MOMENTUM, IMPULSE, AND COLLISIONS

8.1.

8.2.

8.3.

8.4.

IDENTIFY and SETUP:  p=mv. K =1m/’.
EXECUTE: (a) p = (10,000 kg)(12.0 m/s) =1.20x 10° kg - m/s
p _1.20x10° kg-m/s

® O v="1 2000 kg

=60.0 m/s . (ii) Lmv; =Lmgveyy » SO

v = |2y = [LR000KE (15 6 s = 26.8 s
v 2000 kg

EVALUATE: The SUV must have less speed to have the same kinetic energy as the truck than to have the same
momentum as the truck.

IDENTIFY: Example 8.1 shows that the two iceboats have the same kinetic energy at the finish line. K =Lmy*.
p=mv.

SETUP: Let A4 be the iceboat with mass m and let B be the iceboat with mass 2m, so m, =2m, .
. m
EXECUTE: K, =K, gives i1mvi=1mv, . v, = f—["vg =\2v,.
mA

Py=MyV, . Py=mpv, =(2mA)(vA/\/§):\/§mAvA :\/EpA .
EVALUATE: The more massive boat must have less speed but greater momentum than the other boat in order to
have the same kinetic energy.
IDENTIFY and SETUP:  p=mv. K =imv’.

2 2
EXECUTE: (a) v=2"and K:%m(ﬁj -
m m

2 2
(b) K, =K, and the result from part (a) gives Le _ Py Py =.—p. = wpc =1.90p, . The baseball
2m, 2m, X 0.040 kg
has the greater magnitude of momentum. p,/p, =0.526 .
(¢) p>=2mK so p, =p, gives 2m K _=2m K, . w=mg,so w, K, =wK, .
K, = Yo g o[ TNV )56k
w, 450 N

The woman has greater kinetic energy. K _/K_ =0.641.

EVALUATE: For equal kinetic energy, the more massive object has the greater momentum. For equal momenta,
the less massive object has the greater kinetic energy.

IDENTIFY: Each momentum component is the mass times the corresponding velocity component.

SET UP: Let +x be along the horizontal motion of the shotput. Let +y be vertically upward. v_=vcos@,

v, =vsing.
EXECUTE: The horizontal component of the initial momentum is
p,=mv_=mvcosf =(7.30 kg)(15.0 m/s)cos40.0° =83.9 kg-m/s .

The vertical component of the initial momentum is p, =mv, =mvsin@ =(7.30 kg)(15.0 m/s)sin40.0° = 70.4 kg - m/s

EVALUATE: The initial momentum is directed at 40.0° above the horizontal.
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8.5.

8.6.

8.7.

8.8.

8.9.

IDENTIFY: For each object, p=mv and K =1my*. The total momentum is the vector sum of the momenta of
each object. The total kinetic energy is the scalar sum of the kinetic energies of each object.

SET UP: Let object 4 be the 110 kg lineman and object B the 125 kg lineman. Let +x be the object to the right, so
v, =+2.75m/s and v, =-2.60 m/s .

EXECUTE: (a) P.=m,v, +myv, =(110kg)(2.75 m/s)+ (125 kg)(-2.60 m/s) =-22.5 kg-m/s . The net
momentum has magnitude 22.5 kg-m/s and is directed to the left.

(b) K =1m v} +Lm,v; =1(110 kg)(2.75 m/s)* +1(125 kg)(2.60 m/s)* =838 J

EVALUATE: The kinetic energy of an object is a scalar and is never negative. It depends only on the magnitude of
the velocity of the object, not on its direction. The momentum of an object is a vector and has both magnitude and
direction. When two objects are in motion, their total kinetic energy is greater than the kinetic energy of either one.

But if they are moving in opposite directions, the net momentum of the system has a smaller magnitude than the
magnitude of the momentum of either object.

IDENTIFY: For each object p=mv and the net momentum of the system is P = p, + p, . The momentum

vectors are added by adding components. The magnitude and direction of the net momentum is calculated from its
x and y components.
SET Up:  Let object 4 be the pickup and object B be the sedan. v, =-14.0m/s, v, =0. v, =0, v, =+23.0m/s.

EXECUTE: (a) P.=p, + py =mv, +myv, =(2500 kg)(—14.0 m/s)+0=-3.50x10* kg-m/s
P =p, + Py, =my, +muy, =(1500 kg)(+23.0 m/s) =+3.45x10" kg-m/s

P| 3.50x10* kg -m/s

x

|13,| ©3.45x10* kg-m/s

and @ =45.4°. The net

(b) P=,/P> + P> =4.91x10° kg-m/s . From Figure 8.6, tan6 =

momentum has magnitude 4.91x10* kg-m/s and is directed at 45.4° west of north.

EVALUATE: The momenta of the two objects must be added as vectors. The momentum of one object is west and
the other is north. The momenta of the two objects are nearly equal in magnitude, so the net momentum is directed
approximately midway between west and north.

Figure 8.6

IDENTIFY: The average force on an object and the object’s change in momentum are related by Eq. 8.9. The
weight of the ball is w=mg .

SET UpP: Let +x be in the direction of the final velocity of the ball, so v,, =0 and v, =250 m/s.

my, —mv,_ (0.0450 kg)(25.0 m/s)
t,— 1, 2.00x107° s

w=(0.0450 kg)(9.80 m/s*) = 0.441 N . The force exerted by the club is much greater than the weight of the ball,

so the effect of the weight of the ball during the time of contact is not significant.
EVALUATE: Forces exerted during collisions typically are very large but act for a short time.
IDENTIFY: The change in momentum, the impulse and the average force are related by Eq. 8.9.

SET Up: Let the direction in which the batted ball is traveling be the +x direction, so v,, =—45.0 m/s and

v, =55.0m/s.

EXECUTE: (a) Ap, =p, —p,, =m(v,, —v,,)=(0.145 kg)(55.0 m/s —[-45.0 m/s]) =14.5kg-m/s. J =Ap_, so
J. =14.5 kg -m/s . Both the change in momentum and the impulse have magnitude 14.5 kg-m/s .

J, 14.5kg-m/s
b) (F) At 2.00x107 s
EVALUATE: The force is in the direction of the momentum change.

IDENTIFY: Use Eq. 8.9. We know the intial momentum and the impluse so can solve for the final momentum and
then the final velocity.

EXECUTE: (F,). (¢, —t)=mv, —mv,  gives (F ) = =562 N.

=7250 N.
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8.10.

8.11.

8.12.

8.13.

SET Up: Take the x-axis to be toward the right, so v, =+3.00 m/s. Use Eq. 8.5 to calculate the impulse, since

the force is constant.
EXECUTE: (a) J =p, —p,.

J . =F.(t,—1)=(+25.0 N)(0.050 s) =+1.25 kg - m/s
Thus p, =J, + p,, =+1.25 kg-m/s +(0.160 kg)(+3.00 m/s) = +1.73 kg - m/s
_ P _173kg-mls

T T 0160 kg

(b) J . =F.(t,—t,)=(-12.0 N)(0.050 s) =—0.600 kg -m/s (negative since force is to left)
P, =J.+ p, =-0.600 kg-m/s +(0.160 kg)(+3.00 m/s) =—-0.120 kg -m/s
_ Do _ —-0.120 kg - m/s

om 0.160 kg

EVALUATE: In part (a) the impulse and initial momentum are in the same direction and v, increases. In part (b) the

=+10.8 kg - m/s (to the right)

=—0.75 m/s (to the left)

impulse and initial momentum are in opposite directions and the velocity decreases.
IDENTIFY: The impulse, change in momentum and change in velocity are related by Eq. 8.9.

SETUP: F, =26,700 N and F, =0 . The force is constant, so (F,), =F,.
EXECUTE: (a) J, = F,At =(26,700 N)(3.90 5) =1.04x10° N -5 .
(b) Ap,=J,=1.04x10° kg-mv/s .

Ap, 1.04x10° kg-
(©) Ap, =mAv, . Av, _Ap, 1.04x10" kg-m/s
' : m 95,000 kg

(d) The initial velocity of the shuttle isn’t known. The change in kinetic energy is AK =K, — K, =1m(v; —v}) . It

=1.09 m/s.

depends on the initial and final speeds and isn’t determined solely by the change in speed.
EVALUATE: The force in the +y direction produces an increase of the velocity in the +y direction.

IDENTIFY: The force is not constant so J = f:z Fdt . The impulse is related to the change in velocity by Eq. 8.9.

t -
SET UpP: Only the x component of the force is nonzero, so J_ =I ZF;Cdt is the only nonzero component of J .
=),

J.o=mv,, —v,). 4=2.00s,t,=3.50s.

EXECUTE: (a) A= FZ :M: 500 N/s”.
£ (12559)

M) J, = ijtzdt =L A(6; - 1)) =1(500 N/s*)([3.50 s] —[2.00 s]') =5.81x10" N -s..

3
© Av.=v, —v, = I 38DAU NS 2.70 m/s . The x component of the velocity of the rocket increases by
m

- 2150 kg

2.70 m/s.

EVALUATE: The change in velocity is in the same direction as the impulse, which in turn is in the direction of the net
force. In this problem the net force equals the force applied by the engine, since that is the only force on the rocket.
IDENTIFY: Apply Eq. 8.9 to relate the change in momentum of the momentum to the components of the average
force on it.

SET UP: Let +x be to the right and +y be upward.

EXECUTE: (a) J, =Ap, =mv, —mv,, =(0.145 kg)(-{65.0 m/s]cos30°—50.0 m/s) =—15.4 kg-m/s.

J,=Ap, =mv, —my, =(0.145 kg)([65.0 m/s]sin30° - 0) = 4.71 kg - m/s
The horizontal component is 15.4 kg-m/s , to the left and the vertical component is 4.71 kg - m/s , upward.

-154 kg- J, 471kg-

(b) Ev.xzﬁzs—gWZ—SSOON-ﬂv.-: y:7—ggl/s
©OAr 1.75%x107 s At 1.75x107 s

The horizontal component is 8800 N, to the left, and the vertical component is 2690 N, upward.

EVALUATE: The ball gains momentum to the left and upward and the force components are in these directions.
IDENTIFY: The force is constant during the 1.0 ms interval that it acts, so J = FAt. J=p, — p,=m(¥,—¥,) .

=2690 N.

SET UP: Let +x be to the right, so v;, =+5.00 m/s. Only the x component of J is nonzero, and

‘]x = m(VZ:c - le) .
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8.14.

8.15.

8.16.

8.17.

8.18.

EXECUTE: (a) The magnitude of the impulse is J = FAf =(2.50x10° N)(1.00x 107 s) =2.50 N -s . The direction
of the impulse is the direction of the force.

(b) () v,, =£+ Vi, J,=+250N-s. v, =w+ 5.00 m/s = 6.25 m/s . The stone’s velocity has magnitude
Soom " 2.00kg
o . . —2.50N-s
6.25 m/s and is directed to the right. (i) Now J =-2.50 N-s and v, = WJF 5.00 m/s=3.75 m/s. The
VU kg

stone’s velocity has magnitude 3.75 m/s and is directed to the right.

EVALUATE: When the force and initial velocity are in the same direction the speed increases and when they are
in opposite directions the speed decreases.

IDENTIFY: Apply conservation of momentum to the system of the astronaut and tool.

SETUP: Let 4 be the astronaut and B be the tool. Let +x be the direction in which she throws the tool, so

Vg, =+3.20 m/s . Assume she is initially at rest, so v, =v, =0. Solve for v, .

EXECUTE: B =P, . B . =my, +my, =0. P =my, +m,v,, =0 and

Ve = My __(2:25kg)3-20 mis) —0.105 m/s . Her speed is 0.105 m/s and she moves opposite to the

m, 68.5 kg

direction in which she throws the tool.

EVALUATE: Her mass is much larger than that of the tool so to have the same magnitude of momentum as the
tool her speed is much less.

IDENTIFY: Since drag effects are neglected there is no net external force on the system of squid plus expelled
water and the total momentum of the system is conserved. Since the squid is initially at rest, with the water in its

cavity, the initial momentum of the system is zero. For each object, K = %mv2 .
SET UpP: Let 4 be the squid and B be the water it expels, so m, =6.50 kg —1.75 kg =4.75 kg . Let +x be the

direction in which the water is expelled. v,, =-2.50 m/s . Solve for v, .
EXECUTE: (a) P, =0. B _=8B_,50 0=m,v,, +myvy, . Vs, = MV, (75 ke)(E2.50ms) +6.79 m/s .
) } } ) my 1.75 kg

(b) K, =K, +K,, =tmp?, +Ltmyv;, =1(4.75 kg)(2.50 m/s)* +1(1.75 kg)(6.79 m/s)* =55.2 J The initial kinetic
energy is zero, so the kinetic energy produced is K, =552 7.

EVALUATE: The two objects end up with momenta that are equal in magnitude and opposite in direction, so the
total momentum of the system remains zero. The kinetic energy is created by the work done by the squid as it
expels the water.

IDENTIFY: Apply conservation of momentum to the system of you and the ball. In part (a) both objects have the
same final velocity.

SETUP: Let +x be in the direction the ball is traveling initially. m, = 0.400 kg (ball). m, =70.0 kg (you).
EXECUTE: (a) B, =P, gives (0.400 kg)(10.0 m/s) = (0.400 kg +70.0 kg)v, and v, =0.0568 m/s.
(b) B, =P, gives (0.400 kg)(10.0 m/s) = (0.400 kg)(—8.00 m/s)+(70.0 kg)v,, and v,, =0.103 m/s.

EVALUATE: When the ball bounces off it has a greater change in momentum and you acquire a greater final speed.
IDENTIFY: Apply conservation of momentum to the system of the two pucks.
SET UP: Let +x be to the right.

EXECUTE: (a) B, =P, says (0.250)v,, =(0.250 kg)(-0.120 m/s) +(0.350 kg)(0.650 m/s) and v, =0.790 m/s .
(b) K, =1(0.250 kg)(0.790 m/s)* =0.0780 J .

K, =1(0.250 kg)(0.120 m/s)* +1(0.350 kg)(0.650 m/s)* =0.0757 J and AK =K, — K, =—0.0023 J .

EVALUATE: The total momentum of the system is conserved but the total kinetic energy decreases.
IDENTIFY: Since road friction is neglected, there is no net external force on the system of the two cars and the

total momentum of the system is conserved. For each object, K = %mv2 .
SET UpP: Let 4 be the 1750 kg car and B be the 1450 kg car. Let +x be to the right, so v, =+1.50 m/s,
Vg, =—1.10m/s, and v,, =+40.250 m/s. Solve for v, .

MV, +myV, —m,V
. _ _ LN BYB1x AV 425
EXECUTE: (a) B, =B, . my,  +mpVy, =My, +mMpVy, . Vy, = .

mg

(1750 kg)(1.50 m/s) + (1450 kg)(~1.10 m/s) — (1750 kg)(0.250 m/s)
1450 kg

After the collision the lighter car is moving to the right with a speed of 0.409 m/s.

=0.409 m/s .

B2x
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8.19.

8.20.

8.21.

(b) K, =1m v} +imv; =1(1750 kg)(1.50 m/s)* +1 (1450 kg)(1.10 m/s)* =2846 J .
K, =1mp?, +1Im,uv;, =1(1750 kg)(0.250 m/s)* + 1 (1450 kg)(0.409 m/s)* =176 J .

The change in kinetic energy is AK =K, —K, =176 J -2846 ] =-2670J .

EVALUATE: The total momentum of the system is constant because there is no net external force during the
collision. The kinetic energy of the system decreases because of negative work done by the forces the cars exert on
each other during the collision.

IDENTIFY: Since the rifle is loosely held there is no net external force on the system consisting of the rifle, bullet
and propellant gases and the momentum of this system is conserved. Before the rifle is fired everything in the
system is at rest and the initial momentum of the system is zero.

SET UP: Let +x be in the direction of the bullet’s motion. The bullet has speed 601 m/s —1.85 m/s =599 m/s

relative to the earth. P, = p, + p, + p,, , the momenta of the rifle, bullet and gases. v,, =—1.85 m/s and

Vi, =+599 m/s.

EXECUTE: P, =R =0. p +p,+p,=0. p,=-p,—p, =-(2.80 kg)(—1.85 m/s) - (0.00720 kg)(599 m/s)
and p, =+5.18 kg-m/s—4.31 kg-m/s =0.87 kg-m/s . The propellant gases have momentum 0.87 kg-m/s, in the

same direction as the bullet is traveling.

EVALUATE: The magnitude of the momentum of the recoiling rifle equals the magnitude of the momentum of the
bullet plus that of the gases as both exit the muzzle.

IDENTIFY: In part (a) no horizontal force implies P. is constant. In part (b) use the energy expression, Eq. 7.14,

to find the potential energy intially in the spring.
SET UP: Initially both blocks are at rest.

Vg1 =0

X

Vg2 = 1.20m/s

[£]

v

o
=]
Il

=]

=

=1

: D
=

Figure 8.20
EXECUTE: (a) mv,  +myvp =myv,, +myVvy,.

0=myw,, +myvy,,

S .
m, . g

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B.
(b) Use energy conservation: K, +U, +W_, =K, +U,.

=0and U =U,.

ther

Only the spring force does work so W,

ther

K, =0 (the blocks initially are at rest)

U, =0 (no potential energy is left in the spring)
K, =im Vi, +Limvi, =1(1.00 kg)(3.60 m/s)* +1(3.00 kg)(1.20 m/s)* =8.64 J

U, =U,,, the potential energy stored in the compressed spring.

Thus U

a=K,=8641

EVALUATE: The blocks have equal and opposite momenta as they move apart, since the total momentum is zero.
The kinetic energy of each block is positive and doesn’t depend on the direction of the block’s velocity, just on its
magnitude.

IDENTIFY: Since friction at the pond surface is neglected, there is no net external horizontal force and the
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are initially
at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the ice together
produce a net vertical force while the rifle is firing, so the vertical component of momentum is not conserved.

SET UP: Let object A be the hunter and object B be the bullet. Let +x be the direction of the horizontal

component of velocity of the bullet. Solve for v, .
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8.22.

8.23.

8.24.

8.25.

EXECUTE: (a) vy, =+965m/s. B =P, =0. 0=m,v,, +m,v,, and

m, 4.20x107° kg
v B2x o

T 725 ke

A

j(%s m/s) =—0.0559 ms .

420x107 kg
72.5 kg

EVALUATE: The mass of the bullet is much less than the mass of the hunter, so the final mass of the hunter plus
gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, her final speed is much less
than the speed of the bullet.

2

IDENTIFY: Assume the nucleus is initially at rest. K =1mv*.

(b) vy, =y, 086 =(965 m/s)c0s56.0°=540 m/s. v,, = —( J(540 m/s)=-0.0313 m/s .

SET UpP: Let +x be to the right. v,, =-v, and v,, =+v,.

. m
EXECUTE: (a) P, =P, =0 gives m,v,, +myv,, =0. v, = [—AJVA .
mB

1 2 2
K, _2MVa _ my, mg

(b)

K, %msvfz mB(mAVA/mB )2 n,

EVALUATE: The lighter fragment has the greater kinetic energy.

IDENTIFY: Apply conservation of momentum to the nucleus and its fragments. The initial momentum is zero.
The 2*Po nucleus has mass 214(1.67x107" kg) =3.57x107> kg, where 1.67x107 kg is the mass of a nucleon

_1,.2
(proton or neutron). K =Zmv".

SET UP: Let +x be the direction in which the alpha particle is emitted. The nucleus that is left after the decay has
mass m, =3.75x107 kg—m, =3.57x10™ kg—6.65x10"" kg=3.50x10" kg .

. [2K 2(1.23x107™"
EXECUTE: P, =P =0 gives m,v, +my, =0. v, :ﬂva. v, = o |2L23x 27 D o 1.92%107 mis.
’ m, \ m, 6.65x107 kg

v 6.65%x107 kg
" 3.50x107 kg
EVALUATE: The recoil velocity of the more massive nucleus is much less than the speed of the emitted alpha

particle.
IDENTIFY and SET UP:  Let the +x-direction be horizontal, along the direction the rock is thrown. There is no net

horizontal force, so P. is constant. Let object 4 be you and object B be the rock.

X

j(1.92><107 m/s) =3.65x10° m/s .

EXECUTE: O0=-m,v,+myv, cos35.0°

myv, c0s35.0°
v,=—2E—— =211m/s
mA
EVALUATE: P, is not conserved because there is a net external force in the vertical direction; as you throw the

rock the normal force exerted on you by the ice is larger than the total weight of the system.
IDENTIFY: Each horizontal component of momentum is conserved. K =<mv’.

SET UP: Let +x be the direction of Rebecca’s initial velocity and let the +y axis make an angle of 36.9° with
Ry =0
Vo, = (8.00 m/s)c0s53.1° = 4.80 m/s ; vy, =(8.00 m/s)sin53.1° = 6.40 m/s . Solve for v, and vy, .
EXECUTE: (a) B =P, gives myvy,, = MgV, +MpVp, .

_ mp (Vg = Vgy,) _ (45.0 kg)(13.0 m/s —4.80 m/s)

respect to the direction of her final velocity. vy, =vy,, =0. vy, =13.0 m/s ; v,

Viay = =5.68 m/s .
my, 65.0 kg
. m 45.0 kg
R, =P, gives 0=myvy,, +myvp, . Vp,, = —m—Zszy = _(65.0 kgj(6.40 m/s) =-4.43 m/s.
o S - - v 4.4
The directions of ¥,, , ¥, and ¥,, are sketched in Figure 8.25. tan@ = |22 :3—m/s and 0=38.0°.
Voae| 5.68 m/s

Vo =A[Vo,, + vézy =720 m/s .
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8.26.

8.27.

8.28.

(b) K, =Lmyvy, =1(45.0 kg)(13.0 m/s)’ =3.80x10° J .
K, =LImvy, +Imyvy, =1(45.0 kg)(8.00 m/s)” +1(65.0 kg)(7.20 m/s)* =3.12x10° J .
AK=K,-K,=—68017.

EVALUATE: Each component of momentum is separately conserved. The kinetic energy of the system increases.

y
VR2

Figure 8.25

IDENTIFY: There is no net external force on the system of astronaut plus canister, so the momentum of the
system is conserved.

SET UP: Let object 4 be the astronaut and object B be the canister. Assume the astronaut is initially at rest. After
the collision she must be moving in the same direction as the canister. Let +x be the direction in which the canister
is traveling initially, so v, =0, v,, =+2.40 m/s, v, =+3.50 m/s, and v,, =+1.20 m/s . Solve for m,, .

m (v, V) (784 kg)(2.40 m/s —0)
% 3.50 m/s—1.20 m/s

EVALUATE: She must exert a force on the canister in the —x direction to reduce its velocity component in the

+x direction. By Newton’s third law, the canister exerts a force on her that is in the +x direction and she gains

velocity in that direction.

IDENTIFY: The horizontal component of the momentum of the system of the rain and freight car is conserved.

SET UpP: Let +x be the direction the car is moving initially. Before it lands in the car the rain has no momentum along the
X axis.

EXECUTE: (a) B =P, says (24,000 kg)(4.00 m/s) =(27,000 kg)v, and v, =3.56 m/s.

(b) After it lands in the car the water must gain horizontal momentum, so the car loses horizontal momentum.
EVALUATE: The vertical component of the momentum is not conserved, because of the vertical external force
exerted by the track.

IDENTIFY: The x and y components of the momentum of the system of the two asteroids are separately conserved.
SET UpP: The before and after diagrams are given in Figure 8.28 and the choice of coordinates is indicated. Each
asteroid has mass m.

EXECUTE: (a) B =P, gives mv, =mv,,c0s30.0°+mv,,cos45.0°. 40.0 m/s =0.866v,, +0.707v,, and

0.707v,, = 40.0 m/s —0.866v , .

=81.8kg.

EXECUTE: B =P, . my, +myv, =m\y,,, +myv,, . m,=

v

Blx ~ VB2x

P,, =P, gives 0=mv,,sin30.0°—mv,,sin45.0° and 0.500v,, =0.707v,, .

Combining these two equations gives 0.500v,, =40.0 m/s —0.866v,, and v,, =29.3 m/s . Then

vy =[ 2299029 3 mis) = 20.7 s .
0.707
2 2 2 2
b) K, =im’ . K, =imv, +1imv;,. LEgn tv“ _ 293 wh) +(20'27 mis)” _ 0.804 .
K (40.0 m/s)

M_EK K 019,

Kl Kl Kl
19.6% of the original kinetic energy is dissipated during the collision.
EVALUATE: We could use any directions we wish for the x and y coordinate directions, but the particular choice
we have made is especially convenient.
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8.29.

8.30.

8.31.

30°

A ®————

Yal
Y X

A B

B ®&—3———-

l? 45°
VB2
Before After

Figure 8.28
IDENTIFY: Since drag effects are neglected there is no net external force on the system of two fish and the momentum
of the system is conserved. The mechanical energy equals the kinetic energy, which is K =2mv* for each object.

SET UP: Let object 4 be the 15.0 kg fish and B be the 4.50 kg fish. Let +x be the direction the large fish is
moving initially, so v, =1.10 m/s and v, =0. After the collision the two objects are combined and move with

velocity v, . Solve for v, .
EXECUTE: (a) B, =P, myy,  +myvy, =(m, +my)v,, .

_my, +mv, o (15.0 kg)(1.10 m/s) +0
* m,+m, 15.0 kg +4.50 kg

=0.846 m/s.

Vy

(b) K, =1m v +1myv; =1(15.0 kg)(1.10 m/s)* =9.08 J . K, =1(m,, +my)v; =1(19.5 kg)(0.846 m/s)* =6.98 J .

AK =K, -K, =-2.101J.2.10 J of mechanical energy is dissipated.

EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined.
IDENTIFY: There is no net external force on the system of the two otters and the momentum of the system is

conserved. The mechanical energy equals the kinetic energy, which is K = %mv2 for each object.
SET UpP: Let 4 be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity is v, .
Let +x be to the right, so v, =—5.00 m/s and v, =+6.00 m/s. Solve for v,_.
EXECUTE: (a) B =P, . my, +myvy, =m +my)v, .

my,,. +mgvy  (7.50 kg)(—=5.00 m/s) + (5.75)(+6.00 m/s)
T mm, 7.50 kg +5.75 kg -

—0.226 m/s .

v2)r

(b) K, =<Imvi +Lmyv; =1(7.50 kg)(5.00 m/s)’ +1(5.75 kg)(6.00 m/s)* =197.2J .
K, =1(m, +my)v; =1(13.25 kg)(0.226 m/s)* =0.338 J .
AK =K, - K, =-197J. 197 J of mechanical energy is dissipated.

EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined.
IDENTIFY: Treat the comet and probe as an isolated system for which momentum is conserved.
SET UP: In part (a) let object 4 be the probe and object B be the comet. Let —x be the direction the probe is

traveling just before the collision. After the collision the combined object moves with speed v, . The change in
velocity is Av=v, —v,, . In part (a) the impact speed of 37,000 km/h is the speed of the probe relative to the
comet just before impact: v, —v, =-37,000 km/h . In part (b) let object 4 be the comet and object B be the
earth. Let —x be the direction the comet is traveling just before the collision. The impact speed is 40,000 km/h, so
Ve =V, =—40,000 km/h .

m,v +myv,, .
EXECUTE: (a) B, =P, . v, =—4+4x BBl

mA+mB
m m,—m,—m m
Av=v, —v, = [—AJVAIX + (MJ‘)BU = (—AJ(VAIX _Vle) .
mA+mB mA+mB mA+mB
2k
Av= 372 ke —— |(=37,000 km/h) = —1.4x 10 km/h.
372 kg +0.10x 10" kg

The speed of the comet decreased by 1.4x10°° km/h . This change is not noticeable.



Momentum, Impulse, and Collisions 8-9

8.32.

8.33.

8.34.

0.10x10" kg
0.10x10" kg +5.97x10** kg

by 6.7x10™ km/h . This change is not noticeable.
EVALUATE: v, —v,, isthe velocity of the projectile (probe or comet) relative to the target (comet or earth).

(b) Av ={ J(—40,000 km/h) = -6.7x10"* km/h . The speed of the earth would change

The expression for Av can be derived directly by applying momentum conservation in coordinates in which the
target is initially at rest.

IDENTIFY: The forces the two vehicles exert on each other during the collision are much larger than the
horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation.

SET UP: Let +x be eastward. After the collision two vehicles move with a common velocity v, .
EXECUTE: (a) B =P gives mg Vg, +mpvy = (Mg +m)v, .

_ MgeVge, +mpvy, (1050 kg)(=15.0 m/s) + (6320 kg)(+10.0 m/s)
) Mg, + M 1050 kg + 6320 kg

The final velocity is 6.44 m/s, eastward.

=6.44 m/s .

V2

. 1050 k;
(b) P =P, =0 gives mvee, +movy, =0 v, =—| 75 |y = [ 100KE 156 6) =250 mys . The truck
‘ ' m, 6320 kg
would need to have initial speed 2.50 m/s.

(c) part (a): AK =1(7370 kg)(6.44 m/s)* —1(1050 kg)(15.0 m/s)* —1(6320 kg)(10.0 m/s)* =—2.81x10° J

part (b): AK =0-21(1050 kg)(15.0 m/s)* —1(6320 kg)(2.50 m/s)* =—1.38x10° J . The change in kinetic energy
has the greater magnitude in part (a).

EVALUATE: In part (a) the eastward momentum of the truck has a greater magnitude than the westward
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles have equal
magnitudes of momentum, the total momentum of the system is zero, and the wreckage is at rest after the collision.
IDENTIFY: The forces the two players exert on each other during the collision are much larger than the horizontal
forces exerted by the slippery ground and it is a good approximation to assume momentum conservation. Each
component of momentum is separately conserved.

SET UpP: Let +x be east and +y be north. After the collision the two players have velocity v, . Let the linebacker

be object 4 and the halfback be object B, so v,,, =0, v, =88 m/s, vy, =7.2m/s and v, =0. Solve for
v, and v, .
EXECUTE: B =P, gives m,v, +mgvy =(m +mg)v, .

_ (85 kg)(7.2 m/s)

— mAvAlx + vaB

v, L =3.14m/s.
’ m,+myg 110 kg +85 kg

Ey = sz gives MY+ MgV, =(m, +m3)v2y .

L\ + Ve, _ (110 kg)(8.8 m/s) 496 m/s

2 m,+m, 110kg+85kg '
V=,V +v22y =59 ms.

tang =2 =290 4 g sge
v,, 3.14m/s

The players move with a speed of 5.9 m/s and in a direction 58° north of east.

EVALUATE: Each component of momentum is separately conserved.

IDENTIFY: There is no net external force on the system of the two skaters and the momentum of the system is
conserved.

SET UP: Let object 4 be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg. Let +x be to
the right, so v, =+2.00 m/s and v, =-2.50 m/s. After the collision the two objects are combined and move with

velocity v, . Solve for v, .

EXECUTE: B, =P,

2x *
L oMVt mgvg, (700 kg)(2.00 mis) + (65.0)(-2.50 mis) _
. m, +m, 70.0 kg +65.0 kg

The two skaters move to the left at 0.167 m/s.
EVALUATE: There is a large decrease in kinetic energy.

MV, +mgvp = (m, +mg)v, .

—0.167 m/s .
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8.35. IDENTIFY: Neglect external forces during the collision. Then the momentum of the system of the two cars is
conserved.

SET UP: mg =1200 kg, m;, =3000 kg . The small car has velocity vy and the large car has velocity v, .
EXECUTE: (a) The total momentum of the system is conserved, so the momentum lost by one car equals the
momentum gained by the other car. They have the same magnitude of change in momentum. Since p=mv and
Ap is the same, the car with the smaller mass has a greater change in velocity.

m,

mgAvg =m; Av, and Avg = (—JAVL =[

mg

3000 kg

Av=2.50Av .
1200 kg

(b) The acceleration of the small car is greater, since it has a greater change in velocity during the collision. The
large acceleration means a large force on the occupants of the small car and they would sustain greater injuries.
EVALUATE: Each car exerts the same magnitude of force on the other car but the force on the compact has a
greater effect on its velocity since its mass is less.

8.36. IDENTIFY: The collision forces are large so gravity can be neglected during the collision. Therefore, the
horizontal and vertical components of the momentum of the system of the two birds are conserved.
SET UpP: The system before and after the collision is sketched in Figure 8.36. Use the coordinates shown.

5.0mfs
Falcon X Falcon
20.0m/s
.‘I
9.0mfs Ravers Raven
Viaven-2 COS ¢
|
o)
I
|
I .
Viaven2 ~— "~ Vyeaven-2 Sm(f)
Before After
Figure 8.36

EXECUTE: There is no external force on the systemso £, =P, and B, =F,, .

b =P gives (1.5kg)(9.0 m/s) =(1.5 kg)v,..,cos¢ and v, . ,cos¢=9.0 m/s.
R, =Ph, gives (0.600 kg)(20.0 m/s) = (0.600 kg)(—5.0 m/s) + (1.5 kg)v,,,,sing and v, ,sing=10.0 m/s .

10.0 m/s

0 m/s
EVALUATE: Due to its large initial speed the lighter falcon was able to produce a large change in the raven’s
direction of motion.
8.37. IDENTIFY: Since friction forces from the road are ignored, the x and y components of momentum are conserved.
SET UP: Let object A be the subcompact and object B be the truck. After the collision the two objects move
together with velocity ¥, . Use the x and y coordinates given in the problem. v, =v, =0.

vy, =(16.0 m/s)sin24.0°=6.5 m/s ; v,, =(16.0 m/s)cos24.0° =14.6 m/s .
EXECUTE: B =P gives mv, =(m +m,)v,, .

yo | matmy | _[950kg+1900 kg (6.5 m/s)=19.5 m/s .
A m, )* 950 kg

Combining these two equations gives tan¢g = and ¢=48°.

R, =Ph, gives myy, =(m, +mB)v2y.

Vi, = (%J% - (%ja% m/s) =21.9 m/s .
A

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s.
EVALUATE: Each component of momentum is independently conserved.

8.38. IDENTIFY: Apply conservation of momentum to the collision. Apply conservation of energy to the motion of the
block after the collision.
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8.39.

8.40.

SET UpP: Conservation of momentum applied to the collision between the bullet and the block: Let object 4 be
the bullet and object B be the block. Let v, be the speed of the bullet before the collision and let V" be the speed of

the block with the bullet inside just after the collision.

v 'p=0 v

y A y —_—
— ="

=" [s]

|

X | x

Figure 8.38a

P_is constant gives m,v, =(m, +my)V .
Conservation of energy applied to the motion of the block after the collision:

\

y #1 e #2 _V =0
‘ > r |
A+B L
! 0.230m X
Figure 8.38b

K +U +W,

other

=K,+U,

EXECUTE: Work is done by friction so W, =W, =(f, cos@)s =—fis = —p,mgs
U, =U, =0 (no work done by gravity)

K, =imV? K,=0 (block has come to rest)

Thus 1mV? - ymgs =0

V = 211,85 =/2(0.20)(9.80 m/s?)(0.230 m) = 0.9495 m/s

Use this in the conservation of momentum equation

-3
vA:(mAer,,]V:(s.ooXm kg+1.20kgj(0.9495m/s):229m/s

m 5.00x107° kg

A

EVALUATE: When we apply conservation of momentum to the collision we are ignoring the impulse of the
friction force exerted by the surface during the collision. This is reasonable since this force is much smaller than
the forces the bullet and block exert on each other during the collision. This force does work as the block moves
after the collision, and takes away all the kinetic energy.

IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the
collision. After the collision the kinetic energy of the combined object is converted to gravitational potential
energy.

SET Up: Immediately after the collision the combined object has speed V. Let / be the vertical height through
which the pendulum rises.

EXECUTE: (a) Conservation of momentum applied to the collision gives

(12.0x107° kg)(380 m/s) = (6.00 kg +12.0x10° kg)V and ¥ =0.758 m/s .

Conservation of energy applied to the motion after the collision gives +m V?=m,gh and

tot

2 2
p=l" QT8 60793 m =293 em.
2g  2(9.80 m/s?)
(b) K =1myv; =1(12.0x10~ kg)(380 m/s)* =866 J .
(¢) K=1m, V?=1(6.00 kg+12.0x10~ kg)(0.758 nv/s)’ =1.73 J.

EVALUATE: Most of the initial kinetic energy of the bullet is dissipated in the collision.
IDENTIFY: Each component of horizontal momentum is conserved.
SETUP: Let +x be east and +y be north. vy, =v,, =0. vy, =(6.00 m/s)cos37.0°=4.79 m/s ,

Vsa, = (6.00 m/s)sin37.0°=3.61 m/s, v,, =(9.00 m/s)cos23.0°=8.28 m/s and
V5, =—(9.00 m/s)sin23.0°=-3.52 m/s .
EXECUTE: B =P gives mgvg, =mMVs, +M,V,,, .

_mgvg,, +m,v,,.  (80.0 kg)(4.79 m/s) +(50.0 kg)(8.28 m/s) 9.97 m/s

mg 80.0 kg

Sam’s speed before the collision was 9.97 m/s.

tot

Vsix
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8.41.

8.42.

8.43.

B, =P, gives myv,, =mgg +mv,, .

_mgvg, +mv,, o (80.0 kg)(3.61 m/s) +(50.0 kg)(—3.52 m/s)
A mg N 50.0 kg

Abigail’s speed before the collision was 2.26 m/s.

(b) AK =1(80.0kg)(6.00 m/s)* +1(50.0kg)(9.00 m/s)* -1 (80.0 kg)(9.97 m/s)* -1 (50.0kg)(2.26 m/s)*. AK=—-6391.

EVALUATE: The total momentum is conserved because there is no net external horizontal force. The kinetic
energy decreases because the forces between the objects do negative work during the collision.
IDENTIFY: When the spring is compressed the maximum amount the two blocks aren’t moving relative to each

v =226 m/s.

other and have the same velocity ¥ relative to the surface. Apply conservation of momentum to find ¥ and
conservation of energy to find the energy stored in the spring. Since the collision is elastic, Eqs. 8.24 and 8.25 give
the final velocity of each block after the collision.

SET Up: Let +x be the direction of the initial motion of 4.

EXECUTE: (a) Momentum conservation gives (2.00 kg)(2.00 m/s) =(12.0 kg)V and V' =0.333 m/s . Both
blocks are moving at 0.333 m/s, in the direction of the initial motion of block 4. Conservation of energy says the
initial kinetic energy of 4 equals the total kinetic energy at maximum compression plus the potential energy U,

stored in the bumpers: £(2.00 kg)(2.00 m/s)* =U, +1(12.0 kg)(0.333 m/s)* and U, =3.337J.
m, —mBJ _[2.00 kg—10.0 kg
Alx —

b) v, =
®) Vo, (mﬁmg 12.0 kg

1.33 m/s.

J(2.00 m/s) =-1.33 m/s . Block 4 is moving in the —x direction at

Vioy = 2m, Ve :M(ZOO m/s) =+0.667 m/s . Block B is moving in the +x direction at 0.667 m/s.
’ m,+m, ’ 12.0 kg

EVALUATE: When the spring is compressed the maximum amount the system must still be moving in order to
conserve momentum.
IDENTIFY: No net external horizontal force so P, is conserved. Elastic collision so K, = K, and can use Eq. 8.27.

SET UP:

Vpy = 2.20m/s

¥ % = 0.80 mfs

|
X X

before after

Figure 8.42

_\'| vay =17 B2

EXECUTE: From conservation of x-component of momentum:

MY+ MgV =MV + MV,
MYV —MpVp =MV 5+ MpVp,,
(0.150 kg)(0.80 m/s) —(0.300 kg)(2.20 m/s) = (0.150 kg)v ,,, +(0.300 kg)v,,

—3.60 m/s=v,, +2v,,.

From the relative velocity equation for an elastic collision Eq. 8.27:
Voo = Vior = =V, = V) = —(=2.20 m/s — 0.80 m/s) = +3.00 m/s

3.00 m/s =—v,, +vp,.

Adding the two equations gives —0.60 m/s =3v,, and v,, =-0.20 m/s. Then v,, =v,, —3.00 m/s=-3.20 m/s.

The 0.150 kg glider (4) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at
0.20 my/s.

EVALUATE: We canuse our v, and v,, toshow that P, is constantand K, =K,

IDENTIFY: Since the collision is elastic, both momentum conservation and Eq. 8.27 apply.
SET UP: Let object 4 be the 30.0 kg marble and let object B be the 10.0 g marble. Let +x be to the right.
EXECUTE: (a) Conservation of momentum gives

(0.0300 kg)(0.200 m/s) + (0.0100 kg)(—0.400 m/s) = (0.0300 kg)v,, +(0.0100 kg)v,, .

3V o, + Vg, =0.200 m/s . Eq. 8.27 says v, —v,,. =—(—0.400 m/s —0.200 m/s) = +0.600 m/s . Solving this pair of
equations gives v,, =-0.100 m/s and v,, =+0.500 m/s. The 30.0 g marble is moving to the left at 0.100 m/s
and the 10.0 g marble is moving to the right at 0.500 m/s.
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8.44.

8.45.

8.46.

(b) For marble 4, AP, =mv,, —m,v, =(0.0300 kg)(—0.100 m/s —0.200 m/s) =—0.00900 kg - m/s .
For marble B, AP, =m,v,, —myv, =(0.0100 kg)(0.500 m/s —[-0.400 m/s]) =+0.00900 kg - m/s .
The changes in momentum have the same magnitude and opposite sign.

(¢) For marble 4, AK , =1m 3, —1m % =1(0.0300 kg)([0.100 m/s]* —[0.200 m/s]*) =—4.5x107* J .
For marble B, AK, =1m,v;, —+m,v; =1(0.0100 kg)([0.500 nvs]* —[0.400 m/s]*) =+4.5x107* J .
The changes in kinetic energy have the same magnitude and opposite sign.

EVALUATE: The results of parts (b) and (¢) show that momentum and kinetic energy are conserved in the
collision.

IDENTIFY and SET UP:  Without rounding, the calculation in Example 8.12 gives v,, = V20 nvs .
EXECUTE: The two equations in Example 8.12 for & and f are

(0.500 kg)(4.00 m/s) = (0.500 kg)(2.00 m/s)(cosa) + (0.300 kg)(~/20 m/s)(cos B) Eq. 1
and

0= (0.500 kg)(2.00 m/s)(sina) — (0.300 kg)(~/20 m/s)sin B Eq. 2.

Dividing each equation by (0.500 kg)(1.00 m/s) gives

4.00 =2.00cosa +0.64/20 cos 8 Eq. 3
and
0=2.00sina —0.65/20sin B Eq. 4.
4.00-2.00cosx

0.6v/20
Eq. 4 gives sin 8 =0.7454sina and sin® # =0.5556sin’> ¢ = 0.5556 —0.5556cos’ & .

Adding the two equations and using sin” £ +cos> f=1 gives 1=2.778 —2.222cosa and cosa =0.8002 .
a=36.9°. Then sin 8 =0.7454sina gives f=26.6°.

EVALUATE: For these values of o and f, the x component of momentum, the y component of momentum and

Eq. 3 gives cos 8 = and cos® §=2.222-2.222cosa +0.5556¢0s ¢t .

the kinetic energy are all conserved in the collision.
IDENTIFY: Egs. 8.24 and 8.25 apply, with object 4 being the neutron.
SET UP: Let +x be the direction of the initial momentum of the neutron. The mass of a neutron is m, =1.0 u .

- 1.0u-2.0 .
s Ve = Ou 4 V. =—V,./3.0. The speed of the neutron after the collision
© 1.0u+2.0u

m
EXECUTE: (a) v,, =|—2
) m,+m,
is one-third its initial speed.

(b) K, =1tmyv:=1m (v, /3.0y =91—01<1 .

(c) After n collisions, v, :(Lj V- (Lj :; , 80 3.0" =59,000. nlog3.0 =10g59,000 and n=10.
3.0 3.0 59,000

EVALUATE: Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals the
kinetic energy gained by the deuteron.

IDENTIFY: Elastic collision. Solve for mass and speed of target nucleus.

SET UpP: (a) Let 4 be the proton and B be the target nucleus. The collision is elastic, all velocities lie along a line,
and B is at rest before the collision. Hence the results of Egs. 8.24 and 8.25 apply.

EXeEcUTE: Eq. 8.24: m,(v.+v,)=m, (v, —v, ), where v_ is the velocity component of 4 before the collision

and v, is the velocity component of 4 after the collision. Here, v, =1.50x10” m/s (take direction of incident

beam to be positive) and v, =-1.20x10" m/s (negative since traveling in direction opposite to incident beam).

V.-V, 1.50x10” m/s +1.20x10” m/s 2.70
my=m,| = ~|=m - - =m =9.00m.
VoV, 1.50x10” m/s—1.20x10" m/s 0.30

2m

(b) Eq. 8.25: vB‘,:( 4 jv=( 2m j(1.50><1()7 m/s) =3.00x10° m/s.

m,+m, m+9.00m

EVALUATE: Can use our calculated v, and m, to show that P, is constant and that K, =K.

X
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8.47.

8.48.

8.49.

8.50.

IDENTIFY: Apply Eq. 8.28.
SETUP: m,=0.300 kg, m, =0.400 kg, m.=0.200 kg .

m,x,+m,x, +m.Xx,
EXECUTE: x =—4"4 878 c°C

cm

m, +my+mg

_ (0300 kg)(0.200 m) + (0.400 kg)(0.100 m) + (0.200 kg)(—0.300 m)

cm =0.0444 m.
0.300 kg + 0.400 kg +0.200 kg
y _my MYyt meye .
o m, +m,+mg.
_ (0.300 kg)(0.300 m) + (0.400 kg)(—0.400 m) + (0.200 kg)(0.600 m) 0.0556 m .

o 0.300 kg +0.400 kg +0.200 kg
EVALUATE: There is mass at both positive and negative x and at positive and negative y and therefore the center
of mass is close to the origin.
IDENTIFY: Calculate x_ .

SETUP: Apply Eq. 8.28 with the sun as mass 1 and Jupiter as mass 2. Take the origin at the sun and let Jupiter
lie on the positive x-axis.

<~— 778 x 10 ' m—=

Sun ~\Jupiter

N X
27
mg =199 X ]0‘“ kg my=190x10" kg
Figure 8.48
_mx tmyY,
cm
m, +m,

EXECUTE: x,=0 and x, =7.78x10" m

(1.90x10” kg)(7.78x10" m) .
o = m 2 =742x10" m
1.99x10% kg+1.90x10”" kg

The center of mass is 7.42x10° m from the center of the sun and is on the line connecting the centers of the sun

and Jupiter. The sun’s radius is 6.96x10° m so the center of mass lies just outside the sun.

EVALUATE: The mass of the sun is much greater than the mass of Jupiter so the center of mass is much closer to
the sun. For each object we have considered all the mass as being at the center of mass (geometrical center) of the
object.

IDENTIFY: The location of the center of mass is given by Eq. 8.48. The mass can be expressed in terms of the
diameter. Each object can be replaced by a point mass at its center.

SET UpP: Use coordinates with the origin at the center of Pluto and the +x direction toward Charon, so x, =0

X =19,700 km . m=pV = pizr’ =L pnd’.

| 3 3
. _ MpXp +McXe mec _ sPmdc _[_dc
EXECUTE: X, = = S e ol el
my + M mp + M § Py +5 PTdc pTdc

B [1250 km]*
1 [2370 km]® +[1250 km]*

J(19,700 km) =2.52x10° km .

The center of mass of the system is 2.52x10° km from the center of Pluto.

EVALUATE: The center of mass is closer to Pluto because Pluto has more mass than Charon.

IDENTIFY: Apply Egs. 8.28, 8.30 and 8.32. There is only one component of position and velocity.

SETUpP:  m, =1200 kg, m, =1800 kg . M =m, +m, =3000 kg . Let +x be to the right and let the origin be at

the center of mass of the station wagon.
EXECUTE: (a) ¥, = M X+ MgXy 0+ (1800 kg)(40.0 m) —24.0 m.
m,+m,g 1200 kg +1800 kg
The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the lead
car.
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8.51.

8.52.

8.53.

(b) P.=m,v, +myv, =(1200 kg)(12.0 m/s) + (1800 kg)(20.0 m/s) = 5.04 x10* kg - mys.
© v = MaVact MV, (1200 kg)(12.0 ms) + (1800 kg)(20.0 mis)
m,+m, 1200 kg +1800 kg

= (3000 kg)(16.8 m/s)=5.04x10* kg-m/s , the same as in part (b).

EVALUATE: The total momentum can be calculated either as the vector sum of the momenta of the individual
objects in the system, or as the total mass of the system times the velocity of the center of mass.

IDENTIFY: Use Eq. 8.28 to find the x and y coordinates of the center of mass of the machine part for each
configuration of the part. In calculating the center of mass of the machine part, each uniform bar can be represented
by a point mass at its geometrical center.

SET Up: Use coordinates with the axis at the hinge and the +x and +y axes along the horizontal and vertical bars
in the figure in the problem. Let (x;,),) and (x;,y;) be the coordinates of the bar before and after the vertical bar
is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be the ball.

EXECUTE: = X, + MyXy +max; (4.00 kg)(0.750 m)+0+0 0333 m.
m, + m, + m 4.00 kg +3.00 kg +2.00 kg

oy, +myy, +myy, 0+ (3.00 kg)(0.900 m) + (2.00 ke)(1.80 m)
(CR——— 9.00 kg

=16.8 m/s.

(d) P =M,

cm-x

=0.700 m.

. _ (4.00 kg)(0.750 m) + (3.00 kg)(-0.900 m) + (2.00 kg)(~1.80 m) _

. ~0.366 m.
9.00 kg

y=0. x —x,=-0.700 m and y, —y, =—0.700 m . The center of mass moves 0.700 m to the right and 0.700 m

upward.

EVALUATE: The vertical bar moves upward and to the right so it is sensible for the center of mass of the machine
part to move in these directions.

(a) IDENTIFY: Use Eq. 8.28.

SET UP: The target variable is m,.

EXECUTE: x,=20m, y, =0

_mx tmyx, m, (0)+(0.10 kg)(8.0 m) _ 080kg-m

T m e m, m, +(0.10 kg) m +0.10 kg

0.80 kg-m

X =2.0m gives 2.0 m=——7F7"—.
m, +0.10 kg

m, +0.10 kg =

—0'820 Ke'm _ 640 ke.

m, =0.30 kg.
EVALUATE: The cm is closer to m, so its mass is larger then m,.
(b) IDENTIFY: Use Eq. 8.32 to calculate P.
SETUP: ¥, =(5.0 m/s) .
P =My, =(0.10 kg +0.30 kg)(5.0 m/s)i =(2.0 kg - m/s)i.
(c) IDENTIFY: Use Eq. 8.31.

SETUP: v =w. The target variable is v,. Particle 2 at rest says v, =0.
m, +m,
EXECUTE: ¥, =| 1 tm Vv, = 030 kg +0.10 ke (5.00 m/s)i =(6.7 m/s)i.
m, 0.30 kg

EVALUATE: Using the result of part (c) we can calculate p, and p, and show that P as calculated in part (b)
does equal p, + p,.
IDENTIFY: There is no net external force on the system of James, Ramon and the rope and the momentum of the

system is conserved and the velocity of its center of mass is constant. Initially there is no motion, and the velocity
of the center of mass remains zero after Ramon has started to move.
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SET UpP: Let +x be in the direction of Ramon’s motion. Ramon has mass m, =60.0 kg and James has mass
m; =90.0 kg .
Mg Vry & 1V,

EXECUTE: v, =——7"——2=0.
my + my

v = | Ml = [ O0KE N 200 s = ~0.47 mys . James® speed is 0.47 mis.
’ m, 90.0 kg

EVALUATE: As they move, the two men have momenta that are equal in magnitude and opposite in direction, and

the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves farther than James in the

same time interval. This is consistent with Ramon having a greater speed.

(a) IDENTIFY and SET UP:  Apply Eq. 8.28 and solve for m, and m,.

EXECUTE: y, = TNy
m, + m,
.50 kg)(6.
m +m, =AMy, m(O)+ (Ozsfmg)“ 0m) _ 25 kg and m, =0.75 ke.

cm

EVALUATE: y_ iscloser to m, since m, > m,.
(b) IDENTIFY and SET UP: Apply a =dv/dt for the cm motion.

EXECUTE: d_, =B _ (1.5 nvs3)tf.

dt
(c) IDENTIFY and SET UP:  Apply Eq. 8.34.
EXECUTE: Y F, = =(1.25 kg)(1.5 m/s* ).

At1=3.0s, Y F, =(1.25 kg)(l 5m/s’)(3.0 )i =(5.6 N)i.

EVALUATE: v, is positive and increasing so a,,_ is in the +x-direction. There is no

cm-x

is positive and F

x ext

motion and no force component in the y-direction.

IDENTIFY: Apply 217" =£;—P to the airplane.
t
SET UP: i(z”) =nt"". IN=1kg -m/s’.
dt

EXECUTE: iZ—P=[—(1.50 kg-m/s*)]i +(0.25 kg-m/s’)j . F,=—(1.50 N/s)t, F,=025N, F,=0.
t

EVALUATE: There is no momentum or change in momentum in the z direction and there is no force component
in this direction.

IDENTIFY: Use Eq. 8.38, applied to a finite time interval.

SETUp: v, =1600 m/s

Am ~0.0500 kg _

EXECUTE: (a) F'=-v, A—:—(1600m/ s) =+80.0 N.
t

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered by
ejecting the gas in a direction with a component perpendicular to the rocket’s velocity and braked by ejecting it in a
direction parallel (as opposed to antiparallel) to the rocket’s velocity.

EVALUATE: The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of gas
ejected per second.

v, dm . . .
IDENTIFY: a=-——%—— Assume that dm/dt is constant over the 5.0 s interval, since m doesn’t change much
m
. . . dm
during that interval. The thrustis F =—-v, =

SET Up: Take m to have the constant value 110 kg+ 70 kg =180 kg . dm/dt is negative since the mass of the
MMU decreases as gas is ejected.

y 490 m/s

ex

(0.0106 kg/s)(5.0 8) = 0.053 kg .

(b) F=—v, ‘ih = —(490 m/s)(~0.0106 kg/s) =5.19 N .

EXECUTE: (a) ‘;—’" == —(M](o.om m/s?) =—0.0106 kg/s . In 5.0 s the mass that is ejected is
t
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8.63.

EVALUATE: The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to take m

to be constant.
IDENTIFY and SET UP:  Apply Eq. 8.39: a= _v&ac’l_r;z. Solve for dm/dt.
m

EXECUTE:

6000 kg)(25.0 m/s’
am __ma_ ( g)( ° ) =-75.0kg/s .
dt v 2000 m/s

ex

So in 1 s the rocket must eject 75.0 kg of gas.

EVALUATE: We have approximated dm/dt by Am/At. We have assumed that 25.0 m/s® is the average
acceleration for the first second.

IDENTIFY: Use Eq. 8.39, applied to a finite time interval. Solve for v__ .

SET Up: A—m:—ﬂ.
At 160
v, Am a 150w/’

EXECUTE: a= = =2.40x10° m/s = 2.40 km/s

f— . V =
m At Am m
—/m —-—\|/m
At 160
EVALUATE: The acceleration is proportional to the speed of the exhaust gas and to the rate at which mass is

ejected.
IDENTIFY and SET UP: (F,,)At =J relates the impulse J to the average thrust F,, . Eq. 8.38 applied to a finite time

interval gives F, =—v, AA_m V=Y =V ln(ﬂj . The remaining mass m after 1.70 s is 0.0133 kg.
t m

EXECUTE: (a) F _J _100N:s 588N. F, /F, =0442.

At 1.70s
() v, =28 800 s .

—0.0125 kg
() v, =0 and v=v_ 1n(ﬁj — (800 m/syln| 20258Ke ) 530 e
m 0.0133 kg

EVALUATE: The acceleration of the rocket is not constant. It increases as the mass remaining decreases.

IDENTIFY: v—v,=v,_In [ﬂj .
m
SETUP: v,=0.
3
Execure: In| Mo |- ¥ 8000 g0 Mmoo _s,
m) v, 2100 m/s m

EVALUATE: Note that the final speed of the rocket is greater than the relative speed of the exhaust gas.
IDENTIFY and SET UP:  Use Eq. 8.40: v—v, =v, In(m,/m).

v, =0 (“fired from rest™), so v/v,, =In(m,/m).
Thus m,/m=e""", or m/my=e""" .
If v is the final speed then m is the mass left when all the fuel has been expended; m/m, is the fraction of the

initial mass that is not fuel.
(a) EXECUTE: v=1.00x10"c=3.00x10° m/s gives

— S S —
m/mo = o (300x10° wis) (2000m5) _ 7 5 o 1766

EVALUATE: This is clearly not feasible, for so little of the initial mass to not be fuel.
(b) EXECUTE: v =3000 m/s gives m/m, =e *"0™V0™) =223

EVALUATE: 22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible.
IDENTIFY: Use the heights to find v,, and v, , the velocity of the ball just before and just after it strikes the slab.

Then apply J, =F At=Ap, .
SET UpP: Let +y be downward.
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EXECUTE: (a) 1mv’ =mgh so v==1./2gh.
vy, = +\/2(9.80 m/s*)(2.00 m) = 6.26 m/s . v, = —\/2(9.80 m/s*)(1.60 m) =—5.60 m/s .

J,=Ap, =m(v,,—v,)=(40.0x 107 kg)(=5.60 m/s —6.26 m/s) =—-0.474 kg-m/s .
The impulse is 0.474 kg - m/s , upward.

(b) F,= i = M =-237 N . The average force on the ball is 237 N, upward.

At 2.00x10™ s
EVALUATE: The upward force on the ball changes the direction of its momentum.
IDENTIFY: Momentum is conserved in the explosion. At the highest point the velocity of the boulder is zero.
Since one fragment moves horizontally the other fragment also moves horizontally. Use projectile motion to relate
the initial horizontal velocity of each fragment to its horizontal displacement.
SET UP: Use coordinates where +x is north. Since both fragments start at the same height with zero vertical
component of velocity, the time in the air, ¢, is the same for both. Call the fragments 4 and B, with 4 being the one

that lands to the north. Therefore, m, =3m,.
EXECUTE: Apply B =P, tothecollision: 0=m,v, +myv, . v, = —ﬂvAX =-v,./3. Apply projectile motion
mB

(x—xy), _ (x=x))p and
v A%

to the motion after the collision: x—x, =v,,¢. Since ¢ is the same,

Ax Bx

(x=x,), = ( Vi j(x —x,), = (L"/}j(x —x,), =—(274 m)/3=-91.3 m . The other fragment lands 91.3 m
Ax VAJr

directly south of the point of explosion.

EVALUATE: The fragment that has three times the mass travels one-third as far.

IDENTIFY: The impulse, force and change in velocity are related by Eq. 8.9

SETUP: m=w/g=0.0571kg . Since the force is constant, F = F, .
EXECUTE: (a) J, =F,Ar=(-380 N)(3.00x107 s)=—1.14N-s. J, = F,Ar=(110N)(3.00x10~ s)=0.330 N s .

_ . J .
) vy = Loy, = NS 00 s =0.04 s . vy, =22~ = 2FONS g0 ms) = +1.8 s
m 0.0571 kg " m 0.0571 kg

EVALUATE: The change in velocity Av is in the same direction as the force, so Av has a negative x component
and a positive y component.
IDENTIFY: The horizontal component of the momentum of the system of cars is conserved.
SET UpP: Let +x be the direction the cars are traveling. Each car has mass m. Let v, be the initial speed of the
three cars. v, =+v,. Let N be the number of cars in the final collection.

v

EXECUTE: B, =P, . Gm)v,=(Nm)v,. N=—=3 =15.
} v, v/5

M

EVALUATE: In the complete absence of friction or other external horizontal forces this process of adding cars and
slowing down continues forever.

IDENTIFY: P, =p, +p, and P,=p, +p, .
SET UP: Let object A4 be the convertible and object B be the SUV. Let +x be west and +y be south, p, =0 and

Py =0.
EXECUTE: P, =(8000 kg-m/s)sin60.0° = 6928 kg-m/s, so p, =6928 kg-m/s and
y, =0Bhems 440
2000 kg
P, = (8000 kg -m/s)cos 60.0° = 4000 kg -m/s, 50 p,, =4000 kg-m/s and v, = % =2.67 m/s.
' g

The convertible has speed 2.67 m/s and the SUV has speed 3.46 m/s.

EVALUATE: Each component of the total momentum arises from a single vehicle.

IDENTIFY: The total momentum of the system is conserved and is equal to zero, since the pucks are released
from rest.

SET UP: Each puck has the same mass m. Let +x be east and +y be north. Let object A be the puck that moves
west. All three pucks have the same speed v.
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EXECUTE: B =P, gives 0=—mv+mv, +mv, and v=v, +v. . B

1, =B, gives 0=mvy, +mv,, and

Vp

, = V¢, - Since v, =v,. and the y components are equal in magnitude, the x components must also be equal:

Vg, =Ve, and v=vy +v. says v, =v, =v/2.1f v, is positive then v, is negative. The angle & that puck B

makes with the x axis is given by cosd = v2 and @ =60°. One puck moves in a direction 60° north of east and
v

the other puck moves in a direction 60° south of east.

EVALUATE: Each component of momentum is separately conserved.

IDENTIFY: The x and y components of the momentum of the system are conserved.

Set Up:  After the collision the combined object with mass m,, =0.100 kg moves with velocity ¥, . Solve for

Ve

x

and Ve -

EXECUTE: (a) B, =P, gives myv, +myvy, +mV,, =m,v, .

MV + MgV, — MV,

Ver =

me

(0.020 kg)(~1.50 m/s) + (0.030 kg)(—0.50 m/s)cos 60° — (0.100 kg)(0.50 m/s)
Cx — .
0.050 kg

Ve, =175 m/s .

P{y = Pz‘ gives m,v, +myvy +mVe, =myV,, .

LMV vy gy, (0.030 ke)-0.50 mis)sin60° _ o
o m, 0.050 kg ' '

(b) ve = V& +v3, =177 m/s. AK =K, - K, .
AK =1(0.100 kg)(0.50 m/s)* —[£(0.020 kg)(1.50 m/s)* +2(0.030)(0.50 m/s)* +2(0.050 kg)(1.77 m/s)’]

AK =-0.0927J .

EVALUATE: Since there is no horizontal external force the vector momentum of the system is conserved. The
forces the spheres exert on each other do negative work during the collision and this reduces the kinetic energy of
the system.

IDENTIFY: Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and the
y-axis to be north (parallel to the ground and perpendicular to the tracks). Then P. is conserved and P, is not

conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks.
(a) SET Up: Let 4 be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways relative
to the car it still has the same eastward component of velocity, 5.00 m/s, as it had before it was thrown.

Vaay = 2.00 m/s

Vare = 5.00 m/s
y v, = 5.00 m/s Y
—

Ma m v
My +mp B B x

x x
before after

Figure 8.70a

P, is conserved so (m,, +my)v,=m,,, +myv,,.
EXECUTE: (200 kg)(5.00 m/s) =(25.0 kg)(5.00 m/s)+ (175 kg)v,,, -
vy = 1000 kg - m/s —125 kg - m/s
175 kg
The final velocity of the car is 5.00 m/s, east (unchanged).

EVALUATE: The thrower exerts a force on the mass in the y-direction and by Newton’s 3rd law the mass exerts
an equal and opposite force in the —y-direction on the thrower and car.

=5.00 m/s.

(b) SETUpP: We are applying P, = constant in coordinates attached to the ground, so we need the final velocity of
A relative to the ground. Use the relative velocity addition equation. Then use P, = constant to find the final
velocity of the car.
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EXECUTE: V.=V, ,+V,
vy, p =+5.00 m/s
v, 5 =—5.00 m/s (minus since the mass is moving west relative to the car). This gives v,,, =0; the mass is at rest
relative to the earth after it is thrown backwards from the car.
As in part (a), (mA + m[,,)vl =MV MV, .
Now v,,, =0, so (m, +my)v, =myvy,_.
Vg, = (m}l = [200 kg ](5.00 m/s) =5.71 mis.
my 175 kg
The final velocity of the car is 5.71 m/s, east.
EVALUATE: The thrower exerts a force in the —x-direction so the mass exerts a force on him in the +x-direction

and he and the car speed up.
(¢) SETUP: Let 4 be the 25.0 kg mass and B be the car (mass m, =200 kg).

¥ Vg = 5.00m/s v, = 6.00 m/s y Yy =7
—_— Fs X
| |”‘B DH:A D my +mH
| - ‘
before after

Figure 8.70b

x

P, is conserved so m,v,, +myvy = (m, +my)v,, .
EXECUTE:  —m,v, +myvy =(m, +mgy)v,, .

_myvy —my,, _ (200 kg)(5.00 mis)—(25.0 kg)(6.00 ms)
! m, +nmyg 200 kg +25.0 kg

The final velocity of the car is 3.78 m/s, east.
EVALUATE: The mass has negative p_ so reduces the total P, of the system and the car slows down.

x

=3.78 m/s.

Yy

IDENTIFY: The horizontal component of the momentum of the sand plus railroad system is conserved.

SET UP: As the sand leaks out it retains its horizontal velocity of 15.0 m/s.

EXECUTE: The horizontal component of the momentum of the sand doesn’t change when it leaks out so the
speed of the railroad car doesn’t change; it remains 15.0 m/s. In Exercise 8.27 the rain is falling vertically and
initially has no horizontal component of momentum. Its momentum changes as it lands in the freight car.
Therefore, in order to conserve the horizontal momentum of the system the freight car must slow down.
EVALUATE: The horizontal momentum of the sand does change when it strikes the ground, due to the force that
is external to the system of sand plus railroad car.

IDENTIFY: Kinetic energy is K =1mv® and the magnitude of the momentum is p =mv . The force and the time

it acts are related to the change in momentum whereas the force and distance d it acts are related to the change in
kinetic energy.

SET Up: Assume the net forces are constant and let the forces and the motion be along the x axis. The impulse-
momentum theorem then says Ff = Ap and the work-energy theorem says Fd = AK .

EXECUTE: (a) K, =1(840kg)(9.0m/s)’ =3.40x10*J. K, =1(1620kg)(5.0m/s)* =2.02x10*J . The Nash has

the greater kinetic energy and % =1.68.
P

(b) py = (840 kg)(9.0 m/s) =7.56x10° kg-m/s . p, = (1620 kg)(5.0 m/s) =8.10x10’ kg -m/s . The Packard has

the greater magnitude of momentum and Py _0.933.
Py

(c) Since the cars stop the magnitude of the change in momentum equals the initial momentum. Since p, > py ,

F
F,>F, and X =28 _0.933.

F,o pp
(d) Since the cars stop the magnitude of the change in kinetic energy equals the initial kinetic energy. Since
F, K
K\>K,, Fy,>F, and *=—1=1.68.
P P

EVALUATE: If the stopping forces were the same, the Packard would have a larger stopping time but would
travel a shorter distance while stopping. This consistent with it having a smaller initial speed.
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IDENTIFY: Use the impulse-momentum theorem to relate the average force on the bullets to their rate of change
in momentum. By Newton’s third law, the average force the weapon exerts on the bullets is equal in magnitude
and opposite in direction to the recoil force the bullets exert on the weapon.

SET UP: Consider a time interval of 1.00 minute. Let +x be the direction of motion of the bullets and use
coordinated fixed to the ground. The bullets start from rest.

-3
EXECUTE:  FAr=Ap gives F, = 1000745107 ke)@93ms) _ 3¢ 4 ¢ The recoil force is 36.4 N.

60.0 s
EVALUATE: The change in momentum for each bullet is small since the mass is small, but over 16 bullets are
fired per second.
IDENTIFY: Find £ for the spring from the forces when the frame hangs at rest, use constant acceleration equations
to find the speed of the putty just before it strikes the frame, apply conservation of momentum to the collision
between the putty and the frame and then apply conservation of energy to the motion of the frame after the collision.
SET Up: Use the free-body diagram for the frame when it hangs at rest on the end of the spring to find the force
constant k of the spring. Let s be the amount the spring is stretched.

ks (the spring
a=0 force)

mg

Figure 8.74a

EXECUTE: ) F,=ma,.
-mg+ks=0.
mg  (0.150 kg)(9.80 m/s’)

=—° = =294 N/m.
s 0.050 m

SET Up: Next find the speed of the putty when it reaches the frame. The putty falls with acceleration a = g,

downward.

Figure 8.74b

v, =0
Y=,=0.300m

a =+9.80 ny/s’
v="7

v? :vg +2a(y-y,)

EXECUTE: v=,2a(y-y,)= \/2(9.80 m/s”)(0.300 m) =2.425 m/s .

SET UP:  Apply conservation of momentum to the collision between the putty (4) and the frame (B):

v -J Vi) ¥ o
==y =0 éll:_.
| x
before after
Figure 8.74¢
P, is conserved, so —m v, =—(m, +my)v,.

EXECUTE: v, = My V= % (2.425 m/s):1‘386 m/s .
m,+m, 0.350 kg
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SET UP:  Apply conservation of energy to the motion of the frame on the end of the spring after the collision. Let
point 1 be just after the putty strikes and point 2 be when the frame has its maximum downward displacement. Let
d be the amount the frame moves downward.

Figure 8.74d

When the frame is at position 1 the spring is stretched a distance x, =0.050 m. When the frame is at position 2 the
spring is stretched a distance x, =0.050 m+d. Use coordinates with the y-direction upward and y =0 at the
lowest point reached by the frame, so that y, =d and y, =0. Work is done on the frame by gravity and by the
spring force, so W, =0, and U =U, +U .-
EXECUTE: K +U, +W, =K,+U,.

Wope =0

K, =1tmv} =3(0.350 kg)(1.386 m/s)2 =0.336217.

U =U, =Lk +mgy, =1(29.4 N/m)(0.050 m)” +(0.350 kg)(9.80 m/s”)d .
U, =0.036751+(3.43N)d .

U,=U, , +U, ., =3kl +mgy, =1(29.4 N/m)(0.050 m+d)’.
U,=0.036751+(1.47 N)d +(14.7 N/m)d2 .

Thus 0.3362 J+0.03675 J+(3.43 N)d = 0.03675 J +(1.47 N)d +(14.7 N/m)dz.

(14.7 N/m)d* —(1.96 N)d —0.3362 J =0.

+U.

1, grav

d= (1/29.4)[1.96 + \/(1.96)2 —4(14.7)(—0.3362)} m =0.0667 m+0.1653 m.

The solution we want is a positive (downward) distance, so d =0.0667 m+0.1653 m =0.232 m.

EVALUATE: The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational potential

energy is not equal to the increase in potential energy stored in the spring.

IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the

collision.

SET UP: Let +x be to the right. The total mass is m = my,,, +m,,, =1.00 kg . The spring has force constant
|F] 075N

=—=——————-=300 N/m. Let V" be the velocity of the block just after impact.
|x] 0250107 m

EXECUTE: (a) Conservation of energy for the motion after the collision gives K, =U,,. imV? =1kx* and

V:x\/z:(O.ISO my, [22ONM 5 60 mis
m 1.00 kg

(b) Conservation of momentum applied to the collision gives m, v, =mV .

_mV (100 kg)(2.60 m/s)

: = =325 m/s.
My 8.00x107 kg

EVALUATE: The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision.
IDENTIFY: The horizontal components of momentum of the system of bullet plus stone are conserved. The
collision is elastic if K, =K,.
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SET UP: Let 4 be the bullet and B be the stone.

(a)
) VB - -V
) Vi = 350 m/s ) P
o Vg = 0 [¢] |
= O VB2 x
[ X | X
I l Vi = 250 m/s
Figure 8.76

EXECUTE: P, is conserved SO m Vv, +mpVy =myV,, +MyVp, .

MV, =mMgVp,, -

3
Vo =| T |y, = SO0 Ke 350 ) =210 ms
m, 0.100 kg

P, is conserved s0 m, v, +mpvy =mv,, +mgvg, .

O=—mpy,+ MyVp,, -

-3
vy = Ma ]y, [ 6:00x10 kg (250 m/s)=15.0 nvs .
*m, 0.100 kg

Viy = Vi + Vi, = (210 ms)’ +(15.0 mis)’ =25.8 ms .,

=0.7143; #=35.5° (defined in the sketch).

tan @ = VBZy _ 15.0 m/s

Vy, 21.0m/s

(b) To answer this question compare K, and K, for the system:

K, =tm % +imyp =1(6.00x107 kg)(350 m/s) =368 7.
K, =im v, +Lmyv;, =1(6.00x10 kg)(250 m/s)’ +4(0.100 kg)(25.8 m/s)’ = 2211 .

AK=K,-K, =2211-368)J=-1471].

EVALUATE: The kinetic energy of the system decreases by 147 J as a result of the collision; the collision is not

elastic. Momentum is conserved because ZFMX =0 and ZFN , =0. But there are internal forces between the

bullet and the stone. These forces do negative work that reduces K.

IDENTIFY: Apply conservation of momentum to the collision between the two people. Apply conservation of
energy to the motion of the stuntman before the collision and to the entwined people after the collision.

SET UP: For the motion of the stuntman, y, —y, =5.0 m. Let vg be the magnitude of his horizontal velocity just
before the collision. Let ¥ be the speed of the entwined people just after the collision. Let d be the distance they
slide along the floor.

EXECUTE: (a) Motion before the collision: K, +U, =K, +U,. K, =0 and 1mv; =mg(y, - y,).

Ve =283 — ¥,) =+/2(9.80 m/s*)(5.0 m) =9.90 m/s .

.. 80.0 k
Collision: mgyvg=m V.V :&vs _[ B00ke (9.90 m/s)=5.28 m/s .
T 1500 kg
(b) Motion after the collision: K, +U, +W,,, =K, +U, gives +m V> - ym gd =0.
2 2
vi (528 mis) .

2u.g  2(0.250)(9.80 nvs®) >
EVALUATE: Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the collision
is less than the initial potential energy of the stuntman.
IDENTIFY: Apply conservation of energy to the motion before and after the collision and apply conservation of
momentum to the collision.
SET UP: Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each object
have mass m.

EXECUTE: Conservation of energy says +mv’ =mgR; v=4/2gR .
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SET Up: This is speed v, for the collision. Let v, be the speed of the combined object just after the collision.

EXECUTE: Conservation of momentum applied to the collision gives mv, =2mv, so v, =v,/2=/gR/2

SET UP:  Apply conservation of energy to the motion of the combined object after the collision. Let y, be the
final height above the bottom of the bowl.
EXECUTE:  1(2m)v; =(2m)gy,.

2

e L)
2g 2g\ 2

EVALUATE: Mechanical energy is lost in the collision, so the final gravitational potential energy is less than the

initial gravitational potential energy.

IDENTIFY: Eqgs. 8.24 and 8.25 give the outcome of the elastic collision. Apply conservation of energy to the

motion of the block after the collision.

SET UP: Object B is the block, initially at rest. If L is the length of the wire and & is the angle it makes with the

vertical, the height of the block is y = L(1—cos#) . Initially, y, =0.

. 2 2M . .
EXECUTE: Eq. 8.25 gives v, = M4 v, :[ J(S.OO m/s) =2.50 m/s . Conservation of energy gives
m, +my M +3M

2 2
Ve _y_ (230m) =0.362 and 0=68.8°.
2gL 2(9.80 m/s*)(0.500 m)
EVALUATE: Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision.
IDENTIFY: Apply conservation of energy to the motion before and after the collision. Apply conservation of
momentum to the collision.

SET Up: First consider the motion after the collision. The combined object has mass m,, =25.0 kg. Apply

Lmyvy =m,gL(1-cosf) . cosf=1-

ZF =ma to the object at the top of the circular loop, where the object has speed v,. The acceleration is

a.,=vi/R, downward.
2

EXECUTE: T +mg= m3 .

The minimum speed v, for the object not to fall out of the circle is given by setting 7' = 0. This gives v, =+/Rg,

where R=3.50 m.
SET UP: Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of the
loop. Take y =0 at point 2. Only gravity does work, so K, +U, =K, +U,

EXECUTE: 1m

Vs =2myv; +m g (2R).

Use v, :\/@ and solve for v,: v, =4/5gR =13.1m/s.

SET UP: Now apply conservation of momentum to the collision between the dart and the sphere. Let v, be the
speed of the dart before the collision.

EXECUTE:  (5.00 kg)v, =(25.0 kg)(13.1 m/s).

v, =65.5m/s.

EVALUATE: The collision is inelastic and mechanical energy is removed from the system by the negative work
done by the forces between the dart and the sphere.

IDENTIFY: Use Eq. 8.25 to find the speed of the hanging ball just after the collision. Apply ZF =ma to find
the tension in the wire. After the collision the hanging ball moves in an arc of a circle with radius R =1.35 m and

acceleration a,, =v'/R .
SET UpP: Let 4 be the 2.00 kg ball and B be the 8.00 kg ball. For applying ZF =ma to the hanging ball, let +y

be upward, since a4, is upward. The free-body force diagram for the 8.00 kg ball is given in Figure 8.81.

2 2[2.00k -
EXECUTE: v, = P Vi, = _2A200ke] (5.00 m/s) = 2.00 m/s . Just after the collision the 8.00 kg
m,+m, 2.00 kg +8.00 kg

ball has speed v=2.00 m/s . Using the free-body diagram, ZE =ma, gives T —mg=ma,, .

[2.00 m/s]?

Vz
T=m| g+— |=(8.00 kg)| 9.80 m/s* +
(g Rj ( g>( 0 m

j=102N.



Momentum, Impulse, and Collisions 8-25

EVALUATE: The tension before the collision is the weight of the ball, 78.4 N. Just after the collision, when the
ball has started to move, the tension is greater than this.

-
Tafad

mg

Figure 8.81

8.82. IDENTIFY: The impulse applied to the ball equals its change in momentum. The height of the ball and its speed
are related by conservation of energy.
SET Up: Let +y be upward.

EXECUTE: Applying conservation of energy to the motion of the ball from its height / to the floor gives
Lmv} =mgh , where v, is its speed just before it hits the floor. Just before it hits, it is traveling downward, so the

velocity of the ball just before it hits the floor is v,, = —/2gh . Applying conservation of energy to the motion of the
ball from just after it bounces off the floor with speed v, to its maximum height of 0.90% gives %mvz2 =mg(0.904) .
It is moving upward, so v, =+4/2g(0.904) . The impulse applied to the ballis J, = p, —p,, =m(v,, —v,,) =

m+/2g(0.90h) + m\/2gh = 2.76m\/g_h . The floor exerts an upward impulse of 2.76m@ to the ball.

EVALUATE: The impulse increases when m increases and when /% increases. The ball does not return to its initial
height because some mechanical energy is dissipated during the collision with the floor.

8.83. IDENTIFY: Apply conservation of momentum to the collision between the bullet and the block and apply
conservation of energy to the motion of the block after the collision.
(a) SET Up: Collision between the bullet and the block: Let object 4 be the bullet and object B be the block.

Apply momentum conservation to find the speed v,, of the block just after the collision.

Vyp = 400 m/s Y Vgr =7 Vyp = 120mis
P 1 K ="
l before ! I after '
Figure 8.83a

EXECUTE: P, is conserved SO m v, +mpVy =myV,, +MmyVp, .

MYy =MV 45+ MgV,

m, (v, —v,,) 4.00x107 kg(400 m/s —120 m/s)
my 0.800 kg

SET UP: Motion of the block after the collision.
Let point 1 in the motion be just after the collision, where the block has the speed 1.40 m/s calculated above, and
let point 2 be where the block has come to rest.

.

=140 m/s .

Vpor =

W= 1.40 m/s

i =0
#1r] #2|_| :

0.450 m ———= *

Figure 8.83b

K +U+W,. . =K,+U,.
EXECUTE: Work is done on the block by friction, so W, =W,.
Wonee =W, =(f, cosg)s =—fi.s =—p,mgs, where s =0.450 m
U =0, U,=0
K, =1imv, K, =0 (block has come to rest)
Thus Lmv; — ymgs =0.
ﬂk:i_ (1.40 m/s )’ o

2gs 2(9.80 m/s”)(0.450 m)
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(b) For the bullet,
K, =1mv] =1(4.00x10” kg)(400 m/s)" =320 J.

K, =1mv} =1(4.00x107 kg)(120 m/s)’ =28.8J .

AK=K,-K =288J-320J=-291J.

The kinetic energy of the bullet decreases by 291 J.
(¢) Immediately after the collision the speed of the block is 1.40 m/s so its kinetic energy is
K =2mv? =1(0.800 kg )(1.40 m/s)” =0.784 J.

EVALUATE: The collision is highly inelastic. The bullet loses 291 J of kinetic energy but only 0.784 J is gained
by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is gained by the
block.

IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion of the
block after the collision.

SETUP: Let +x be to the right. Let the bullet be 4 and the block be B. Let 7 be the velocity of the block just after
the collision.

EXECUTE: Motion of block after the collision: K, =U,, -

ImV? =mygh.

V=4\2gh= \/2(9.80 m/s”)(0.450x107 m) =0.297 m/s .
Collision: v,, =0.297 m/s. B =P, gives mv, =m,V,, +myVv,, .

=MV My _ (5:00x107 ke)(450 m/s) - (1.00 kg)(0.297 m/s) _ 391 mis.
2 m, 5.00x107 kg

EVALUATE: We assume the block moves very little during the time it takes the bullet to pass through it.

IDENTIFY: Eqgs. 8.24 and 8.25 give the outcome of the elastic collision. The value of M where the kinetic energy
loss K, of the neutron is a maximum satisfies dK, /dM =0.

SET UP: Let object A be the neutron and object B be the nucleus. Let the initial speed of the neutron be v, . All

loss

motion is along the x-axis. K, =<mv],.

2 2
-M -M 2m-M 4K mM
EXECUTE: (a) v,, = — Vi Koy =3mvi —imv3, =§m[l—{m } ]vfﬂ =" v m

m+M m+M (M +m)? Yo = (M +m)*’
was to be shown.
) dKloss —4Kym 1 _ 2M |=o. 2M
am M +m)y” (M+m) M+m
kinetic energy when the target has the same mass as the neutron.
(¢) When m, =m,, Eq. 8.24 says v,, =0 . The final speed of the neutron is zero and the neutron loses all of its

=1 and M =m . The incident neutron loses the most

kinetic energy.
EVALUATE: When M >>m, v,, =-v,  and the neutron rebounds with speed almost equal to its initial speed.

In this case very little kinetic energy is lost; K, =4K,m/M , which is very small.

loss

IDENTIFY: Eqgs. 8.24 and 8.25 give the outcome of the elastic collision.
SET Up: Let all the motion be along the x axis. v, =v,.

m,—m 2m
EXECUTE: (a) v, :{m“ " £ Jvo and vy, :(—AJVO. K =tmy;.
B

B A

2 2 2
m,—m m,—m K m,—m
A[ A BJ Véz[ A BJ K] and AZZ[ A B] .
m,+m m, +my K m, +my

i 2 =1
Kyp=3my,, =3

3

K e =tm =
b’Z b’Z 2B mA +m mA + mB 2 Kl (mA + mB)
K K K 5
b) (i) For m,=m,, —42=0 2-1.(i)For m,=5m,, =42 =— and —22==
( )() A B K K ( ) A B K K 9

1
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2
(c¢) Equal sharing of the kinetic energy means K K _ 1 | Bam s | 1 .
K K 2 \m,+my 2

. _m
2m’ +2m, —4m,my =m’ +2m my +m;. m’—6m,m, +m, =0 . The quadratic formula gives — =5.83 or
B

4 2 0.172 . We can also verify that these values give Koy = 1

my K 2

EVALUATE: When m, <<m, or when m, >>m,, object 4 retains almost all of the original kinetic energy.

IDENTIFY: Apply conservation of energy to the motion of the package before the collision and apply
conservation of the horizontal component of momentum to the collision.
(a) SET UpP:  Apply conservation of energy to the motion of the package from point 1 as it leaves the chute to

point 2 just before it lands in the cart. Take y =0 at point 2, so y, =4.00 m. Only gravity does work, so
K +U =K,+U,.

EXECUTE: 1mv] +mgy, =1imv; .

v, =V} +2gy, =9.35 m/s.

(b) SET Up: In the collision between the package and the cart momentum is conserved in the horizontal direction.
(But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take +x to be to the right.
Let 4 be the package and B be the cart.

EXECUTE: P, is constant gives m,v,, +myv, =(m, +my)v,, .

X

Vg, =—5.00 m/s.
Ve = (3.00 m/s)cos37.0° . (The horizontal velocity of the package is constant during its free-fall.)

Solving for v, gives v, =-3.29 m/s. The cart is moving to the left at 3.29 m/s after the package lands in it.

EVALUATE: The cart is slowed by its collision with the package, whose horizontal component of momentum is in
the opposite direction to the motion of the cart.

IDENTIFY: Eqgs. 8.24, 8.25, and 8.27 give the outcome of the elastic collision.

SET Up: The blue puck is object 4 and the red puck is object B. Let +x be the direction of the initial motion of 4.

Ve =0200 m/s , v,, =0.050 m/s and v,, =0
EXECUTE: (a) Eq. 8.27 gives vy, =v,, —V, +v, =0250m/s.

0.200 m/s
0.250 m/s

EVALUATE: We can verify that our results give K, =K, and A =P, , as required in an elastic collision.

VB 2x

(b) Eq. 8.25 gives m, =m, (2M— 1} =(0.0400 kg)[Z{ }—1} =0.024 kg .

(a) IDENTIFY and SETUP: K =1m v} +Lm,v;.
Use v, =V, +v_ and ¥, =¥, +v_ toreplace v, and v, in this equation. Note ¥/, and ¥} as defined in the

problem are the velocities of 4 and B in coordinates moving with the center of mass. Note also that
my', +mgvy, = My where v, is the velocity of the car in these coordinates. But that’s zero, so

m,v', + myv, =0; we can use this in the proof.
In part (b), use that P is conserved in a collision.
EXECUTE: ¥, =V, +v

2 _ .2 2 =1 =
SO V=V, +v, +2V -V

cm? cm *

- = 2 _ .2 2 5y
V=V tV, ., S0 Vp=Vy +V, +2Vy -V, .

(We have used that for a vector A4, 4> =A-A)

_1 12 1 2 5.3 1 12 1 2 5.
Thus K =Sm Vi +5mv, +my, -V +3mpvy +5mgvy +mgyy-v

cm *

1 12 2 =t = =
cm +3(mAvA T vy )+ (mAvA + vaB) Ve -

Kzé(mA -t—mB)v2

But m, +m, =M and as noted earlier m v, +m,v, =0, so K =1MV, +%(mAv;2 + vagf). This is the result the
problem asked us to derive.
(b) EVALUATE: In the collision P =My . 1S constant, so %Mv2

cl cm

stays constant. The asteroids can lose all their

relative kinetic energy but the %vam must remain.
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IDENTIFY: Eq. 8.27 describes the elastic collision, with x replaced by y. Speed and height are related by
conservation of energy.

SET UP: Let +y be upward. Let 4 be the large ball and B be the small ball, so vy, =—v and v, =+v . If the
large ball has much greater mass than the small ball its speed is changed very little in the collision and v,,, =+v .
EXECUTE: () vy, — V5, =—(Vg, = V) EIVES vy, =+v,, —Vvp +v, =v—(-v)+v=+3v. The small ball
moves upward with speed 3v after the collision.
(b) Let A, be the height the small ball fell before the collision. Conservation of energy applied to the motion from
2
the release point to the floor gives U, = K, and mgh, = %mv2 L h= ;— . Conservation of energy applied to the
g
motion of the small ball from immediately after the collision to its maximum height %, (rebound distance) gives

2
K, =U, and 1m(3v)* =mgh, . h, :92L =9h, . The ball’s rebound distance is nine times the distance it fell.
g

EVALUATE: The mechanical energy gained by the small ball comes from the energy of the large ball. But since
the large ball’s mass is much larger it can give up this energy with very little decrease in speed.

IDENTIFY: Apply conservation of momentum to the system consisting of Jack, Jill and the crate. The speed of
Jack or Jill relative to the ground will be different from 4.00 m/s.

SET UP: Use an inertial coordinate system attached to the ground. Let +x be the direction in which the people
jump. Let Jack be object 4, Jill be B, and the crate be C.

EXECUTE: (a) If the final speed of the crate is v, v.,, =—v,and v,, =v,, =4.00m/s—v. P, =F,_ gives

MV, MgV, +meve, =0. (75.0 kg)(4.00 m/s —v) + (45.0 kg)(4.00 m/s —v) +(15.0 kg)(—v) =0 and

,_ (75.0 kg +45.0 kg)(4.00 mys)
75.0 kg +45.0 kg +15.0 kg

=3.56 m/s.

(b) Let V' be the speed of the crate after Jack jumps. Apply momentum conservation to Jack jumping:
_ (75.0 kg)(4.00 m/s)
B 135.0 kg
conservation to Jill jumping, with v being the final speed of the crate: £,_= P, gives
(60.0 kg)(—") = (45.0 kg)(4.00 m/s —v) + (15.0 kg)(—v) .

(75.0 kg)(4.00 m/s —v") +(60.0 kg)(—') =0 and V' =2.22 m/s . Then apply momentum

,_ (45.0 kg)(4.00 m/s) + (60.0 kg)(2.22 mys)

=522 m/s.
60.0 kg
(c) Repeat the calculation in (b), but now with Jill jumping first.
Jill jumps: (45.0 kg)(4.00 m/s —v') +(90.0 kg)(—')=0 and v'=1.33 m/s.
Jack jumps: (90.0 kg)(—v") =(75.0 kg)(4.00 m/s —v) + (15.0 kg)(-v) .
e (75.0 kg)(4.00 m/s) +(90.0 kg)(1.33 m/s) _ 4.66 m/s

90.0 kg

EVALUATE: The final speed of the crate is greater when Jack jumps first, then Jill. In this case Jack leaves with a
speed of 1.78 m/s relative to the ground, whereas when they both jump simultaneously Jack and Jill each leave
with a speed of only 0.44 m/s relative to the ground.

IDENTIFY: Momentum is conserved in the explosion. The total kinetic energy of the two fragments is Q.

SET UP: Let the final speed of the two fragments be v, and v, . They must move in opposite directions after the

explosion.
EXECUTE: (a) Since the initial momentum of the system is zero, conservation of momentum says m v, = m,v,

2
m . m m
and vgz[m—”‘ij. K,+K,=0 gives %mAvj+%mB[m—”‘J vi=0. %mAvj[Hm—AJ:Q.

B B B

K=—2 =( T ]Q.KfQ—KA:Q[l— i H i ]Q
I+m,/my, \m,+m, m,+m, m,+m,

4 1 . .
(b) If m, =4m,, then K, :gQ and K, = gQ . The lighter fragment gets 80% of the energy that is released.

EVALUATE: If m, =m, the fragments share the energy equally. In the limit that m, >> m , the lighter fragment
gets almost all of the released energy.
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IDENTIFY: Apply conservation of momentum to the system of the neutron and its decay products.

SET UP:  Let the proton be moving in the +x direction with speed v, after the decay. The initial momentum of the
neutron is zero, so to conserve momentum the electron must be moving in the —x direction after the decay. Let the
speed of the electron be v,.

m
EXECUTE: R, =P, gives 0=my, —my, and v, = [#j v, . The total kinetic energy after the decay is

e

m

e

2
m m
_1 2 1 2 _ 1 p 2 1 2 _ 1 2 P
K =3my, +3my; = ch(—] Vo Hgmy, = 2mpvp(1+—].

=5.44x107" =0.0544% .

K
Thus, — = =
o 1+m/m, 1+1836
EVALUATE: Most of the released energy goes to the electron, since it is much lighter than the proton.
IDENTIFY: Momentum is conserved in the decay. The results of Problem 8.92 give the kinetic energy of each

fragment.
SETUP: Let 4 be the alpha particle and let B be the radium nucleus, so m,/m, =0.0176. Q=6.54x107"J .

0  654x10"7J
l+m,/m,  1+0.0176

EVALUATE: The lighter particle receives most of the released energy.
IDENTIFY: The momentum of the system is conserved.
SET Up: Let +x be to the right. A, =0. p_, p,and p,_  are the momenta of the electron, polonium nucleus and

EXECUTE: K, = =6.43x10"J and K, =0.11x10"J.

antineutrino, respectively.
EXECUTE: B =P gives p, . +p, + P =0. Po. =—(Pe, + Do) -

Do =—(5.60x107 kg -m/s +[3.50x 107 kg][-1.14x10° m/s])=—1.66x107 kg -m/s .

The antineutrino has momentum to the left with magnitude 1.66x107>* kg-m/s .

EVALUATE: The antineutrino interacts very weakly with matter and most easily shows its presence by the
momentum it carries away.
IDENTIFY: Momentum components in the x and y directions are separately conserved. For an elastic collision

K =K,.

SETUP: v, =+v,, vy, =0. v, =v,,0080, Vs, =V, SINQ . Vg, =V CO8A , Vg, =—Vg,sina.

sin® @+ cos’@ =1, for any angle 0. cos(a + ) =cosccos f—sinasin 5.

EXECUTE: (a) B =P, gives mv, =m,,,,COSQ +MyV,,cosf3.

R, =P, gives 0=m,v ,sinad—mv,,sinf3 .

(b) m>v% =m’V, cos’ a+mivi,cos’ B+2m m,v ,,v,,cosacos S and

0=m’v},sin’ a+myv;,sin’ B—2m m,v ,,v,,sinasin B . Adding these two equations and using the trig identities in
the SET UP step gives m Vi, =miv’, +myvy, +2m myv ,,v,, cos(a + ).

(¢) K, =K, says tm v} =1m v}, +1m,v;, . The result in part (b) agrees with this expression only if
cos(ax + ) =0 . This requires that « + 8 =90° :% rad .

EVALUATE: The result of part (c) says that the two protons move in perpendicular directions after the collision.
IDENTIFY and SET UP:

y ¥

- 0 |
Vg = 150mls 0 A 250
P Bl A2y
fan —
R O, | X
A
after
before
IBE
Figure 8.97

P, and P, are conserved in the collision since there is no external horizontal force.
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The result of Problem 8.96 part (d) applies here since the collision is elastic This says that 25.0°+ 8, =90°, so that
6, =65.0°. (4 and B move off in perpendicular directions.)
EXECUTE: P, isconserved so m, v, +myvy =my,, +m,vy, .

But m,=my so v,, =v,,€0825.0°+v,,c0s65.0°.

P, is conserved so m, v, +myvy =myv,, +mgvg,

0=v,,, +Vs, -

0=v,,sin25.0°—v,,sin65.0°.

Vg, =(sin25.0°/sin 65.0°)v,, .

This result in the first equation gives v, =v,,c0s25.0°+ [Mj Vi
sin 65.0°

v, =1103v,,.

Vy=v,/1.103=(15.0 m/s)/1.103=13.6 m/s .

And then v, =(sin25.0°/sin65.0°)(13.6 m/s) = 6.34 my/s.

EVALUATE: We can use our numerical results to show that K, =X, and that £, =P, and £ =P,

IDENTIFY: Since there is no friction, the horizontal component of momentum of the system of Jonathan, Jane and
the sleigh is conserved.
SET UP: Let +x be to the right. w, =800 N, w, =600 N and w, =1000 N .

m,v +mgv w,v +wyv
. — 1 — — 4" A2x B B2x __ "4 A2x B B2x
EXECUTE: B, =P, gives O0=m,v , +mgvy, +mVe, . Vey = = .

me We

s = (800 N)(—[5.00 m/s]cos30.o1 3 0+0 (goo N)(+H7.00 ms]e0s36.99) _ oo

The sleigh’s velocity is 0.105 m/s, to the left.

EVALUATE: The vertical component of the momentum of the system consisting of the two people and the sleigh
is not conserved, because of the net force exerted on the sleigh by the ice while they jump.

IDENTIFY: In Eq. 8.28 treat each straight piece as an object in the system.

SET Up: The center of mass of each piece of length L is at its center.

EXECUTE: (a) From symmetry, the center of mass is on the vertical axis, a distance (L/2)cos(a/2) below the

apex.
(b) The center of mass is on the vertical axis of symmetry, a distance 2(L/2)/3=L/3 above the center of the
horizontal segment.

(c¢) Using the wire frame as a coordinate system, the coordinates of the center of mass are equal and each is equal

to (L/2)/2=L/4. The center of mass is along the bisector of the angle, a distance L/ /8 from the corner.

(d) By symmetry, the center of mass is at the center of the equilateral triangle, a distance (L/3)sin60° =L/ V12
above the center of the horizontal segment.

EVALUATE: The center of mass need not lie on any point of the object, it can be in empty space.

IDENTIFY: There is no net horizontal external force so v, is constant.

SET UpP: Let +x be to the right, with the origin at the initial position of the left-hand end of the canoe.

m, =45.0 kg, m, =60.0 kg . The center of mass of the canoe is at its center.

. m X, +m,X
=0, so the center of mass doesn’t move. Initially, x_, =—24——558L After she

EXECUTE: Initially, v eml
mA + mB

cm

m,x ., +m,x
walks, x,, =442 T M5t

p—— omt = Xomz BIVES M ,X , + MpXy =m X, +myX,, . She walks to a point 1.00 m from
A B

the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the canoe and
X =X +1.50m .

(45.0 kg)(1.00 m) +(60.0 kg)(2.50 m) = (45.0 kg)(x,, +1.50 m) + (60.0 kg)x,, .

(105.0 kg)x,, =127.5kg-m and x,, =1.21m. x,, —x, =121 m—2.50 m =—-1.29 m . The canoe moves 1.29 m
to the left.
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EVALUATE: When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3.00 m—1.29 m=1.71 m to the
right relative to the water. Note that this distance is (60.0 kg/45.0 kg)(1.29 m) .

IDENTIFY: Take as the system you and the slab. There is no horizontal force, so horizontal momentum is
conserved. By Eq. 8.32, P is constant ¥, is constant (for a system of constant mass). Use coordinates fixed to

the ice, with the direction you walk as the x-direction. ¥_ is constant and initially v, =0.

.\.
v
P

V. —_—
5
- Icnm:n:lc .~.Iah|
| X

Figure 8.101
. _my +my
cm - =

m, +m,

my,, +my =0.

my, +my, =0.

v =—(m,/m )y, ==(m,/5m,)2.00 m/s =-0.400 m/s .

The slab moves at 0.400 m/s, in the direction opposite to the direction you are walking.

EVALUATE: The initial momentum of the system is zero. You gain momentum in the +x-direction so the slab

gains momentum in the —x-direction. The slab exerts a force on you in the +x-direction so you exert a force on

the slab in the —x-direction.

IDENTIFY: Conservation of x and y components of momentum applies to the collision. At the highest point of the
trajectory the vertical component of the velocity of the projectile is zero.

SET UpP: Let +y be upward and +x be horizontal and to the right. Let the two fragments be 4 and B, each with

mass m. For the projectile before the explosion and the fragments after the explosion. a, =0, a, =-9.80 m/s” .
EXECUTE: (a) v. =v;, +2a,(y—y,) with v, =0 gives that the maximum height of the projectile is
2

v . 02
h=——2= ([80.0 m/s}sin 60.0°) =244.9 m . Just before the explosion the projectile is moving to the right with

2a, 2(-9.80 m/s’)

horizontal velocity v, =v,, =v,c0860.0°=40.0 m/s . After the explosion v, =0 since fragment A4 falls vertically.

Conservation of momentum applied to the explosion gives (2m)(40.0 m/s) =mv, and v, =80.0 m/s. Fragment B

has zero initial vertical velocity so y -y, = v,/ +%ayt2 gives a time of fall of

t= \/ 2 = \/ —% =7.07 s . During this time the fragment travels horizontally a distance
a 9. s

(80.0 m/s)(7.07 s) =566 m .. It also took the projectile 7.07 s to travel from launch to maximum height and during
this time it travels a horizontal distance of ([80.0 m/s]c0s60.0°)(7.07 s) =283 m . The second fragment lands

283 m+566 m =849 m from the firing point.
(b) For the explosion, K, =1(20.0 kg)(40.0 m/s)’ =1.60x10* J. K, =1(10.0 kg)(80.0 m/s)* =3.20x10* J . The

energy released in the explosion is 1.60x10* J.

EVALUATE: The kinetic energy of the projectile just after it is launched is 6.40x10* J. We can calculate the
speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the fragments just
before they strike the ground is 6.40x10* J+1.60x10* T =8.00x10* J . Fragment 4 has speed 69.3 m/s just before
it strikes the ground, and hence has kinetic energy 2.40x10* J. Fragment B has speed

\/(80.0 m/s) +(69.3 m/s)> =105.8 m/s just before it strikes the ground, and hence has kinetic energy 5.60x10* T

2

Also, the center of mass of the system has the same horizontal range R = V—Osin(2a0) =565 m that the projectile

would have had if no explosion had occurred. One fragment lands at R/2 so the other, equal mass fragment lands
at a distance 3R/2 from the launch point.

IDENTIFY: The rocket moves in projectile motion before the explosion and its fragments move in projectile
motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion.
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SET UP: Apply conservation of energy to the explosion. Just before the explosion the shell is at its maximum
height and has zero kinetic energy. Let 4 be the piece with mass 1.40 kg and B be the piece with mass 0.28 kg. Let

v, and v, be the speeds of the two pieces immediately after the collision.

. 2 2 _
EXECUTE: m vi+3myv, =860 ]
SET UP: Since the two fragments reach the ground at the same time, their velocities just after the explosion must
be horizontal. The initial momentum of the shell before the explosion is zero, so after the explosion the pieces must
be moving in opposite horizontal directions and have equal magnitude of momentum: m v, = myv,.

EXECUTE: Use this to eliminate v, in the first equation and solve for v,:
Imyvy(1+my/m,)=86017 and v, =71.6 m/s.

Then v, =(m,/m,)v, =143 nvs.

(b) SET UpP:  Use the vertical motion from the maximum height to the ground to find the time it takes the pieces to
fall to the ground after the explosion. Take +y downward.

v, =0, a,=+9.80 m/s’, y—y,=80.0m, =2

EXECUTE:  y—y,=v,t++a’ gives 1=4.04s.
During this time the horizontal distance each piece moves is x, =v,t=57.8 m and x, = v, =289.1 m. They move

in opposite directions, so they are x, + x, =347 m apart when they land.

EVALUATE: Fragment 4 has more mass so it is moving slower right after the collision, and it travels horizontally
a smaller distance as it falls to the ground.

IDENTIFY: Apply conservation of momentum to the collision. At the highest point of its trajectory the shell is
moving horizontally. If one fragment received some upward momentum in the collision, the other fragment would
have had to receive a downward component. Since they each the ground at the same time, each must have zero
vertical velocity immediately after the explosion.

SET UpP: Let +x be horizontal, along the initial direction of motion of the projectile and let +y be upward. At its
maximum height the projectile has v, =v,c0s55.0°=86.0 m/s . Let the heavier fragment be 4 and the lighter

fragment be B. m, =9.00 kg and m, =3.00 kg .
EXECUTE: Since fragment A returns to the launch point, immediately after the explosion it has v, =—-86.0 m/s .

Conservation of momentum applied to the explosion gives
(12.0 kg)(86.0 m/s) = (9.00 kg)(—86.0 m/s) + (3.00 kg)v,. and v, =602 m/s . The horizontal range of the
2
projectile, if no explosion occurred, would be R = v—osin(ZaO) =2157 m . The horizontal distance each fragment

travels is proportional to its initial speed and the heavier fragment travels a horizontal distance R/2=1078 m after

the explosion, so the lighter fragment travels a horizontal distance [68062 m

j(l 078 m) =7546 m from the point of
m

explosion and 1078 m + 7546 m = 8624 m from the launch point. The energy released in the explosion is

K, — K, =1(9.00 kg)(86.0 m/s)’ +1(3.00 kg)(602 m/s)* —1 (12.0 kg)(86.0 m/s)* =5.33x10° J.

EVALUATE: The center of mass of the system has the same horizontal range R =2157 m as if the explosion
didn’t occur. This gives (12.0 kg)(2157 m) =(9.00 kg)(0) + (3.00 kg)d and d =8630 m , where d is the distance
from the launch point to where the lighter fragment lands. This agrees with our calculation.

IDENTIFY: No external force, so P is conserved in the collision.
SET UP: Apply momentum conservation in the x and y directions:

Vesin 107 .
_____ 1»1.
¥ 10"
v 3
0 Vi cos 10°
O () _
o0 i
1}
n V5 cos 3¢
before

vysin 300 _ W ,
Figure 8.105

Solve for v, and v,.
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EXECUTE: P, is conserved so mv, = m(v, cos45°+v; cos10° +v, cos30°).

v, — V; €0510° =v, cos45° +v, cos30°.

1030.4 m/s = v,cos45°+ v, cos30°.

P, is conserved so 0 =m(v,sin45°—v,sin30°+v,sin10°).
v, 5in45° =v,sin30°—-347.3 m/s .

sin45°=cos45° so

1030.4 m/s =v,sin30°—347.3 m/s + v, cos30°.

= 1030.4 m/s +347.3 m/s

- =1010 m/s .
sin30°+co0s30.0°
And then v, = Y sm30‘ _43517'3 ms _ 223 m/s. Then two emitted neutrons have speeds of 223 m/s and 1010 m/s.
sin

The speeds of the Ba and Kr nuclei are related by P, conservation.

P is constant implies that 0 =my, v, —m vy,
my, 2.3x107* kg
Vier = L Wga =| ———=— Vg, =1.5vp,-
Kr { Krj Ba (I.SXIOZS kg Ba Ba

We can’t say what these speeds are but they must satisfy this relation. The value of v,, depends on energy

considerations.

EVALUATE: K, =1m, (3.0x10° m/s)’ =(4.5x10° Jkg)m,.

K,=1m,(2.0x10’ ws) +Lm, (223 mis) +Lm, (1010 mis) +K,, + K, =(2.5x10° Jkg)m, + Ky, + K.

We don’t know what K, and K, are, but they are positive. We will study such nuclear reactions further in
Chapter 43 and will find that energy is released in this process; K, > K,. Some of the potential energy stored in the

U nucleus is released as kinetic energy and shared by the collision fragments.
IDENTIFY: The velocity of the center of mass of the system of the two blocks is given by Eq. 8.30. Conservation
of momentum says the center of mass moves at constant speed.
SETUP: v, =V, , vy, =0.The velocity u in the center of mass frame is related to the velocity v in the
2
stationary frame by #=v —v_, . We can express kinetic energy as K = ;; .
m

myv
EXECUTE: (a) v, =—2=4—.

m,+mg

(b) The center of mass moves with constant speed so this coordinate system is an inertial frame.

m,v m,v
=y, - =MV -y — —_ MV : _ _
© Uy, =vy, — Ve = C U =V Ve = . In this frame B, =mu, +myuy, =0.

cm-x

mA + mB mA + mB
d P,=h=0 gives D+ Py, =0 and Puze T Pp2c =0,80 py . =—p,, and Ppax = " Paax - Conservation of

2 2 2 2
Pz " Ppax _ Pax n Ppix

- Using py,, =—p,,, and py =-p,, gives pjzx :pfm and
2m, 2m, 2m, 2m,

kinetic energy gives

P, =%p,, - If acollision occurs p, changesand p,, =-p,. .But p,, =-p,, and p, =-p,. ,so
Ppar =—Dgi, - In the center of mass frame the momentum and hence the velocity of each puck keeps the same

magnitude and reverses direction.

v, = 0400Ke | 6 00 m/s) = 4.00 ms . U, =6.00 m/s—4.00 m/s =2.00 m/s .
* 1 0.600 kg ‘

Uy, =0—4.00 m/s=-4.00 m/s . u,, =-2.00m/s and u,, =+4.00 m/s.
Ve =gy, +V,, =—2.00 m/s+4.00 m/s =2.00 m/s. vy, =uy, +v,, =400 m/s+4.00 m/s =8.00 m/s .
0.400 kg —0.200 kg
0.400 kg +0.200 kg

B 2[0.400 kg]
42 10.400 kg +0.200 kg

Eq. 8.24 says v, :( J(6.00 m/s)=2.00 m/s . Eq. 8.25 says

](6.00 m/s) =8.00 m/s . Our result agrees with Egs. 8.24 and 8.25.
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EVALUATE: Eqgs. 8.24 and 8.25 apply only when v, =0 . The result that the velocity of each puck in the center
of mass frame reverses direction and retains the same magnitude applies to all elastic collisions, even when both
are moving initially.

IDENTIFY and SET UP:  Apply conservation of energy to find the total energy before and after the collision with
the floor from the initial and final maximum heights.

EXECUTE: (a) Objects stick together says that the relative speed after the collision is zero, so € =0.

(b) In an elastic collision the relative velocity of the two bodies has the same magnitude before and after the
collision, so e=1.

(c) Speed of ball just before collision: mgh =Lmv} .

v, =+/2gh

Speed of ball just after collision: mgH, = %mvz2 .

v, = 2e,

The second object (the surface) is stationary, so e=v,/v, = \/m .
(d) e=+/H,/h implies H, =he*=(1.2m)(0.85)' =0.87 m.

(e) H,=he.

H,=H¢e =he*.

H,=H, = (l’l€4)62 =he®.

Generalize to H,=H, € =he’" e’ = he™" .

(f) 8th bounce implies n=8.

Hy=he'* =12 m(0.85)° =0.089 m.

EVALUATE: € is a measure of the kinetic energy lost in the collision. The collision here is between a ball and the
earth. Momentum lost by the ball is gained by the earth, but the velocity gained by the earth is very small and can
be taken to be zero.

IDENTIFY: Momentum is conserved in the collision. Conservation of energy says K, =K, + A .

SETUp:  For part (b) let v, be the common speed of each atom before the collision and let ¥ and ¥, be the

velocities after the collision of the molecule and the atom that remains. m =1.67x10" kg is the mass of one
hydrogen atom.
EXECUTE: (a) In the center of mass frame B _=0 so 2 =0 and v

. = 0. But in this frame the potential energy
2
=Imgv 0.

tot Vom2 =

decreases and the kinetic energy increases. This is inconsistent with K

2cm

(b) Before the collision v, =0 . After the collision the molecule and remaining atom move in opposite directions

and (2m)V =mv,; v, =2V . Conservation of energy gives 2(2m)V'* +1mv; =3(1mv;)’ +A. With v, =2V this

723%x107"° J

W:I.ZOXIO4 m/s and V3:2V:2,40><104 /s
. X

2

becomes V? =12 +3A. 14 =\/§(1.00x103 m/s)’ +
m

EVALUATE: K = 3(%mv§) =2.50x107*" T, which is much less than the binding energy of the molecule. Other

initial conditions also lead to molecule formation; the one of zero initial momentum is just particularly simple to
analyze.

IDENTIFY: Apply conservation of energy to the motion of the wagon before the collision. After the collision the
combined object moves with constant speed on the level ground. In the collision the horizontal component of
momentum is conserved.

SET UP: Let the wagon be object 4 and treat the two people together as object B. Let +x be horizontal and to the
right. Let 7 be the speed of the combined object after the collision.

EXECUTE: (a) The speed v,, of the wagon just before the collision is given by conservation of energy applied to

the motion of the wagon prior to the collision. U, = K, says m,g([50 m][sin6.0°]) = %mAvf“ . v, =10.12 m/s .

300 kg
300 kg +75.0 kg + 60.0 kg
In 5.0 s the wagon travels (6.98 m/s)(5.0 s) =34.9 m, and the people will have time to jump out of the wagon

B =P, for the collision says m v, =(m,+my)V and V' :( J(10.12 m/s)=6.98 m/s .

before it reaches the edge of the cliff.
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(b) For the wagon, K, =+(300 kg)(10.12 m/s)> =1.54x10* J. Assume that the two heroes drop from a small
height, so their kinetic energy just before the wagon can be neglected compared to K, of the wagon.

K, =1(435 kg)(6.98 m/s)’ =1.06x10* J . The kinetic energy of the system decreases by K, — K, =4.8x10" J .

EVALUATE: The wagon slows down when the two heroes drop into it. The mass that is moving horizontally
increases, so the speed decreases to maintain the same horizontal momentum. In the collision the vertical
momentum is not conserved, because of the net external force due to the ground.

IDENTIFY: Gravity gives a downward external force of magnitude mg. The impulse of this force equals the
change in momentum of the rocket.

SET UP: Let +y be upward. Consider an infinitesimal time interval d¢. In Example 8.15, v, =2400 m/s and

dm =—"%_ InExample 8.16, m=m,/4 after t=90s.

dr - 120s
EXECUTE: (a) The impulse-momentum theorem gives —mgdt = (m + dm)(v + dv) + (dm)(v —v,, ) —mv . This
simplifies to —mgdt = mdv+ v, dm and m% =-v, C;—’? —-mg

_dv__kdm_

b - -
(b) a dt m dt

©At 120, a=—Y=9"_ o400 m/s)(— ! ]—9.80 m/s? =10.2 m/s? .
m, dt 120 s

d) dv= Yo gy — gdt . Integrating gives v—v, =+v, 2 gt. v,=0 and
m m

v =+(2400 m/s)In4—(9.80 m/s”)(90 s) = 2445 m/s .
EVALUATE: Both the initial acceleration in Example 8.15 and the final speed of the rocket in Example 8.16 are
reduced by the presence of gravity.
IDENTIFY and SET UP:  Apply Eq. 8.40 to the single-stage rocket and to each stage of the two-stage rocket.
(a) EXECUTE:  v—v, =v, In(m,/m); v,=0 so v=v,_ In(m,/m)
The total initial mass of the rocket is m, =12,000 kg +1000 kg =13,000 kg. Of this, 9000 kg + 700 kg = 9700 kg
is fuel, so the mass m left after all the fuel is burned is 13,000 kg —9700 kg = 3300 kg.
v=v, In(13,000 kg/3300 kg) =1.37v,, .
(b) First stage: v =v, In(m,/m)
m, =13,000 kg

The first stage has 9000 kg of fuel, so the mass left after the first stage fuel has burned is
13,000 kg —9000 kg = 4000 kg.

V=, ln(13,000 kg/4000 kg) =1.18v,, .
(c) Second stage: m, =1000 kg, m =1000 kg—700 kg =300 kg .
v=v,+v, In(m,/m)=1.18v, +v, In(1000 kg/300 kg)=2.38v,, .
(d) v=7.00 km/s
Vo =v/2.38=(7.00 km/s)/2.38=2.94 km/s . q
EVALUATE: The two-stage rocket achieves a greater final speed because it jetisons the left-over mass of the first
stage before the second-state fires and this reduces the final m and increases m,/m.

IDENTIFY: During an interval where the mass is constant the speed of the rocket is constant. During an interval
where the mass is changing at a constant rate, the equations of Section 8.6 apply.
SETUP: For 0</<90s, ”;—’:’ = —% . From Example 8.15, v, = 2400 m/s .
s

EXECUTE: (a)For 1<0, v=0.For 0<¢<90 s, Eq. 8.40 says v=(2400 m/s)In4 =3327 m/s. For t>90s, v

has the constant value 3327 m/s. The graph of v(¢) is given in Fig. 8.112a.

(b) For 0<¢<90's , Eq. 8.3 gives q = e dm ___ 2400 m/s ( i ]: 20 mis*
m dt my(1—-¢/[120 s\ 120s) 1-¢/[1205]

(as in Example 8.15) and @ =80 m/s* at t=90s.For t>90s, a=0. The graph of a(¢) is given in Fig. 8.112b.

(¢) The astronaut has the same acceleration as the rocket. This is maximum at 1 =90 s and

F =m a,.. =(75kg)(80 m/s*)=6.0x10° N . This is 8.2 times her weight on earth, since a,,

max astronaut " max

a=20m/s* at t=0

is 8.2 times g.

X
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Lo . dm .
EVALUATE: The acceleration increases because the mass decreases while the thrust ' =—v, — remains constant.

a (M/s?)

v (s 100
4000 80
3000 % 60
2000 40
1000 20 ="

05 /20 20 60 80 101200 ° 0 20 4 6 8 10120 O

(@ (b)

Figure 8.112
8.113. IDENTIFY and SETUP: dm = pdV . dV = Adx . Since the thin rod lies along the x axis, y_, =0 . The mass of the
rod is given by M = Idm .

1 2 P L pA I’ .
EXECUTE: (a) x,, = —J. xdm = —AI xdx ==—— . The volume of the rod is AL and M = pAL .
M0 M Jo M 2

AL , N . : :
X = 2p YRR The center of mass of the uniform rod is at its geometrical center, midway between its ends.
Yo,

Aal’

2
! — M= fdm = f LpAdx = aAI " xdx :ﬂ. Therefore,
M 0 0 2

1o _ L _Aa b o,
) x, _H.[o xdm _ﬁjo prdx—ﬁ o r dx =

Aal’ ( 2 j 2L
xcm: 4 =
3 aAl’ 3

EVALUATE: When the density increases with x, the center of mass is to the right of the center of the rod.

1 1
8.114. IDENTIFY: X :ﬁjxdm and y,, ZHJ‘ ydm. At the upper surface of the plate, y* +x* =a’.

cm

SETUP: To find x,

cm ?

divide the plate into thin strips parallel to the y-axis, as shown in Fig. 8.114a. To find y_,
divide the plate into thin strips parallel to the x-axis as shown in Fig. 8.114b. The plate has volume one-half that of
a circular disk, so V' =17a’t and M =1 pra’t.

EXECUTE: In Fig.114a each strip has length y =+/a’ —-x*. x_, = ijxdm, where dm = ptydx = pt\a® — x*dx.

tfa . . . .
Xy = %J: xva® —x*dx =0, since the integrand is an odd function of x. x,, =0 because of symmetry. In

Fig.114b each strip has length 2x=2a’ —y*. y, = %J.ydm, where dm =2ptxdy =2ptr/a’ — y*dy.

Ve = %I: y+Ja* — y*dy . The integral can be evaluated using u = a® — y*, du =—2ydy . This substitution gives

3 3
M\ 2)% M 3 prat) 3rm

4 . . .
EVALUATE: Ey =0.424. y_ islessthan a/2, as expected, since the plate becomes wider as y decreases.

T
y
dy
(_/
y
X \|/ X
I 2 I
@ (b)

Figure 8.114
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IDENTIFY: The work is related to the force by W = j “Fdx . The force the person must apply equals the weight of

the hanging portion. Since the rope is uniform, the center of mass of the hanging portion is at its geometrical
center.

SET UP: Let y be the length of the rope hanging over the edge and use coordinates where the origin is at the edge
of the table and +y is downward. When the rope is pulled onto the table, y goes from //4 to zero. A length y of the
rope has mass Ay .

EXECUTE: (a) When a length y hangs over the edge, the person must apply an upward force

0 0 Agl’
F,=-m(yg==Avg. W= F(ndv=-Ag| vdy= :fz :

(b) Initially, y_, =//8. The work done to raise an object of mass M a distance y,, is W =Mgy, .

2
- (2)ef)- 2L
4 8 32

EVALUATE: The answers from methods (a) and (b) agree. The change in gravitational potential energy of the
rope can be calculated by considering all its mass acting at its center of mass, and the work done by the person
equals the increase in gravitational potential energy of the rope.

IDENTIFY: From our analysis of motion with constant acceleration, if v=a¢ and a is constant, then

_ 12
X=X, =Vvt+zat .

SETUpP: Take v, =0, x, =0 and let +x downward.

dv e dv .
EXECUTE: (a) — =4, V= at and x=1at’. Substituting into xg = x—+ v gives
t t

lar’g=1at’a+a’t’ =3a’t* . The nonzero solution is a =g /3.

(b) x=1ar’ =1gr’ =1(9.80 m/s’)(3.00 s)’ =14.7 m.

(¢) m=kx=(2.00 g/m)(14.7 m)=294g.

EVALUATE: The acceleration is less than g because the small water droplets are initially at rest, before they
adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the raindrops.






