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MOMENTUM, IMPULSE, AND COLLISIONS 

 8.1. IDENTIFY and SET UP: .p mv=  21
2 .K mv=  

EXECUTE: (a) 5(10,000 kg)(12.0 m/s) 1.20 10  kg m/sp = = × ⋅  

(b) (i) 
51.20 10  kg m/s 60.0 m/s

2000 kg
pv
m

× ⋅
= = = . (ii) 2 21 1

T T SUV SUV2 2m v m v= , so  

T
SUV T

SUV

10,000 kg (12.0 m/s) 26.8 m/s
2000 kg

mv v
m

= = =  

EVALUATE: The SUV must have less speed to have the same kinetic energy as the truck than to have the same 
momentum as the truck. 

 8.2. IDENTIFY: Example 8.1 shows that the two iceboats have the same kinetic energy at the finish line. 21
2K mv= . 

p mv= . 
SET UP: Let A be the iceboat with mass m and let B be the iceboat with mass 2m, so 2B Am m= . 

EXECUTE: A BK K=  gives 2 21 1
2 2A Bmv mv= . 2B

A B B
A

mv v v
m

= = . 

A A Ap m v= . ( )(2 ) / 2 2 2B B B A A A A Ap m v m v m v p= = = = . 

EVALUATE: The more massive boat must have less speed but greater momentum than the other boat in order to 
have the same kinetic energy. 

 8.3. IDENTIFY and SET UP: p mv= . 21
2K mv= . 

EXECUTE: (a) pv
m

=  and 
2 2

1
2 2

p pK m
m m

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

(b) c bK K=  and the result from part (a) gives 
2 2
c b

c b2 2
p p
m m

= . b
b c c c

c

0.145 kg 1.90
0.040 kg

mp p p p
m

= = = . The baseball 

has the greater magnitude of momentum. c b/ 0.526p p = . 

(c) 2 2p mK=  so m wp p=  gives m m w w2 2m K m K= . w mg= , so m m w ww K w K= . 

m
w m m m

w

700 N 1.56
450 N

wK K K K
w

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

The woman has greater kinetic energy. m w/ 0.641K K = . 
EVALUATE: For equal kinetic energy, the more massive object has the greater momentum. For equal momenta, 
the less massive object has the greater kinetic energy. 

 8.4. IDENTIFY: Each momentum component is the mass times the corresponding velocity component. 
SET UP: Let +x be along the horizontal motion of the shotput. Let +y be vertically upward. cosxv v θ= , 

sinyv v θ= . 
EXECUTE: The horizontal component of the initial momentum is  

cos (7.30 kg)(15.0 m/s)cos40.0 83.9 kg m/sx xp mv mv θ= = = = ⋅° .  

The vertical component of the initial momentum is sin (7.30 kg)(15.0 m/s)sin40.0 70.4 kg m/sy yp mv mv θ= = = = ⋅°  

EVALUATE: The initial momentum is directed at 40.0°  above the horizontal. 
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 8.5. IDENTIFY: For each object, m! !p = v  and 21
2K mv= . The total momentum is the vector sum of the momenta of 

each object. The total kinetic energy is the scalar sum of the kinetic energies of each object. 
SET UP: Let object A be the 110 kg lineman and object B the 125 kg lineman. Let +x be the object to the right, so 

2.75 m/sAxv = +  and 2.60 m/sBxv = − . 
EXECUTE: (a) (110 kg)(2.75 m/s) (125 kg)( 2.60 m/s) 22.5 kg m/sx A Ax B BxP m v m v= + = + − = − ⋅ . The net 
momentum has magnitude 22.5 kg m/s⋅  and is directed to the left. 

(b) 2 2 2 21 1 1 1
2 2 2 2(110 kg)(2.75 m/s) (125 kg)(2.60 m/s) 838 JA A B BK m v m v= + = + =  

EVALUATE: The kinetic energy of an object is a scalar and is never negative. It depends only on the magnitude of 
the velocity of the object, not on its direction. The momentum of an object is a vector and has both magnitude and 
direction. When two objects are in motion, their total kinetic energy is greater than the kinetic energy of either one. 
But if they are moving in opposite directions, the net momentum of the system has a smaller magnitude than the 
magnitude of the momentum of either object. 

 8.6. IDENTIFY: For each object m! !p = v  and the net momentum of the system is A B

! ! !P = p + p . The momentum 
vectors are added by adding components. The magnitude and direction of the net momentum is calculated from its 
x and y components. 
SET UP: Let object A be the pickup and object B be the sedan. 14.0 m/sAxv = − , 0Ayv = . 0Bxv = , 23.0 m/sByv = + . 

EXECUTE: (a) 4(2500 kg)( 14.0 m/s) 0 3.50 10  kg m/sx Ax Bx A Ax B BxP p p m v m v= + = + = − + = − × ⋅  
4(1500 kg)( 23.0 m/s) 3.45 10  kg m/sy Ay By A Ay B ByP p p m v m v= + = + = + = + × ⋅  

(b) 2 2 44.91 10  kg m/sx yP P P= + = × ⋅ . From Figure 8.6, 
4

4

3.50 10  kg m/stan
3.45 10  kg m/s

x

y

P
P

θ × ⋅
= =

× ⋅
 and 45.4θ = ° . The net 

momentum has magnitude 44.91 10  kg m/s× ⋅  and is directed at 45.4°  west of north. 
EVALUATE: The momenta of the two objects must be added as vectors. The momentum of one object is west and 
the other is north. The momenta of the two objects are nearly equal in magnitude, so the net momentum is directed 
approximately midway between west and north. 

 
Figure 8.6 

 8.7. IDENTIFY: The average force on an object and the object�s change in momentum are related by Eq. 8.9. The 
weight of the ball is w mg= . 
SET UP: Let +x be in the direction of the final velocity of the ball, so 1 0xv =  and 2 25.0 m/sxv = . 

EXECUTE: av 2 1 2 1( ) ( )x x xF t t mv mv− = −  gives 2 1
av 3

2 1

(0.0450 kg)(25.0 m/s)( ) 562 N
2.00 10  s

x x
x

mv mvF
t t −

−
= = =

− ×
. 

2(0.0450 kg)(9.80 m/s ) 0.441 Nw = = . The force exerted by the club is much greater than the weight of the ball, 
so the effect of the weight of the ball during the time of contact is not significant. 
EVALUATE: Forces exerted during collisions typically are very large but act for a short time. 

 8.8. IDENTIFY: The change in momentum, the impulse and the average force are related by Eq. 8.9. 
SET UP: Let the direction in which the batted ball is traveling be the +x direction, so 1 45.0 m/sxv = −  and 

2 55.0 m/sxv = . 
EXECUTE: (a) 2 1 2 1( ) (0.145 kg)(55.0 m/s [ 45.0 m/s]) 14.5 kg m/sx x x x xp p p m v vΔ = − = − = − − = ⋅ . x xJ p= Δ , so 

14.5 kg m/sxJ = ⋅ . Both the change in momentum and the impulse have magnitude 14.5 kg m/s⋅ . 

(b) av 3

14.5 kg m/s( ) 7250 N
2.00 10  s

x
x

JF
t −

⋅
= = =

Δ ×
. 

EVALUATE: The force is in the direction of the momentum change. 
 8.9. IDENTIFY: Use Eq. 8.9. We know the intial momentum and the impluse so can solve for the final momentum and 

then the final velocity. 
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SET UP: Take the x-axis to be toward the right, so 1 3.00 m /s.xv = +  Use Eq. 8.5 to calculate the impulse, since 
the force is constant. 
EXECUTE: (a) 2 1x x xJ p p= −  

2 1( ) ( 25.0 N)(0.050 s) 1.25 kg m/sx xJ F t t= − = + = + ⋅  

Thus 2 1 1.25 kg m/s (0.160 kg)( 3.00 m/s)x x xp J p= + = + ⋅ + + = 1.73 kg m/s+ ⋅  

2
2

1.73 kg m/s 10.8 kg m/s (to the right)
0.160  kg

x
x

pv
m

⋅
= = = + ⋅  

(b) 2 1( ) ( 12.0 N)(0.050 s) 0.600 kg m/sx xJ F t t= − = − = − ⋅  (negative since force is to left) 

2 1 0.600 kg m/s (0.160 kg)( 3.00 m/s) 0.120 kg m/sx x xp J p= + = − ⋅ + + = − ⋅  

2
2

0.120 kg m/s 0.75 m/s (to the left)
0.160 kg

x
x

pv
m

− ⋅
= = = −  

EVALUATE: In part (a) the impulse and initial momentum are in the same direction and xv  increases. In part (b) the 
impulse and initial momentum are in opposite directions and the velocity decreases. 

 8.10. IDENTIFY: The impulse, change in momentum and change in velocity are related by Eq. 8.9. 
SET UP: 26,700 NyF =  and 0xF = . The force is constant, so av( ) y yF F= . 

EXECUTE: (a) 5(26,700 N)(3.90 s) 1.04 10  N sy yJ F t= Δ = = × ⋅ . 

(b) 51.04 10  kg m/sy yp JΔ = = × ⋅ . 

(c) y yp m vΔ = Δ . 
51.04 10  kg m/s 1.09 m/s

95,000 kg
y

y

p
v

m
Δ × ⋅

Δ = = = . 

(d) The initial velocity of the shuttle isn�t known. The change in kinetic energy is 2 21
2 1 2 12 ( )K K K m v vΔ = − = − . It 

depends on the initial and final speeds and isn�t determined solely by the change in speed. 
EVALUATE: The force in the +y direction produces an increase of the velocity in the +y direction. 

 8.11. IDENTIFY: The force is not constant so 2

1

t

t
dt∫J = F

! !
. The impulse is related to the change in velocity by Eq. 8.9. 

SET UP: Only the x component of the force is nonzero, so 2

1

t

x xt
J F dt= ∫  is the only nonzero component of 

!
J .  

2 1( )x x xJ m v v= − . 1 2.00 st = , 2 3.50 st = . 

EXECUTE: (a) 2
2 2

781.25 N 500 N/s
(1.25 s)

xFA
t

= = = . 

(b) 2

1

2 3 3 2 3 3 31 1
2 13 3( ) (500 N/s )([3.50 s] [2.00 s] ) 5.81 10  N s

t

x t
J At dt A t t= = − = − = × ⋅∫ . 

(c) 
3

2 1
5.81 10  N s 2.70 m/s

2150 kg
x

x x x
Jv v v
m

× ⋅
Δ = − = = = . The x component of the velocity of the rocket increases by 

2.70 m/s. 
EVALUATE: The change in velocity is in the same direction as the impulse, which in turn is in the direction of the net 
force. In this problem the net force equals the force applied by the engine, since that is the only force on the rocket. 

 8.12. IDENTIFY: Apply Eq. 8.9 to relate the change in momentum of the momentum to the components of the average 
force on it. 
SET UP: Let +x be to the right and +y be upward. 
EXECUTE: (a) 2 1 (0.145 kg)( [65.0 m/s]cos30 50.0 m/s) 15.4 kg m/sx x x xJ p mv mv= Δ = − = − − = − ⋅° . 

2 1 (0.145 kg)([65.0 m/s]sin30 0) 4.71 kg m/sy y y yJ p mv mv= Δ = − = − = ⋅°  

The horizontal component is 15.4 kg m/s⋅ , to the left and the vertical component is 4.71 kg m/s⋅ , upward. 

(b) av- 3

15.4 kg m/s 8800 N
1.75 10  s

x
x

JF
t −

− ⋅
= = = −

Δ ×
. av- 3

4.71 kg m/s 2690 N
1.75 10  s

y
y

J
F

t −

⋅
= = =

Δ ×
. 

The horizontal component is 8800 N, to the left, and the vertical component is 2690 N, upward. 
EVALUATE: The ball gains momentum to the left and upward and the force components are in these directions. 

 8.13. IDENTIFY: The force is constant during the 1.0 ms interval that it acts, so tΔ
! !
J = F . 2 1 ( )m        2 1J p p v v

! ! ! ! !
5 2 5 2 . 

SET UP: Let +x be to the right, so 1 5.00 m/sxv = + . Only the x component of 
!
J  is nonzero, and 

2 1( )x x xJ m v v= − . 
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EXECUTE: (a) The magnitude of the impulse is 3 3(2.50 10  N)(1.00 10  s) 2.50 N sJ F t −= Δ = × × = ⋅ . The direction 
of the impulse is the direction of the force. 

(b) (i) 2 1
x

x x
Jv v
m

= + . 2.50 N sxJ = + ⋅ . 2
2.50 N s 5.00 m/s 6.25 m/s
2.00 kgxv + ⋅

= + = . The stone�s velocity has magnitude 

6.25 m/s and is directed to the right. (ii) Now 2.50 N sxJ = − ⋅  and 2
2.50 N s 5.00 m/s 3.75 m/s
2.00 kgxv − ⋅

= + = . The 

stone�s velocity has magnitude 3.75 m/s and is directed to the right. 
EVALUATE: When the force and initial velocity are in the same direction the speed increases and when they are 
in opposite directions the speed decreases. 

 8.14. IDENTIFY: Apply conservation of momentum to the system of the astronaut and tool. 
SET UP: Let A be the astronaut and B be the tool. Let +x be the direction in which she throws the tool, so 

2 3.20 m/sB xv = + . Assume she is initially at rest, so 1 1 0A x B xv v= = . Solve for 2A xv . 
EXECUTE: 1 2x xP P= . 1 1 1 0x A A x B B xP m v m v= + = . 2 2 2 0x A A x B B xP m v m v= + =  and 

2
2

(2.25 kg)(3.20 m/s) 0.105 m/s
68.5 kg

B A x
A x

A

m vv
m

= − = − = − . Her speed is 0.105 m/s and she moves opposite to the 

direction in which she throws the tool. 
EVALUATE: Her mass is much larger than that of the tool so to have the same magnitude of momentum as the 
tool her speed is much less. 

 8.15. IDENTIFY: Since drag effects are neglected there is no net external force on the system of squid plus expelled 
water and the total momentum of the system is conserved. Since the squid is initially at rest, with the water in its 
cavity, the initial momentum of the system is zero. For each object, 21

2K mv= . 
SET UP: Let A be the squid and B be the water it expels, so 6.50 kg 1.75 kg 4.75 kgAm = − = . Let +x be the 
direction in which the water is expelled. 2 2.50 m/sA xv = − . Solve for 2B xv . 

EXECUTE: (a) 1 0xP = . 2 1x xP P= , so 2 20 A A x B B xm v m v= + . 2
2

(4.75 kg)( 2.50 m/s) 6.79 m/s
1.75 kg

A A x
B x

B

m vv
m

−
= − = − = + . 

(b) 2 2 2 21 1 1 1
2 2 2 2 22 2 2 2(4.75 kg)(2.50 m/s) (1.75 kg)(6.79 m/s) 55.2 JA B A A B BK K K m v m v= + = + = + =  The initial kinetic 

energy is zero, so the kinetic energy produced is 2 55.2 JK = . 
EVALUATE: The two objects end up with momenta that are equal in magnitude and opposite in direction, so the 
total momentum of the system remains zero. The kinetic energy is created by the work done by the squid as it 
expels the water. 

 8.16. IDENTIFY: Apply conservation of momentum to the system of you and the ball. In part (a) both objects have the 
same final velocity. 
SET UP: Let +x be in the direction the ball is traveling initially. 0.400 kgAm =  (ball). 70.0 kgBm =  (you). 
EXECUTE: (a) 1 2x xP P=  gives 2(0.400 kg)(10.0 m/s) (0.400 kg 70.0 kg)v= +  and 2 0.0568 m/sv = . 
(b) 1 2x xP P=  gives 2(0.400 kg)(10.0 m/s) (0.400 kg)( 8.00 m/s) (70.0 kg) Bv= − +  and 2 0.103 m/sBv = . 
EVALUATE: When the ball bounces off it has a greater change in momentum and you acquire a greater final speed. 

 8.17. IDENTIFY: Apply conservation of momentum to the system of the two pucks. 
SET UP: Let +x be to the right. 
EXECUTE: (a) 1 2x xP P=  says 1(0.250) (0.250 kg)( 0.120 m/s) (0.350 kg)(0.650 m/s)Av = − +  and 1 0.790 m/sAv = . 

(b) 21
1 2 (0.250 kg)(0.790 m/s) 0.0780 JK = = . 

2 21 1
2 2 2(0.250 kg)(0.120 m/s) (0.350 kg)(0.650 m/s) 0.0757 JK = + =  and 2 1 0.0023 JK K KΔ = − = − . 

EVALUATE: The total momentum of the system is conserved but the total kinetic energy decreases. 
 8.18. IDENTIFY: Since road friction is neglected, there is no net external force on the system of the two cars and the 

total momentum of the system is conserved. For each object, 21
2K mv= . 

SET UP: Let A be the 1750 kg car and B be the 1450 kg car. Let +x be to the right, so 1 1.50 m/sA xv = + , 

1 1.10 m/sB xv = − , and 2 0.250 m/sA xv = + . Solve for 2B xv . 

EXECUTE: (a) 1 2x xP P= . 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 1 1 2
2

A A x B B x A A x
B x

B

m v m v m vv
m

+ −
= . 

2
(1750 kg)(1.50 m/s) (1450 kg)( 1.10 m/s) (1750 kg)(0.250 m/s) 0.409 m/s

1450 kgB xv + − −
= = . 

After the collision the lighter car is moving to the right with a speed of 0.409 m/s. 
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(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(1750 kg)(1.50 m/s) (1450 kg)(1.10 m/s) 2846 JA A B BK m v m v= + = + = . 

2 2 2 21 1 1 1
2 2 22 2 2 2(1750 kg)(0.250 m/s) (1450 kg)(0.409 m/s) 176 JA A B BK m v m v= + = + = . 

The change in kinetic energy is 2 1 176 J 2846 J 2670 JK K KΔ = − = − = − . 
EVALUATE: The total momentum of the system is constant because there is no net external force during the 
collision. The kinetic energy of the system decreases because of negative work done by the forces the cars exert on 
each other during the collision. 

 8.19. IDENTIFY: Since the rifle is loosely held there is no net external force on the system consisting of the rifle, bullet 
and propellant gases and the momentum of this system is conserved. Before the rifle is fired everything in the 
system is at rest and the initial momentum of the system is zero. 
SET UP: Let +x be in the direction of the bullet�s motion. The bullet has speed 601 m/s 1.85 m/s 599 m/s− =  
relative to the earth. 2 r b gx x x xP p p p= + + , the momenta of the rifle, bullet and gases. r 1.85 m/sxv = −  and 

b 599 m/sxv = + . 
EXECUTE: 2 1 0x xP P= = . r b g 0x x xp p p+ + = . g r b (2.80 kg)( 1.85 m/s) (0.00720 kg)(599 m/s)x x xp p p= − − = − − −  

and g 5.18 kg m/s 4.31 kg m/s 0.87 kg m/sxp = + ⋅ − ⋅ = ⋅ . The propellant gases have momentum 0.87 kg m/s⋅ , in the 
same direction as the bullet is traveling. 
EVALUATE: The magnitude of the momentum of the recoiling rifle equals the magnitude of the momentum of the 
bullet plus that of the gases as both exit the muzzle. 

 8.20. IDENTIFY: In part (a) no horizontal force implies xP  is constant. In part (b) use the energy expression, Eq. 7.14, 
to find the potential energy intially in the spring. 
SET UP: Initially both blocks are at rest. 

 
Figure 8.20 

EXECUTE: (a) 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

2 20 A A x B B xm v m v= +  

2 2
3.00 kg ( 1.20 m/s) 3.60 m/s
1.00 kg

B
A x B x

A

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B. 
(b) Use energy conservation: 1 1 other 2 2K U W K U+ + = + . 

Only the spring force does work so other el0 and .W U U= =  

1 0K =  (the blocks initially are at rest) 

2 0U =  (no potential energy is left in the spring) 

2 2 2 21 1 1 1
2 2 22 2 2 2(1.00 kg)(3.60 m/s) (3.00 kg)(1.20 m/s) 8.64 JA A B BK m v m v= + = + =  

1 1,elU U=  the potential energy stored in the compressed spring. 

Thus 1,el 2 8.64 JU K= =  
EVALUATE: The blocks have equal and opposite momenta as they move apart, since the total momentum is zero. 
The kinetic energy of each block is positive and doesn�t depend on the direction of the block�s velocity, just on its 
magnitude. 

 8.21. IDENTIFY: Since friction at the pond surface is neglected, there is no net external horizontal force and the 
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are initially 
at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the ice together 
produce a net vertical force while the rifle is firing, so the vertical component of momentum is not conserved. 
SET UP: Let object A be the hunter and object B be the bullet. Let +x be the direction of the horizontal 
component of velocity of the bullet. Solve for 2A xv . 
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EXECUTE: (a) 2 965 m/sB xv = + . 1 2 0x xP P= = . 2 20 A A x B B xm v m v= +  and 
3

2 2
4.20 10  kg (965 m/s) 0.0559 m/s

72.5 kg
B

A x B x
A

mv v
m

−⎛ ⎞×
= − = − = −⎜ ⎟

⎝ ⎠
. 

(b) 2 2 cos (965 m/s)cos56.0 540 m/sB x Bv v θ= = =° . 
3

2
4.20 10  kg (540 m/s) 0.0313 m/s

72.5 kgA xv
−⎛ ⎞×

= − = −⎜ ⎟
⎝ ⎠

. 

EVALUATE: The mass of the bullet is much less than the mass of the hunter, so the final mass of the hunter plus 
gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, her final speed is much less 
than the speed of the bullet. 

 8.22. IDENTIFY: Assume the nucleus is initially at rest. 21
2K mv= . 

SET UP: Let +x be to the right. 2A x Av v= −  and 2B x Bv v= + . 

EXECUTE: (a) 2 1 0x xP P= =  gives 2 2 0A A x B B xm v m v+ = . A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 

(b) 
( )

2 21
2

221
2 /

A AA A A B

B B B AB A A B

m vK m v m
K m v mm m v m

= = = . 

EVALUATE: The lighter fragment has the greater kinetic energy. 
 8.23. IDENTIFY: Apply conservation of momentum to the nucleus and its fragments. The initial momentum is zero. 

The 214 Po  nucleus has mass 27 25214(1.67 10  kg) 3.57 10  kg− −× = × , where 271.67 10  kg−×  is the mass of a nucleon 

(proton or neutron). 21
2K mv= . 

SET UP: Let +x be the direction in which the alpha particle is emitted. The nucleus that is left after the decay has 
mass 25 25 27 25

n 3.75 10  kg 3.57 10  kg 6.65 10  kg 3.50 10  kgm mα
− − − −= × − = × − × = × . 

EXECUTE: 2 1 0x xP P= =  gives n n 0m v m vα α + = . n
n

mv v
m

α
α= . 

12
7

27

2 2(1.23 10  J) 1.92 10  m/s
6.65 10  kg

Kv
m

α
α

α

−

−

×
= = = ×

×
. 

27
7 5

n 25

6.65 10  kg (1.92 10  m/s) 3.65 10  m/s
3.50 10  kg

v
−

−

⎛ ⎞×
= × = ×⎜ ⎟×⎝ ⎠

. 

EVALUATE: The recoil velocity of the more massive nucleus is much less than the speed of the emitted alpha 
particle. 

 8.24. IDENTIFY and SET UP: Let the +x-direction be horizontal, along the direction the rock is thrown. There is no net 
horizontal force, so xP  is constant. Let object A be you and object B be the rock. 
EXECUTE: 0  cos35.0A A B Bm v m v= − + °  

 cos35.0 2.11 m/sB B
A

A

m vv
m

°
= =  

EVALUATE: yP  is not conserved because there is a net external force in the vertical direction; as you throw the 
rock the normal force exerted on you by the ice is larger than the total weight of the system. 

 8.25. IDENTIFY: Each horizontal component of momentum is conserved. 21
2K mv= . 

SET UP: Let +x be the direction of Rebecca�s initial velocity and let the +y axis make an angle of 36.9°  with 
respect to the direction of her final velocity. D1 D1 0x yv v= = . R1 13.0 m/sxv = ; R1 0yv = . 

R 2 (8.00 m/s)cos53.1 4.80 m/sxv = =° ; R 2 (8.00 m/s)sin53.1 6.40 m/syv = =° . Solve for D2xv  and D2 yv . 

EXECUTE: (a) 1 2x xP P=  gives R R1 R R 2 D D2x x xm v m v m v= + . 

R R1 R 2
D2

D

( ) (45.0 kg)(13.0 m/s 4.80 m/s) 5.68 m/s
65.0 kg

x x
x

m v vv
m

− −
= = = . 

1 2y yP P=  gives R R 2 D D20 y ym v m v= + . R
D2 R 2

D

45.0 kg (6.40 m/s) 4.43 m/s
65.0 kgy y

mv v
m

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
.  

The directions of R1
!v , R2

!v  and D2
!v  are sketched in Figure 8.25. D2

D2

4.43 m/stan
5.68 m/s

y

x

v
v

θ = =  and 38.0θ = ° . 

2 2
D D2 D2 7.20 m/sx yv v v= + = . 
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(b) 2 2 31 1
1 R R12 2 (45.0 kg)(13.0 m/s) 3.80 10  JK m v= = = × . 

2 2 2 2 31 1 1 1
2 R R2 D D22 2 2 2(45.0 kg)(8.00 m/s) (65.0 kg)(7.20 m/s) 3.12 10  JK m v m v= + = + = × . 

2 1 680 JK K KΔ = − = − . 
EVALUATE: Each component of momentum is separately conserved. The kinetic energy of the system increases. 

vR1

vR2

vD2

y

x
u

 
Figure 8.25 

 8.26. IDENTIFY: There is no net external force on the system of astronaut plus canister, so the momentum of the 
system is conserved. 
SET UP: Let object A be the astronaut and object B be the canister. Assume the astronaut is initially at rest. After 
the collision she must be moving in the same direction as the canister. Let +x be the direction in which the canister 
is traveling initially, so 1 0A xv = , 2 2.40 m/sA xv = + , 1 3.50 m/sB xv = + , and 2 1.20 m/sB xv = + . Solve for Bm . 

EXECUTE: 1 2x xP P= . 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 2 1

1 2

( ) (78.4 kg)(2.40 m/s 0) 81.8 kg
3.50 m/s 1.20 m/s

A A x A x
B

B x B x

m v vm
v v

− −
= = =

− −
. 

EVALUATE: She must exert a force on the canister in the x−  direction to reduce its velocity component in the 
+x direction. By Newton�s third law, the canister exerts a force on her that is in the +x direction and she gains 
velocity in that direction. 

 8.27. IDENTIFY: The horizontal component of the momentum of the system of the rain and freight car is conserved. 
SET UP: Let +x be the direction the car is moving initially. Before it lands in the car the rain has no momentum along the 
x axis. 
EXECUTE: (a) 1 2x xP P=  says 2(24,000 kg)(4.00 m/s) (27,000 kg) xv=  and 2 3.56 m/sxv = . 
(b) After it lands in the car the water must gain horizontal momentum, so the car loses horizontal momentum. 
EVALUATE: The vertical component of the momentum is not conserved, because of the vertical external force 
exerted by the track. 

 8.28. IDENTIFY: The x and y components of the momentum of the system of the two asteroids are separately conserved. 
SET UP: The before and after diagrams are given in Figure 8.28 and the choice of coordinates is indicated. Each 
asteroid has mass m. 
EXECUTE: (a) 1 2x xP P=  gives 1 2 2cos30.0 cos45.0A A Bmv mv mv= +° ° . 2 240.0 m/s 0.866 0.707A Bv v= +  and 

2 20.707 40.0 m/s 0.866B Av v= − . 

2 2y yP P=  gives 2 20 sin30.0 sin 45.0A Bmv mv= −° °  and 2 20.500 0.707A Bv v= . 

Combining these two equations gives 2 20.500 40.0 m/s 0.866A Av v= −  and 2 29.3 m/sAv = . Then  

2
0.500 (29.3 m/s) 20.7 m/s
0.707Bv ⎛ ⎞= =⎜ ⎟

⎝ ⎠
. 

(b) 21
1 12 AK mv= . 2 21 1

2 2 22 2A BK mv mv= + . 
2 2 2 2

2 2 2
2 2

1 1

(29.3 m/s) (20.7 m/s) 0.804
(40.0 m/s)

A B

A

K v v
K v

+ +
= = = . 

2 1 2

1 1 1

1 0.196K K K K
K K K
Δ −

= = − = − .  

19.6% of the original kinetic energy is dissipated during the collision. 
EVALUATE: We could use any directions we wish for the x and y coordinate directions, but the particular choice 
we have made is especially convenient. 
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Figure 8.28 

 8.29. IDENTIFY: Since drag effects are neglected there is no net external force on the system of two fish and the momentum 
of the system is conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 
SET UP: Let object A be the 15.0 kg fish and B be the 4.50 kg fish. Let +x be the direction the large fish is 
moving initially, so 1 1.10 m/sA xv =  and 1 0B xv = . After the collision the two objects are combined and move with 
velocity 2

!v . Solve for 2xv . 
EXECUTE: (a) 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(15.0 kg)(1.10 m/s) 0 0.846 m/s
15.0 kg 4.50 kg

A A x B B x
x

A B

m v m vv
m m

+ +
= = =

+ +
. 

(b) 2 2 21 1 1
1 1 12 2 2 (15.0 kg)(1.10 m/s) 9.08 JA A B BK m v m v= + = = . 2 21 1

2 22 2( ) (19.5 kg)(0.846 m/s) 6.98 JA BK m m v= + = = . 

2 1 2.10 JK K KΔ = − = − . 2.10 J of mechanical energy is dissipated. 
EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined. 

 8.30. IDENTIFY: There is no net external force on the system of the two otters and the momentum of the system is 
conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 
SET UP: Let A be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity is 2

!v . 
Let +x be to the right, so 1 5.00 m/sA xv = −  and 1 6.00 m/sB xv = + . Solve for 2xv . 
EXECUTE: (a) 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(7.50 kg)( 5.00 m/s) (5.75)( 6.00 m/s) 0.226 m/s
7.50 kg 5.75 kg

A A x B B x
x

A B

m v m vv
m m

+ − + +
= = = −

+ +
. 

(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(7.50 kg)(5.00 m/s) (5.75 kg)(6.00 m/s) 197.2 JA A B BK m v m v= + = + = . 

2 21 1
2 22 2( ) (13.25 kg)(0.226 m/s) 0.338 JA BK m m v= + = = . 

2 1 197 JK K KΔ = − = − . 197 J of mechanical energy is dissipated. 
EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined. 

 8.31. IDENTIFY: Treat the comet and probe as an isolated system for which momentum is conserved. 
SET UP: In part (a) let object A be the probe and object B be the comet. Let x−  be the direction the probe is 
traveling just before the collision. After the collision the combined object moves with speed 2v . The change in 
velocity is 2 1x B xv v vΔ = − . In part (a) the impact speed of 37,000 km/h is the speed of the probe relative to the 
comet just before impact: 1 1 37,000 km/hA x B xv v− = − . In part (b) let object A be the comet and object B be the 
earth. Let x−  be the direction the comet is traveling just before the collision. The impact speed is 40,000 km/h, so 

1 1 40,000 km/hA x B xv v− = − . 

EXECUTE: (a) 1 2x xP P= . 1 1
2

A A x B B x
x

A B

m v m vv
m m

+
=

+
.  

( )2 1 1 1 1 1
A B A B A

x B x A x B x A x B x
A B A B A B

m m m m mv v v v v v v
m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
Δ = − = + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

6
14

372 kg ( 37,000 km/h) 1.4 10  km/h
372 kg 0.10 10  kg

v −⎛ ⎞
Δ = − = − ×⎜ ⎟+ ×⎝ ⎠

. 

The speed of the comet decreased by 61.4 10  km/h−× . This change is not noticeable. 
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(b) 
14

8
14 24

0.10 10  kg ( 40,000 km/h) 6.7 10  km/h
0.10 10  kg 5.97 10  kg

v −⎛ ⎞×
Δ = − = − ×⎜ ⎟× + ×⎝ ⎠

. The speed of the earth would change 

by 86.7 10  km/h−× . This change is not noticeable. 
EVALUATE: 1 1A x B xv v−  is the velocity of the projectile (probe or comet) relative to the target (comet or earth). 
The expression for vΔ  can be derived directly by applying momentum conservation in coordinates in which the 
target is initially at rest. 

 8.32. IDENTIFY: The forces the two vehicles exert on each other during the collision are much larger than the 
horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation. 
SET UP: Let +x be eastward. After the collision two vehicles move with a common velocity 2

!v . 
EXECUTE: (a) 1 2x xP P=  gives SC SC T T SC T 2( )x x xm v m v m m v+ = + . 

SC SC T T
2

SC T

(1050 kg)( 15.0 m/s) (6320 kg)( 10.0 m/s) 6.44 m/s
1050 kg 6320 kg

x x
x

m v m vv
m m

+ − + +
= = =

+ +
. 

The final velocity is 6.44 m/s, eastward. 

(b) 1 2 0x xP P= =  gives SC SC T T 0x xm v m v+ = . SC
T SC

T

1050 kg ( 15.0 m/s) 2.50 m/s
6320 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. The truck 

would need to have initial speed 2.50 m/s. 
(c) part (a): 2 2 2 51 1 1

2 2 2(7370 kg)(6.44 m/s) (1050 kg)(15.0 m/s) (6320 kg)(10.0 m/s) 2.81 10  JKΔ = − − = − ×  

part (b): 2 2 51 1
2 20 (1050 kg)(15.0 m/s) (6320 kg)(2.50 m/s) 1.38 10  JKΔ = − − = − × . The change in kinetic energy 

has the greater magnitude in part (a). 
EVALUATE: In part (a) the eastward momentum of the truck has a greater magnitude than the westward 
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles have equal 
magnitudes of momentum, the total momentum of the system is zero, and the wreckage is at rest after the collision. 

 8.33. IDENTIFY: The forces the two players exert on each other during the collision are much larger than the horizontal 
forces exerted by the slippery ground and it is a good approximation to assume momentum conservation. Each 
component of momentum is separately conserved. 
SET UP: Let +x be east and +y be north. After the collision the two players have velocity 2

!v . Let the linebacker 
be object A and the halfback be object B, so 1 0A xv = , 1 8.8 m/sA yv = , 1 7.2 m/sB xv =  and 1 0B yv = . Solve for 

2xv and 2 yv . 

EXECUTE: 1 2x xP P=  gives 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(85 kg)(7.2 m/s) 3.14 m/s
110 kg 85 kg

A A x B B x
x

A B

m v m vv
m m

+
= = =

+ +
. 

1 2y yP P=  gives 1 1 2( )A A y B B y A B ym v m v m m v+ = + . 

1 1
2

(110 kg)(8.8 m/s) 4.96 m/s
110 kg 85 kg

A A y B B y
y

A B

m v m v
v

m m
+

= = =
+ +

. 

2 2
2 2 5.9 m/sx yv v v= + = . 

2

2

4.96 m/stan
3.14 m/s

y

x

v
v

θ = =  and 58θ = ° . 

The players move with a speed of 5.9 m/s and in a direction 58°  north of east. 
EVALUATE: Each component of momentum is separately conserved. 

 8.34. IDENTIFY: There is no net external force on the system of the two skaters and the momentum of the system is 
conserved. 
SET UP: Let object A be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg. Let +x be to 
the right, so 1 2.00 m/sA xv = +  and 1 2.50 m/sB xv = − . After the collision the two objects are combined and move with 
velocity 2

!v . Solve for 2xv . 
EXECUTE: 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(70.0 kg)(2.00 m/s) (65.0)( 2.50 m/s) 0.167 m/s
70.0 kg 65.0 kg

A A x B B x
x

A B

m v m vv
m m

+ + −
= = = −

+ +
. 

The two skaters move to the left at 0.167 m/s. 
EVALUATE: There is a large decrease in kinetic energy. 
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 8.35. IDENTIFY: Neglect external forces during the collision. Then the momentum of the system of the two cars is 
conserved. 
SET UP: S 1200 kgm = , L 3000 kgm = . The small car has velocity Sv  and the large car has velocity Lv . 
EXECUTE: (a) The total momentum of the system is conserved, so the momentum lost by one car equals the 
momentum gained by the other car. They have the same magnitude of change in momentum. Since m=

! !p v  and 
Δ
!p  is the same, the car with the smaller mass has a greater change in velocity.  

S S L Lm v m vΔ = Δ  and L
S L

S

3000 kg 2.50
1200 kg

mv v v v
m

⎛ ⎞ ⎛ ⎞
Δ = Δ = Δ = Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

(b) The acceleration of the small car is greater, since it has a greater change in velocity during the collision. The 
large acceleration means a large force on the occupants of the small car and they would sustain greater injuries. 
EVALUATE: Each car exerts the same magnitude of force on the other car but the force on the compact has a 
greater effect on its velocity since its mass is less. 

 8.36. IDENTIFY: The collision forces are large so gravity can be neglected during the collision. Therefore, the 
horizontal and vertical components of the momentum of the system of the two birds are conserved. 
SET UP: The system before and after the collision is sketched in Figure 8.36. Use the coordinates shown. 

 
Figure 8.36 

EXECUTE: There is no external force on the system so 1 2x xP P=  and 1 2y yP P= . 

1 2x xP P=  gives raven-2(1.5 kg)(9.0 m/s) (1.5 kg) cosv φ=  and raven-2 cos 9.0 m/sv φ = . 

1 2y yP P=  gives raven-2(0.600 kg)(20.0 m/s) (0.600 kg)( 5.0 m/s) (1.5 kg) sinv φ= − +  and raven-2 sin 10.0 m/sv φ = . 

Combining these two equations gives 10.0 m/stan
9.0 m/s

φ =  and 48φ = ° . 

EVALUATE: Due to its large initial speed the lighter falcon was able to produce a large change in the raven�s 
direction of motion. 

 8.37. IDENTIFY: Since friction forces from the road are ignored, the x and y components of momentum are conserved. 
SET UP: Let object A be the subcompact and object B be the truck. After the collision the two objects move 
together with velocity 2

!v . Use the x and y coordinates given in the problem. 1 1 0A y B yv v= = . 

2 (16.0 m/s)sin 24.0 6.5 m/sxv = =° ; 2 (16.0 m/s)cos24.0 14.6 m/syv = =° . 

EXECUTE: 1 2x xP P=  gives 1 2( )A A x A B xm v m m v= + . 

1 2
950 kg 1900 kg (6.5 m/s) 19.5 m/s

950 kg
A B

A x x
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ +
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

1 2y yP P=  gives 1 2( )A B y A B ym v m m v= + . 

1 2
950 kg 1900 kg (14.6 m/s) 21.9 m/s

1900 kg
A B

B y y
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ +
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s. 
EVALUATE: Each component of momentum is independently conserved. 

 8.38. IDENTIFY: Apply conservation of momentum to the collision. Apply conservation of energy to the motion of the 
block after the collision. 
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SET UP: Conservation of momentum applied to the collision between the bullet and the block: Let object A be 
the bullet and object B be the block. Let Av  be the speed of the bullet before the collision and let V be the speed of 
the block with the bullet inside just after the collision. 

 
Figure 8.38a 

xP  is constant gives ( )A A A Bm v m m V= + . 
Conservation of energy applied to the motion of the block after the collision: 

V

y

A1B
x

#1 #2 v 5 0

0.230 m  
Figure 8.38b 

1 1 other 2 2K U W K U+ + = +  
EXECUTE: Work is done by friction so other k k k( cos )fW W f s f s mgsφ μ= = = − = −  

1 2 0U U= =  (no work done by gravity) 
21

1 2 ;K mV=  2 0K =  (block has come to rest) 

Thus 21
k2 0mV mgsμ− =  

2
k2 2(0.20)(9.80 m/s )(0.230 m) 0.9495 m/sV gsμ= = =  

Use this in the conservation of momentum equation 
3

3

5.00 10  kg 1.20 kg (0.9495 m/s) 229 m/s
5.00 10  kg

A B
A

A

m mv V
m

−

−

⎛ ⎞ ⎛ ⎞+ × +
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

EVALUATE: When we apply conservation of momentum to the collision we are ignoring the impulse of the 
friction force exerted by the surface during the collision. This is reasonable since this force is much smaller than 
the forces the bullet and block exert on each other during the collision. This force does work as the block moves 
after the collision, and takes away all the kinetic energy. 

 8.39. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the 
collision. After the collision the kinetic energy of the combined object is converted to gravitational potential 
energy. 
SET UP: Immediately after the collision the combined object has speed V. Let h be the vertical height through 
which the pendulum rises. 
EXECUTE: (a) Conservation of momentum applied to the collision gives 

3 3(12.0 10  kg)(380 m/s) (6.00 kg 12.0 10  kg)V− −× = + ×  and 0.758 m/sV = . 

Conservation of energy applied to the motion after the collision gives 21
tot tot2 m V m gh=  and  

2 2

2

(0.758 m/s) 0.0293 m = 2.93 cm
2 2(9.80 m/s )
Vh

g
= = = . 

(b) 2 3 21 1
b b2 2 (12.0 10  kg)(380 m/s) 866 JK m v −= = × = . 

(c) 2 3 21 1
tot2 2 (6.00 kg 12.0 10  kg)(0.758 m/s) 1.73 JK m V −= = + × = . 

EVALUATE: Most of the initial kinetic energy of the bullet is dissipated in the collision. 
 8.40. IDENTIFY: Each component of horizontal momentum is conserved. 

SET UP: Let +x be east and +y be north. S1 A1 0y xv v= = . S2 (6.00 m/s)cos37.0 4.79 m/sxv = =° , 

S2 (6.00 m/s)sin37.0 3.61 m/syv = =° , 2 (9.00 m/s)cos23.0 8.28 m/sA xv = =°  and 

2 (9.00 m/s)sin 23.0 3.52 m/sA yv = − = −° . 

EXECUTE: 1 2x xP P=  gives S S1 S S2 A A2x x xm v m v m v= + .  

S S2 A A2
S1

S

(80.0 kg)(4.79 m/s) (50.0 kg)(8.28 m/s) 9.97 m/s
80.0 kg

x x
x

m v m vv
m
+ +

= = = .  

Sam�s speed before the collision was 9.97 m/s. 
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1 2y yP P=  gives A A1 S S2y A A2y ym v m v m v= + . 

S S2y A A2
A1

S

(80.0 kg)(3.61 m/s) (50.0 kg)( 3.52 m/s) 2.26 m/s
50.0 kg

y
y

m v m v
v

m
+ + −

= = = . 

Abigail�s speed before the collision was 2.26 m/s. 
(b) 2 2 2 21 1 1 1

2 2 2 2(80.0 kg)(6.00 m/s) (50.0 kg)(9.00 m/s) (80.0 kg)(9.97 m/s) (50.0 kg)(2.26 m/s) .KΔ = + − −  639 JKΔ = − . 
EVALUATE: The total momentum is conserved because there is no net external horizontal force. The kinetic 
energy decreases because the forces between the objects do negative work during the collision. 

 8.41. IDENTIFY: When the spring is compressed the maximum amount the two blocks aren�t moving relative to each 
other and have the same velocity 

!
V  relative to the surface. Apply conservation of momentum to find V and 

conservation of energy to find the energy stored in the spring. Since the collision is elastic, Eqs. 8.24 and 8.25 give 
the final velocity of each block after the collision. 
SET UP: Let +x be the direction of the initial motion of A. 
EXECUTE: (a) Momentum conservation gives (2.00 kg)(2.00 m/s) (12.0 kg)V=  and 0.333 m/sV = . Both 
blocks are moving at 0.333 m/s, in the direction of the initial motion of block A. Conservation of energy says the 
initial kinetic energy of A equals the total kinetic energy at maximum compression plus the potential energy bU  

stored in the bumpers: 2 21 1
b2 2(2.00 kg)(2.00 m/s) (12.0 kg)(0.333 m/s)U= +  and b 3.33 JU = . 

(b) 2 1
2.00 kg 10.0 kg (2.00 m/s) 1.33 m/s

12.0 kg
A B

A x A x
A B

m mv v
m m

⎛ ⎞ ⎛ ⎞− −
= = = −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

. Block A is moving in the x−  direction at 

1.33 m/s. 

2 1
2 2(2.00 kg) (2.00 m/s) 0.667 m/s

12.0 kg
A

B x A x
A B

mv v
m m

⎛ ⎞
= = = +⎜ ⎟+⎝ ⎠

. Block B is moving in the +x direction at 0.667 m/s. 

EVALUATE: When the spring is compressed the maximum amount the system must still be moving in order to 
conserve momentum. 

 8.42. IDENTIFY: No net external horizontal force so xP  is conserved. Elastic collision so 1 2K K=  and can use Eq. 8.27. 
SET UP: 

 
Figure 8.42 

EXECUTE: From conservation of x-component of momentum: 

1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

1 1 2 2A A B B A A x B B xm v m v m v m v− = +  

2 2(0.150 kg)(0.80 m/s) (0.300 kg)(2.20 m/s) (0.150 kg) (0.300 kg)A x B xv v− = +  

A2 23.60 m/s 2x B xv v− = +  

From the relative velocity equation for an elastic collision Eq. 8.27: 

2 2 1 1( ) ( 2.20 m/s 0.80 m/s) 3.00 m/sB x A x B x A xv v v v− = − − = − − − = +  

A2 23.00 m/s x B xv v= − +  

Adding the two equations gives 20.60 m/s 3 B xv− =  and 2 0.20 m/s.B xv = −  Then 2 2 3.00 m/s 3.20 m/s.A x B xv v= − = −  
The 0.150 kg glider (A) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at 
0.20 m/s. 
EVALUATE: We can use our 2A xv  and 2B xv  to show that xP  is constant and 1 2K K=  

 8.43. IDENTIFY: Since the collision is elastic, both momentum conservation and Eq. 8.27 apply. 
SET UP: Let object A be the 30.0 kg marble and let object B be the 10.0 g marble. Let +x be to the right. 
EXECUTE: (a) Conservation of momentum gives 

2 2(0.0300 kg)(0.200 m/s) (0.0100 kg)( 0.400 m/s) (0.0300 kg) (0.0100 kg)A x B xv v+ − = + . 

2 23 0.200 m/sA x B xv v+ = . Eq. 8.27 says 2 2 ( 0.400 m/s 0.200 m/s) 0.600 m/sB x A xv v− = − − − = + . Solving this pair of 
equations gives 2 0.100 m/sA xv = −  and 2 0.500 m/sB xv = + . The 30.0 g marble is moving to the left at 0.100 m/s 
and the 10.0 g marble is moving to the right at 0.500 m/s. 
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(b) For marble A, 2 1 (0.0300 kg)( 0.100 m/s 0.200 m/s) 0.00900 kg m/sAx A A x A A xP m v m vΔ = − = − − = − ⋅ . 
For marble B, 2 1 (0.0100 kg)(0.500 m/s [ 0.400 m/s]) 0.00900 kg m/sBx B B x B B xP m v m vΔ = − = − − = + ⋅ . 
The changes in momentum have the same magnitude and opposite sign. 
(c) For marble A, 2 2 2 2 41 1 1

2 12 2 2 (0.0300 kg)([0.100 m/s] [0.200 m/s] ) 4.5 10  JA A A A AK m v m v −Δ = − = − = − × . 

For marble B, 2 2 2 2 41 1 1
2 12 2 2 (0.0100 kg)([0.500 m/s] [0.400 m/s] ) 4.5 10  JB B B B BK m v m v −Δ = − = − = + × . 

The changes in kinetic energy have the same magnitude and opposite sign. 
EVALUATE: The results of parts (b) and (c) show that momentum and kinetic energy are conserved in the 
collision. 

 8.44. IDENTIFY and SET UP: Without rounding, the calculation in Example 8.12 gives 2 20  m/sBv = . 
EXECUTE: The two equations in Example 8.12 for α  and β  are 

(0.500 kg)(4.00 m/s) (0.500 kg)(2.00 m/s)(cos ) (0.300 kg)( 20 m/s)(cos )α β= +  Eq. 1 

and  

0 (0.500 kg)(2.00 m/s)(sin ) (0.300 kg)( 20  m/s)sinα β= −  Eq. 2. 

Dividing each equation by (0.500 kg)(1.00 m/s)  gives 

4.00 2.00cos 0.6 20 cosα β= +  Eq. 3 
and 

0 2.00sin 0.6 20 sinα β= −  Eq. 4. 

Eq. 3 gives 4.00 2.00coscos
0.6 20

αβ −
=  and 2 2cos 2.222 2.222cos 0.5556cosβ α α= − + .  

Eq. 4 gives sin 0.7454sinβ α=  and 2 2 2sin 0.5556sin 0.5556 0.5556cosβ α α= = − . 
Adding the two equations and using 2 2sin cos 1β β+ =  gives 1 2.778 2.222cosα= −  and cos 0.8002α = . 

36.9α = ° . Then sin 0.7454sinβ α=  gives 26.6β = ° . 
EVALUATE: For these values of α  and β , the x component of momentum, the y component of momentum and 
the kinetic energy are all conserved in the collision. 

 8.45. IDENTIFY: Eqs. 8.24 and 8.25 apply, with object A being the neutron. 
SET UP: Let +x be the direction of the initial momentum of the neutron. The mass of a neutron is n 1.0 um = . 

EXECUTE: (a) 2 1 1 1
1.0 u 2.0 u /3.0
1.0 u 2.0 u

A B
A x A x A x A x

A B

m mv v v v
m m

⎛ ⎞− −
= = = −⎜ ⎟+ +⎝ ⎠

. The speed of the neutron after the collision 

is one-third its initial speed. 

(b) 2 21 1
2 n n n 1 12 2

1( /3.0)
9.0AK m v m v K= = = . 

(c) After n collisions, 2 1
1

3.0

n

A Av v⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 1 1
3.0 59,000

n
⎛ ⎞ =⎜ ⎟
⎝ ⎠

, so 3.0 59,000n = . log3.0 log59,000n =  and 10n = . 

EVALUATE: Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals the 
kinetic energy gained by the deuteron. 

 8.46. IDENTIFY: Elastic collision. Solve for mass and speed of target nucleus. 
SET UP: (a) Let A be the proton and B be the target nucleus. The collision is elastic, all velocities lie along a line, 
and B is at rest before the collision. Hence the results of Eqs. 8.24 and 8.25 apply. 
EXECUTE: Eq. 8.24: ( ) ( ),B x Ax A x Axm v v m v v+ = −  where xv  is the velocity component of A before the collision 

and Axv  is the velocity component of A after the collision. Here, 71.50 10  m/sxv = ×  (take direction of incident 

beam to be positive) and 71.20 10  m/sAxv = − ×  (negative since traveling in direction opposite to incident beam). 

7 7

7 7

1.50 10  m/s 1.20 10  m/s 2.70 9.00 .
1.50 10  m/s 1.20 10  m/s 0.30

x Ax
B A

x Ax

v vm m m m m
v v

⎛ ⎞ ⎛ ⎞− × + × ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ × − × ⎝ ⎠⎝ ⎠⎝ ⎠
 

(b) Eq. 8.25: 7 62 2 (1.50 10  m/s) 3.00 10  m/s.
9.00

A
Bx

A B

m mv v
m m m m

⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE: Can use our calculated Bxv  and Bm  to show that xP  is constant and that 1 2.K K=  
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 8.47. IDENTIFY: Apply Eq. 8.28. 
SET UP: 0.300 kgAm = , 0.400 kgBm = , 0.200 kgCm = . 

EXECUTE: cm
A A B B C C

A B C

m x m x m xx
m m m

+ +
=

+ +
. 

cm
(0.300 kg)(0.200 m) (0.400 kg)(0.100 m) (0.200 kg)( 0.300 m) 0.0444 m

0.300 kg 0.400 kg 0.200 kg
x + + −

= =
+ +

. 

cm
A A B B C C

A B C

m y m y m yy
m m m

+ +
=

+ +
. 

cm
(0.300 kg)(0.300 m) (0.400 kg)( 0.400 m) (0.200 kg)(0.600 m) 0.0556 m

0.300 kg 0.400 kg 0.200 kg
y + − +

= =
+ +

. 

EVALUATE: There is mass at both positive and negative x and at positive and negative y and therefore the center 
of mass is close to the origin. 

 8.48. IDENTIFY: Calculate cm.x  
SET UP: Apply Eq. 8.28 with the sun as mass 1 and Jupiter as mass 2. Take the origin at the sun and let Jupiter 
lie on the positive x-axis. 

 
Figure 8.48 

1 1 2 2
cm

1 2

m x m xx
m m

+
=

+
 

EXECUTE: 1 0x =  and 11
2 7.78 10  mx = ×  

( )( )27 11
8

cm 30 27

1.90 10  kg 7.78 10  m
7.42 10  m

1.99 10  kg 1.90 10  kg
x

× ×
= = ×

× + ×
 

The center of mass is 87.42 10  m×  from the center of the sun and is on the line connecting the centers of the sun 
and Jupiter. The sun�s radius is 86.96 10  m×  so the center of mass lies just outside the sun. 
EVALUATE: The mass of the sun is much greater than the mass of Jupiter so the center of mass is much closer to 
the sun. For each object we have considered all the mass as being at the center of mass (geometrical center) of the 
object. 

 8.49. IDENTIFY: The location of the center of mass is given by Eq. 8.48. The mass can be expressed in terms of the 
diameter. Each object can be replaced by a point mass at its center. 
SET UP: Use coordinates with the origin at the center of Pluto and the +x direction toward Charon, so P 0x =  

C 19,700 kmx = . 3 34 1
3 6m V r dρ ρ π ρπ= = = . 

EXECUTE: 
3 31
CP P C C C C6

cm C C C3 3 3 31 1
P C P C P C P C6 6

dm x m x m dx x x x
m m m m d d d d

ρπ
ρπ ρπ

⎛ ⎞⎛ ⎞ ⎛ ⎞+
= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

3
3

cm 3 3

[1250 km] (19,700 km) 2.52 10  km
[2370 km] [1250 km]

x
⎛ ⎞

= = ×⎜ ⎟+⎝ ⎠
. 

The center of mass of the system is 32.52 10  km×  from the center of Pluto. 
EVALUATE: The center of mass is closer to Pluto because Pluto has more mass than Charon. 

 8.50. IDENTIFY: Apply Eqs. 8.28, 8.30 and 8.32. There is only one component of position and velocity. 
SET UP: 1200 kgAm = , 1800 kgBm = . 3000 kgA BM m m= + = . Let +x be to the right and let the origin be at 
the center of mass of the station wagon. 

EXECUTE: (a) cm
0 (1800 kg)(40.0 m) 24.0 m.

1200 kg 1800 kg
A A B B

A B

m x m xx
m m

+ +
= = =

+ +
 

The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the lead 
car. 
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(b) 4
1 1 (1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 5.04 10  kg m/s.x A A B BP m v m v= + = + = × ⋅  

(c) , ,
cm,

(1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 16.8 m/s.
1200 kg 1800 kg

A A x B B x
x

A B

m v m v
v

m m
+ +

= = =
+ +

 

(d) 4
cm- (3000 kg)(16.8 m/s) 5.04 10  kg m/sx xP Mv= = = × ⋅ , the same as in part (b). 

EVALUATE: The total momentum can be calculated either as the vector sum of the momenta of the individual 
objects in the system, or as the total mass of the system times the velocity of the center of mass. 

 8.51. IDENTIFY: Use Eq. 8.28 to find the x and y coordinates of the center of mass of the machine part for each 
configuration of the part. In calculating the center of mass of the machine part, each uniform bar can be represented 
by a point mass at its geometrical center. 
SET UP: Use coordinates with the axis at the hinge and the +x and +y axes along the horizontal and vertical bars 
in the figure in the problem. Let i i( , )x y  and f f( , )x y  be the coordinates of the bar before and after the vertical bar 
is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be the ball. 

EXECUTE: 1 1 2 2 3 3
i

1 2 3

(4.00 kg)(0.750 m) 0 0 0.333 m
4.00 kg 3.00 kg 2.00 kg

m x m x m xx
m m m

+ + + +
= = =

+ + + +
. 

1 1 2 2 3 3
i

1 2 3

0 (3.00 kg)(0.900 m) (2.00 kg)(1.80 m) 0.700 m
9.00 kg

m y m y m yy
m m m

+ + + +
= = =

+ +
. 

f
(4.00 kg)(0.750 m) (3.00 kg)( 0.900 m) (2.00 kg)( 1.80 m) 0.366 m

9.00 kg
x + − + −

= = − . 

f 0y = . f i 0.700 mx x− = −  and f i 0.700 my y− = − . The center of mass moves 0.700 m to the right and 0.700 m 
upward. 
EVALUATE: The vertical bar moves upward and to the right so it is sensible for the center of mass of the machine 
part to move in these directions. 

 8.52. (a) IDENTIFY: Use Eq. 8.28. 
SET UP: The target variable is 1.m  
EXECUTE: cm 2.0 m,x =  cm 0y =  

( ) ( )( )
( )

11 1 2 2
cm

1 2 1 1

0 0.10 kg 8.0 m 0.80 kg m
0.10 kg 0.10 kg

mm x m xx
m m m m

++ ⋅
= = =

+ + +
. 

cm 2.0 mx =  gives 
1

0.80 kg m2.0 m
0.10 kgm

⋅
=

+
. 

1
0.80 kg m0.10 kg 0.40 kg.

2.0 m
m ⋅

+ = =  

1 0.30 kg.m =  

EVALUATE: The cm is closer to 1m  so its mass is larger then 2.m  

(b) IDENTIFY: Use Eq. 8.32 to calculate .P
!

 
SET UP: ( )cm

�5.0 m/s .  v j!
5  

( )( ) ( )cm
� �0.10 kg 0.30 kg 5.0 m/s 2.0 kg m/s .M    +   ⋅P v i i

! !
5 5 5  

(c) IDENTIFY: Use Eq. 8.31. 

SET UP: 1 1 2 2
cm

1 2

.m m
m m

+
  

+
v vv
! !!

5  The target variable is 1.v
!  Particle 2 at rest says 2 0.v =  

EXECUTE: ( ) ( )1 2
1 cm

1

0.30 kg 0.10 kg � �5.00 m/s 6.7 m/s .
0.30 kg

m m
m

⎛ ⎞ ⎛ ⎞+ +
      ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
v v i i! !
5 5 5  

EVALUATE: Using the result of part (c) we can calculate 1p
!  and 2p

!  and show that P
!

 as calculated in part (b) 
does equal 1 2.  p p! !

1  
 8.53. IDENTIFY: There is no net external force on the system of James, Ramon and the rope and the momentum of the 

system is conserved and the velocity of its center of mass is constant. Initially there is no motion, and the velocity 
of the center of mass remains zero after Ramon has started to move. 
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SET UP: Let +x be in the direction of Ramon�s motion. Ramon has mass R 60.0 kgm =  and James has mass 

J 90.0 kgm = . 

EXECUTE: R R J J
cm-

R J

0x x
x

m v m vv
m m

+
= =

+
. 

R
J R

J

60.0 kg (0.700 m/s) 0.47 m/s
90.0 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. James� speed is 0.47 m/s. 

EVALUATE: As they move, the two men have momenta that are equal in magnitude and opposite in direction, and 
the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves farther than James in the 
same time interval. This is consistent with Ramon having a greater speed. 

 8.54. (a) IDENTIFY and SET UP: Apply Eq. 8.28 and solve for 1m  and 2.m  

EXECUTE: 1 1 2 2
cm

1 2

m y m yy
m m

+
=

+
 

1 1 2 2 1
1 2

cm

(0) (0.50 kg)(6.0 m) 1.25 kg
2.4 m

m y m y mm m
y
+ +

+ = = =  and 1 0.75 kg.m =  

EVALUATE: cmy  is closer to 1m  since 1 2.m m>  
(b) IDENTIFY and SET UP: Apply /d dt  a v! !

5  for the cm motion. 

EXECUTE: ( )3cm
cm

�1.5 m/s .d t
dt

    
va i
!!

5 5  

(c) IDENTIFY and SET UP: Apply Eq. 8.34. 
EXECUTE: ( )( )3

ext cm
�1.25 kg 1.5 m/s .M t    ∑F a i

! !
5 5  

At 3.0 s,t =  ( )( )( ) ( )3
ext

� �1.25 kg 1.5 m/s 3.0 s 5.6 N .    ∑F i i
!
5 5  

EVALUATE: cm-xv  is positive and increasing so cm xa −  is positive and extF
!

 is in the -direction.x+  There is no 
motion and no force component in the y-direction. 

 8.55. IDENTIFY: Apply d
dt∑ PF =
!!

 to the airplane. 

SET UP: ( ) 1n nd t nt
dt

−= . 21 N 1 kg m/s= ⋅ . 

EXECUTE: 3 2[ (1.50 kg m/s ) ] (0.25 kg m/s )d t
dt

  − ⋅   ⋅
P i j
! ! !
5 1 . (1.50 N/s)xF t= − , 0.25 NyF = , 0zF = . 

EVALUATE: There is no momentum or change in momentum in the z direction and there is no force component 
in this direction. 

 8.56. IDENTIFY: Use Eq. 8.38, applied to a finite time interval. 
SET UP: ex 1600 m/sv =  

EXECUTE: (a) ex
0.0500 kg(1600 m/s) 80.0 N
1.00 s

mF v
t

Δ −
= − = − = +

Δ
. 

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered by 
ejecting the gas in a direction with a component perpendicular to the rocket�s velocity and braked by ejecting it in a 
direction parallel (as opposed to antiparallel) to the rocket�s velocity. 
EVALUATE: The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of gas 
ejected per second. 

 8.57. IDENTIFY: exv dma
m dt

= − . Assume that /dm dt  is constant over the 5.0 s interval, since m doesn�t change much 

during that interval. The thrust is ex
dmF v
dt

= − . 

SET UP: Take m to have the constant value 110 kg 70 kg 180 kg+ = . /dm dt  is negative since the mass of the 
MMU decreases as gas is ejected. 

EXECUTE: (a) 2

ex

180 kg (0.029 m/s ) 0.0106 kg/s
490 m/s

dm m a
dt v

⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

. In 5.0 s the mass that is ejected is 

(0.0106 kg/s)(5.0 s) 0.053 kg= . 

(b) ex (490 m/s)( 0.0106 kg/s) 5.19 NdmF v
dt

= − = − − = . 
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EVALUATE: The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to take m 
to be constant. 

 8.58. IDENTIFY and SET UP: Apply Eq. 8.39: ex .v dma
m dt

= −  Solve for / .dm dt  

EXECUTE:  

( )( )2

ex

6000 kg 25.0 m/s
75.0 kg/s

2000 m/s
dm ma
dt v

= − = − = − . 

So in 1 s the rocket must eject 75.0 kg of gas. 
EVALUATE: We have approximated /dm dt  by / .m tΔ Δ  We have assumed that 225.0 m/s  is the average 
acceleration for the first second. 

 8.59. IDENTIFY: Use Eq. 8.39, applied to a finite time interval. Solve for exv . 

SET UP: 
160

m m
t

Δ
= −

Δ
. 

EXECUTE: exv ma
m t

Δ
= −

Δ
. 

2
3

ex
15.0 m/s 2.40 10  m/s 2.40 km/s

/ /
160

av
m mm m
t

−
= − = = × =

Δ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

 

EVALUATE: The acceleration is proportional to the speed of the exhaust gas and to the rate at which mass is 
ejected. 

 8.60. IDENTIFY and SET UP: av( )F t JΔ =  relates the impulse J to the average thrust avF . Eq. 8.38 applied to a finite time 

interval gives av ex
mF v
t

Δ
= −

Δ
. 0

0 ex ln mv v v
m

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. The remaining mass m after 1.70 s is 0.0133 kg. 

EXECUTE: (a) 10.0 N s 5.88 N
1.70 s

JF
t

⋅
= = =

Δ
. av max/ 0.442F F = . 

(b) av
ex 800 m/s

0.0125 kg
F tv Δ

= − =
−

. 

(c) 0 0v =  and 0
ex

0.0258 kgln (800 m/s)ln 530 m/s
0.0133 kg

mv v
m

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EVALUATE: The acceleration of the rocket is not constant. It increases as the mass remaining decreases. 

 8.61. IDENTIFY: 0
0 ex ln mv v v

m
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. 

SET UP: 0 0v = . 

EXECUTE: 
3

0

ex

8.00 10  m/sln 3.81
2100 m/s

m v
m v

×⎛ ⎞ = = =⎜ ⎟
⎝ ⎠

 and 3.810 45.2m e
m

= = . 

EVALUATE: Note that the final speed of the rocket is greater than the relative speed of the exhaust gas. 
 8.62. IDENTIFY and SET UP: Use Eq. 8.40: ( )0 ex 0ln /v v v m m− = . 

0 0v =  (�fired from rest�), so ( )ex 0/ ln /v v m m= . 

Thus ex/
0 / ,v vm m e=  or ex/

0/ v vm m e−= . 
If v is the final speed then m is the mass left when all the fuel has been expended; 0/m m  is the fraction of the 
initial mass that is not fuel. 
(a) EXECUTE: 3 51.00 10 3.00 10  m/sv c−= × = ×  gives 

5(3.00 10 m/s) /(2000 m/s) 66
0/ 7.2 10m m e− × −= = × . 

EVALUATE: This is clearly not feasible, for so little of the initial mass to not be fuel. 
(b) EXECUTE: 3000 m/sv =  gives (3000 m/s)/(2000 m/s)

0/ 0.223m m e−= = . 
EVALUATE: 22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible. 

 8.63. IDENTIFY: Use the heights to find 1yv  and 2 yv , the velocity of the ball just before and just after it strikes the slab. 

Then apply y y yJ F t p= Δ = Δ . 
SET UP: Let +y be downward. 
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EXECUTE: (a) 21
2 mv mgh=  so 2v gh= ± . 

2
1 2(9.80 m/s )(2.00 m) 6.26 m/syv = + = . 2

2 2(9.80 m/s )(1.60 m) 5.60 m/syv = − = − . 
3

2 1( ) (40.0 10  kg)( 5.60 m/s 6.26 m/s) 0.474 kg m/sy y y yJ p m v v −= Δ = − = × − − = − ⋅ . 

The impulse is 0.474 kg m/s⋅ , upward. 

(b) 3

0.474 kg m/s 237 N
2.00 10  s

y
y

J
F

t −

− ⋅
= = = −

Δ ×
. The average force on the ball is 237 N, upward. 

EVALUATE: The upward force on the ball changes the direction of its momentum. 
 8.64. IDENTIFY: Momentum is conserved in the explosion. At the highest point the velocity of the boulder is zero. 

Since one fragment moves horizontally the other fragment also moves horizontally. Use projectile motion to relate 
the initial horizontal velocity of each fragment to its horizontal displacement. 
SET UP: Use coordinates where +x is north. Since both fragments start at the same height with zero vertical 
component of velocity, the time in the air, t, is the same for both. Call the fragments A and B, with A being the one 
that lands to the north. Therefore, 3B Am m= . 

EXECUTE: Apply 1 2x xP P=  to the collision: 0 A Ax B Bxm v m v= + . /3A
Bx Ax Ax

B

mv v v
m

= − = − . Apply projectile motion 

to the motion after the collision: 0 0xx x v t− = . Since t is the same, 0 0( ) ( )A B

Ax Bx

x x x x
v v
− −

=  and 

0 0 0
/3( ) ( ) ( ) (274 m) /3 91.3 mBx Ax

B A A
Ax Ax

v vx x x x x x
v v

⎛ ⎞ ⎛ ⎞−
− = − = − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. The other fragment lands 91.3 m 

directly south of the point of explosion. 
EVALUATE: The fragment that has three times the mass travels one-third as far. 

 8.65. IDENTIFY: The impulse, force and change in velocity are related by Eq. 8.9 
SET UP: / 0.0571 kgm w g= = . Since the force is constant, avF = F

! !
. 

EXECUTE: (a) 3( 380 N)(3.00 10  s) 1.14 N sx xJ F t −= Δ = − × = − ⋅ . 3(110 N)(3.00 10  s) 0.330 N sy yJ F t −= Δ = × = ⋅ . 

(b) 2 1
1.14 N s 20.0 m/s 0.04 m/s

0.0571 kg
x

x x
Jv v
m

− ⋅
= + = + = . 2 1

0.330 N s ( 4.0 m/s) 1.8 m/s
0.0571 kg

y
y y

J
v v

m
⋅

= − = + − = + . 

EVALUATE: The change in velocity Δv!  is in the same direction as the force, so Δv!  has a negative x component 
and a positive y component. 

 8.66. IDENTIFY: The horizontal component of the momentum of the system of cars is conserved. 
SET UP: Let +x be the direction the cars are traveling. Each car has mass m. Let 1v  be the initial speed of the 
three cars. 1

2 15v v= . Let N be the number of cars in the final collection. 

EXECUTE: 1 2x xP P= . 1 2(3 ) ( )m v Nm v= . 1 1

2 1

3 3 15
/5

v vN
v v

= = = . 

EVALUATE: In the complete absence of friction or other external horizontal forces this process of adding cars and 
slowing down continues forever. 

 8.67. IDENTIFY: x Ax BxP p p= +  and y Ay ByP p p= + . 

SET UP: Let object A be the convertible and object B be the SUV. Let +x be west and +y be south, 0Axp =  and 
0Byp = . 

EXECUTE: (8000 kg m/s)sin 60.0 6928 kg m/sxP = ⋅ = ⋅° , so 6928 kg m/sBxp = ⋅  and 
6928 kg m/s 3.46 m/s

2000 kgBxv ⋅
= = . 

(8000 kg m/s)cos60.0 4000 kg m/syP = ⋅ = ⋅° , so 4000 kg m/sBxp = ⋅  and 4000 kg m/s 2.67 m/s
1500 kgAyv ⋅

= = . 

The convertible has speed 2.67 m/s and the SUV has speed 3.46 m/s. 
EVALUATE: Each component of the total momentum arises from a single vehicle. 

 8.68. IDENTIFY: The total momentum of the system is conserved and is equal to zero, since the pucks are released 
from rest. 
SET UP: Each puck has the same mass m. Let +x be east and +y be north. Let object A be the puck that moves 
west. All three pucks have the same speed v. 
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EXECUTE: 1 2x xP P=  gives 0 Bx Cxmv mv mv= − + +  and Bx Cxv v v= + . 1 2y yP P=  gives 0 By Cymv mv= +  and 

By Cyv v= − . Since B Cv v=  and the y components are equal in magnitude, the x components must also be equal: 

Bx Cxv v=  and Bx Cxv v v= +  says / 2Bx Cxv v v= = . If Byv  is positive then Cyv  is negative. The angle θ  that puck B 

makes with the x axis is given by / 2cos v
v

θ =  and 60θ = ° . One puck moves in a direction 60°  north of east and 

the other puck moves in a direction 60°  south of east. 
EVALUATE: Each component of momentum is separately conserved. 

 8.69. IDENTIFY: The x and y components of the momentum of the system are conserved. 
Set Up: After the collision the combined object with mass tot 0.100 kgm =  moves with velocity 2v

! . Solve for 

Cxv  and Cyv . 

EXECUTE: (a) 1 2x xP P=  gives tot 2A Ax B Bx C Cx xm v m v m v m v+ + = . 

tot 2A Ax B Bx x
Cx

C

m v m v m vv
m

+ −
= −  

(0.020 kg)( 1.50 m/s) (0.030 kg)( 0.50 m/s)cos60 (0.100 kg)(0.50 m/s)
0.050 kgCxv − + − −

= −
° . 

1.75 m/sCxv = . 

1 2y yP P=  gives tot 2A Ay B By C Cy ym v m v m v m v+ + = . 

tot 2 (0.030 kg)( 0.50 m/s)sin 60 0.260 m/s
0.050 kg

A Ay B By y
Cy

C

m v m v m v
v

m
+ − −

= − = − = +
° . 

(b) 2 2 1.77 m/sC Cx Cyv v v= + = . 2 1K K KΔ = − . 
2 2 2 21 1 1 1

2 2 2 2(0.100 kg)(0.50 m/s) [ (0.020 kg)(1.50 m/s) (0.030)(0.50 m/s) (0.050 kg)(1.77 m/s) ]KΔ = − + +
0.092 JKΔ = − . 

EVALUATE: Since there is no horizontal external force the vector momentum of the system is conserved. The 
forces the spheres exert on each other do negative work during the collision and this reduces the kinetic energy of 
the system. 

 8.70. IDENTIFY: Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and the 
y-axis to be north (parallel to the ground and perpendicular to the tracks). Then xP  is conserved and yP  is not 
conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks. 
(a) SET UP: Let A be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways relative 
to the car it still has the same eastward component of velocity, 5.00 m/s,  as it had before it was thrown. 

 
Figure 8.70a 

xP  is conserved so ( ) 1 2 2A B A A x B B xm m v m v m v+ = +  

EXECUTE: ( )( ) ( )( ) ( ) 2200 kg 5.00 m/s 25.0 kg 5.00 m/s 175 kg B xv= + . 

2
1000 kg m/s 125 kg m/s 5.00 m/s.

175 kgB xv ⋅ − ⋅
= =  

The final velocity of the car is 5.00 m/s,  east (unchanged). 
EVALUATE: The thrower exerts a force on the mass in the y-direction and by Newton�s 3rd law the mass exerts 
an equal and opposite force in the -directiony−  on the thrower and car. 
(b) SET UP: We are applying Px = constant in coordinates attached to the ground, so we need the final velocity of 
A relative to the ground. Use the relative velocity addition equation. Then use Px = constant to find the final 
velocity of the car. 
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EXECUTE: / / /A E A B B E= +v v v! ! !  

/ 5.00 m/sB Ev = +  

/ 5.00 m/sA Bv = −  (minus since the mass is moving west relative to the car). This gives / 0;A Ev =  the mass is at rest 
relative to the earth after it is thrown backwards from the car. 
As in part (a), ( ) 1 2 2 .A B A A x B B xm m v m v m v+ = +  

Now 2 0,A xv =  so ( ) 1 2 .A B B B xm m v m v+ =  

( )2 1
200 kg 5.00 m/s 5.71 m/s.
175 kg

A B
B x

B

m mv v
m

⎛ ⎞ ⎛ ⎞+
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The final velocity of the car is 5.71 m/s,  east. 
EVALUATE: The thrower exerts a force in the -directionx−  so the mass exerts a force on him in the -directionx+  
and he and the car speed up. 
(c) SET UP: Let A be the 25.0 kg mass and B be the car (mass 200 kg).Bm =  

 
Figure 8.70b 

xP  is conserved so ( )1 1 2A A x B B x A B xm v m v m m v+ = + . 

EXECUTE: ( )1 1 2A A B B A B xm v m v m m v− + = + . 

( )( ) ( )( )1 1
2

200 kg 5.00 m/s 25.0 kg 6.00 m/s
3.78 m/s.

200 kg 25.0 kg
B B A A

x
A B

m v m vv
m m

−−
= = =

+ +
 

The final velocity of the car is 3.78 m/s,  east. 
EVALUATE: The mass has negative xp  so reduces the total xP  of the system and the car slows down. 

 8.71. IDENTIFY: The horizontal component of the momentum of the sand plus railroad system is conserved. 
SET UP: As the sand leaks out it retains its horizontal velocity of 15.0 m/s. 
EXECUTE: The horizontal component of the momentum of the sand doesn�t change when it leaks out so the 
speed of the railroad car doesn�t change; it remains 15.0 m/s. In Exercise 8.27 the rain is falling vertically and 
initially has no horizontal component of momentum. Its momentum changes as it lands in the freight car. 
Therefore, in order to conserve the horizontal momentum of the system the freight car must slow down. 
EVALUATE: The horizontal momentum of the sand does change when it strikes the ground, due to the force that 
is external to the system of sand plus railroad car. 

 8.72. IDENTIFY: Kinetic energy is 21
2K mv=  and the magnitude of the momentum is p mv= . The force and the time t 

it acts are related to the change in momentum whereas the force and distance d it acts are related to the change in 
kinetic energy. 
SET UP: Assume the net forces are constant and let the forces and the motion be along the x axis. The impulse-
momentum theorem then says Ft p= Δ  and the work-energy theorem says Fd K= Δ . 

EXECUTE: (a) 2 41
N 2 (840 kg)(9.0 m/s) 3.40 10  JK = = × . 2 41

P 2 (1620 kg)(5.0 m/s) 2.02 10  JK = = × . The Nash has 

the greater kinetic energy and N

P

1.68K
K

= . 

(b) 3
N (840 kg)(9.0 m/s) 7.56 10  kg m/sp = = × ⋅ . 3

P (1620 kg)(5.0 m/s) 8.10 10  kg m/sp = = × ⋅ . The Packard has 

the greater magnitude of momentum and N

P

0.933p
p

= . 

(c) Since the cars stop the magnitude of the change in momentum equals the initial momentum. Since P Np p> , 

P NF F>  and N N

P P

0.933F p
F p

= = . 

(d) Since the cars stop the magnitude of the change in kinetic energy equals the initial kinetic energy. Since 

N PK K> , N PF F>  and N N

P P

1.68F K
F K

= = . 

EVALUATE: If the stopping forces were the same, the Packard would have a larger stopping time but would 
travel a shorter distance while stopping. This consistent with it having a smaller initial speed. 
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 8.73. IDENTIFY: Use the impulse-momentum theorem to relate the average force on the bullets to their rate of change 
in momentum. By Newton�s third law, the average force the weapon exerts on the bullets is equal in magnitude 
and opposite in direction to the recoil force the bullets exert on the weapon. 
SET UP: Consider a time interval of 1.00 minute. Let +x be the direction of motion of the bullets and use 
coordinated fixed to the ground. The bullets start from rest. 

EXECUTE: avF t pΔ = Δ  gives 
3

av
(1000)(7.45 10  kg)(293 m/s) 36.4 N

60.0 s
F

−×
= = . The recoil force is 36.4 N. 

EVALUATE: The change in momentum for each bullet is small since the mass is small, but over 16 bullets are 
fired per second. 

 8.74. IDENTIFY: Find k for the spring from the forces when the frame hangs at rest, use constant acceleration equations 
to find the speed of the putty just before it strikes the frame, apply conservation of momentum to the collision 
between the putty and the frame and then apply conservation of energy to the motion of the frame after the collision. 
SET UP: Use the free-body diagram for the frame when it hangs at rest on the end of the spring to find the force 
constant k of the spring. Let s be the amount the spring is stretched. 

 
Figure 8.74a 

EXECUTE: y yF ma=∑ . 

0mg ks− + = . 

( )( )20.150 kg 9.80 m/s
29.4 N/m

0.050 m
mgk
s

= = = . 

SET UP: Next find the speed of the putty when it reaches the frame. The putty falls with acceleration ,a g=  
downward. 

 
Figure 8.74b 

0 0v =  

0 0.300 my y− =  
29.80 m/sa = +  

?v =  
2 2

0 02 ( )v v a y y= + −  

EXECUTE: ( ) ( )( )2
02 2 9.80 m/s 0.300 m 2.425 m/sv a y y= − = = . 

SET UP: Apply conservation of momentum to the collision between the putty (A) and the frame (B): 

 
Figure 8.74c 

yP  is conserved, so ( )1 2A A A Bm v m m v− = − + . 

EXECUTE: ( )2 1
0.200 kg 2.425 m/s 1.386 m/s
0.350 kg

A
A

A B

mv v
m m

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

. 
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SET UP: Apply conservation of energy to the motion of the frame on the end of the spring after the collision. Let 
point 1 be just after the putty strikes and point 2 be when the frame has its maximum downward displacement. Let 
d be the amount the frame moves downward. 

 
Figure 8.74d 

When the frame is at position 1 the spring is stretched a distance 1 0.050 m.x =  When the frame is at position 2 the 
spring is stretched a distance 2 0.050 m .x d= +  Use coordinates with the y-direction upward and 0y =  at the 
lowest point reached by the frame, so that 1y d=  and 2 0.y =  Work is done on the frame by gravity and by the 
spring force, so other 0,W =  and el gravity.U U U= +  

EXECUTE: 1 1 other 2 2K U W K U+ + = + . 

other 0W = . 

( )( )221 1
1 12 2 0.350 kg 1.386 m/s 0.3362 JK mv= = = . 

( )( ) ( )( )22 21 1
1 1,el 1, grav 1 12 2 29.4 N/m 0.050 m 0.350 kg 9.80 m/sU U U kx mgy d= + = + = + . 

( )1 0.03675 J 3.43 NU d= + . 

( )( )221 1
2 2,el 2,grav 2 22 2 29.4 N/m 0.050 mU U U kx mgy d= + = + = + . 

( ) ( ) 2
2 0.03675 J 1.47 N 14.7 N/mU d d= + + . 

Thus ( ) ( ) ( ) 20.3362 J 0.03675 J 3.43 N 0.03675 J 1.47 N 14.7 N/md d d+ + = + + . 

( ) ( )214.7 N/m 1.96 N 0.3362 J 0d d− − = . 

( ) ( ) ( )( )21/ 29.4 1.96 1.96 4 14.7 0.3362  m 0.0667 m 0.1653 m.d ⎡ ⎤= ± − − = ±⎢ ⎥⎣ ⎦
 

The solution we want is a positive (downward) distance, so 0.0667 m 0.1653 m 0.232 m.d = + =  
EVALUATE: The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational potential 
energy is not equal to the increase in potential energy stored in the spring. 

 8.75. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the 
collision. 
SET UP: Let +x be to the right. The total mass is bullet block 1.00 kgm m m= + = . The spring has force constant 

2

0.750 N 300 N/m
0.250 10  m

F
k

x −= = =
×

. Let V be the velocity of the block just after impact. 

EXECUTE: (a) Conservation of energy for the motion after the collision gives 1 el2K U= . 2 21 1
2 2mV kx=  and 

300 N/m(0.150 m) 2.60 m/s
1.00 kg

kV x
m

= = = . 

(b) Conservation of momentum applied to the collision gives bullet 1m v mV= . 

1 3
bullet

(1.00 kg)(2.60 m/s) 325 m/s
8.00 10  kg

mVv
m −= = =

×
. 

EVALUATE: The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum 
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision. 

 8.76. IDENTIFY: The horizontal components of momentum of the system of bullet plus stone are conserved. The 
collision is elastic if 1 2.K K=  
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SET UP: Let A be the bullet and B be the stone. 
(a)  

 
Figure 8.76 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 

1 2A A B B xm v m v= . 

( )
3

2 1
6.00 10  kg 350 m/s 21.0 m/s

0.100 kg
A

B x A
B

mv v
m

−⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

yP  is conserved so 1 1 2 2A A y B B y A A y B B ym v m v m v m v+ = + . 

2 20 A A B B ym v m v= − + . 

( )
3

2 2
6.00 10  kg 250 m/s 15.0 m/s

0.100 kg
A

B y A
B

mv v
m

−⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

( ) ( )2 22 2
2 2 2 21.0 m/s 15.0 m/s 25.8 m/sB B x B yv v v= + = + = . 

2

2

15.0 m/stan 0.7143;
21.0 m/s

B y

B x

v
v

θ = = =  35.5θ = °  (defined in the sketch). 

(b) To answer this question compare 1K  and 2K  for the system: 

( )( )22 2 31 1 1
1 1 12 2 2 6.00 10  kg 350 m/s 368 JA A B BK m v m v −= + = × = . 

( )( ) ( )( )2 22 2 31 1 1 1
2 2 22 2 2 26.00 10  kg 250 m/s 0.100 kg 25.8 m/s 221 JA A B BK m v m v −= + = × + = . 

2 1 221 J 368 J 147 JK K KΔ = − = − = − . 

EVALUATE: The kinetic energy of the system decreases by 147 J as a result of the collision; the collision is not 
elastic. Momentum is conserved because ext, 0xF =∑  and ext, 0.yF =∑  But there are internal forces between the 
bullet and the stone. These forces do negative work that reduces K. 

 8.77. IDENTIFY: Apply conservation of momentum to the collision between the two people. Apply conservation of 
energy to the motion of the stuntman before the collision and to the entwined people after the collision. 
SET UP: For the motion of the stuntman, 1 2 5.0 my y− = . Let Sv  be the magnitude of his horizontal velocity just 
before the collision. Let V be the speed of the entwined people just after the collision. Let d be the distance they 
slide along the floor. 
EXECUTE: (a) Motion before the collision: 1 1 2 2K U K U+ = + . 1 0K =  and 21

S 1 22 ( )mv mg y y= − . 
2

S 1 22 ( ) 2(9.80 m/s )(5.0 m) 9.90 m/sv g y y= − = = . 

Collision: S S totm v m V= . S
S

tot

80.0 kg (9.90 m/s) 5.28 m/s
150.0 kg

mV v
m

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
. 

(b) Motion after the collision: 1 1 other 2 2K U W K U+ + = +  gives 21
tot k tot2 0m V m gdμ− = . 

2 2

2
k

(5.28 m/s) 5.7 m
2 2(0.250)(9.80 m/s )
Vd

gμ
= = = . 

EVALUATE: Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the collision 
is less than the initial potential energy of the stuntman. 

 8.78. IDENTIFY: Apply conservation of energy to the motion before and after the collision and apply conservation of 
momentum to the collision. 
SET UP: Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each object 
have mass m. 
EXECUTE: Conservation of energy says 21

2 ;mv mgR=  2v gR= . 
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SET UP: This is speed 1v  for the collision. Let 2v  be the speed of the combined object just after the collision. 

EXECUTE: Conservation of momentum applied to the collision gives 1 22mv mv=  so 2 1 / 2 / 2v v gR= =  
SET UP: Apply conservation of energy to the motion of the combined object after the collision. Let 3y  be the 
final height above the bottom of the bowl. 
EXECUTE: ( ) ( )21

2 32 2 2m v m gy= . 
2
2

3
1 / 4

2 2 2
v gRy R
g g

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

EVALUATE: Mechanical energy is lost in the collision, so the final gravitational potential energy is less than the 
initial gravitational potential energy. 

 8.79. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. Apply conservation of energy to the 
motion of the block after the collision. 
SET UP: Object B is the block, initially at rest. If L is the length of the wire and θ  is the angle it makes with the 
vertical, the height of the block is (1 cos )y L θ= − . Initially, 1 0y = . 

EXECUTE: Eq. 8.25 gives 2 2 (5.00 m/s) 2.50 m/s
3

A
B A

A B

m Mv v
m m M M

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
. Conservation of energy gives 

21
2 (1 cos )B B Bm v m gL θ= − . 

2 2

2

(2.50 m/s)cos 1 1 0.362
2 2(9.80 m/s )(0.500 m)

Bv
gL

θ = − = − =  and 68.8θ = ° . 

EVALUATE: Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision. 
 8.80. IDENTIFY: Apply conservation of energy to the motion before and after the collision. Apply conservation of 

momentum to the collision. 
SET UP: First consider the motion after the collision. The combined object has mass tot 25.0 kg.m =  Apply 

m  ∑F a
! !
5  to the object at the top of the circular loop, where the object has speed 3.v  The acceleration is 

2
rad 3 / ,a v R=  downward. 

EXECUTE: 
2
3vT mg m

R
+ = . 

The minimum speed 3v  for the object not to fall out of the circle is given by setting 0.T =  This gives 3 ,v Rg=  
where 3.50 m.R =  
SET UP: Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of the 
loop. Take 0y =  at point 2. Only gravity does work, so 2 2 3 3K U K U+ = +  

EXECUTE: ( )2 21 1
tot 2 tot 3 tot2 2 2m v m v m g R= + . 

Use 3v Rg=  and solve for 2:v  2 5 13.1 m/sv gR= = . 
SET UP: Now apply conservation of momentum to the collision between the dart and the sphere. Let 1v  be the 
speed of the dart before the collision. 
EXECUTE: ( ) ( )( )15.00 kg 25.0 kg 13.1 m/sv = . 

1 65.5 m/sv = . 
EVALUATE: The collision is inelastic and mechanical energy is removed from the system by the negative work 
done by the forces between the dart and the sphere. 

 8.81. IDENTIFY: Use Eq. 8.25 to find the speed of the hanging ball just after the collision. Apply m∑F = a
! !  to find 

the tension in the wire. After the collision the hanging ball moves in an arc of a circle with radius 1.35 mR =  and 
acceleration 2

rad /a v R= . 

SET UP: Let A be the 2.00 kg ball and B be the 8.00 kg ball. For applying m∑F = a
! !  to the hanging ball, let +y 

be upward, since rada
!  is upward. The free-body force diagram for the 8.00 kg ball is given in Figure 8.81. 

EXECUTE: 2 1
2 2[2.00kg] (5.00 m/s) 2.00 m/s

2.00 kg 8.00 kg
A

B x A x
A B

mv v
m m

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

. Just after the collision the 8.00 kg 

ball has speed 2.00 m/sv = . Using the free-body diagram, y yF ma=∑  gives radT mg ma− = .  

2 2
2 [2.00 m/s](8.00 kg) 9.80 m/s 102 N

1.35 m
vT m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 
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EVALUATE: The tension before the collision is the weight of the ball, 78.4 N. Just after the collision, when the 
ball has started to move, the tension is greater than this. 

arad

mg

y

x

T

 
Figure 8.81 

 8.82. IDENTIFY: The impulse applied to the ball equals its change in momentum. The height of the ball and its speed 
are related by conservation of energy. 
SET UP: Let +y be upward. 
EXECUTE: Applying conservation of energy to the motion of the ball from its height h to the floor gives 

21
12 mv mgh= , where 1v  is its speed just before it hits the floor. Just before it hits, it is traveling downward, so the 

velocity of the ball just before it hits the floor is 1 2yv gh= − . Applying conservation of energy to the motion of the 

ball from just after it bounces off the floor with speed 2v  to its maximum height of 0.90h  gives 21
22 (0.90 )mv mg h= . 

It is moving upward, so 2 2 (0.90 )yv g h= + . The impulse applied to the ball is 2 1 2 1( )y y y y yJ p p m v v= − = − =  

2 (0.90 ) 2 2.76m g h m gh m gh+ = . The floor exerts an upward impulse of 2.76m gh  to the ball. 
EVALUATE: The impulse increases when m increases and when h increases. The ball does not return to its initial 
height because some mechanical energy is dissipated during the collision with the floor. 

 8.83. IDENTIFY: Apply conservation of momentum to the collision between the bullet and the block and apply 
conservation of energy to the motion of the block after the collision. 
(a) SET UP: Collision between the bullet and the block: Let object A be the bullet and object B be the block. 
Apply momentum conservation to find the speed 2Bv  of the block just after the collision. 

 
Figure 8.83a 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 

1 2 2A A A A B B xm v m v m v= + . 

( ) ( )3
1 2

2

4.00 10  kg 400 m/s 120 m/s
1.40 m/s

0.800 kg
A A A

B x
B

m v v
v

m

−− × −
= = = . 

SET UP: Motion of the block after the collision. 
Let point 1 in the motion be just after the collision, where the block has the speed 1.40 m/s  calculated above, and 
let point 2 be where the block has come to rest. 

 
Figure 8.83b 

1 1 other 2 2K U W K U+ + = + . 
EXECUTE: Work is done on the block by friction, so other .fW W=  

( )other k kcos ,f kW W f s f s mgsφ μ= = = − = −  where 0.450 ms =  

1 20, 0U U= =  
21

1 1 22 , 0K mv K= =  (block has come to rest) 

Thus 21
1 k2 0.mv mgsμ− =  

( )
( )( )

22
1

k 2

1.40 m/s
0.222

2 2 9.80 m/s 0.450 m
v
gs

μ = = = . 



8-26 Chapter 8 

(b) For the bullet, 

( )( )22 31 1
1 12 2 4.00 10  kg 400 m/s 320 JK mv −= = × = . 

( )( )22 31 1
2 22 2 4.00 10  kg 120 m/s 28.8 JK mv −= = × = . 

2 1 28.8 J 320 J 291 JK K KΔ = − = − = − . 

The kinetic energy of the bullet decreases by 291 J. 
(c) Immediately after the collision the speed of the block is 1.40 m/s  so its kinetic energy is 

( )( )221 1
2 2 0.800 kg 1.40 m/s 0.784 J.K mv= = =  

EVALUATE: The collision is highly inelastic. The bullet loses 291 J of kinetic energy but only 0.784 J is gained 
by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is gained by the 
block. 

 8.84. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion of the 
block after the collision. 
SET UP: Let +x be to the right. Let the bullet be A and the block be B. Let V be the velocity of the block just after 
the collision. 
EXECUTE: Motion of block after the collision: 1 grav2K U= . 21

2 B Bm V m gh= . 

2 22 2(9.80 m/s )(0.450 10  m) 0.297 m/sV gh −= = × = . 

Collision: 2 0.297 m/sBv = . 1 2x xP P=  gives 1 2 2A A A A B Bm v m v m v= + . 
3

1 2
2 3

(5.00 10  kg)(450 m/s) (1.00 kg)(0.297 m/s) 391 m/s
5.00 10  kg

A A B B
A

A

m v m vv
m

−

−

− × −
= = =

×
. 

EVALUATE: We assume the block moves very little during the time it takes the bullet to pass through it. 
 8.85. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. The value of M where the kinetic energy 

loss lossK  of the neutron is a maximum satisfies loss / 0dK dM = . 
SET UP: Let object A be the neutron and object B be the nucleus. Let the initial speed of the neutron be 1Av . All 

motion is along the x-axis. 21
0 12 AK mv= . 

EXECUTE: (a) 2 1A A
m Mv v
m M

−
=

+
. 

2 2
2 2 2 2 01 1 1

loss 1 2 1 12 2 2 2 2

2 41
( ) ( )A A A A

m M m M K mMK mv mv m v v
m M M m M m

⎛ ⎞−⎡ ⎤= − = − = =⎜ ⎟⎢ ⎥⎜ ⎟+ + +⎣ ⎦⎝ ⎠
, as 

was to be shown. 

(b) loss
0 2 3

1 24 0
( ) ( )

dK MK m
dM M m M m

⎡ ⎤
= − =⎢ ⎥+ +⎣ ⎦

. 2 1M
M m

=
+

 and M m= . The incident neutron loses the most 

kinetic energy when the target has the same mass as the neutron. 
(c) When A Bm m= , Eq. 8.24 says 2 0Av = . The final speed of the neutron is zero and the neutron loses all of its 
kinetic energy. 
EVALUATE: When M m>> , 2 1A x A xv v≈ −  and the neutron rebounds with speed almost equal to its initial speed. 
In this case very little kinetic energy is lost; loss 04 /K K m M= , which is very small. 

 8.86. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. 
SET UP: Let all the motion be along the x axis. 1 0A xv v= . 

EXECUTE: (a) 2 0
A B

A x
A B

m mv v
m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 and 2 0
2 A

B x
A B

mv v
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. 21
1 02 AK m v= . 

2 2
2 21 1

2 2 0 12 2
A B A B

A A A x A
A B A B

m m m mK m v m v K
m m m m

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 and 
2

2

1

A A B

A B

K m m
K m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

. 

( )

2
2 21 1

2 2 0 12 2 2

2 4A A B
B B B x B

A B A B

m m mK m v m v K
m m m m

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

 and 
( )

2
2

1

4B A B

A B

K m m
K m m

=
+

. 

(b) (i) For A Bm m= , 2

1

0AK
K

=  and 2

1

1BK
K

= . (ii) For 5A Bm m= , 2

1

4
9

AK
K

=  and 2

1

5
9

BK
K

= . 
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(c) Equal sharing of the kinetic energy means 2 2

1 1

1
2

A BK K
K K

= = . 
2

1
2

A B

A B

m m
m m

⎛ ⎞−
=⎜ ⎟+⎝ ⎠

. 

2 2 2 22 2 4 2A B A B A A B Bm m m m m m m m+ − = + + . 2 26 0A A B Bm m m m− + = . The quadratic formula gives 5.83A

B

m
m

=  or 

0.172A

B

m
m

= . We can also verify that these values give 2

1

1
2

BK
K

= . 

EVALUATE: When A Bm m<<  or when A Bm m>> , object A retains almost all of the original kinetic energy. 
 8.87. IDENTIFY: Apply conservation of energy to the motion of the package before the collision and apply 

conservation of the horizontal component of momentum to the collision. 
(a) SET UP: Apply conservation of energy to the motion of the package from point 1 as it leaves the chute to 
point 2 just before it lands in the cart. Take 0y =  at point 2, so 1 4.00 m.y =  Only gravity does work, so 

1 1 2 2K U K U+ = + . 

EXECUTE: 2 21 1
1 1 22 2mv mgy mv+ = . 

2
2 1 12 9.35 m/sv v gy= + = . 

(b) SET UP: In the collision between the package and the cart momentum is conserved in the horizontal direction. 
(But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take x+  to be to the right. 
Let A be the package and B be the cart. 
EXECUTE: xP  is constant gives ( )1 1 2A A x B B x A B xm v m v m m v+ = + . 

1 5.00 m/sB xv = − . 

( )1 3.00 m/s cos37.0A xv = ° . (The horizontal velocity of the package is constant during its free-fall.) 

Solving for 2xv  gives 2 3.29 m/s.xv = −  The cart is moving to the left at 3.29 m/s  after the package lands in it. 
EVALUATE: The cart is slowed by its collision with the package, whose horizontal component of momentum is in 
the opposite direction to the motion of the cart. 

 8.88. IDENTIFY: Eqs. 8.24, 8.25, and 8.27 give the outcome of the elastic collision. 
SET UP: The blue puck is object A and the red puck is object B. Let +x be the direction of the initial motion of A. 

1 0.200 m/sA xv = , 2 0.050 m/sA xv =  and 1 0B xv =  
EXECUTE: (a) Eq. 8.27 gives 2 2 1 1 0.250 m/sB x A x B x A xv v v v= − + = . 

(b) Eq. 8.25 gives 1

2

0.200 m/s2 1 (0.0400 kg) 2 1 0.024 kg
0.250 m/s

A x
B A

B x

vm m
v

⎛ ⎞ ⎛ ⎞⎡ ⎤= − = − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
. 

EVALUATE: We can verify that our results give 1 2K K=  and 1 2x xP P= , as required in an elastic collision. 

 8.89. (a) IDENTIFY and SET UP: 2 21 1
2 2 .A A B BK m v m v= +  

Use cmA A′= +v v v! !  and cmB B′= +v v v! !  to replace Av  and Bv  in this equation. Note A′v
!  and B′v

!  as defined in the 
problem are the velocities of A and B in coordinates moving with the center of mass. Note also that 

cmA A B Bm m M′ ′ ′+ =v v v! ! !  where cm′v
!  is the velocity of the car in these coordinates. But that�s zero, so 

0;A A B Bm m′ ′    v v! !
1 5  we can use this in the proof. 

In part (b), use that P
!

 is conserved in a collision. 
EXECUTE: cm ,A A′= +v v v! !  so 2 2 2

cm cm2A A Av v v′ ′= + + ⋅v v! ! . 

cm ,B B′= +v v v! !  so 2 2 2
cm cm2B B Bv v v′ ′= + + ⋅v v! ! . 

(We have used that for a vector ,A
!

 2 .)A = ⋅A A
! !

 

Thus 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2A A A A A B B B B BK m v m v m m v m v m′ ′ ′ ′= + + ⋅ + + + ⋅v v v v! ! ! ! . 

( ) ( ) ( )2 2 21 1
cm cm2 2A B A A B B A A B BK m m v m v m v m m′ ′ ′ ′= + + + + ⋅+v v v! ! ! . 

But A Bm m M+ =  and as noted earlier 0,A A B Bm m′ ′ =+v v! !  so ( )2 2 21 1
cm2 2 .A A B BK Mv m v m v′ ′= + +  This is the result the 

problem asked us to derive. 
(b) EVALUATE: In the collision cmM=P v

! !  is constant, so 21
cm2 Mv  stays constant. The asteroids can lose all their 

relative kinetic energy but the 21
cm2 Mv  must remain. 
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 8.90. IDENTIFY: Eq. 8.27 describes the elastic collision, with x replaced by y. Speed and height are related by 
conservation of energy. 
SET UP: Let +y be upward. Let A be the large ball and B be the small ball, so 1B yv v= −  and 1A yv v= + . If the 

large ball has much greater mass than the small ball its speed is changed very little in the collision and 2A yv v= + . 

EXECUTE: (a) 2 2 1 1( )B y A y B y A yv v v v− = − −  gives 2 2 1 1 ( ) 3B y A y B y A yv v v v v v v v= + − + = − − + = + . The small ball 
moves upward with speed 3v after the collision. 
(b) Let 1h  be the height the small ball fell before the collision. Conservation of energy applied to the motion from 

the release point to the floor gives 1 2U K=  and 21
1 2mgh mv= . 

2

1 2
vh
g

= . Conservation of energy applied to the 

motion of the small ball from immediately after the collision to its maximum height 2h  (rebound distance) gives 

1 2K U=  and 21
22 (3 )m v mgh= . 

2

2 1
9 9
2
vh h
g

= = . The ball�s rebound distance is nine times the distance it fell. 

EVALUATE: The mechanical energy gained by the small ball comes from the energy of the large ball. But since 
the large ball�s mass is much larger it can give up this energy with very little decrease in speed. 

 8.91. IDENTIFY: Apply conservation of momentum to the system consisting of Jack, Jill and the crate. The speed of 
Jack or Jill relative to the ground will be different from 4.00 m/s. 
SET UP: Use an inertial coordinate system attached to the ground. Let +x be the direction in which the people 
jump. Let Jack be object A, Jill be B, and the crate be C. 
EXECUTE: (a) If the final speed of the crate is v, 2C xv v= − , and 2 2 4.00 m/sA x B xv v v= = − . 2 1x xP P=  gives 

2 2 2 0A A x B Bx C Cxm v m v m v+ + = . (75.0 kg)(4.00 m/s ) (45.0 kg)(4.00 m/s ) (15.0 kg)( ) 0v v v− + − + − =  and 

(75.0 kg 45.0 kg)(4.00 m/s) 3.56 m/s
75.0 kg 45.0 kg 15.0 kg

v +
= =

+ +
. 

(b) Let v′  be the speed of the crate after Jack jumps. Apply momentum conservation to Jack jumping: 

(75.0 kg)(4.00 m/s ) (60.0 kg)( ) 0v v′ ′− + − =  and (75.0 kg)(4.00 m/s) 2.22 m/s
135.0 kg

v′ = = . Then apply momentum 

conservation to Jill jumping, with v being the final speed of the crate: 1 2x xP P=  gives 
(60.0 kg)( ) (45.0 kg)(4.00 m/s ) (15.0 kg)( )v v v′− = − + − . 

(45.0 kg)(4.00 m/s) (60.0 kg)(2.22 m/s) 5.22 m/s
60.0 kg

v +
= = . 

(c) Repeat the calculation in (b), but now with Jill jumping first. 
Jill jumps: (45.0 kg)(4.00 m/s ) (90.0 kg)( ) 0v v′ ′− + − =  and 1.33 m/sv′ = . 
Jack jumps: (90.0 kg)( ) (75.0 kg)(4.00 m/s ) (15.0 kg)( )v v v′− = − + − . 

(75.0 kg)(4.00 m/s) (90.0 kg)(1.33 m/s) 4.66 m/s
90.0 kg

v +
= = . 

EVALUATE: The final speed of the crate is greater when Jack jumps first, then Jill. In this case Jack leaves with a 
speed of 1.78 m/s relative to the ground, whereas when they both jump simultaneously Jack and Jill each leave 
with a speed of only 0.44 m/s relative to the ground. 

 8.92. IDENTIFY: Momentum is conserved in the explosion. The total kinetic energy of the two fragments is Q. 
SET UP: Let the final speed of the two fragments be Av  and Bv . They must move in opposite directions after the 
explosion. 
EXECUTE: (a) Since the initial momentum of the system is zero, conservation of momentum says A A B Bm v m v=  

and A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. A BK K Q+ =  gives 

2
2 21 1

2 2
A

A A B A
B

mm v m v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
. 21

2 1 A
A A

B

mm v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
. 

1 /
B

A
A B A B

Q mK Q
m m m m

⎛ ⎞
= = ⎜ ⎟+ +⎝ ⎠

. 1 B A
B A

A B A B

m mK Q K Q Q
m m m m

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

(b) If 4B Am m= , then 4
5AK Q=  and 1

5BK Q= . The lighter fragment gets 80% of the energy that is released. 

EVALUATE: If A Bm m=  the fragments share the energy equally. In the limit that B Am m>> , the lighter fragment 
gets almost all of the released energy. 
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 8.93. IDENTIFY: Apply conservation of momentum to the system of the neutron and its decay products. 
SET UP: Let the proton be moving in the +x direction with speed pv  after the decay. The initial momentum of the 
neutron is zero, so to conserve momentum the electron must be moving in the x−  direction after the decay. Let the 
speed of the electron be ev . 

EXECUTE: 1 2x xP P=  gives p p e e0 m v m v= −  and p
e p

e

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. The total kinetic energy after the decay is 

2
p p2 2 2 2 21 1 1 1 1

tot e e p p e p p p p p2 2 2 2 2
e e

1
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

Thus, p 4

tot p e

1 1 5.44 10 0.0544%
1 / 1 1836

K
K m m

−= = = × =
+ +

. 

EVALUATE: Most of the released energy goes to the electron, since it is much lighter than the proton. 
 8.94. IDENTIFY: Momentum is conserved in the decay. The results of Problem 8.92 give the kinetic energy of each 

fragment. 
SET UP: Let A be the alpha particle and let B be the radium nucleus, so / 0.0176A Bm m = . 136.54 10  JQ −= × . 

EXECUTE: 
13

136.54 10  J 6.43 10  J
1 / 1 0.0176A

A B

QK
m m

−
−×

= = = ×
+ +

 and 130.11 10  JBK −= × . 

EVALUATE: The lighter particle receives most of the released energy. 
 8.95. IDENTIFY: The momentum of the system is conserved. 

SET UP: Let +x be to the right. 1 0xP = . exp , nxp and anxp  are the momenta of the electron, polonium nucleus and 
antineutrino, respectively. 
EXECUTE: 1 2x xP P=  gives e n an 0x x xp p p+ + = . an e n( )x x xp p p= − + . 

22 25 3 22
an (5.60 10  kg m/s [3.50 10  kg][ 1.14 10  m/s]) 1.66 10  kg m/sxp − − −= − × ⋅ + × − × = − × ⋅ . 

The antineutrino has momentum to the left with magnitude 221.66 10  kg m/s−× ⋅ . 
EVALUATE: The antineutrino interacts very weakly with matter and most easily shows its presence by the 
momentum it carries away. 

 8.96. IDENTIFY: Momentum components in the x and y directions are separately conserved. For an elastic collision 
1 2K K= . 

SET UP: 1 1A x Av v= + , 1 0B xv = . 2 2 cosA x Av v α= , 2 2 sinA y Av v α= . 2 2 cosB x Bv v α= , 2 2 sinB y Bv v α= − . 
2 2sin cos 1θ θ+ = , for any angle θ . cos( ) cos cos sin sinα β α β α β+ = − . 

EXECUTE: (a) 1 2x xP P=  gives 1 2 2cos cosA A A A B Bm v m v m vα β= + . 

1 2y yP P=  gives 2 20 sin sinA A B Bm v m vα β= − . 

(b) 2 2 2 2 2 2 2 2
1 2 2 2 2cos cos 2 cos cosA A A A B B A B A Bm v m v m v m m v vα β α β= + +  and 

2 2 2 2 2 2
2 2 2 20 sin sin 2 sin sinA A B B A B A Bm v m v m m v vα β α β= + − . Adding these two equations and using the trig identities in 

the SET UP step gives 2 2 2 2 2 2
1 2 2 2 22 cos( )A A A A B B A B A Bm v m v m v m m v v α β= + + + . 

(c) 1 2K K=  says 2 2 21 1 1
1 2 22 2 2A A A A B Bm v m v m v= + . The result in part (b) agrees with this expression only if 

cos( ) 0α β+ = . This requires that 90  rad
2
πα β+ = =° . 

EVALUATE: The result of part (c) says that the two protons move in perpendicular directions after the collision. 
 8.97. IDENTIFY and SET UP:  

 
Figure 8.97 

xP  and yP  are conserved in the collision since there is no external horizontal force. 
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The result of Problem 8.96 part (d) applies here since the collision is elastic This says that 25.0 90 ,Bθ° + = °  so that 
65.0 .Bθ = °  (A and B move off in perpendicular directions.) 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 
But A Bm m=  so 1 2 2cos25.0 cos65.0A A Bv v v= ° + ° . 

yP  is conserved so 1 1 2 2A A y B B y A A y B B ym v m v m v m v+ = + . 

2 20 A y B yv v= + . 

2 20 sin 25.0 sin 65.0A Bv v= ° − ° . 

( )2 2sin 25.0 / sin65.0B Av v= ° ° . 

This result in the first equation gives 1 2 2
sin 25.0 cos65.0cos25.0

sin65.0A A Av v v° °⎛ ⎞= ° + ⎜ ⎟°⎝ ⎠
. 

1 21.103A Av v= . 

2 1 /1.103 (15.0 m/s)/1.103 13.6 m/sA Av v= = = . 
And then ( )( )2 sin 25.0 / sin65.0 13.6 m/s 6.34 m/s.Bv = ° ° =  

EVALUATE: We can use our numerical results to show that 1 2K K=  and that 1 2x xP P=  and 1 2 .y yP P=  
 8.98. IDENTIFY: Since there is no friction, the horizontal component of momentum of the system of Jonathan, Jane and 

the sleigh is conserved. 
SET UP: Let +x be to the right. 800 NAw = , 600 NBw =  and 1000 NCw = . 

EXECUTE: 1 2x xP P=  gives 2 2 20 A A x B B x C C xm v m v m v= + + . 2 2 2 2
2

A A x B B x A A x B B x
C x

C C

m v m v w v w vv
m w
+ +

= = . 

2
(800 N)( [5.00 m/s]cos30.0 (600 N)( [7.00 m/s]cos36.9 ) 0.105 m/s

1000 NC xv − + +
= = −

°) ° . 

The sleigh�s velocity is 0.105 m/s, to the left. 
EVALUATE: The vertical component of the momentum of the system consisting of the two people and the sleigh 
is not conserved, because of the net force exerted on the sleigh by the ice while they jump. 

 8.99. IDENTIFY: In Eq. 8.28 treat each straight piece as an object in the system. 
SET UP: The center of mass of each piece of length L is at its center. 
EXECUTE: (a) From symmetry, the center of mass is on the vertical axis, a distance ( / 2)cos( / 2)L α  below the 
apex. 
(b) The center of mass is on the vertical axis of symmetry, a distance 2( / 2) /3 /3L L=  above the center of the 
horizontal segment. 
(c) Using the wire frame as a coordinate system, the coordinates of the center of mass are equal and each is equal 
to ( / 2) / 2 / 4L L= . The center of mass is along the bisector of the angle, a distance / 8L  from the corner. 

(d) By symmetry, the center of mass is at the center of the equilateral triangle, a distance ( /3)sin60 / 12L L=°  
above the center of the horizontal segment. 
EVALUATE: The center of mass need not lie on any point of the object, it can be in empty space. 

8.100. IDENTIFY: There is no net horizontal external force so cmv  is constant. 
SET UP: Let +x be to the right, with the origin at the initial position of the left-hand end of the canoe. 

A 45.0 kgm = , 60.0 kgBm = . The center of mass of the canoe is at its center. 

EXECUTE: Initially, cm 0v = , so the center of mass doesn�t move. Initially, 1 1
cm1

A A B B

A B

m x m xx
m m

+
=

+
. After she 

walks, 2 2
cm2

A A B B

A B

m x m xx
m m

+
=

+
. cm1 cm2x x=  gives 1 1 2 2A A B B A A B Bm x m x m x m x+ = + . She walks to a point 1.00 m from 

the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the canoe and 
2 2 1.50 mA Bx x= + . 

2 2(45.0 kg)(1.00 m) (60.0 kg)(2.50 m) (45.0 kg)( 1.50 m) (60.0 kg)B Bx x+ = + + . 

2(105.0 kg) 127.5 kg mBx = ⋅  and 2 1.21 mBx = . 2 1 1.21 m 2.50 m 1.29 mB Bx x− = − = − . The canoe moves 1.29 m 
to the left. 
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EVALUATE: When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the 
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3.00 m 1.29 m 1.71 m− =  to the 
right relative to the water. Note that this distance is (60.0 kg / 45.0 kg)(1.29 m) . 

8.101. IDENTIFY: Take as the system you and the slab. There is no horizontal force, so horizontal momentum is 
conserved. By Eq. 8.32, P

!
 is constant cmv

!  is constant (for a system of constant mass). Use coordinates fixed to 
the ice, with the direction you walk as the x-direction. cmv

!  is constant and initially cm 0.=v!  

 
Figure 8.101 

p p s s
cm

p s

m m
m m

  
    

+
0

v v
v

! !
! 1
5 5 . 

p cm s sm m  = 0v v! !
1 . 

p p s s 0x xm v m v+ = . 

( ) ( )s p s p p p/ /5 2.00 m/s 0.400 m/sx xv m m v m m= − = − = − . 

The slab moves at 0.400 m/s,  in the direction opposite to the direction you are walking. 
EVALUATE: The initial momentum of the system is zero. You gain momentum in the -directionx+  so the slab 
gains momentum in the -direction.x−  The slab exerts a force on you in the -directionx+  so you exert a force on 
the slab in the -direction.x−  

8.102. IDENTIFY: Conservation of x and y components of momentum applies to the collision. At the highest point of the 
trajectory the vertical component of the velocity of the projectile is zero. 
SET UP: Let +y be upward and +x be horizontal and to the right. Let the two fragments be A and B, each with 
mass m. For the projectile before the explosion and the fragments after the explosion. 0xa = , 29.80 m/sya = − . 

EXECUTE: (a) 2 2
0 02 ( )y y yv v a y y= + −  with 0yv =  gives that the maximum height of the projectile is 

2 2
0

2

([80.0 m/s]sin 60.0 ) 244.9 m
2 2( 9.80 m/s )

y

y

v
h

a
= − = − =

−
° . Just before the explosion the projectile is moving to the right with 

horizontal velocity 0 0 cos60.0 40.0 m/sx xv v v= = =° . After the explosion 0Axv =  since fragment A falls vertically. 
Conservation of momentum applied to the explosion gives (2 )(40.0 m/s) Bxm mv=  and 80.0 m/sBxv = . Fragment B 

has zero initial vertical velocity so 21
0 0 2y yy y v t a t− = +  gives a time of fall of 

2

2 2(244.9 m) 7.07 s
9.80 m/sy

ht
a

= − = − =
−

. During this time the fragment travels horizontally a distance 

(80.0 m/s)(7.07 s) 566 m= . It also took the projectile 7.07 s to travel from launch to maximum height and during 
this time it travels a horizontal distance of ([80.0 m/s]cos60.0 )(7.07 s) 283 m=° . The second fragment lands 
283 m 566 m 849 m+ =  from the firing point. 
(b) For the explosion, 2 41

1 2 (20.0 kg)(40.0 m/s) 1.60 10  JK = = × . 2 41
2 2 (10.0 kg)(80.0 m/s) 3.20 10  JK = = × . The 

energy released in the explosion is 41.60 10  J× . 
EVALUATE: The kinetic energy of the projectile just after it is launched is 46.40 10  J× . We can calculate the 
speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the fragments just 
before they strike the ground is 4 4 46.40 10  J 1.60 10  J 8.00 10  J× + × = × . Fragment A has speed 69.3 m/s just before 
it strikes the ground, and hence has kinetic energy 42.40 10  J× . Fragment B has speed 

2 2(80.0 m/s) (69.3 m/s) 105.8 m/s+ =  just before it strikes the ground, and hence has kinetic energy 45.60 10  J× . 

Also, the center of mass of the system has the same horizontal range 
2
0

0sin(2 ) 565 mvR
g

α= =  that the projectile 

would have had if no explosion had occurred. One fragment lands at / 2R  so the other, equal mass fragment lands 
at a distance 3 / 2R  from the launch point. 

8.103. IDENTIFY: The rocket moves in projectile motion before the explosion and its fragments move in projectile 
motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion. 
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SET UP: Apply conservation of energy to the explosion. Just before the explosion the shell is at its maximum 
height and has zero kinetic energy. Let A be the piece with mass 1.40 kg and B be the piece with mass 0.28 kg. Let 

Av  and Bv  be the speeds of the two pieces immediately after the collision. 

EXECUTE: 2 21 1
2 2 860 JA A B Bm v m v+ =  

SET UP: Since the two fragments reach the ground at the same time, their velocities just after the explosion must 
be horizontal. The initial momentum of the shell before the explosion is zero, so after the explosion the pieces must 
be moving in opposite horizontal directions and have equal magnitude of momentum: .A A B Bm v m v=  
EXECUTE: Use this to eliminate Av  in the first equation and solve for :Bv  

( )21
2 1 / 860 JB B B Am v m m+ =  and 71.6 m/s.Bv =  

Then ( )/ 14.3 m/s.A B A Bv m m v= =  
(b) SET UP: Use the vertical motion from the maximum height to the ground to find the time it takes the pieces to 
fall to the ground after the explosion. Take y+  downward. 

0 0,yv =  29.80 m/s ,ya = +  0 80.0 m,y y− =  ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 4.04 s.t =  

During this time the horizontal distance each piece moves is 57.8 mA Ax v t= =  and 289.1 m.B Bx v t= =  They move 
in opposite directions, so they are 347 mA Bx x+ =  apart when they land. 
EVALUATE: Fragment A has more mass so it is moving slower right after the collision, and it travels horizontally 
a smaller distance as it falls to the ground. 

8.104. IDENTIFY: Apply conservation of momentum to the collision. At the highest point of its trajectory the shell is 
moving horizontally. If one fragment received some upward momentum in the collision, the other fragment would 
have had to receive a downward component. Since they each the ground at the same time, each must have zero 
vertical velocity immediately after the explosion. 
SET UP: Let +x be horizontal, along the initial direction of motion of the projectile and let +y be upward. At its 
maximum height the projectile has 0 cos55.0 86.0 m/sxv v= =° . Let the heavier fragment be A and the lighter 
fragment be B. 9.00 kgAm =  and 3.00 kgBm = . 
EXECUTE: Since fragment A returns to the launch point, immediately after the explosion it has 86.0 m/sAxv = − . 
Conservation of momentum applied to the explosion gives 
(12.0 kg)(86.0 m/s) (9.00 kg)( 86.0 m/s) (3.00 kg) Bxv= − +  and 602 m/sBxv = . The horizontal range of the 

projectile, if no explosion occurred, would be 
2
0

0sin(2 ) 2157 mvR
g

α= = . The horizontal distance each fragment 

travels is proportional to its initial speed and the heavier fragment travels a horizontal distance / 2 1078 mR =  after 

the explosion, so the lighter fragment travels a horizontal distance 602 m (1078 m) 7546 m
86 m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 from the point of 

explosion and 1078 m 7546 m 8624 m+ =  from the launch point. The energy released in the explosion is 
2 2 2 51 1 1

2 1 2 2 2(9.00 kg)(86.0 m/s) (3.00 kg)(602 m/s) (12.0 kg)(86.0 m/s) 5.33 10  JK K− = + − = × . 
EVALUATE: The center of mass of the system has the same horizontal range 2157 mR =  as if the explosion 
didn�t occur. This gives (12.0 kg)(2157 m) (9.00 kg)(0) (3.00 kg)d= +  and 8630 md = , where d is the distance 
from the launch point to where the lighter fragment lands. This agrees with our calculation. 

8.105. IDENTIFY: No external force, so P
!

 is conserved in the collision. 
SET UP: Apply momentum conservation in the x and y directions: 

 
Figure 8.105 

Solve for 1v  and 2.v  
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EXECUTE: xP  is conserved so ( )0 1 f 2cos45 cos10 cos30mv m v v v= ° + ° + ° . 

0 f 1 2cos10 cos45 cos30v v v v− ° = ° + ° . 

1 21030.4 m/s cos45 cos30v v= ° + ° . 

xP  is conserved so ( )1 2 f0 sin 45 sin30 sin10m v v v= ° − ° + ° . 

1 2sin 45 sin30 347.3 m/sv v° = ° − . 
sin 45 cos45° = °  so 

2 21030.4 m/s sin30 347.3 m/s cos30v v= ° − + ° . 

2
1030.4 m/s 347.3 m/s 1010 m/s

sin30 cos30.0
v +

= =
° + °

. 

And then 2
1

sin30 347.3 m/s 223 m/s.
sin 45

vv ° −
= =

°
 Then two emitted neutrons have speeds of 223 m/s  and 1010 m/s.  

The speeds of the Ba and Kr nuclei are related by zP  conservation. 

zP  is constant implies that Ba Ba Kr Kr0 m v m v= −  
25

Ba
Kr Ba Ba Ba25

Kr

2.3 10  kg 1.5 .
1.5 10  kg

mv v v v
m

−

−

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

We can�t say what these speeds are but they must satisfy this relation. The value of Bav  depends on energy 
considerations. 

EVALUATE: ( ) ( )23 61
1 n n2 3.0 10  m/s 4.5 10  J/kg .K m m= × = ×  

( ) ( ) ( )
2 2 231 1 1

2 n n n Ba Kr2 2 22.0 10  m/s 223 m/s 1010 m/sK m m m K K= × + + + + ( )6
n Ba Kr2.5 10  J/kg .m K K= × + +  

We don�t know what BaK  and KrK  are, but they are positive. We will study such nuclear reactions further in 
Chapter 43 and will find that energy is released in this process; 2 1.K K>  Some of the potential energy stored in the 
235 U  nucleus is released as kinetic energy and shared by the collision fragments. 

8.106. IDENTIFY: The velocity of the center of mass of the system of the two blocks is given by Eq. 8.30. Conservation 
of momentum says the center of mass moves at constant speed. 
SET UP: 1 1A x Av v= , 1 0B xv = . The velocity u!  in the center of mass frame is related to the velocity v!  in the 

stationary frame by cm−u = v v! ! ! . We can express kinetic energy as 
2

2
pK
m

= . 

EXECUTE: (a) 1
cm-

A A
x

A B

m vv
m m

=
+

. 

(b) The center of mass moves with constant speed so this coordinate system is an inertial frame. 

(c) 1
1 1 cm-

B A
A x A x x

A B

m vu v v
m m

= − =
+

. 1
1 1 cm-

A A
B x B x x

A B

m vu v v
m m

= − = −
+

. In this frame 1 1 1 0x A A x B B xP m u m u= + = . 

(d) 2 1 0x xP P= =  gives 1 1 0A x B xp p+ =  and 2 2 0A x B xp p+ = , so 1 1B x A xp p= −  and 2 2B x A xp p= − . Conservation of 

kinetic energy gives 
2 2 2 2

2 2 1 1

2 2 2 2
A x B x A x B x

A B A B

p p p p
m m m m

+ = + . Using 2 2B x A xp p= −  and 1 1B x A xp p= −  gives 2 2
2 1A x A xp p=  and 

2 1A x A xp p= ± . If a collision occurs Axp  changes and 2 1A x A xp p= − . But 2 2B x A xp p= −  and 1 1B x A xp p= − , so 

2 1B x B xp p= − . In the center of mass frame the momentum and hence the velocity of each puck keeps the same 
magnitude and reverses direction. 

(e) cm-
0.400 kg (6.00 m/s) 4.00 m/s
0.600 kgxv

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 1 6.00 m/s 4.00 m/s 2.00 m/sA xu = − = . 

1 0 4.00 m/s 4.00 m/sB xu = − = − . 2 2.00 m/sA xu = −  and 2 4.00 m/sB xu = + . 

2 2 cm- 2.00 m/s 4.00 m/s 2.00 m/sA x A x xv u v= + = − + = . 2 2 cm- 4.00 m/s 4.00 m/s 8.00 m/sB x B x xv u v= + = + = . 

Eq. 8.24 says 2
0.400 kg 0.200 kg (6.00 m/s) 2.00 m/s
0.400 kg 0.200 kgA xv

⎛ ⎞−
= =⎜ ⎟+⎝ ⎠

. Eq. 8.25 says 

2
2[0.400 kg] (6.00 m/s) 8.00 m/s

0.400 kg 0.200 kgA xv
⎛ ⎞

= =⎜ ⎟+⎝ ⎠
. Our result agrees with Eqs. 8.24 and 8.25. 
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EVALUATE: Eqs. 8.24 and 8.25 apply only when 1 0Bv = . The result that the velocity of each puck in the center 
of mass frame reverses direction and retains the same magnitude applies to all elastic collisions, even when both 
are moving initially. 

8.107. IDENTIFY and SET UP: Apply conservation of energy to find the total energy before and after the collision with 
the floor from the initial and final maximum heights. 
EXECUTE: (a) Objects stick together says that the relative speed after the collision is zero, so 0.=P  
(b) In an elastic collision the relative velocity of the two bodies has the same magnitude before and after the 
collision, so 1.=P  
(c) Speed of ball just before collision: 21

12mgh mv= . 

1 2v gh=  

Speed of ball just after collision: 21
1 22mgH mv= . 

2 12v gH=  

The second object (the surface) is stationary, so 2 1 1/ / .v v H h= =P  

(d) 1 /H h=P  implies ( )( )22
1 1.2 m 0.85 0.87 mH h= = =P . 

(e) 2
1H h= P . 

2 4
2 1H H h= =P P . 

( )2 4 2 6
3 2H H h h= = =P P P P . 

Generalize to 2 2( 1) 2 2
1

n n
n nH H h h−

−= = =P P P P . 
(f) 8th bounce implies 8n = . 

( )1616
8 1.2 m 0.85 0.089 mH h= = =P . 

EVALUATE: P  is a measure of the kinetic energy lost in the collision. The collision here is between a ball and the 
earth. Momentum lost by the ball is gained by the earth, but the velocity gained by the earth is very small and can 
be taken to be zero. 

8.108. IDENTIFY: Momentum is conserved in the collision. Conservation of energy says 2 1K K= + Δ . 

SET UP: For part (b) let 0v  be the common speed of each atom before the collision and let V
!

 and 3v
!  be the 

velocities after the collision of the molecule and the atom that remains. 271.67 10  kgm −= ×  is the mass of one 
hydrogen atom. 
EXECUTE: (a) In the center of mass frame 1 0xP =  so 2 0xP =  and cm2 0v = . But in this frame the potential energy 

decreases and the kinetic energy increases. This is inconsistent with 21
2cm tot cm22 0K m v= = . 

(b) Before the collision cm 0v = . After the collision the molecule and remaining atom move in opposite directions 

and 3(2 )m V mv= ; 3 2v V= . Conservation of energy gives 2 2 2 21 1 1
3 02 2 2(2 ) 3( )m V mv mv+ = + Δ . With 3 2v V=  this 

becomes 2 21
02 3

V v
m
Δ

= + . 
19

3 2 41
2 27

7.23 10  J(1.00 10  m/s) 1.20 10  m/s
3(1.67 10 )

V
−

−

×
= × + = ×

×
 and 4

3 2 2.40 10  m/sv V= = × . 

EVALUATE: ( )2 211
023 2.50 10  JK mv −= = × , which is much less than the binding energy of the molecule. Other 

initial conditions also lead to molecule formation; the one of zero initial momentum is just particularly simple to 
analyze. 

8.109. IDENTIFY: Apply conservation of energy to the motion of the wagon before the collision. After the collision the 
combined object moves with constant speed on the level ground. In the collision the horizontal component of 
momentum is conserved. 
SET UP: Let the wagon be object A and treat the two people together as object B. Let +x be horizontal and to the 
right. Let V be the speed of the combined object after the collision. 
EXECUTE: (a) The speed 1Av  of the wagon just before the collision is given by conservation of energy applied to 

the motion of the wagon prior to the collision. 1 2U K=  says 21
12([50 m][sin6.0 ])A A Am g m v=° . 1 10.12 m/sAv = . 

1 2x xP P=  for the collision says 1 ( )A A A Bm v m m V= +  and 300 kg (10.12 m/s) 6.98 m/s
300 kg 75.0 kg 60.0 kg

V
⎛ ⎞

= =⎜ ⎟+ +⎝ ⎠
. 

In 5.0 s the wagon travels (6.98 m/s)(5.0 s) 34.9 m= , and the people will have time to jump out of the wagon 
before it reaches the edge of the cliff. 
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(b) For the wagon, 2 41
1 2 (300 kg)(10.12 m/s) 1.54 10  JK = = × . Assume that the two heroes drop from a small 

height, so their kinetic energy just before the wagon can be neglected compared to 1K  of the wagon. 
2 41

2 2 (435 kg)(6.98 m/s) 1.06 10  JK = = × . The kinetic energy of the system decreases by 3
1 2 4.8 10  JK K− = × . 

EVALUATE: The wagon slows down when the two heroes drop into it. The mass that is moving horizontally 
increases, so the speed decreases to maintain the same horizontal momentum. In the collision the vertical 
momentum is not conserved, because of the net external force due to the ground. 

8.110. IDENTIFY: Gravity gives a downward external force of magnitude mg. The impulse of this force equals the 
change in momentum of the rocket. 
SET UP: Let +y be upward. Consider an infinitesimal time interval dt. In Example 8.15, ex 2400 m/sv =  and 

0

120 s
dm m
dt

= − . In Example 8.16, 0 / 4m m=  after 90 st = . 

EXECUTE: (a) The impulse-momentum theorem gives ex( )( ) ( )( )mgdt m dm v dv dm v v mv− = + + + − − . This 

simplifies to exmgdt mdv v dm− = +  and ex
dv dmm v mg
dt dt

= − − . 

(b) exdv v dma g
dt m dt

= = − − . 

(c) At 0t = , 2 2ex

0

1(2400 m/s) 9.80 m/s 10.2 m/s
120 s

v dma g
m dt

⎛ ⎞= − − = − − − =⎜ ⎟
⎝ ⎠

. 

(d) exvdv dm gdt
m

= − − . Integrating gives 0
0 ex ln mv v v gt

m
− = + − . 0 0v =  and 

2(2400 m/s)ln 4 (9.80 m/s )(90 s) 2445 m/sv = + − = . 
EVALUATE: Both the initial acceleration in Example 8.15 and the final speed of the rocket in Example 8.16 are 
reduced by the presence of gravity. 

8.111. IDENTIFY and SET UP: Apply Eq. 8.40 to the single-stage rocket and to each stage of the two-stage rocket. 
(a) EXECUTE: ( )0 ex 0ln / ;v v v m m− =  0 0v =  so ( )ex 0ln /v v m m=  

The total initial mass of the rocket is 0 12,000 kg 1000 kg 13,000 kg.m = + =  Of this, 9000 kg 700 kg 9700 kg+ =  
is fuel, so the mass m left after all the fuel is burned is 13,000 kg 9700 kg 3300 kg.− =  

( )ex exln 13,000 kg/3300 kg 1.37v v v= = . 

(b) First stage: ( )ex 0ln /v v m m=  

0 13,000 kgm =  
The first stage has 9000 kg of fuel, so the mass left after the first stage fuel has burned is 
13,000 kg 9000 kg 4000 kg.− =  

( )ex exln 13,000 kg/4000 kg 1.18v v v= = . 

(c) Second stage: 0 1000 kg,m =  1000 kg 700 kg 300 kgm = − = . 

( ) ( )0 ex 0 ex ex exln / 1.18 ln 1000 kg/300 kg 2.38v v v m m v v v= + = + = . 
(d) 7.00 km/sv =  

( )ex / 2.38 7.00 km/s / 2.38 2.94 km/sv v= = = . q 
EVALUATE: The two-stage rocket achieves a greater final speed because it jetisons the left-over mass of the first 
stage before the second-state fires and this reduces the final m and increases 0 / .m m  

8.112. IDENTIFY: During an interval where the mass is constant the speed of the rocket is constant. During an interval 
where the mass is changing at a constant rate, the equations of Section 8.6 apply. 

SET UP: For 0 90 st≤ ≤ , 0

120 s
dm m
dt

= − . From Example 8.15, ex 2400 m/sv = . 

EXECUTE: (a) For 0t ≤ , 0v = . For 0 90 st≤ ≤ , Eq. 8.40 says (2400 m/s)ln 4 3327 m/sv = = . For 90 st > , v 
has the constant value 3327 m/s. The graph of ( )v t  is given in Fig. 8.112a. 

(b) For 0 90 st≤ ≤ , Eq. 8.39 gives 
2

ex 0

0

2400 m/s 20 m/s
(1 /[120 s]) 120 s 1 /[120 s]

v dm ma
m dt m t t

⎛ ⎞= − = − − =⎜ ⎟− −⎝ ⎠
. 220 m/sa =  at 0t =  

(as in Example 8.15) and 280 m/sa =  at 90 st = . For 90 st > , 0a = . The graph of ( )a t  is given in Fig. 8.112b. 
(c) The astronaut has the same acceleration as the rocket. This is maximum at 90 st =  and 

2 3
max astronaut max (75 kg)(80 m/s ) 6.0 10  NF m a= = = × . This is 8.2 times her weight on earth, since maxa  is 8.2 times g. 
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EVALUATE: The acceleration increases because the mass decreases while the thrust ex
dmF v
dt

= −  remains constant. 

20
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Figure 8.112 

8.113. IDENTIFY and SET UP: dm dVρ= . dV Adx= . Since the thin rod lies along the x axis, cm 0y = . The mass of the 

rod is given by M dm= ∫ . 

EXECUTE: (a) 
2

cm 0 0

1
2

L L A Lx xdm A xdx
M M M

ρ ρ
= = =∫ ∫ . The volume of the rod is AL and M ALρ= . 

2

cm 2 2
AL Lx
AL

ρ
ρ

= = . The center of mass of the uniform rod is at its geometrical center, midway between its ends. 

(b) 
3

2
cm 0 0 0

1 1 .
3

L L LA A Lx xdm x Adx x dx
M M M M

α αρ= = = =∫ ∫ ∫  
2

0 0
.

2
L L ALM dm Adx A xdx αρ α= = = =∫ ∫ ∫  Therefore, 

3

cm 2

2 2 .
3 3

A L Lx
AL

α
α

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: When the density increases with x, the center of mass is to the right of the center of the rod. 

8.114. IDENTIFY: cm
1x xdm
M

= ∫  and cm
1 .y ydm
M

= ∫  At the upper surface of the plate, 2 2 2.y x a+ =  

SET UP: To find cmx , divide the plate into thin strips parallel to the y-axis, as shown in Fig. 8.114a. To find cmy , 
divide the plate into thin strips parallel to the x-axis as shown in Fig. 8.114b. The plate has volume one-half that of 
a circular disk, so 21

2V a tπ=  and 21
2 .M a tρπ=  

EXECUTE: In Fig.114a each strip has length 2 2 .y a x= −  cm
1 ,x xdm
M

= ∫  where 2 2 .dm tydx t a x dxρ ρ= = −  

2 2
cm 0,

a

a

tx x a x dx
M
ρ

−
= − =∫  since the integrand is an odd function of x. cm 0x =  because of symmetry. In 

Fig.114b each strip has length 2 22 2 .x a y= −  cm
1 ,y ydm
M

= ∫  where 2 22 2 .dm txdy t a y dyρ ρ= = −  

2 2
cm 0

2 aty y a y dy
M
ρ

= −∫ . The integral can be evaluated using 2 2u a y= − , 2du ydy= − . This substitution gives 

2

3 30 1/ 2
cm 2

2 1 2 2 2 4
2 3 3 3a

t ta ta ay u du
M M a t
ρ ρ ρ

ρπ π
⎛ ⎞⎛ ⎞⎛ ⎞= − = = =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ . 

EVALUATE: 4 0.424.
3π

=  cmy  is less than /2,a  as expected, since the plate becomes wider as y decreases. 

dx

(a)

y

y

x

2x

x

dy

(b)

y

y

x

 
Figure 8.114 
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8.115. IDENTIFY: The work is related to the force by 2

1

x

x
W Fdx= ∫ . The force the person must apply equals the weight of 

the hanging portion. Since the rope is uniform, the center of mass of the hanging portion is at its geometrical 
center. 
SET UP: Let y be the length of the rope hanging over the edge and use coordinates where the origin is at the edge 
of the table and +y is downward. When the rope is pulled onto the table, y goes from / 4l  to zero. A length y of the 
rope has mass yλ . 
EXECUTE: (a) When a length y hangs over the edge, the person must apply an upward force 

( )yF m y g ygλ= − = − . 
20 0

/ 4 / 4
( )

32yl l

glW F y dy g ydy λλ= = − =∫ ∫ . 

(b) Initially, cm /8y l= . The work done to raise an object of mass M a distance cmy  is cmW Mgy= . 
2

4 8 32
l l glW gλ λ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

EVALUATE: The answers from methods (a) and (b) agree. The change in gravitational potential energy of the 
rope can be calculated by considering all its mass acting at its center of mass, and the work done by the person 
equals the increase in gravitational potential energy of the rope. 

8.116. IDENTIFY: From our analysis of motion with constant acceleration, if v at=  and a is constant, then 
21

0 0 2x x v t at− = + . 
SET UP: Take 0 0v = , 0 0x =  and let +x downward. 

EXECUTE: (a) dv a
dt

= , v at=  and 21
2x at= . Substituting into 2dvxg x v

dt
= +  gives 

2 2 2 2 2 231 1
2 2 2at g at a a t a t= + = . The nonzero solution is /3a g= . 

(b) 2 2 2 21 1 1
2 6 6 (9.80 m/s )(3.00 s) 14.7 mx at gt= = = = . 

(c) (2.00 g/m)(14.7 m) 29.4 gm kx= = = . 
EVALUATE: The acceleration is less than g because the small water droplets are initially at rest, before they 
adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the raindrops. 



 

 

 


