( M=y =2+ | =y o=
This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the right end.
EVALUATE: For a uniform rod with an axis at one end, / =+ ML’. The result in (b) is larger than this and the

L
X
=7

result in (a) is smaller than this.

IDENTIFY: We know that v=r®and ¥ is tangential. We know that a_, = r@” and @, is in toward the center of
the wheel. See if the vector product expressions give these results.

SET Up: |A X B| = ABsing, where ¢ is the angle between A and B .

EXECUTE: (a) For a counterclockwise rotation, @ will be out of the page.
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(b) The upward direction crossed into the radial direction is, by the right-hand rule, counterclockwise. @ and r are
perpendicular, so the magnitude of @xris wr=v

(¢) @ is perpendicular to ¥ and so @ xVv has magnitude wv=a,, and from the right-hand rule, the upward
direction crossed into the counterclockwise direction is inward, the direction of a_,,.

EVALUATE: If the wheel rotates clockwise, the directions of @ and v are reversed, but a_, is still inward.
IDENTIFY: Apply =t .

SET Up: For alignment, the earth must move through 60° more than Mars, in the same time ¢. @, =360°/yr .

@, =360°/(1.9 yr).

EXECUTE: 6, =6,,+60°. @t =aw,t+60°.

60° 60° 60°
Z_a)e—COM = 360° 360° =360 ~(1/[0.9yr/1.9 yr’]) =0.352 yr =128 days .
lyr 19yr

EVALUATE: Earth has a larger angular velocity than Mars, and completes one orbit in less time.
IDENTIFY and SET UP:  Use Egs.(9.3) and (9.5). As long as «, >0, @, increases. At the f when o, =0, ®, isat

its maximum positive value and then starts to decrease when o, becomes negative.
O(t) = yt* - Br*; y =320 rad/s>, f=0.500 rad/s’

EXECUTE: (a) o.(f)= 49 d(ﬂdt pr) =2yt =34t
_&:d(Zyt—Sﬁtz): B
(b) a.()= 7R 2y—6pt

(c¢) The maximum angular velocity occurs when o, = 0.
2y _ v _ 3.20 rad/s’

6/ 3,6’ 3(0.500 rad/s’ )
Atthist, @, =2yt 34> =2(3.20 rad/s*)(2.133 s)—3(0.500 rad/s*)(2.133 s)* = 6.83 rad/s

The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s.
EVALUATE: For large f both @, and ¢, are negative and @, increases in magnitude. In fact, @, - —co at

-6t =0 implies t =—— 2.133 s

t — . So the answer in (c) is not the largest angular speed, just the largest positive angular velocity.
IDENTIFY: The angular acceleration « of the disk is related to the linear acceleration a of the ball by a = Rex .

Since the acceleration is not constant, use @, —®,, = J.Otazdt and -6, = J.Ota)zdt torelate €, @, , «, and t for the
disk. @,. =0.

1 ..
SET UP: jt"dl =— " In a=Ra, aisin rad/s’.

n+l
2

EXECUTE: (a) A=%= 180 m/s” 0.600 m/s’

t 3.00s

a (0.600 m/s*)t

b) a=—=~—"""""—(2.40 rad/s* )¢
(®) R 0.250 m ( )

(c) o = j '(2.40 rad/s*yedt = (1.20 rad/s*)e>. . =15.0 rad/s for ¢ =, /Lmd/s} =3545s
=)o 1.20 rad/s

@) 0-6,= jo'cozdt = j;(l.ZO rad/s’)fdt = (0.400 rad/s*)> . For t=3.54's, 0—0,=17.7 rad .

EVALUATE: If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have turned
through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the angular velocity is
increasing in time and is less than 15.0 rad/s at all but the end of the interval.

IDENTIFY and SET UP:  The translational kinetic energy is K =1mv’ and the kinetic energy of the rotating
flywheel is K =1/@’. Use the scale speed to calculate the actual speed v. From that calculate K for the car and
then solve for @ that gives this K for the flywheel.
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% L
EXECUTE: (a) —% =%
v

scale real

L
vy =V | =2 | = (700 km/h)(o'lso m) =35.0 km/h
YoOELL 3.0m

Vioy = (35.0 km/h)(1000 m/1 km)(1 h/3600 s) =9.72 m/s
(b) K =1mv* =1(0.180 kg)(9.72 m/s)* =8.50 J

(¢) K=11w" gives that @ = ,E = % =652 rad/s
1 4.00x10” kg-m

EVALUATE: K =1/’ gives @ inrad/s. 652 rad/s = 6200 rev/min so the rotation rate of the flywheel is very

real

large.

9.69. IDENTIFY: a, =ra, a, =ro’ . Apply the constant acceleration equations and ZF’ =ma .

tan

SETUP: a,, and a,, are perpendicular components of @, so a=+a_,+a., .

~3.00 m/s’
60.0 m

(b) at=(0.05 rad/sz)(6.00 $)=0.300 rad/s.

(©) a,, = *r=(0.300 rad/s)?(60.0 m)=5.40 m/s>.

(d) The sketch is given in Figure 9.69.

(€) a=yd’, +a’,, = \/(5.40 m/s*)’ +(3.00 m/s*)* =6.18 m/s?, and the magnitude of the force is

F =ma = (1240 kg)(6.18 m/s*) =7.66 kN.

atan

EXECUTE: (a) o =—2 =0.050 rad/s?
r

(f) arctan | arctan[ﬂj =60.9°.
3.00

tan

EVALUATE: a,, isconstant and a,, increases as @ increases. At t=0, a is parallel to v . As ¢ increases,

tan

d moves toward the radial direction and the angle between a@ increases toward 90° .

Figure 9.69

9.70. IDENTIFY: Apply conservation of energy to the system of drum plus falling mass, and compare the results for
earth and for Mars.

SETUP: K, . =il K

drum mass

=imv’. v=Rwsoif K

drum

is the same, w is the same and v is the same on both

planets. Therefore, K __ 1isthe same. Let y = 0 at the initial height of the mass and take +y upward.

Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended 5.00 m, so
y,=0and y, =—h, where & is the height the mass descends.

EXECUTE: (a) K, +U, =K, +U, gives 0=K, . +K .. —mgh. K, +K_  arethe same on both planets, so

9.80 m/s’
3.71 nvs®

M

mg hy =mgyhy . hy =h, (j_EJ =(5.00 m)( J: 132m.
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9.72.

9.73.

Chapter 9

(b) mthM = Kdrum +Kmass : %mvz = mthM _Kdrum and

v= \/2thM ~2Kem _ r3.71 mis?)13.2 m)= 222299 g 04 s
m 15.0 kg

EVALUATE: We did the calculations without knowing the moment of inertia / of the drum, or the mass and radius
of the drum.

IDENTIFY and SET UP:  All points on the belt move with the same speed. Since the belt doesn’t slip, the speed of

the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and these speeds are

related to the angular speed of each circular object by v =ro.

EXECUTE:

Figure 9.71
(@) v =rno,
@, =(60.0 rev/s)(2x rad/1 rev) =377 rad/s
v =ro, =(0.45x107 m)(377 rad/s) =1.70 m/s
b)) v,=v,
hoy =now,
, =(1/r,)o, =(0.45 cm/2.00 cm)(377 rad/s) = 84.8 rad/s

EVALUATE: The wheel has a larger radius than the shaft so turns slower to have the same tangential speed for
points on the rim.
IDENTIFY: The speed of all points on the belt is the same, so 7@, = r,@, applies to the two pulleys.

SET UP: The second pulley, with half the diameter of the first, must have twice the angular velocity, and this is
the angular velocity of the saw blade. 7 rad/s =30 rev/min .

r rad/s (O.ZOSm
30 rev/min 2

J=75.1 m/s.

EXECUTE: (a) v, =(2(3450 rev/min))(

2
() a,, =&’ =| 2(3450 rev/min)| — rad/ i 0.208m ) _ 5 43510¢ m/s,
30 rev/min 2

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity.
EVALUATE: In v=rwand a,, =ro’, @ must be in rad/s.

IDENTIFY and SET UP:  Use Eq.(9.15) to relate «
replace w.

.o to @ and then use a constant acceleration equation to

EXECUTE: (a) a,, =r@’, a,, =ro;, a.,,=ro,

Ay =gy =gy = r(a)zz _a)lz)

One of the constant acceleration equations can be written

a)zzz = a)lzz +2a(6,-6,), or a)zzz - a)lz. =2a.(6,-6)

Thus Aa,, =r2a (6, -6,)=2ra.(0,-6,), as was to be shown.
_ Aa,,  85.0m/s’-25.0 m/s’

2r(6,-6)  2(0.250 m)(15.0 rad)

Then a,. =ra =(0.250 m)(8.00 rad/s*) = 2.00 m/s”

EVALUATE: @’ is proportional to @, and (#—6),) so a,, is also proportional to these quantities. a,, increases

(b) a =8.00 rad/s’

tan

while r stays fixed, @, increases, and ¢, is positive.

IDENTIFY and SET UP: Use Eq.(9.17) to relate K and @ and then use a constant acceleration equation to replace .
EXECUTE: (¢) K =110’; K, =110}, K, =110}

AK =K, -K, =11(0} -a})=11Q2a.(0,-6))=1a.(6,—6,), as was to be shown.

@) = AK 450 J;Z0.0J ~0.208 kg-m”

o (6,-6) (8.00rad/s*)(15.0 rad)

EVALUATE: ¢, is positive, @ increases, and K increases.
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9.74. IDENTIFY: [=[_ , +1.,. m=pV ,where pisthe volume density and m = oA, where o is the area density.

wood

SETUP: For a solid sphere, / =2mR’. For the hollow sphere (foil), / =2mR’. For a sphere, V' =% 7R’ and

4
A=4zR* . m,=pV, = pwgﬂR3. m =0, 4 =0, 4R’ .

EXECUTE: [ :gmez JrszR2 = 3( p‘viﬂR3jR2 +3(0L47zR2)R2 = §;rR“(pLR+ o-Lj .
5 3 50073 3 3 5
(800 kg/m*)(0.20 m)
5

EVALUATE: m,, =26.8 kgand I, =0.429 kg-m*. m, =10.1kg and 7, =0.268 kg-m” . Even though the foil is

only 27% of the total mass its contribution to / is about 38% of the total.

9.75. IDENTIFY: Estimate the shape and dimensions of your body and apply the approximate expression from
Table 9.2.
SET Up: I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and diameter 0.30 m
(radius 0.15 m)

I :8%(0_20 m)‘{ +20 kg/mz} =0.70 kg-m’.

EXECUTE: [ =%mR2 =%(80 kg) (0.15 m)* =0.9 kg-m’

EVALUATE: [ depends on your mass and width but not on your height.

9.76. IDENTIFY: Treat the V like two thin 0.160 kg bars, each 25 cm long.
SET UP: For a slender bar with the axis at one end, [ = %mL2 .

EXECUTE: [ = 2@;@2) = z[éj(o.wo kg)(0.250 m)’ = 6.67x10" kg-m?

EVALUATE: The value of ] is independent of the angle between the two sides of the V; the angle 70.0° didn't
enter into the calculation.

9.77. IDENTIFY: K =1l0’. a,=ro’. m=pV .
SETUp: For a disk with the axis at the center, / =1mR*. V =tzR*, where ¢ =0.100 m is the thickness of the
flywheel. p =7800 kg/ m’ is the density of the iron.

6
EXECUTE: (a) ®=90.0 rpm=9.425 rad/s. I= % = M =2.252x10"kg-m?.
®  (9.425 rad/s)
m=pV =prR’t. I :%mR2 =%p7[tR4 . This gives R =(2I/pxt)"* =3.68 m and the diameter is 7.36 m.
(b) a,, = Ro* =327m/s’
EVALUATE: In K =1/®’, @mustbe inrad/s. a,, is about 33g; the flywheel material must have large cohesive
strength to prevent the flywheel from flying apart.
9.78. IDENTIFY: K =1/@’.To have the same K for any @ the two parts must have the same /. Use Table 9.2 for /.

SETUp:  For a solid sphere, 1, =2M_,;,R* . For a hollow sphere, 1, =2M, .. R’
. _ : 2 2 _ 2 2 _3 —3
EXECUTE: [ 1y = I\, g1VES $M iy R™ =5 M, R™and My, =35M iy =3M .

EVALUATE: The hollow sphere has less mass since all its mass is distributed farther from the rotation axis.

9.79. IDENTIFY: K=1lo’. o= 27 rad

, where T is the period of the motion. For the earth's orbital motion it can be

treated as a point mass and 7 = MR*.
SETUP: The earth's rotational period is 24 h = 86,164 s . Its orbital period is 1 yr =3.156x10" s .

M =597x10" kg. R=6.38x10° m.

27°1  27°(0.3308)(5.97 %107 kg)(6.38x10°m)’
T’ (86,164 s)
2 2 24 11 2
) lM(ZHRj _27°(5.97x10 kg)(17.502><10 m)
2 T (3.156x107 s)

(c) Since the Earth’s moment of inertia is less than that of a uniform sphere, more of the Earth’s mass must be
concentrated near its center.
EVALUATE: These kinetic energies are very large, because the mass of the earth is very large.

EXECUTE: (a) K = =2.14x10% J.

=2.66x10% 7.
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9.81.

9.82.

IDENTIFY: Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR.

SET Up: The kinetic energy is K =%I(a2 +%mv2 , with 7 =1mR? for the disk. v=Raw.

EXECUTE: K :lla)2 +lm(a)R)2 :1(1 +mR?) . Using I =1mR* and solving for o, @ _ds and o= {iﬁ
2 2 2 3R 3R

EVALUATE: The small object has speed v= \/gd 2gR . If it was not attached to the disk and was dropped from a

height 4, it would attain a speed /2gR . Being attached to the disk reduces its final speed by a factor of \/g .

IDENTIFY: Use Eq.(9.20) to calculate /. Then use K =1/@” to calculate K.
(a) SET Up: IThe object is sketched in Figure 9.81.

[
I(IXIS

Consider a small strip of width dy
and a distance y below the top of the
triangle.

The length of the strip is

x=(y/h)b.

]

dy

Figure 9.81

EXECUTE: The strip has area x dy and the area of the sign is $b4, so the mass of the strip is

{28222 (2
Lbh h )\ bh h

2Mb’
dlzg(dm)xzz[ e ]y3 dy
h 2Mb* i 2Mb* (1 ) 1. .,
I—Iodl— e foy dy = e ;y |0 —gMb

(b) I =1 Mb*>=2.304 kg-m’

@ =2.00 rev/s = 4.007z rad/s

K=1lo’=182]

EVALUATE: From Table (9.2), if the sign were rectangular, with length b, then 7 =1Mb*. Our result is one-half

this, since mass is closer to the axis for the triangular than for the rectangular shape.
IDENTIFY: Apply conservation of energy to the system.

SETUp: For the falling mass K =1mv’ . For the wheel K =1/’ .
EXECUTE: (a) The kinetic energy of the falling mass after 2.00 m is K =Lmv* =£(8.00 kg )(5.00 m/s)’ =100 J.
The change in its potential energy while falling is mgh =(8.00 kg)(9.8 m/sz)(Z.OO m)=156.8 J . The wheel must

have the “missing” 56.8 J in the form of rotational kinetic energy. Since its outer rim is moving at the same speed

as the falling mass, 5.00 m/s , v=rw gives @ = v _5.00m/s

== > —135]lradls. K :lla)z; therefore
r 0370 m 2

]Zzzﬂzo_@z kg-m?*.

2

@ (1351 rad/s)’

(b) The wheel’s mass is (280 N)/(9.8 m/ s?) = 28.6 kg . The wheel with the largest possible moment of inertia
would have all this mass concentrated in its rim. Its moment of inertia would be
I =MR* =(28.6 kg)(0.370 m)’ =3.92 kg -m? . The boss’s wheel is physically impossible.
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9.84.

EVALUATE: If the mass falls from rest in free-fall its speed after it has descended 2.00 m is

v=,/2g(2.00 m) =6.26 m/s . Its actual speed is less because some of the energy of the system is in the form of
rotational kinetic energy of the wheel.

IDENTIFY: Use conservation of energy. The stick rotates about a fixed axis so K =4/@”. Once we have @ use

v =r® to calculate v for the end of the stick.
SET Up: The object is sketched in Figure 9.83.

3

cm v =0
Take the origin of coordinates at the lowest point reached by
em 1.00m the stick and take the positive y-direction to be upward.
0.500 m
Yy
X
Figure 9.83

EXECUTE: (a) Use Eq.(9.18): U =Mgy,,

AU =U,—-U, =Mg(Yorr = Yew:)

The center of mass of the meter stick is at its geometrical center, so
Ve =1.00m and y_, =0.50 m

Then AU = (0.160 kg)(9.80 m/s*)(0.50 m—1.00 m) = —0.784 J
(b) Use conservation of energy: K, +U, +W_, =K, +U,
Gravity is the only force that does work on the meter stick, so
K, =0.

Thus K, =U,-U, =—AU, where AU was calculated in part (a).
K, =110 so 110} =—AU and @, =\[2(-AU)/I

For stick pivoted about one end, 7 = %ML2 where L =1.00 m, so

wZZ\/6(—AU):\/ 607841) 4 4y oy

=0.

other

ML (0.160 kg)(1.00 m)*
(¢) v=rw=(1.00 m)(5.42 rad/s) =5.42 m/s
(d) For a particle in free-fall, with +y upward,

Vo, =05 ¥y =y, =-1.00 m; ay=—9.80m/sz; v, =?

v

V,i = ng +2ay(y_y0)

v, =—2a,(y — y,) = —/2(-9.80 m/s*)(~1.00 m) = —4.43 m/s

EVALUATE: The magnitude of the answer in part (c) is larger. U

is the same for the stick as for a particle

1,grav

falling from a height of 1.00 m. For the stick K =1/w: = l(%MLZ )(V/L)2 =L1Mv’. For the stick and for the

2
particle, K, is the same but the same K gives a larger v for the end of the stick than for the particle. The reason is

that all the other points along the stick are moving slower than the end opposite the axis.

IDENTIFY: Apply conservation of energy to the system of cylinder and rope.

SET Up: Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is zero (the
rope is wrapped in a circle with center on the axle). When the rope has unwound, its center of mass is a distance

7R below the axle, since the length of the rope is 2zR and half this distance is the position of the center of the
mass. Initially, every part of the rope is moving with speed @,R, and when the rope has unwound, and the cylinder
has angular speed ®, the speed of the rope is @R (the upper end of the rope has the same tangential speed at the

edge of the cylinder). 7 = (1/2)MR? for a uniform cylinder,
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EXECUTE: K, =K,+U,. (M+ﬂj Rw; = (M+ﬂj R’®" —mgnR. Solving for  gives
4 2 4 2
4zrmg/R
o= |} +% , and the speed of any part of the rope is v = @R.

9.85.

9.86.

(M +2m)

/ 2 .
EVALUATE: When m >0, o —> @,. When m>>M , o=, |w; +% and v=/v; +27gR . This is the final

speed when an object with initial speed v, descends a distance 7R .

IDENTIFY: Apply conservation of energy to the system consisting of blocks 4 and B and the pulley.
SET Up: The system at points 1 and 2 of its motion is sketched in Figure 9.85.

V —_— ¥

s O

v = B

#1
Figure 9.85

Use the work-energy relation K, +U, +W,

other

=K, +U,. Use coordinates where +y is upward and where the origin

is at the position of block B after it has descended. The tension in the rope does positive work on block 4 and
negative work of the same magnitude on block B, so the net work done by the tension in the rope is zero. Both
blocks have the same speed.

EXECUTE: Gravity does work on block B and kinetic friction does work on block A. Therefore

Woper =W, =—p4m, gd.

other
K, =0 (system is released from rest)

Uy=mygyy =mygd; U, =mygy,, =0

K, =tmy; +impl +1la0;.

But v(blocks) = Ra(pulley), so @, =v,/R and

K, =3(m, +my)v; +L1(v,/ R =L(m, +m, +1/R*)V;
Putting all this into the work-energy relation gives
mygd — pom,gd =L(m, +m,+1/R*)]

(4 my + 1/ R*)WE = 2gd(m, — pgm,)

b= 2gd(my — pm )
: my+my+1/R
EVALUATE: If m, >>m, and I/R’, then v, =/2gd; block B falls freely. If I is very large, v, is very small.

Must have m, > 1,m, for motion, so the weight of B will be larger than the friction force on 4. 7/R* has units of
mass and is in a sense the “effective mass” of the pulley.

IDENTIFY: Apply conservation of energy to the system of two blocks and the pulley.

SET Up: Let the potential energy of each block be zero at its initial position. The kinetic energy of the system is
the sum of the kinetic energies of each object. v=Rw , where v is the common speed of the blocks and @ is the
angular velocity of the pulley.

EXECUTE: The amount of gravitational potential energy which has become kinetic energy is

K =(4.00 kg—2.00 kg)(9.80 m/sz)(S.OO m)=98.0 J. In terms of the common speed v of the blocks, the kinetic
, 1 2 1 (vY
energy of the system is K :E(ml +m,)v +EI z)

(0.480 kg-m?)
(0.160 m)*

98.0J
12.4 kg

K= vzé[4.00 kg+2.00 kg + J: v*(12.4 kg). Solving for v gives v = =2.81 m/s.
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9.88.

9.89.

EVALUATE: If the pulley is massless, 98.0 J =1(4.00 kg +2.00 kg)v’ and v=5.72 m/s . The moment of inertia

of the pulley reduces the final speed of the blocks.
IDENTIFY and SET UP:  Apply conservation of energy to the motion of the hoop. Use Eq.(9.18) to calculate U,

Use K =17@" for the kinetic energy of the hoop. Solve for @. The center of mass of the hoop is at its geometrical

center.

Take the origin to be at the original location
R of the center of the hoop, before it is rotated
to one side, as shown in Figure 9.87.

Figure 9.87
Ve =R —Rcos f=R(1-cos f3)
Yoo =0 (at equilibrium position hoop is at original position)
=K, +U,
W e =0 (only gravity does work)

EXECUTE: K, +U,+W.

other

K, =0 (released fromrest), K, =1/w;

For a hoop, I, = MR?, so I =Md*+MR* with d =R and I =2MR’, for an axis at the edge. Thus

K, =12MR*)®; = MR’ ;.
U] = ngcm] = MgR(l_COSﬂ), UZ = mgycmZ = 0
Thus K, +U,+W,

other

MgR(1-cos f) = MR’} and @ =+/g(1-cos )/ R

EVALUATE: If =0, then @, =0. As [ increases, @, increases.

=K, +U, gives

IDENTIFY: K =1/w’, with @ inrtad/s. P= energy

SETUP:  For a solid cylinder, / =1 MR’. 1 rev/min = (27/60) rad/s
EXECUTE: (a) @=3000 rev/min =314 rad/s. / =1(1000 kg)(0.900 m)* =405 kg-m’
K =1(405 kg-m?*)(314 rad/s)* =2.00x10" J .
(b) t=£=M=1.08x103 s=17.9 min .
P 1.86x10° W
EVALUATE: In K =1/@’, we must use @in rad/s.
IDENTIFY: [ =1 +1,. Apply conservation of energy to the system. The calculation is similar to Example 9.9.

SETUP: w= % for part (b) and w = RL for part (c).
1 2

EXECUTE: (a) [ = %M]Rf +%M2R§ = %((0.80 kg)(2.50x107> m)* +(1.60 kg)(5.00x107> m)*)

I=225%x10" kg-m”’.

(b) The method of Example 9.9 yields v= iz .
1+(I/mR?)

=\/ 2(2.80 m/zsz)(Z.OO m) 340 s
(1+((2.25x107° kg-m?)/(1.50 kg)(0.025 m)*))

The same calculation, with R, instead of R, gives v=4.95 m/s.

EVALUATE: The final speed of the block is greater when the string is wrapped around the larger disk. v=Rw, so
when R =R, the factor that relates v to wis larger. For R = R, a larger fraction of the total kinetic energy resides
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9.93.

with the block. The total kinetic energy is the same in both cases (equal to mgh), so when R = R, the kinetic energy

and speed of the block are greater.
IDENTIFY: Apply conservation of energy to the motion of the mass after it hits the ground.

2gh

SET UP: From Example 9.9, the speed of the mass just before it hits the ground is v=,|——=—.
1+M/2m

2
14

EXECUTE: (a) In the case that no energy is lost, the rebound height 4" is related to the speed vby A’ = EPE and
g

. . . " h
with the form for v given in Example 9.9, /' = = Mo Tom’

(b) Considering the system as a whole, some of the initial potential energy of the mass went into the kinetic energy
of the cylinder. Considering the mass alone, the tension in the string did work on the mass, so its total energy is not
conserved.

EVALUATE: If m>>M , h'=h and the mass does rebound to its initial height.

IDENTIFY: Apply conservation of energy to relate the height of the mass to the kinetic energy of the cylinder.
SET UP: First use K(cylinder)=25017 to find @ for the cylinder and v for the mass.

EXECUTE: [ =1MR*=1(10.0 kg)(0.150 m)* =0.1125 kg -m’

K =110 so @=~2K /I =66.67 rad/s

v=Rw=10.0 m/s

SET UpP: Use conservation of energy K, +U, =K, +U, to solve for the distance the mass descends. Take y =0
at lowest point of the mass, so y, =0 and y, =, the distance the mass descends.

EXECUTE: K, =U,=0 so U, =K,.

mgh=1mv’ +110’, where m=12.0 kg

For the cylinder, / =%MR2 and w=v/R, so %Ia)2 =%Mv2.

mgh =Lmv’ + LM

h :%(H%j _723m

EVALUATE: For the cylinder K, =1l :%(%MRZ)(V/R)2 =1m’.

=2m/M)K_, =[2(12.0 kg)/10.0 kg](250 J) =600 J. The mass has 600 J of kinetic energy

cyl —

K imv?, so K

mass 2 mass
when the cylinder has 250 J of kinetic energy and at this point the system has total energy 850 J since U, =0.
Initially the total energy of the system is U, = mgy, = mgh =850 J, so the total energy is shown to be conserved.
IDENTIFY: Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and pulley have

1 1 1
T 172 _ 2 2 2
kIHCtIC energy Of the form K= 7160 . mboxgh - Embovaox +E pulleya)pulley +E[cylindera)cylinder .

SETUP: @,

V, v,
— _Box and ) — Box
7

cylinder
P cylinder

2 2
_ Co1 (1 N(v,) 1(1 (v oL, L, 1,
EXECUTE: mthz—vaBwLE 5 r_: +E 5 Ml r—(’j . mth:EvaB+ZmPVB+ZmCVB and

vy = ’ mygh :\/(3.00 kg)(9.80 m/s*)(1.50 m) ~3.68 ms .
Mg +gm +pme 1.50 kg ++(7.00 kg)

EVALUATE: If the box was disconnected from the rope and dropped from rest, after falling 1.50 m its speed

would be v=,/2g(1.50 m) =5.42 m/s . Since in the problem some of the energy of the system goes into kinetic

energy of the cylinder and of the pulley, the final speed of the box is less than this.

IDENTIFY: [=1,, —1, . ,where I, is [ for the piece punched from the disk. Apply the parallel-axis theorem to

hole >

calculate the required moments of inertia.
SET UP: For a uniform disk, /7 = %MR2 .
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9.94.

9.95.

9.96.

EXECUTE: (a) The initial moment of inertia is 7, =+ MR’. The piece punched has a mass of % and a moment

of inertia with respect to the axis of the original disk of

2 2
M l 5 + 5 :iMRZ.
16| 2\ 4 2 512

The moment of inertia of the remaining piece is then 7 = %MR2 —iMR2 = 247

512 512

MR,

(b) I =LMR*+M(R/2)* —L(M /16)(R/4)* = L2 MR*.
EVALUATE: For a solid disk and an axis at a distance R/2 from the disk's center, the parallel-axis theorem gives
I=1MR* =3 MR*> =3 MR* . For both choices of axes the presence of the hole reduces 7, but the effect of the hole

512
is greater in part (a), when it is farther from the axis.
IDENTIFY: In part (a) use the parallel-axis theorem to relate the moment of inertia /_, for an axis through the

center of the sphere to 7, , the moment of inertia for an axis at the pivot.
SET UP: [ for a uniform solid sphere and the axis through its center is 2MR”. I for a slender rod and an axis at
one end is %mL2 , where m is the mass of the rod and L is its length.

EXECUTE: (a) From the parallel-axis theorem, the moment of inertia is 1, = (2/5)MR* + ML*, and

2
L = [1+(gj(§j J If R=(0.05)L, the difference is (2/5)(0.05)* =0.001=0.1%.

ML 5

(b) (Imd/MLZ) =(m,,/3M), which is 0.33% when m,_, =(0.0)M.

EVALUATE: In both these cases the correction to / = ML’ is very small.

IDENTIFY: Follow the instructions in the problem to derive the perpendicular-axis theorem. Then apply that
result in part (b).

SETUp: [= Z:m,,rl.2 . The moment of inertia for the washer and an axis perpendicular to the plane of the washer

rod

atits center is LM (R’ +R}) . In part (b), / for an axis perpendicular to the plane of the square at its center is
LML+ L) =1 ML .
EXECUTE: (a) With respect to O, ° = x>+, and so

Iy = zmz‘rx’z = zmi(xiz +yi2) = zmixiz +zmiyi2 =1.+1,

(b) Two perpendicular axes, both perpendicular to the washer’s axis, will have the same moment of inertia about
those axes, and the perpendicular-axis theorem predicts that they will sum to the moment of inertia about the

washer axis, which is /=4 M (R’ +R,), andso I, =1, =4 M (R’ +R,?).

(¢) I,=tmL’. Sincel, =1 ,+1,andI =1, both/ and/, mustbe & mL’.

EVALUATE: The result in part (c) says that / is the same for an axis that bisects opposite sides of the square as for
an axis along the diagonal of the square, even though the distribution of mass relative to the two axes is quite
different in these two cases.

IDENTIFY: Apply the parallel-axis theorem to each side of the square.

SET UP: Each side has length a and mass M /4, and the moment of inertia of each side about an axis
perpendicular to the side and through its center is 54 Ma® = Ma*.

EXECUTE: The moment of inertia of each side about the axis through the center of the square is, from the
Md* +M(g)2 _ Mad’
48  4\2 12
from the four sides, or 4x A{gz = M3“2 )

EVALUATE: If all the mass of a side were at its center, a distance a/2 from the axis, we would have

perpendicular axis theorem, . The total moment of inertia is the sum of the contributions

2
1= 4(%}(%) = %Ma2 . If all the mass was divided equally among the four corners of the square, a distance

2
a/~2 from the axis, we would have [ = 4(£j(ij = lMa2 . The actual / is between these two values.

4 \J2) 2
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9.97.

9.98.

9.99.

IDENTIFY: Use Eq.(9.20) to calculate /.
(a) SETUp: Let L be the length of the cylinder. Divide the cylinder into thin cylindrical shells of inner radius »
and outer radius 7 +dr. An end view is shown in Figure 9.97.

p=ar
The mass of the thin cylindrical shell is
dm=p dV = pQar dr)L =2zaLr® dr

Figure 9.97
. _ 2 _ R 4 _ 1 p5S\_2 5
EXECUTE: [ —.[ r-dm= 27raLJ. rdr= 27raL(;R )—gﬂaLR
0
Relate Mto a: M :I dm = 272'0!LJ.0RI”2 dr = 27raL(§R3) =27aLR’, so maLR’ =3M /2.

Using this in the above result for / gives / =2(3M /2)R* =1 MR’.

(b) EVALUATE: For a cylinder of uniform density / =1 MR®. The answer in (a) is larger than this. Since the

density increases with distance from the axis the cylinder in (a) has more mass farther from the axis than for a
cylinder of uniform density.

IDENTIFY: Write K in terms of the period 7 and take derivatives of both sides of this equation to relate dK /dt to
dT/dt .

SET Up: a):z?ﬁand K =11w’. The speed of light is ¢=3.00x10° m/s .

27’1 dK  Ax’ldT 47’1 dT

EXECUTE: (a) K = . The rate of energy loss is = Solving for the moment of

" d T T’
inertia / in terms of the power P,
3 31 3
_PT 1 _(5x10 W)(2().0331 s) s o —1.09%10% kg m®
4z dT/dt 4z 422x107" s

38 2
(b) R= /i: >(1.0810 kgmm ) —9.9%10° m, about 10 km.
oM\ 2(1.4)(1.99x10” kg)

_27R 27(9.9x10°m) _

©v=" 00519 1.9x10° m/s=6.3x10"c.
. s
M M 17 3 : : . . .
@ p= 7 W =6.9x10"kg / m’, which is much higher than the density of ordinary rock by 14 orders of
T

magnitude, and is comparable to nuclear mass densities.

EVALUATE: [ is huge because M is huge. A small rate of change in the period corresponds to a large release of
energy.

IDEI\?I}"IIFY: In part (a), do the calculations as specified in the hint. In part (b) calculate the mass of each shell of
inner radius R, and outer radius R, and sum to get the total mass. In part (c) use the expression in part (a) to
calculate 7 for each shell and sum to get the total .

SETUP: m=pV . For asolid sphere, V =47zR’.

EXECUTE: (a) Following the hint, the moment of inertia of a uniform sphere in terms of the mass density is
I=2MR* =% 7pR’, and so the difference in the moments of inertia of two spheres with the same density p but
different radii R, and R, is I = p(87/15)(R; = R).

(b) A rather tedious calculation, summing the product of the densities times the difference in the cubes of the radii
that bound the regions and multiplying by 47/3, gives M =5.97x10* kg.

(¢) A similar calculation, summing the product of the densities times the difference in the fifth powers of the radii
that bound the regions and multiplying by 87/15, gives I =8.02x10* kg-m?® =0.334MR>,

EVALUATE: The calculated value of I =0.334MR” agrees closely with the measured value of 0.3308MR*. This
simple model is fairly accurate.
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9.100.

9.101.

IDENTIFY: Apply Eq.(9.20)

2.2
Rz

hZ

4
SET UP: Let z be the coordinate along the vertical axis. r(z) = % . dm=mp and dI = ”—;%24 dz .

4 4
R hz4 dz = ER—A[ZS ]h = L7rpR4h . The volume of a right circular cone is
2 hJo 10 4

EXECUTE: I:Idlz =
o 10

2
V =17R’h, the massis 17pR*h andso [ :%[ ﬁpf thZ :%MRZ.

EVALUATE: For a uniform cylinder of radius R and for an axis through its center, / =1 MR . I for the cone is

less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease from R to zero
along the vertical axis of the cone.
IDENTIFY: Follow the steps outlined in the problem.

SETUP: @, =dO/dt. a. =d’w,/dt.
EXECUTE: (a) ds=r df =rd0+ 0 dO sos(0)= r09+§02 . @ must be in radians.

(b) Setting s =vt =10 +§t92 gives a quadratic in & . The positive solution is

o) :%[«/roz +2 vt —ro} .

(The negative solution would be going backwards, to values of » smaller than 7, .)

. o d ? . .
(c) Differentiating, o, () :ﬁ = i a =22 - _,B—vz. The angular acceleration ¢, is not

dt 11r02 +28vt T dt (r02 + 2,b’vt)3/
constant.

(d) 7, =25.0 mm. 6 must be measured in radians, so B =(1.55um/rev)(1 rev/2z rad) = 0.247 ym/rad. Using

6(t) from part (b), the total angle turned in 74.0 min = 4440 s is

oo 1
2.47x10"" m/rad

6=1.337x10’ rad , which is 2.13x10" rev .

(e) The graphs are sketched in Figure 9.101.
EVALUATE: o, must decrease as 7 increases, to keep v =r@ constant. For @, to decrease in time, ¢, must be

(\/2(2.47><107m/rad)(1.25 m/s)(4440 5) +(25.0x107°m ) ~25.0x10° mj

negative.
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Figure 9.101






