POTENTIAL ENERGY AND ENERGY CONSERVATION

7.1.

7.2.

7.3.

7.4.

IDENTIFY: U, =mgyso AU, =mg(y,—)

SETUP: +y isupward.

EXECUTE: (a) AU = (75 kg)(9.80 m/s*)(2400 m —1500 m) = +6.6x10° J
(b) AU = (75 kg)(9.80 m/s*)(1350 m — 2400 m)=—7.7x10° J

EVALUATE: U increases when the altitude of the object increases.

grav
IDENTIFY: Apply 217“ = ma to the sack to find the force. W = Fscos¢.

SETUP: The lifting force acts in the same direction as the sack’s motion, so ¢ =0°

EXECUTE: (a) For constant speed, the net force is zero, so the required force is the sack’s weight,

(5.00 kg)(9.80 m/s*) =49.0 N.

(b) W =(49.0 N) (15.0 m) =735 J . This work becomes potential energy.

EVALUATE: The results are independent of the speed.

IDENTIFY: Use the free-body diagram for the bag and Newton's first law to find the force the worker applies.
Since the bag starts and ends at rest, K, —K, =0and W, =0.

ot

2.0m

and

SETUP: A sketch showing the initial and final positions of the bag is given in Figure 7.3a. sing = 33
Sm

¢ =34.85°. The free-body diagram is given in Figure 7.3b. F is the horizontal force applied by the worker. In the
calculation of U, take +y upward and y = 0 at the initial position of the bag.

EXECUTE: (a) Z:Ft =0gives T cos¢=mg and ZFX =0gives F =Tsin¢g. Combining these equations to

eliminate 7 gives F =mgtang = (120 kg)(9.80 m/s*)tan34.85° =820 N .
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of 7 in the
direction of the displacement during the motion and the tension in the rope does no work. (ii) W, =0 so

W W, =U, U, =mg(y,—y)=(120kg)(9.80 m/s>)(0.6277 m)="740 I .

worker — grav grav,2 - grav,1
EVALUATE: The force applied by the worker varies during the motion of the bag and it would be difficult to
calculate W, directly.

worker

ot

2.872m

T singh

0.6277 m

mg

(@) (b)
Figure 7.3

IDENTIFY: Only gravity does work on him from the point where he has just left the board until just before he
enters the water, so Eq.(7.4) applies.
SETUP: Let point 1 be just after he leaves the board and point 2 be just before he enters the water. +y is upward

and y =0 at the water.
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7.5.

7.6.

7.7.

7.8.

EXECUTE: (a) K, =0. »,=0. »=325m. K, +U

v, =20, =+/2(9.80 m/s*)(3.25 m) = 7.98 m/s .
(b) v, =250m/s, y,=0, y,=325m. K, +U

grav,1
v, =V +2gy, =+/(2.50 m/s)? +2(9.80 m/s>)(3.25 m) =8.36 ms .
(¢) v, =2.5m/sand v, =8.36 m/s , the same as in part (b).

EVALUATE: Kinetic energy depends only on the speed, not on the direction of the velocity.
IDENTIFY and SET UP:  Use energy methods.

(@) K, +U, + W, =K, +U,. Solve for K, and then use K, =1mv; to obtain v,.
v -=x

/ N W e =0 (The only force on the
= ball while it is in the air is gravity.)

_ : _ 1,2
vt = Ky 7 U gy 5 gives U =K, and mgy, =-mv; .

grav,l

— 1 2 _ 1 2
=K, and ;mv; + mgy, =>mv; .

2, 2

K, =imv; K, =+mv,
22.0m
l \ U =mgy, »=220m

» x U, =mgy, =0, since y,=0
\ for our choice of coordinates.
2

Figure 7.5

EXECUTE: 1mv] +mgy, =imv;

v, = V2 +2gy, =+/(12.0 m/s)* +2(9.80 m/s>)(22.0 m) = 24.0 m/s

EVALUATE: The projection angle of 53.1° doesn’t enter into the calculation. The kinetic energy depends only on
the magnitude of the velocity; it is independent of the direction of the velocity.

(b) Nothing changes in the calculation. The expression derived in part (a) for v, is independent of the angle, so

v, =24.0 m/s, the same as in part (a).

(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect.

IDENTIFY: The normal force does no work, so only gravity does work and Eq.(7.4) applies.

SETUP: K, =0. The crate’s initial point is at a vertical height of dsina above the bottom of the ramp.

=K,+U

EXECUTE: (a) y,=0, y, =dsina. K, +U, v

grav, 1
v, =4/2gdsina.

(®) =0, y,=—dsina. K,+U

grav,1

v, =4/2gdsina , the same as in part (a).
(¢) The normal force is perpendicular to the displacement and does no work.
EVALUATE: When we use U, =mgy we can take any point as y = 0 but we must take +) to be upward.

grav

gives U

grav,1

=K,. mgdsina =+mv? and
2 2 2

=K, +U,,,, gives 0=K, +U,

grav,2 *

0=1mv; +(-mgdsina) and

IDENTIFY: Apply Eq.(7.7) to points 2 and 3. Take results from Example 7.6. W, . =—f5, the work done by friction.
SETUP: Asin Example 7.6, K, =0, U,=94 J, and U, =0.

2(38 1))
12 kg

EVALUATE: The value of v, we obtained is the same as calculated in Example 7.6. For the motion from point 2 to

EXECUTE: The work done by friction is —=(35 N) (1.6 m)=-56J. K, =38, and v, = =2.5m/s.

point 3, gravity does positive work, friction does negative work and the net work is positive.

IDENTIFY and SET UP:  Apply Eq.(7.7) and consider how each term depends on the mass.

EXECUTE: The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the normal
force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the crate, and the
speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass, and for the same
speed but four times the mass, the kinetic energy is quadrupled.

EVALUATE: The same result is obtained if we apply ZF = md to the motion. Each force is proportional to m

and m divides out, so a is independent of m.



Potential Energy and Energy Conservation 7-3

7.9. IDENTIFY: W,

'« =K, — K, . The forces on the rock are gravity, the normal force and friction.

SETUP: Let y=0atpoint B and let +y be upward. y, =R =0.50 m . The work done by friction is negative;
W,=-0221J. K,=0. The free-body diagram for the rock at point B is given in Figure 7.9. The acceleration of

the rock at this point is a,, =v’/R , upward.
EXECUTE: (a) (i) The normal force is perpendicular to the displacement and does zero work.
(1) Wye =U gy s = Upra s = mgy . = (0.20 kg)(9.80 m/s*)(0.50 m)=0.98 J .

grav

(b) Wy =W, + W, + W, =0+(-0221)+0.98J=0.76 J . W,

tot grav tot

v =\/2Wt°t = [POT6D) 5 g ys.
# m 0.20 kg

(c) Gravity is constant and equal to mg. n is not constant; it is zero at 4 and not zero at B. Therefore, f, = g, nis

- K — ives Lyt =
=K, —-K, gives ymvy; =W,_,.

also not constant.
(d) ZFy = ma, applied to Figure 7.9 gives n—-mg =ma,, .

2 2
nem| g+ =020 ke)| 9.80 mys? + E3WSI | sy
R 0.50 m

EVALUATE: In the absence of friction, the speed of the rock at point B would be /2gR =3.1 m/s . As the rock
slides through point B, the normal force is greater than the weight mg = 2.0 N of the rock.

\
n f Arad

fi x

mg

Figure 7.9

7.10. IDENTIFY: Only gravity does work, so Eq.(7.4) applies.
SETUP: Let point 1 be just after the rock leaves the thrower and point 2 be at the maximum height. Let
¥ =0and +y be upward. v, =v, . At the highest point, v, =v,cos@ . sin*@+cos’=1.

2

2 22
. 0
gives Lmv; =1m(v,cos0)’ + mgy,. y, = ;_ig(l —cos’6) = LSt @

EXECUTE: K, +U

grav,l

=K,+U

grav,2 , was to

be shown.
EVALUATE: The initial kinetic energy is independent of the angle & but the kinetic energy at the maximum
height depends on &, so the maximum height depends on 4.
7.11. IDENTIFY: Apply Eq.(7.7) to the motion of the car.
SETUP: Take y =0 at point A. Let point 1 be 4 and point 2 be B.
Ki+U + Wy =K, +U,
EXECUTE: U, =0, U,=mg(2R)=28,2241, W, = Wf
K, =1mv} =37,500J, K,=1Lmv; =38401]
The work-energy relation then gives W, =K, +U, - K, =-5400 J.
EVALUATE: Friction does negative work. The final mechanical energy (K, +U, =32,064 J) is less than the
initial mechanical energy (K, +U, =37,500 J) because of the energy removed by friction work.
7.12. IDENTIFY: Only gravity does work, so apply Eq.(7.5).
SETUP: v, =0,s0 2mv; =mg(y,—,).
EXECUTE: Tarzan is lower than his original height by a distance y, — y, =/(c0s30° —cos45°) so his speed is

v :\/Zgl(cos30°—cos 45°) =7.9 m/s, a bit quick for conversation.
EVALUATE: The result is independent of Tarzan’s mass.
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7.13.
1 /f\
/ »n=0
¥, =(8.00 m)sin36.9°

y, =4.80 m

— N _h
£
\OC

Figure 7.13a

(a) IDENTIFY and SETUP:  F is constant so Eq.(6.2) can be used. The situation is sketched in Figure 7.13a.
EXECUTE: W, =(Fcos¢)s = (110 N)(cos0°)(8.00 m) =880 J

EVALUATE: F is in the direction of the displacement and does positive work.

(b) IDENTIFY and SET UP: Calculate W using Eq.(6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can be
calculated from f, = g n. For this calculation use coordinates parallel and perpendicular to the incline.

EXECUTE: ) F,=ma,
n—mgcos36.9°=0
n=mgcos36.9°

S = n=p,mgcos36.9°
fi =(0.25)(10.0 kg)(9.80 m/s*)c0s36.9°=19.6 N

mg cosa

mg

Figure 7.13b

W, =(f,cos@)s=(19.6 N)(cos180°)(8.00 m) =157 J

EVALUATE: Friction does negative work.

(c) IDENTIFY and SETUP: U =mgy; take y =0 at the bottom of the ramp.
EXECUTE: AU =U, -U, =mg(y, —y,) = (10.0 kg)(9.80 m/s*)(4.80 m—0) =470 J

EVALUATE: The object moves upward and U increases.
(d) IDENTIFY and SET UP:  Use Eq.(7.7). Solve for AK.
EXECcUTE: K +U +W,. =K,+U,

AK =K, K, =U, -U, + Wy,

AK = VVothcr - AU

W =We +W,=8801-1571=723]
AU =470

Thus AK =723J-470J=2531.

EVALUATE: W,

other

is positive. Some of ¥,

other

goes to increasing U and the rest goes to increasing K.

(e) IDENTIFY: Apply ZF =ma to the oven. Solve for @ and then use a constant acceleration equation to

calculate v,.

SETUP: We can use the free-body diagram that is in part (b):

3 F, = ma,

F — f, —mgsin36.9° = ma

_F—f, —mgsin36.9° 110 N—19.6 N —(10 kg)(9.80 m/s*)sin36.9°
m 10.0 kg

SETUP: v, =0, a,=3.16m/s’, x—x,=8.00m, v, =?

EXECUTE: « =3.16 m/s’

v =V +2a,(x—x,)
EXECUTE: v, =+/2a,(x —x,) =+/2(3.16 m/s>)(8.00 m) = 7.11 m/s?

Then AK =K, - K, =1mv; =1(10.0 kg)(7.11 m/s)* =253 J.
EVALUATE: This agrees with the result calculated in part (d) using energy methods.
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7.14.

7.15.

7.16.

7.17.

7.18.

IDENTIFY: Only gravity does work, so apply Eq.(7.4). Use ZF = md to calculate the tension.
SETUP: Let y =0 at the bottom of the arc. Let point 1 be when the string makes a 45° angle with the vertical and

point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial acceleration a,,, =v’/r

EXECUTE: (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect to the
bottom of the circular arc) is mgl(1—cos 8), where / is the length of the string and @ is the angle the string makes

with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, so
mgl(1—cosf) =Lmv?, or v=1/2gl(1-cosd) = \/2(9.80 m/s*) (0.80 m) (1—cos45°) =2.1m/s .
(b) At 45° from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the radial
component of the weight, or mgcos@ = (0.12 kg) (9.80 m/s*) cos 45°=0.83 N.
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial acceleration,
mg +mv? [1=mg(1+2(1-cos45°)=1.9N
EVALUATE: When the string passes through the vertical, the tension is greater than the weight because the
acceleration is upward.
IDENTIFY: Apply U, =1kx*.

SETUP: kx=F, so U=+Fx,where F is the magnitude of force required to stretch or compress the spring a
distance x.
EXECUTE: (a) (1/2)(800 N)(0.200 m) =80.0 J.
(b) The potential energy is proportional to the square of the compression or extension;
(80.0 J) (0.050 m/0.200 m)* =5.0 J.

F 800N 172 1
EVALUATE: We could have calculated & = - = 0200m =4000 N/m and then used U, = kx" directly.
IDENTIFY: Use the information given in the problem with F = kx to find k. Then U, =1kx*.
SET UP: x is the amount the spring is stretched. When the weight is hung from the spring, F =mg .
_F _mg  (3.15kg)(9.80 nvs®)
" x x  0.1340m-0.1200m

EXECUTE: £ =2205 N/m..

x= J_r\/ZU“" = i\/ 21000) _ +0.0952 m =+9.52 cm . The spring could be either stretched 9.52 cm or
k 2205 N/m

compressed 9.52 cm. If it were stretched, the total length of the spring would be 12.00 cm +9.52 cm =21.52 cm.
If it were compressed, the total length of the spring would be 12.00 cm —9.52 cm =2.48 cm .

EVALUATE: To stretch or compress the spring 9.52 cm requires a force F =kx=210N.

IDENTIFY: Apply U, =1kx*.

SETUP: U, = %kxg . x is the distance the spring is stretched or compressed.

EXECUTE: (a) (i) x =2x,gives U, =1k(2x,)’ =4(hkx;) =4U, . (ii) x =x,/2 gives

Uy=2k(x,/2) =1 kx))=U,/4.

(b) (i) U =2U, gives Lho® =2(Lkx?) and x=x\/2 . (i) U=U,/2 gives Lhx* =L(Lkx?)and x=x,/+/2.

EVALUATE: U is proportional to x* and x is proportional to JU .
IDENTIFY: Apply Eq.(7.13).
SETUP: Initially and at the highest point, v=0,s0 K, =K, =0. W,

=0.
other
EXECUTE: (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential energy

stored in the rubber band is converted to gravitational potential energy;
U =mgy=(10x10" kg)(9.80 m/s*) (22.0 m) =2.16 J.

(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m.

(¢) The lack of air resistance and no deformation of the rubber band are two possible assumptions.

EVALUATE: The potential energy stored in the rubber band depends on £ for the rubber band and the maximum
distance it is stretched.
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7.19. IDENTIFY and SET UP: Use energy methods. There are changes in both elastic and gravitational potential energy;
elastic; U :%kxz, gravitational: U = mgy.

EXECUTE: (a) U =1k’ so x= /2—U: /M =0.0632 m=6.32 cm
k 1600 N/m

(b) Points 1 and 2 in the motion are sketched in Figure 7.19.

¥ i']:0 v K1+U1+VV()ther:K2 +U2
= m
B = Og 0m W, e =0 (Only work is that done
¥ by gravity and spring force)
gﬁ ba gvgzn K, =0, K,=0
| x . »y =0 at final position of book
1 #2 U =mg(h+d), U,=31kd’
Figure 7.19

0+mg(h+d)+0="1kd’

The original gravitational potential energy of the system is converted into potential energy of the compressed
spring.
Lkd® —mgd —mgh=0

d= %(mg + \/(mg)z + 4(%kj(mgh)]

d must be positive, so d = %(mg +4/(mg)* + 2kmgh)

d=— (120 kg)(9.80 m/s?) +
1600 N/m 20 keX 5

\/((1.20 kg)(9.80 m/s*))* +2(1600 N/m)(1.20 kg)(9.80 m/s*)(0.80 m)
d=0.0074 m+0.1087 m=0.12m=12 cm

EVALUATE: It was important to recognize that the total displacement was %+ d; gravity continues to do work as

the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an upward force

(192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward from this position.
7.20. IDENTIFY: Use energy methods. There are changes in both elastic and gravitational potential energy.

SErup: K, +U +W, =K, +U,. Points1 and 2 in the motion are sketched in Figure 7.20.

other

.\I

# ] The spring force and gravity are the
9 only forces doing work on the cheese,
$0 Wy =0 and U =U,, +U,.
#1 —Eﬂi x
==
Figure 7.20

EXECUTE: Cheese released from rest implies K, =0.
At the maximum height v, =0 so K, =0.
U =U,+U,

1,el 1,grav

», =0 implies U, ., =0

grav

U, =3k =1(1800 N/m)(0.15 m)* =20.25J

lLel = 2
(Here x, refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is not the
x-coordinate of the cheese in the coordinate system shown in the sketch.)
Uu,=0U0,,+U

2,el 2,grav



Potential Energy and Energy Conservation 7-7

7.21.

7.22.

7.23.

U

2,grav

Putting all this into K, +U, +W,

=mgy,, where y, is the height we are solving for. U, , =0 since now the spring is no longer compressed.

other KZ + UZ glVeS Ul,cl = UZ,grav

20257 20251
y, = =1.72m
mg (120 kg)(9.80 m/s?)

EVALUATE: The description in terms of energy is very simple; the elastic potential energy originally stored in the
spring is converted into gravitational potential energy of the system.

IDENTIFY: Apply Eq.(7.13).

SErup: W, =0.AsinExample 7.7, K, =0 and U, =0.0250 J.

other

EXECUTE: For v, =0.20 m/s, K,=0.0040J. U, =0.0210J=1k’, and x /%ﬂ?n =10.092 m. The
m

glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m.
EVALUATE: Example 7.7 showed that v. =0.30 m/s when x=0.0800 m. As x increases, v, decreases, so our

result of v, =0.20 m/s at x =0.092 m is consistent with the result in the example.

IDENTIFY and SET UP:  Use energy methods. The elastic potential energy changes. In part (a) solve for K, and
from this obtain v,. In part (b) solve for U, and from this obtain x,.

@@ K, +U+W,. =K,+U,

point 1: the glider is at its initial position, where x, =0.100 m and v, =0

other

point 2: the glideris at x=0
EXECUTE: K, =0 (released from rest), K, =1mv;
U=k, U,=0, W,

other

=0 (only the spring force does work)

Thus %kxl2 = Emvz. (The initial potential energy of the stretched spring is converted entirely into kinetic energy of

the glider.)
\f 0.100 m), [220N™ 6 500 mys
0.200 kg

(b) The maximum speed occurs at x =0, so the same equation applies.

1 2 _ 1 2
sk, =5mv,

x—vz\/; 2.50 m/s ;)'(i())—()kgz().SOOm

N/m

EVALUATE: Elastic potential energy is converted into kinetic energy. A larger x, gives a larger v,.

IDENTIFY: Only the spring does work and Eq.(7.11) applies. a = F = ke , where F is the force the spring exerts
m m

on the mass.
SET UP: Let point 1 be the initial position of the mass against the compressed spring, so K, =0and U, =11.57J.

Let point 2 be where the mass leaves the spring, so U, =0.

. 2U, 2(11.
EXECUTE: (a) K, +U,, =K, +U,,gives Uy, =K,. tmv; =U_ and v, :\/ ar _ 2015 0) =3.03 m/s.
’ ’ ' ’ m 2.50 kg

K is largest when U is least and this is when the mass leaves the spring. The mass achieves its maximum speed of

3.03 mV/s as it leaves the spring and then slides along the surface with constant speed.
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has its

maximum compression. U, =1 kx2 SO x= —\/ 2U, =— \/ 21.5)) =-0.0959 m . The minus sign indicates
k 2500 N/m
compression. F'=—kx=ma, and a = e (2500 Nfm)(Z0.0959 m) _ 95.9 m/s*.
| ’ m 2.50 kg

EVALUATE: If the end of the spring is displaced to the left when the spring is compressed, then a, in part (b) is to
the right, and vice versa.
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7.24.

7.25.

(a) IDENTIFY and SET UP: Use energy methods. Both elastic and gravitational potential energy changes. Work is

done by friction.

Choose point 1 as in Example 7.9 and let that be the origin, so y, =0. Let point 2 be 1.00 m below point 1, so
y, =—1.00 m.

EXEcUTE: K +U +W,. =K,+U,

K, =1mv} =1(2000 kg)(25 m/s)* = 625,000 J, U, =0

W ==/ |,| = —=(17,000 N)(1.00 m) = —17,000 J

K, = %mgf

U,= UZ,grav +U, g =mgy, +%ky22

U, = (2000 kg)(9.80 m/s*)(=1.00 m) +1(1.41x10° N/m)(1.00 m)°
U, =-19,600 J +70,500 J =+50,900 J

Thus 625,000 J 17,000 J =1mv; +50,900 J

LImv; =557,100J

Lo ss7a00n oo
: 2000 kg '

EVALUATE: The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but has
slowed down.

(b) IDENTIFY: Apply 217“ =mad to the elevator. We know the forces and can solve for a.
SETUP: The free-body diagram for the elevator is given in Figure 7.24.

¥
' EXECUTE: F, =kd, where d is the
distance the spring is compressed

fi t Fope S F, =ma,

l ’ St F, —mg=ma
mg

fi +kd —mg =ma
Figure 7.24

,_Jithd —mg _17,000 N +(1.41x10° N/m)(1.00 m) ~ (2000 kg)(9.80 m/s*)

=69.2 m/s’
m 2000 kg

We calculate that a is positive, so the acceleration is upward.

EVALUATE: The velocity is downward and the acceleration is upward, so the elevator is slowing down at this
point. Note that ¢ =7.1g; this is unacceptably high for an elevator.

IDENTIFY: Apply Eq.(7.13) and F =ma.

SETUP: W, =0. Thereis no changein U,,,. K, =0, U,=0.

other

EXECUTE: 1kx® =1mv’. The relations for m, v, k and x are kx’ =mv’ and kx =5mg.

2 2

Dividing the first equation by the second gives x = 5‘}'“ , and substituting this into the second gives k =25 ng .
g X
252
(a) k = 251160 ke)O.80 an/s ) _446x10° N/im
(2.50 m/s)
2

(b) x=Z0MS 4 08

5(9.80 m/s”)

EVALUATE: Our results for £ and x do give the required values for a_and v_:

5
h_ (44610 Nm)©128'm) _ g 5 1y — 5.0 and v, =x\/E =25 ms.
m 1160 kg m
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7.26.

7.27.

7.28.

7.29.

IDENTIFY: W, =mgcosg.

grav
SET UP: When he moves upward, ¢ =180° and when he moves downward, ¢ =0°. When he moves parallel to
the ground, ¢=90°.

EXECUTE: (a) W,

() 7,

grav

= (75 kg)(9.80 m/s*)(7.0 m)cos180°=-5100J .
= (75 kg)(9.80 m/s*)(7.0 m)cos0° =+5100 T .
(¢) $=90°in each case and W, =0in each case.

(d) The total work done on him by gravity during the round trip is —=5100 J+5100J=0.

(e) Gravity is a conservative force since the total work done for a round trip is zero.

EVALUATE: The gravity force is independent of the position and motion of the object. When the object moves
upward gravity does negative work and when the object moves downward gravity does positive work.

IDENTIFY: Apply W, = f.scos¢. f=un.

SET UP: For a circular trip the distance traveled is d = 2zr . At each point in the motion the friction force and the
displacement are in opposite directions and ¢ =180°. Therefore, W, =—f,d =—f,(2zr) . n=mg so f, = ymg .

EXECUTE: (a) W, =—pmg2xr =—(0.250)(10.0 kg)(9.80 m/s*)(27)(2.00 m) =308 J .

(b) The distance along the path doubles so the work done doubles and becomes —616 J .

(¢) The work done for a round trip displacement is not zero and friction is a nonconservative force.

EVALUATE: The direction of the friction force depends on the direction of motion of the object and that is why
friction is a nonconservative force.

IDENTIFY and SET UP: The force is not constant so we must use Eq.(6.14) to calculate W. The properties of work
done by a conservative force are described in Section 7.3.

w =J.1217‘-di, F=-ax’
EXECUTE: (a) dl = dy} (x is constant; the displacement is in the +y-direction )
F-dl =0 (since i -j=0) and thus W =0.
(b) dI =dxi
Fdl = (~ax*)-(dxi)=—ax® dx

12 N/m’
W= j (—ax?)dx =—tax’ %

((0.300 m)* — (0.10 m)*)=-0.10J

33
i,z:_%a(xz -x)=-

(c) dl = dxi asin part (b), but now x, =0.30 m and x, =0.10 m
W=-ta(x;-x))=+0.10]

(d) EVALUATE: The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then back to
0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the starting and
ending points are the same, so the force is conservative.

EXECUTE: W, | =-la(x -x)=1tax —lax;

XXy

The definition of the potential energy function is I, =U, -U,. Comparison of the two expressions for ¥ gives

U =§ax3 . This does correspond to U =0 when x=0.

EVALUATE: In part (a) the work done is zero because the force and displacement are perpendicular. In part (b)
the force is directed opposite to the displacement and the work done is negative. In part (c) the force and
displacement are in the same direction and the work done is positive.

IDENTIFY: Since the force is constant, use W = Fscos¢ .

SET UP: For both displacements, the direction of the friction force is opposite to the displacement and ¢ =180°.
EXECUTE: (a) When the book moves to the left, the friction force is to the right, and the work is
-1.2N)3.0m)=-3.6J.

(b) The friction force is now to the left, and the work is again —3.6 J.

(c) -7.21.

(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force.

EVALUATE: The direction of the friction force depends on the motion of the object. For the gravity force, which
is conservative, the force does not depend on the motion of the object.
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7.30. IDENTIFY and SET UP: The friction force is constant during each displacement and Eq.(6.2) can be used to
calculate work, but the direction of the friction force can be different for different displacements.

f = umg =(0.25)(1.5 kg)(9.80 m/s*) =3.675 N; direction of fis opposite to the motion.
EXECUTE: (a) The path of the book is sketched in Figure 7.30a.

Beth

you

Figure 7.30a

For the motion from you to Beth the friction force is directed opposite to the displacement 5§ and

W, =—fs=—(3.675 N)(8.0 m) =-29.4 J.

For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and
W,=-2941.

W, =W, +W,=-2947-294J=-59 ]

tot

(b) The path of the book is sketched in Figure 7.30b.

Beth 8.0 m Carlos
8.0 nV 5=+4/28.0m)* =113 m
5
you
Figure 7.30b
f is opposite to 5, so W =—fs=—(3.675 N)(11.3 m)=—42J
(©)
4{_ For the motion from you to Kim
you @—— @ Kim w=-Js
R W =—-3.675N)(8.0m)=-29.417]
Figure 7.30c
—jb- For the motion from Kim
you @— @ Kim toyou
-— W=—fs=-2941
$
Figure 7.30d

The total work for the round trip is —29.4 J-29.4 J=-59 J.

(d) EVALUATE: Parts (a) and (b) show that for two different paths between you and Carlos, the work done by
friction is different. Part (c) shows that when the starting and ending points are the same, the total work is not zero.
Both these results show that the friction force is nonconservative.

7.31. IDENTIFY: The work done by a spring on an object attached to its end when the object moves from x; to x; is
W =1kx} —Lkx} . This result holds for any x; and x, .
SET UP: Assume for simplicity that x,, x,and x; are all positive, corresponding to the spring being stretched.
EXECUTE: (a) Lk(x} —x;)
(b) —%k(xl2 —x2). The total work is zero; the spring force is conservative.
(¢) From x, to x,, W =-1k(x; —x}). From x, to x,, W =-1k(x; —x;). The net work is —2k(x; —x;). This is
the same as the result of part (a).
EVALUATE: The results of part (c) illustrate that the work done by a conservative force is path independent.
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7.32.

7.33.

7.34.

7.35.

7.36.

IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from U(x). Use coordinates where the origin is at
one atom. The other atom then has coordinate x.

EXECUTE:
F.= _au _ _i(_%) = +C6i[L5j _ _6€6
dx dx dx\ x

x x
The minus sign mean that F, is directed in the —x-direction, toward the origin. The force has magnitude 6C,/x’

and is attractive.

EVALUATE: U depends only onx so F is along the x-axis; it has no y or z components.
IDENTIFY: Apply Eq.(7.16).
SETUP: The sign of F, indicates its direction.

EXECUTE: F, = —‘Z—U =—dax’ =—(4.8 J/m")x* . F(~0.800 m)=—(4.8 J/m*)(~0.80 m)’ = 2.46 N. The force is
X

in the +x-direction.
EVALUATE: F, >0when x<0and F <0 when x>0, so the force is always directed towards the origin.

IDENTIFY: Apply F(x)= —M.
dx
SET UP: M = _Lz
dx x
EXECUTE:  F (x)= —w = Gmym, [d(l/x)} = Gmlzmz . The force on m, is in the —x-direction . This
X X X

is toward m, , so the force is attractive.

EVALUATE: By Newton's 3" law the force on m, due to m, is Gmm,/x” , in the +x-direction (toward m, ). The
gravitational potential energy belongs to the system of the two masses.

IDENTIFY: Apply F, =—6—U and F, :—a—U.

ox Oy
SETUP: r=(x"+)")"". oir) _ 5 x2 — and oir) _ 5 y2 — .

ox (x*+y) oy (x*+y)
Execute: () U(r)=—20% g =00 Gy, | 20| E;ml”?f/z and

r ’ x Oox x*+y)
Fv:_a_U:""G U] ol/r) = Cz;’nlmzZ);/z'
’ oy (x"+»%)
b 2 20302 _ 30 F o= Gmym,x dF = Gmm,y F= [F? Fz_Gmlmz 2 2 _ Gmm,
(b) (x"+y7 ) "=r'so X——Tan y——T. = JF2+ ; _—r3 X +Y _—I’Z .

(¢) F.and F| ,are negative. F, =axand F, =ay, where « is a constant, so F and the vector ¥ from m,to m, are

in the same direction. Therefore, F is directed toward m, at the origin and F is attractive.

. - . x . .
EVALUATE: If 6 is the angle between the vector 7 that points from m, to m, , then —=cosé and 2 —in6 . This
r r

gives F, =—Fcosf and F, =—Fsin@ , our more usual way of writing the components of a vector.

IDENTIFY: Apply Eq.(7.18).

d(1 2 d( 1 2
SETUP: —|— |=-—= and —| — |=——.
dx\ x X dy\ y %

EXECUTE: F = —a—U; —a—U} since U has no z-dependence. %—g ==2a and %:_2—30’, S0

ox oy X y

B 2. 2. < 3
F=—a(—3i+—3jj =2a[l—3+%j.
X y Xy

EVALUATE:  F, and x have the same sign and F, and y have the same sign. When x>0, F,is in the

+x-direction, and so forth.
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7.37.

7.38.

7.39.

IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from U. At equilibrium F =0.
(a) EXECUTE: The graphs are sketched in Figure 7.37.
U F

U= _0b

12 6
r r

]
:
" r du 12a 6b
% e Pl 6
| dr r r

Figure 7.37

(b) At equilibrium F =0, so d—U =0
r

Lo H12
F =0 implies —
r r

6br® =12a; solution is the equilibrium distance 7, =(2a/b)"*

U is a minimum at this 7; the equilibrium is stable.

(© At r=2a/b)"’, U=alr*—b/r° =a(/2a)* —b(b/2a)=-b*/4a.
At r —> o, U =0. The energy that must be added is —~AU =5b*/4a.
(d) 7, =(2a/b)""* =1.13x107"" m gives that

2a/b=2.082x10"" m°® and b/4a =2.402x10" m™*
b*/4a=b(b/4a)=1.54x10"J

b(2.402x10° m®)=1.54x10"J and b=6.41x10"° J-m°.

Then 2a/b=2.082x10"" m® gives a=(b/2)(2.082x10% m®) =
1(6.41x107 J-m°)(2.082x10°* m°)=6.67x10"* J-m"
EVALUATE: As the graphs in part (a) show, F(r) is the slope of U(r) at each r. U(r) has a minimum where
F=0.

IDENTIFY: Apply Eq.(7.16).

SET UP: CZ—U is the slope of the U versus x graph.
x

S . L dUu .
EXECUTE: (a) Considering only forces in the x-direction, F, = —— and so the force is zero when the slope of
X

the U vs x graph is zero, at points b and d.

(b) Point b is at a potential minimum; to move it away from » would require an input of energy, so this point is
stable.

(¢) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, and the
marble tends to move further away, and so d is an unstable point.

EVALUATE: At point b, F_is negative when the marble is displaced slightly to the right and F is positive when
the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium is stable. At point d, a
small displacement in either direction produces a force directed away from d and the equilibrium is unstable.

IDENTIFY: Apply ZF = ma to the bag and to the box. Apply Eq.(7.7) to the motion of the system of the box
and bucket after the bag is removed.

SETUP: Let y=0at the final height of the bucket, so y, =2.00 mand y,=0. K, =0 . The box and the bucket
=—fd,with d =200 mand f, =y m, g.
Before the bag is removed, the maximum possible friction force the roof can exert on the box is

(0.700)(80.0 kg +50.0 kg)(9.80 m/s*) =892 N . This is larger than the weight of the bucket (637 N), so before the

bag is removed the system is at rest.
EXECUTE: (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on the bag
for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N.

. _ 1 2
move with the same speed v, so K, == (m,,, +my )V . W,

ther
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7.40.

7.41.

7.42.

7.43.

. X . 2
(b) Eq(77) glVeS mbuckeugyl - fkd = %mwtvz ’ Wlth mtot = 1450 kg - V= \/_(mbucketgy] _ﬂkmboxgd) .

tot

2 2 _ 2
V= \/m[(és.o kg)(9.80 m/s”)(2.00 m) - (0.400)(80.0 kg)(9.80 m/s*)(2.00 m) | .

v=299 m/s .
EVALUATE: If we apply ZF = md to the box and to the bucket we can calculate their common acceleration a.

Then a constant acceleration equation applied to either object gives v =2.99 m/s , in agreement with our result
obtained using energy methods.
IDENTIFY: For the system of two blocks, only gravity does work. Apply Eq.(7.5).

SETUP: Call the blocks 4 and B, where 4 is the more massive one. v, =v, =0.Let y =0 for each block to be
at the initial height of that block, so y,, =, =0. y,, =—1.20mand y,, =+1.20m. v, =v,, =v, =3.00 m/s .
EXECUTE: Eq.(7.5) gives 0=21(m, +my)v; + g(1.20 m)(m, —m,) . m,+m, =15.0kg .

2(15.0 kg)(3.00 m/s)” +(9.80 m/s*)(1.20 m)(15.0 kg —2m ) . Solving for m, gives m, =10.4 kg . And then

my =4.6 kg .

EVALUATE: The final kinetic energy of the two blocks is 68 J. The potential energy of block 4 decreases by 122 J.
The potential energy of block B increases by 54 J. The total decrease in potential energy is 122 J—54 J =68 J, and
this equals the increase in kinetic energy of the system.

IDENTIFY: Apply K, +U, +W,,.. =K, +U,

other
SETup: U, =U,=K,=0. W, =W, =-gmgs, with s=2801{t=853m

other
EXECUTE: (a) The work-energy expression gives %mvf —pmgs=0.
v, =424, g5 =22.4 m/s =50 mph; the driver was speeding.

(b) 15 mph over speed limit so $150 ticket.
EVALUATE: The negative work done by friction removes the kinetic energy of the object.
IDENTIFY: Apply Eq.(7.14).

SET UP: Only the spring force and gravity do work, so W, =0.Let y =0 at the horizontal surface.

ther

EXECUTE: (a) Equating the potential energy stored in the spring to the block's kinetic energy, 1kx* =1mv*, or

v= \/Ex = [A0ONmM 520 my=3.11 ms.
m 2.00 kg

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational potential
Lhk? __ 3(400 N/m)(0.220 m)?
mgsind  (2.00 kg)(9.80 m/s*)sin37.0°

EVALUATE: The total energy of the system is constant. Initially it is all elastic potential energy stored in the
spring, then it is all kinetic energy and finally it is all gravitational potential energy.
IDENTIFY: Use the work-energy theorem, Eq(7.7). The target variable z, will be a factor in the work done by

energy, +kx’ =mgLsin6, or L= =0.821 m.

friction.
SETUP: Let point 1 be where the block is released and let point 2 be where the block stops, as shown in
Figure 7.43.
K +U + Wy =K, +U,
v— o 0 Work is done on the
1= V2o block by the spring and
‘W\-D Ll by friction, so W, =W,
1.00 m and U=U,.

Figure 7.43
EXECUTE: K, =K, =0
U, =U,, =2k =5(100 N/m)(0.200 m)* =2.00 J
U, =U,, =0, since after the block leaves the spring has given up all its stored energy
w.

other

=W, =(f, cosg)s = ymg(cos@)s = —mgs, since ¢=180° (The friction force is directed opposite to the

displacement and does negative work.)
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7.44.

7.45.

7.46.

7.47.

Putting all this into K, +U, +W_,. =K, +U, gives

ther

U t+W,=0
Hmgs = U],el

U, 4 200)
My = =

= > =0.41
mgs  (0.50 kg)(9.80 m/s*)(1.00 m)
EVALUATE: U, ,+W, =0 says that the potential energy originally stored in the spring is taken out of the system
by the negative work done by friction.
IDENTIFY: Apply Eq.(7.14). Calculate f, from the fact that the crate slides a distance x =5.60 m before coming
to rest. Then apply Eq.(7.14) again, with x=2.00 m .
SErvp: U, =U,=360J.U,=0. K,=0. W, =-fx.

EXECUTE: Work done by friction against the crate brings it to a halt: U, =W,

J,x = potential energy of compressed spring , and f, = 5328 :

ther *

=6429 N.

The friction force working over a 2.00-m distance does work equal to —f,x = —(64.29 N)(2.00 m) =—-128.6 J. The
kinetic energy of the crate at this point is thus 360 J—128.6 J =231.4 J, and its speed is found from

mv*/2=231417,s0 v= M:s.m ms .
50.0 kg

EVALUATE: The energy of the compressed spring goes partly into kinetic energy of the crate and is partly
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as friction
does negative work on it.

IDENTIFY: At its highest point between bounces all the mechanical energy of the ball is in the form of
gravitational potential energy.

SETUP: E =U =mgh, where & is the height at the highest point of the motion.

EXECUTE: (a) mgh =(0.650 kg)(9.80 m/s*)(2.50 m)=15.9 J

(b) The second height is 0.75(2.50 m) =1.875 m, so the second mgh=11.917; itloses 159J—-11.9J=4.0J on

first bounce. This energy is converted to thermal energy.
(¢) The third height is 0.75(1.875 m)=1.40 m, , so third mgh=8.917J; itloses 11.9J-8.9J=3.0J on second

bounce.

EVALUATE: In each bounce the ball loses 25% of its mechanical energy.

IDENTIFY: Apply Eq.(7.14) to relate 2 and v, . Apply ZF = ma at point B to find the minimum speed required
at B for the car not to fall off the track.

SETUP: AtB, a=v,/R,downward. The minimum speed is when n — 0 and mg = mv,/R . The minimum
speed required is v, =,/gR . K, =0and W, =0.

other

EXECUTE: (a) Eq.(7.14) applied to points 4 and B gives U, -U, = %mvé . The speed at the top must be at least
gR. Thus, mg(h—2R)> %ng, or h> %R.
(b) Apply Eq.(7.14) to points 4 and C. U, -U,. =(2.50)Rmg =K, so

Ve =+/(5.00)gR =+/(5.00)(9.80 m/s*)(20.0 m) =31.3 mys.

2
The radial acceleration is a,, = EC =49.0 m/s’. The tangential direction is down, the normal force at point C is

=g =9.80 m/s’.

EVALUATE: If & >ZR, then the downward acceleration at B due to the circular motion is greater than g and the

horizontal, there is no friction, so the only downward force is gravity, and a,,
track must exert a downward normal force n. n increases as 4 increases and hence v, increases.

(a) IDENTIFY: Use work-energy relation to find the kinetic energy of the wood as it enters the rough bottom.
SETUP: Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough bottom.
Let y=0 be at point 2.

EXECUTE: U, =K, gives K, =mgy, =784 ].
IDENTIFY: Now apply work-energy relation to the motion along the rough bottom.
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7.48.

7.49.

SETUP: Let point 1 be where it enters the rough bottom and point 2 be where it stops.
K+U+W,.=K,+U,

other

EXECUTE: W, =W, =-umgs, K,=U,=U,=0; K, =784]

other
78.4 J — p,mgs = 0; solving for s gives s =20.0 m.

The wood stops after traveling 20.0 m along the rough bottom.

(b) Friction does —78.4 J of work.

EVALUATE: The piece of wood stops before it makes one trip across the rough bottom. The final mechanical
energy is zero. The negative friction work takes away all the mechanical energy initially in the system.
IDENTIFY: Apply Eq.(7.14) to the rock. W, =W,

other fi ©

SETUP: Let y=0at the foot of the hill, so U, =0and U, =mgh, where 4 is the vertical height of the rock above
the foot of the hill when it stops.

EXECUTE: (a) At the maximum height, K, =0. Eq.(7.14) gives Ky .., +W, =Uy,, .
lmv(f —umgcosOd =mgh . d =h/sin@, so lvé — 1,8 cosf _h =gh.
2 2 sin@

cos40°
sin40°
(b) Compare maximum static friction force to the weight component down the plane.

f. = umgcos@=(0.75)(28 kg)(9.8 m/s*)cos40° =158 N . mgsind = (28 kg)(9.8 m/s*)(sin40°) =176 N > f. , so
the rock will slide down.

(c) Use same procedure as in part (a), with #=9.3 m and v, being the speed at the bottom of the hill.

%(15 m/s)* —(0.20)(9.8 m/s’) h=(9.8m/s’)h and h=93m .

U

Top

1
+W, =K. mgh— prmgcos6 L :Emvé and

siné

vy =+[2gh 2y, ghcosO/sin@ =11.8 m/s.

EVALUATE: For the round trip up the hill and back down, there is negative work done by friction and the speed
of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill.
IDENTIFY: Apply Eq.(7.7) to the motion of the stone.

SETUuP: K +U +W,. . =K,+U,

Let point 1 be point 4 and point 2 be point B. Take y =0 at point B.

EXECUTE: mgy, +1mv] =1mv;, with #=20.0 m and v, =10.0 m/s

v, =V} +2gh =22.2 m/s

EVALUATE: The loss of gravitational potential energy equals the gain of kinetic energy.
(b) IDENTIFY: Apply Eq.(7.8) to the motion of the stone from point B to where it comes to rest against the

spring.

SETuP: Use K, +U,+W,,.. =K, +U,, with point 1 at B and point 2 where the spring has its maximum
compression x.

EXECUTE: U, =U,=K,=0; K, =tmv] with v, =222 m/s

W =W, + W, =—pmgs — Lk’ with s =100 m +x

The work-energy relation gives K, +W . =0.

other
Ly — pmgs —Lkx* =0
Putting in the numerical values gives x* +29.4x —750 =0. The positive root to this equation is x =16.4 m.
EVALUATE: Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes into the
potential energy stored in the spring.
(c) IDENTIFY and SET UP:  Consider the forces.
EXECUTE: When the spring is compressed x =16.4 m the force it exerts on the stone is F,; = kx =32.8 N. The
maximum possible static friction force is
max f, = umg = (0.80)(15.0 kg)(9.80 m/s*) =118 N.

EVALUATE: The spring force is less than the maximum possible static friction force so the stone remains at rest.
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7.50.

7.51.

7.52.

7.53.

IDENTIFY: Once the block leaves the top of the hill it moves in projectile motion. Use Eq.(7.14) to relate the
speed vy at the bottom of the hill to the speed v, at the top and the 70 m height of the hill.

SET UP:  For the projectile motion, take +y to be downward. a, =0, a,=g. v, =v,,, v, =0. For the motion

up the hill only gravity does work. Take y =0 at the base of the hill.

EXECUTE: First get speed at the top of the hill for the block to clear the pit. y = % gt’. 20m= %(9.8 m/s*)t? .

t=2.0s.Then v t =40 mgives v, :‘;()Tm =20 m/s.
Os

Energy conservation applied to the motion up the hill: X, =U,, +K

Bottom Top Top glVeS

%mvé = mgh+ %mviop vy =V +2gh =+J(20 m/s)” +2(9.8 m/s?)(70 m) =42 ms .

EVALUATE: The result does not depend on the mass of the block.
IDENTIFY: Apply K, +U, +W,,.. =K, +U, to the motion of the person.

ther

SETUP: Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let y =0 at
point2. y, =41.0 m. W,, =-1kx*, where x=11.0 m is the amount the cord is stretched at point 2. The cord

other 2
does negative work.
EXECUTE: K, =K,=U,=0, so mgy,—+kx*=0 and k=631 N/m.
Now apply F = kx to the test pulls:
F=kx so x=F/k=0.602 m.
EVALUATE: All his initial gravitational potential energy is taken away by the negative work done by the force
exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord.
IDENTIFY: Apply Eq.(7.14) to the motion of the skier from the gate to the bottom of the ramp.

SETUP: W =-40007J.Let y=0atthe bottom of the ramp.
EXECUTE: For the skier to be moving at no more than 30.0 m/s ; his kinetic energy at the bottom of the ramp can be

2 2
10 bigger than %: (85.0 kg)(230‘0 m/s)

means his combined U and K at the top of the ramp must be no more than 38,250 J+ 4000 J =42,250 J. His K at the

mv’ _(85.0 kg)(2.0 m/s)’
2 2

=38,2501J . Friction does —4000 J of work on him during his run, which

top is

=170 J . His U at the top should thus be no more than 42,250 J—170 J =42,080 J,

42,0807 42,080 J B
mg (85.0 kg)(9.80 m/s”)
EVALUATE: In the absence of air resistance, for this / his speed at the bottom of the ramp would be 31.5 m/s.

The work done by air resistance is small compared to the kinetic and potential energies that enter into the
calculation.

IDENTIFY: Use the work-energy theorem, Eq.(7.7). Solve for K, and then for v,.

50.5 m.

which gives a height above the bottom of the ramp of 4 =

SET UP: Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of the barrel,
as shown in Figure 7.53. Use F =kx to find the amount the spring is initially compressed by the 4400 N force.

=K,+U,

K, +U, +W.

other

Take y =0 at his initial position.
EXECUTE: K, =0, K,=21mv;
Vther = I/Vfric = _ﬁ

I/Vother = _(40 N)(4O m) = —160 J

Figure 7.53
Uy =0, Uy g =5kd ?, where d is the distance the spring is initially compressed.
Fekdsod=2=HON _460m
k1100 N/m

and U, , =1(1100 N/m)(4.00 m)* =8800 J
U, gy = Mgy, = (60 kg)(9.80 m/s*)(2.5 m)=1470J, U, =0

2,grav
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7.54.

7.55.

Then K, +U, +W,

other

8800 J -160 Jzémvz2 +1470 J

Imv; =7170J and v, = 200700) _ 5 5 s
60 kg

EVALUATE: Some of the potential energy stored in the compressed spring is taken away by the work done by
friction. The rest goes partly into gravitational potential energy and partly into kinetic energy.
IDENTIFY: To be at equilibrium at the bottom, with the spring compressed a distance x,, the spring force must

=K, +U, gives

balance the component of the weight down the ramp plus the largest value of the static friction, or

kx, =wsin@ + f. Apply Eq.(7.14) to the motion down the ramp.

SETUP: K,=0, K, =1mv*, where v is the speed at the top of the ramp. Let U, =0, so U, = wLsin® , where L
is the total length traveled down the ramp.

EXECUTE: Eq.(7.14) gives %kxg =(wsiné - f)L -|~%mv2 . With the given parameters, Lkx; =248 J and

kx, =1.10x10* N. Solving for k gives k = 2440 N/m.
EVALUATE: x,=0.451m. wsin@ =551 N . The decrease in gravitational potential energy is only slightly larger

than the amount of mechanical energy removed by the negative work done by friction. %mv2 =243 ] . The energy

stored in the spring is only slightly larger than the initial kinetic energy of the crate at the top of the ramp.
IDENTIFY: Apply Eq.(7.7) to the system consisting of the two buckets. If we ignore the inertia of the pulley we
ignore the kinetic energy it has.

SErup: K, +U +W, =K, +U,. Points1 and 2 in the motion are sketched in Figure 7.55.

other
3

¥
Y41 =200m

y oo
) B1=0 ) T Y., =200m
B2 B2
m, v o _y 0

a1=Ve1~

e 200m 2.00 mI ¢ )
B | i 1 N2

#1 #2
Figure 7.55

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 12.0 kg
bucket, so the net work done by the tension is zero.

Work is done on the system only by gravity, so W, =0 and U =U,,,

EXECUTE: K, =0

K,=imy,,+im viu But since the two buckets are connected by a rope they move together and have the same
speed: v, , =v,, =V,

Thus K, =1(m, +m,)v; =(8.00 kg)v;.

U =m,gy,, =(12.0 kg)(9.80 m/s*)(2.00 m)=235.2 J.

U, =m,gy, , = (4.0 kg)(9.80 m/s*)(2.00 m) =78.4 J.

Putting all this into K, +U, + W,
U =K,+U,

2352 J=(8.00 kg)v; +78.4 ]

Lo [Bs21-m84y
: 8.00 kg '

EVALUATE: The gravitational potential energy decreases and the kinetic energy increases by the same amount.
We could apply Eq.(7.7) to one bucket, but then we would have to include in W, the work done on the bucket by
the tension 7.

=K, +U, gives
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7.56.

7.57.

7.58.

7.59.

IDENTIFY: Apply K, +U,+W,

other

=K, + U, to the motion of the rocket from the starting point to the base of the
ramp. W,

other

is the work done by the thrust and by friction.
SET UP: Let point 1 be at the starting point and let point 2 be at the base of the ramp. v, =0, v, =50.0 m/s . Let
v =0at the base and take +y upward. Then y, =0and y, =dsin53°, where d is the distance along the ramp

from the base to the starting point. Friction does negative work.
EXECUTE: K, =0,U,=0. U +W,. . =K,. W, =(2000 N)d — (500 N)d = (1500 N)d .

other
mgd sin53°+ (1500 N)d =1mv; .
. mv; _ (1500 kg)(50.0 m/s)* _
2[mgsin53°+1500 N]  2[(1500 kg)(9.80 m/s”)sin53°+1500 N]
EVALUATE: The initial height is y, = (142 m)sin53°=113 m. An object free-falling from this distance attains a

142 m.

speed v= \/E =47.1 m/s . The rocket attains a greater speed than this because the forward thrust is greater than
the friction force.

IDENTIFY: The force exerted by a spring is F, = —kx . The acceleration of the object is given by F, =ma,_ . Apply
Eq.(7.14) to relate position and speed.

SETUP: Let +x be when the spring is stretched.

EXECUTE: (a) U =1kx’. Let point | be when the spring is initially compressed a distance x,, so x, =—x,.

K,=0.W

other

=0. 1k =U, + K, . The speed is maximum when x=0,so U, =0. Then Lkx; =1mv; and

v, = X,vk/m is this maximum speed.

. k . . . . k
(b) F.=—kxand F, =ma,_give a, =——x . a is maximum when |x| is maximum, so a = —x,
m m

(c) The speed is maximum when x =0, when the spring has returned to its natural length, and the acceleration is

0"

maximum when x =—x,, at the initial compression of the spring.

(d) When the spring has maximum extension, v, =0 . Lkx; =1kx*and x = x, .The magnitude of the maximum
extension equals the magnitude of the maximum compression.
(e) The machine part oscillates between x =—x,and x =+x, and never stops permanently.

EVALUATE: In any real system there are mechanical energy losses, for example due to negative work done by
friction, and the object eventually comes to rest.

IDENTIFY: Conservation of energy says the decrease in potential energy equals the gain in kinetic energy.
SET UP: Since the two animals are equidistant from the axis, they each have the same speed v.

EXECUTE: One mass rises while the other falls, so the net loss of potential energy is

(0.500 kg —0.200 kg)(9.80 m/s*)(0.400 m) =1.176 J. This is the sum of the kinetic energies of the animals and is

equal to tm v*,and v= 20.1760) _ 1.83 mys.
(0.700 kg)

EVALUATE: The mouse gains both gravitational potential energy and kinetic energy. The rat’s gain in kinetic
energy is less than its decrease of potential energy, and the energy difference is transferred to the mouse.

(a) IDENTIFY and SET UP:  Apply Eq.(7.7) to the motion of the potato.

Let point 1 be where the potato is released and point 2 be at the lowest point in its motion, as shown in

Figure 7.59a.

K +U+W

other

=K,+U,

#1

y,=2.50 m

»,=0

The tension in the string is at all points in
the motion perpendicular to the
displacement, so W, =0

The only force that does work on the
potato is gravity, so W, =0.

other

Figure 7.59a
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7.60.

EXECUTE: K, =0, K,=1mv;, U =mgy, U,=0

Thus U, =K,

mgy, :%mvzz

v, =220 =/2(9.80 m/s*)(2.50 m) =7.00 m/s

EVALUATE: v, is the same as if the potato fell through 2.50 m.

(b) IDENTIFY: Apply ZF =ma to the potato. The potato moves in an arc of a circle so its acceleration is &

rad >
where a,, =v’/R and is directed toward the center of the circle. Solve for one of the forces, the tension T in the
string.

SET UP: The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b.
.“

The acceleration a,, is directed in toward

the center of the circular path, so at this
point it is upward.

mg

Figure 7.59b

EXECUTE: ) F,=ma,

T- mg =ma.,
2
T=m(g+a,)= m[ g +%J, where the radius R for the circular motion is the length L of the string.

It is instructive to use the algebraic expression for v, from part (a) rather than just putting in the numerical value:
v, =428V, =+/2gL, so v =2gL

2 2gL . S . .
Then T = m[ g+ VTZJ = m( g +% =3mg; the tension at this point is three times the weight of the potato.

T =3mg =3(0.100 kg)(9.80 m/s>) =2.94 N

EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward.
IDENTIFY: Eq.(7.14) says W, =K, +U, — (K, +U,). W,,.. is the work done on the baseball by the force
exerted by the air.

ther ther

SETUP: U=mgy. K =Lm*, where v’ =7 +v§ .
EXECUTE: (a) The change in total energy is the work done by the air,

1
Woner = (K5 +U3) = (K, +U1)=m(5(v22 —Vf)+gy2j-

W, =(0.145 kg)((l/z[(ls.é m/s)’ - (30.0 m/s)’ — (40.0 m/s)” |+ (9.80 m/s*)(53.6 m)) .

W, =—80.07 .

(b) Similarly, W, =(K;+U;)—-(K,+U,).
W, =(0.145 kg)((l/z)[(l 1.9 m/s) +(-28.7 m/s)> —(18.6 m/s)z]—(9.80 m/s*)(53.6 m)) )
W, =-3131.

other
(¢) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work done by
the air is smaller in magnitude.
EVALUATE: The initial kinetic energy of the baseball is $(0.145 kg)(50.0 m/s)> =181 J . For the total motion

from the ground, up to the maximum height, and back down the total work done by the air is 111 J. The ball
returns to the ground with 181 J—1111J =70 J of kinetic energy and a speed of 31 m/s, less than its initial speed of
50 m/s.
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7.61. IDENTIFY and SET UP: There are two situations to compare: stepping off a platform and sliding down a pole.
Apply the work-energy theorem to each.
(a) EXECUTE: Speed at ground if steps off platform at height /:
K+U+W,.=K,+U,

other
mgh=1Lmv;, so v; =2gh

Motion from top to bottom of pole: (take y =0 at bottom)
K+U+W,.=K,+U,

other
mgd — fd =1mv;

Use v; =2gh and get mgd — fd = mgh

Jd =mg(d —h)

f=mg(d—-h)/d=mg(1-h/d)

EVALUATE: For h=d this gives f =0 as it should (friction has no effect).

For h=0, v, =0 (no motion). The equation for f'gives f =mg in this special case. When f =mg the forces on
him cancel and he doesn’t accelerate down the pole, which agrees with v, =0.

(b) EXECUTE:  f =mg(1-h/d)= (75 kg)(9.80 m/s*)(1-1.0 m/2.5 m) = 441 N.

(c) Take y =0 at bottom of pole, so y,=d and y, =y.

K+U+W,.=K,+U,

other

0+mgd — f(d—y)=Lmv’ + mgy
smv’ =mg(d —y) = f(d~y)
Using f'=mg(l—-h/d) gives %mv2 =mg(d—y)—mg(l—h/d)d-y)

Imv’ =mg(h/d)(d-y) and v=1/2gh(1-y/d)
EVALUATE: This gives the correct results for y =0 and for y =d.

7.62. IDENTIFY: Apply Eq.(7.14) to each stage of the motion.
SETUP: Let y =0 at the bottom of the slope. In part (a), W,

" her 18 the work done by friction. In part (b), W, . is

other

the work done by friction and the air resistance force. In part (c), W, is the work done by the force exerted by the

ther
snowdrift.

EXECUTE: (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top minus
the work done by friction, K, =mgh—W, =(60.0 kg)(9.8 N/kg)(65.0 m)-10,500 J, or

K, =38,200 110,500 7 =27,720 . Then v, = |25 = [2CT.7200D _ 54 4 s
m 60 kg

) K, =K, ~(W, +W,)=27,720 ] - (umgd + f,,d). K,=27,720 J—[(0.2)(588 N)(82 m)+ (160 N)(82 m)] or

air

K,=27,720J-22,763 ] =4957 ] . Then, v, = /K _ [2T)) =129 m/s
m 60 kg

(¢) Use the Work-Energy Theorem to find the force. W =AK, F =K/d =(4957 J)/(2.5 m)=2000 N.
EVALUATE: In each case, W

other

is negative and removes mechanical energy from the system.
7.63.  IDENTIFY and SETUP: Firstapply D F =ma to the skier.

Find the angle a where the normal force becomes zero, in terms of the speed v, at this point. Then apply the
work-energy theorem to the motion of the skier to obtain another equation that relates v, and «. Solve these two
equations for a.
v =0

#1 |-
Let point 2 be where the skier loses contact
with the snowball, as sketched in Figure 7.63a
Loses contact implies n — 0.
» =R, y,=Rcosa

Figure 7.63a
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7.64.

7.65.

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b. For
this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a circle, so her

acceleration is a,, =v*/R, directed in towards the center of the snowball.

h

A rad

V4

Mg cose

EXECUTE: ) F,=ma,

a
\ tan

mgcosa —n=mv,/R
But n=0 so mgcosa =mv,/R

v; = Rgcosa

mg

Figure 7.63b

Now use conservation of energy to get another equation relating v, to a:
K+U+W,. =K,+U,

The only force that does work on the skier is gravity, so W, .
K, =0, K,=1mv;

U, =mgy, =mgR, U, =mgy, =mgRcosa

=0.

Then mgR =1mv; + mgRcosa

v =2gR(1-cosa)

Combine this with the ZF} =ma, equation:

Rgcosa =2gR(1-cosa)

cosa =2—-2cosa

3cosa =2 so cosa=2/3 and o =48.2°

EVALUATE: She speeds up and her a,, increases as she loses gravitational potential energy. She loses contact

when she is going so fast that the radially inward component of her weight isn’t large enough to keep her in the
circular path. Note that & where she loses contact does not depend on her mass or on the radius of the snowball.
IDENTIFY: Use conservation of energy to relate the speed at the lowest point to the speed at the highest point.
Use ZF = mad to calculate the tension.

SETUP: The rock has acceleration a,, =v*/R , directed toward the center of the circle.
EXECUTE: If the speed of the rock at the top is v, , then conservation of energy gives the speed v, at the bottom

from Lmv; =Lmv] + mg(2R), R being the radius of the circle, and so v; =v; +4gR . The tension at the top and
2 2
" and ]L—mg:m;b , SO Tb—th%(vé—vf)+2mg=6mg=6w.

m
bottom are found from 7, + mg =

EVALUATE: The tensions 7, and 7, depend on the speed of the rock and on R, but the difference T, — T, is

independent of the speed of the rock and the radius of the circle.
IDENTIFY and SET UP:

v, =0
A
R y,=R
vy = 4.80 mfs v~ 0 Vg =Yc=0
— c
u m.
B C
Figure 7.65

(a) Apply conservation of energy to the motion from B to C:
K, +U,+W,. =K +U.. The motion is described in Figure 7.65.

other
EXECUTE: The only force that does work on the package during this part of the motion is friction, so
Wy =W, = 1,(cOS$)s = 11,mg (cos180°)s =, mgs

Ky=1mv,, K.=0

U,=0, U.=0
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Thus K, +W, =0

Lmv, — pumgs =0
4y (480m/s)’ 0
2gs  2(9.80 m/s*)(3.00m)
EVALUATE: The negative friction work takes away all the kinetic energy.
(b) IDENTIFY and SET UP:  Apply conservation of energy to the motion from 4 to B:
K, +U,+W,. =K, +U,

other
=W,

392

Hy

EXECUTE: Work is done by gravity and by friction, so W,
K,=0, K,=2Xmv,=1(0.200 kg)(4.80 m/s)* =2.304 J

U, =mgy, =mgR =(0.200 kg)(9.80 m/s*)(1.60 m)=3.136J, U, =0
Thus U, +W, =K,

W,=K,-U,=2304J-3.136 ] =-0.83 ]

ther

EVALUATE: W, is negative as expected; the friction force does negative work since it is directed opposite to the

displacement.
7.66. IDENTIFY: Apply Eq.(7.14) to the initial and final positions of the truck.
SETUP: Let y=0at the lowest point of the path of the truck. W, . is the work done by friction.

f;:ﬂrn:u[mgcosﬁ'
EXECUTE: Denote the distance the truck moves up the ramp by x. K, =imv; , U, =mgLsina, K, =0,

ther

U,=mgxsinf and W, =—pmgxcosf.From W, =(K,+U,)—(K, +U,), and solving for x,

ther
oK +mglsing (vi/2g)+ Lsina
mg(sin f+ p cosff) sinf+ p cosf
EVALUATE: x increases when v, increases and decreases when g, increases.

7.67. F.=-ax-px’, a=60.0N/m and B=18.0 N/m’
(a) IDENTIFY: Use Eq.(6.7) to calculate # and then use W =—AU to identify the potential energy function U (x).

SETUP: W, =U,-U, :J‘”Fx(x) dx
Let x, =0 and U, =0. Let x, be some arbitrary point x, so U, =U(x).
EXECUTE: U(x)= —I:E(x) dx = —I:(—ax—ﬂxz) dx = L:(ax-‘—ﬂxz) dx=Lax* +1 %

EVALUATE: If #=0, the spring does obey Hooke’s law, with k =, and our result reduces to Lkx’.

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the object.
SETUP: The system at points 1 and 2 is sketched in Figure 7.67.
yx =0

I =10

AV
K +U+W

‘I _ N other — K2 + U2
| % =100m The only force that does work on the
| Yy object is the spring force, so W, =0.

r AT

[
I X3=0.50m

|
Figure 7.67

ther

EXECUTE: K, =0, K,=21mv;

U, =U(x) =3ax] +%px =2(60.0 N/m)(1.00 m)* +4(18.0 N/m*)(1.00 m)’ =36.0 J

U, =U(x,)=1ax; +1 fx; =1(60.0 N/m)(0.500 m)* +1(18.0 N/m*)(0.500 m)’ =8.25J
Thus 36.0 J=1mv; +8.25]

L [26601-825D) oo
: 0.900 kg

EVALUATE: The elastic potential energy stored in the spring decreases and the kinetic energy of the object increases.
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7.68.

7.69.

7.70.

7.71.

7.72.

IDENTIFY: Apply Eq.(7.14). W,
SETUP: W,

other
EXECUTE: The force increases both the gravitational potential energy of the block and the potential energy of the
spring. If the block is moved slowly, the kinetic energy can be taken as constant, so the work done by the force is

is the work done by F.

ther

=AK + AU . The distance the spring stretches is a6 . y, —y, =asiné .

the increase in potential energy, AU = mgasin +1k(a0)’ .

EVALUATE: The force is kept tangent to the surface so the block will stay in contact with the surface.
IDENTIFY: Apply Eq.(7.14) to the motion of the block.

SETUP: Let y=0at the floor. Let point 1 be the initial position of the block against the compressed spring and
let point 2 be just before the block strikes the floor.

EXECUTE: With U,=0,K,=0, K, =U,. 1mv] =1kx’ + mgh . Solving for v, ,

2 2
v, = \/ﬁ+ 2gh = [LOOONMO 0I5 m)” g ¢4 1/c?)(1.20 m) = 7.01 ms .
m (0.150 kg)

EVALUATE: The potential energy stored in the spring and the initial gravitational potential energy all go into the
final kinetic energy of the block.

IDENTIFY: Apply Eq.(7.14). U is the total elastic potential energy of the two springs.

SETUP: Call the two points in the motion where Eq.(7.14) is applied 4 and B to avoid confusion with springs 1
and 2, that have force constants & and k,. At any point in the motion the distance one spring is stretched equals

the distance the other spring is compressed. Let +x be to the right. Let point 4 be the initial position of the block,
where it is released from rest, so x,, =+0.150 mand x,, =-0.150 m.

EXECUTE: (a) With no friction, W, =0. K,=0and U, =K, +U, . The maximum speed is when U, =0 and

ther

this is at x,, = x,, =0, when both springs are at their natural length. Lkx7, +1k,x;, =Lmv; .
¥ =, =(0.150 mY’ 50 v, = |72 (0 150 my = [P0 NM+2000 N, 450 1y 581 s
m 3.00 kg

(b) At maximum compression of spring 1, spring 2 has its maximum extension and v, = 0. Therefore, at this point

U, =U,. The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice versa:

X, =—x,,and x,, =—x,, . Then U, =U, gives 1(k, +k,)x;, =L(k, +k,)x, and x,, =—x,, =—0.150 m . The
maximum compression of spring 1 is 15.0 cm.

EVALUATE: When friction is not present mechanical energy is conserved and is continually transformed between

kinetic energy of the block and potential energy in the springs. If friction is present, its work removes mechanical
energy from the system.

IDENTIFY: Apply conservation of energy to relate x and 4. Apply ZF = mad to relate a and x.

SET UP: The first condition, that the maximum height above the release point is 4, is expressed as %kx2 =mgh .

The magnitude of the acceleration is largest when the spring is compressed to a distance x; at this point the net
upward force is kx —mg =ma , so the second condition is expressed as x = (m/k)(g +a) .

EXECUTE: (a) Substituting the second expression into the first gives

1. (mY ) m(g +a)’
—k|— | (g+a) =mgh, or k=—2——.
2 \k 2gh
o .. . . 2gh
(b) Substituting this into the expression for x gives x = .
g+a
mg

EVALUATE: When a — 0, our results become k = e and x =2/ . The initial spring force is kx = mg and the

net upward force approaches zero. But %kx2 = mgh and sufficient potential energy is stored in the spring to move

the mass to height 4.
IDENTIFY: At equilibrium the upward spring force equals the weight mg of the object. Apply conservation of
energy to the motion of the fish.

SET UP: The distance that the mass descends equals the distance the spring is stretched. K, =K, =0, so

U, (gravitational) = U, (spring)

EXECUTE: Following the hint, the force constant & is found from mg =kd , or k =mg/d . When the fish falls
from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the spring,

which is Lky* =1(mg/d)y’ . Equating these, %%yl =mgy, or y=2d.
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7.73.

7.74.

EVALUATE: At its lowest point the fish is not in equilibrium. The upward spring force at this point is ky = 2kd ,
and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has an upward
acceleration equal to g.

IDENTIFY: Apply Eq.(7.15) to the motion of the block.

SETUP: The motion from 4 to B is described in Figure 7.73.

v vg = 7.00 m/s
-

6.00 m

X

0= 30.0“)

Figure 7.73
The normal force is n =mgcos®, so f, = pn=pmgcosb.
v,=0; y,=(60.0 m)sin30.0°=3.00 m
K, +U, +W,.=K,+U,
EXECUTE: Work is done by gravity, by the spring force, and by friction, so W,
K,=0, K,=Lmv; =1(1.50 kg)(7.00 m/s)* =36.75 ]

ther — W}‘ and U = Uel + Ugrav

UA = Uel,A + Ugrav.A = Uel,A’ Since Ugmv,A = 0
Ug=U,5+U,,, 5 =0+mgy, =(1.50 kg)(9.80 m/s*)(3.00 m)=44.17
Wosee =W, = (f, cO8@)s = p, mg cos O(cos180°)s = — i, mg cos Os

W, =—(0.50)(1.50 kg)(9.80 m/s*)(c0s30.0°)(6.00 m) =—38.19 J
Thus U, ,—38.19 1=36.751+44.10

el,4

U,,=38.197+36.751+44.10J =119

EVALUATE: U, must always be positive. Part of the energy initially stored in the spring was taken away by

friction work; the rest went partly into kinetic energy and partly into an increase in gravitational potential energy.
IDENTIFY:  Apply Eq.(7.14) to the motion of the package. W, =W, , the work done by the kinetic friction

ther
force.

SETUP:  f, = yn=pmgcosd,with §=53.1°. Let L =4.00 m, the distance the package moves before
reaching the spring and let d be the maximum compression of the spring. Let point 1 be the initial position of the
package, point 2 be just as it contacts the spring, point 3 be at the maximum compression of the spring, and point 4
be the final position of the package after it rebounds.

EXECUTE: (a) K, =0, U,=0, W,

other

=—fil=—pLcos® . U =mgLsin® . K, =Lmv*, where v is the speed

before the block hits the spring. Eq.(7.14) applied to points 1 and 2, with y, =0, gives U, + W, . =K, . Solving

ther
for v,
v= \/ZgL(sinH—,uk cosf) = \/2(9.80 m/s*)(4.00 m)(sin53.1° — (0.20)cos53.1°) =7.30 m/s.
(b) Apply Eq.(7.14) to points 1 and 3. Let y,=0. K, =K, =0. U, =mg(L+d)siné. U, :ékal2 .
Wohee =S (L+d) . Eq.(7.14) gives mg(L +d)sin@ — y,mgcos@(L +d) :%kaf2 . This can be written as
) k
2mg(sinf — y, cos9)

—d — L =0. The factor multiplying d* is 4.504 m™', and use of the quadratic formula

gives d =1.06 m .

(¢) The easy thing to do here is to recognize that the presence of the spring determines d, but at the end of the
motion the spring has no potential energy, and the distance below the starting point is determined solely by how
much energy has been lost to friction. If the block ends up a distance y below the starting point, then the block has
moved a distance L+d down the incline and L +d — y up the incline. The magnitude of the friction force is the

same in both directions, x, mgcosf , and so the work done by friction is —z (2L + 2d — y)mg cos@ . This must be
equal to the change in gravitational potential energy, which is —mgysiné . Equating these and solving for y gives
2u,cos0 L+d) 24

d)—="%— Using the value of d found in part (b) and the given values for

y=(L+d)— =
sind + x4, cosd tan @+ 4,

and 0 gives y=132m.
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7.75.

7.76.

EVALUATE: Our expression for y gives the reasonable results that y = 0when z, =0 ; in the absence of friction
the package returns to its starting point.

(a) IDENTIFY and SETUP: Apply K, +U,+W,, . =K, +U, to the motion from 4 to B.

ther
EXECUTE: K, =0, K,=1mv,

U,=0, Uy=U, , =1hkx;, where x, =025m
Woter =W = Fxy

Thus Fx, = %mvﬁ + %kxg (The work done by F goes partly to the potential energy of the stretched spring and
partly to the kinetic energy of the block.)

Fx, =(20.0 N)(0.25m)=5.0J and 1kx; =1(40.0 N/m)(0.25 m)* =1.25J

Thus 5.0 J=1mv, +1.257 and v, = 26750 _ 3 87 s
0.500 kg

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the block. Let point C be where the block is closest to the wall.
When the block is at point C the spring is compressed an amount |xC|, so the block is 0.60 m — |xC| from the wall,

and the distance between B and C'is x, + |xc|.
SET UP: The motion from A4 to B to C is described in Figure 7.75.

1 Ky +Up +Wopee =K +Uc

: 5 EXECUTE: W =0
mdVAVAAVAS I K,=tm?=501-1251=375]

A B B (from part (a))

: Uy=1thx,=125]

JW\—D : K. =0 (instantaneously at rest at
¢ ! point closest to wall)
| X(. | 1 ’ 2
UC = 7k|xC|
Figure 7.75

Thus 3.75 J+1.25 J = 1k|x |’

x| = /M =0.50 m
40.0 N/m

The distance of the block from the wall is 0.60 m—0.50 m=0.10 m.
EVALUATE: The work (20.0 N)(0.25 m)=5.0J done by F puts 5.0 J of mechanical energy into the system. No

mechanical energy is taken away by friction, so the total energy at points B and Cis 5.0 J.
IDENTIFY: Apply Eq.(7.14) to the motion of the student.
SETUP: Let x,=0.18m, x, =0.71 m. The spring constants (assumed identical) are then known in terms of the

unknown weight w, 4kx, =w. Let y =0 at the initial position of the student.

EXECUTE: (a) The speed of the brother at a given height /2 above the point of maximum compression is then
2

found from %(4k)x12 = %[EJ\/Z +mgh, or vV = %xlz —2gh= g{x—‘— ZhJ . Therefore,

g w

X

v = \/(9.80 m/s*)((0.71 m)z/(0.18 m)—2(0.90 m)) =3.13 m/s, or 3.1 m/s to two figures.

2 2
(b) Setting v=0 and solving for 4, h= 2oy =5 _1.40 m, or 1.4 m to two figures.
mg  2x,
2 2 2
(c) No; the distance x, will be different, and the ratio /i (4 +0.53m)” =X (1 +wJ will be different.
Xo X X

Note that on a planet with lower g, x, will be smaller and / will be larger.

EVALUATE: We are able to solve the problem without knowing either the mass of the student or the force
constant of the spring.



7-26 Chapter 7

7.77.  IDENTIFY: a, =d’x/df’, a,=d’yldf’. F,=ma,, F,=ma,. U = jdex + j Fdy.
d . d . 1 . . 1
SETUP: —(cosayt) =—w,sinwyt . —(Sin@yt) = @, COs Dyt . Jcos w,t dt =—sinayt , jsm wt dt =——coswyt .
dt dt , ,
v,=dx/dt, v, =dyldt. E=K+U.

EXECUTE: (a) a, =d’x/dt’ =-w,x, F, =ma, =-ma;x. a,=d’yldt’ =-ayy, F,=ma,=—mao,y

(b) U= —Udex + _‘-FydyJ =mwy} dex + J.ydyJ = %ma)g (x> +%)
(©) v, =dx/dt = —x\@,sinwyt = —x,@,(¥y,). v, =dyldt =+y,w,c08 0yt =+y,a,(x/x,).

(i) When x=x, and y=0,v,=0 and v, = y,®,,
K :%m(vf +v§):%my3a)§, U:%wjmxg and E=K+U :%ma)g(xg +30)
(i)) When x=0 and y = y,, v, =-x,®, and v, =0,
K:%a)(fmxé, U:%mwjyé and E:K+U:%ma)§(x§ +37)

EVALUATE: The total energy is the same at the two points in part (c); the total energy of the system is constant.
7.78. IDENTIFY: Calculate the increase in kinetic energy for the car.

SETUP: The car gets (0.15)(1.3x10° J) of energy from one gallon of gasoline.
EXECUTE: (a) The mechanical energy increase of the car is K, — K, =+(1500 kg)(37 m/s)> =1.027x10° J. Let
a be the number of gallons of gasoline consumed. a(1.3x10° J)(0.15)=1.027x10° J and « = 0.053gallons .

(b) (1.00 gallons)/a =19 accelerations

EVALUATE: The time over which the increase in velocity occurs doesn't enter into the calculation.
7.79. IDENTIFY: U =mgh.Use h=150 m for all the water that passes through the dam.

SETUP: m=plV and V = AAh is the volume of water in a height Ak of water in the lake.
EXECUTE: (a) Stored energy =mgh=(pV)gh=p A1 m)gh.

stored energy = (1000 kg/m*)(3.0x10° m*)(1 m)(9.8 m/s*)(150 m) =4.4x10" J.

(b) 90% of the stored energy is converted to electrical energy, so (0.90)(mgh)=1000 kWh .
(1000 kWh)((3600 s)/(1 h))

(0.90)pVgh =1000 kWh . V = : —=2.7x10"m’.
(0.90)(1000 kg/m”)(150 m)(9.8 m/s”)
3 3
Change in level of the lake: AAh =V, . Ah= v L()t;mz =9.0x10" m.
A 3.0x10°m

EVALUATE: Ah is much less than 150 m, so using 2 =150 m for all the water that passed through the dam was a
very good approximation.

7.80. IDENTIFY and SET UP: The potential energy of a horizontal layer of thickness dy, area 4, and height y is
dU =(dm)gy. Let p be the density of water.

EXECUTE: dm=p dV =pAdy, so dU = pAgy dy.
The total potential energy U is

_ h _ h 1 2
U=[ dU=pdg| ydyv=4pagh"

A=3.0x10°m?* and A=150 m, so U =3.3x10" J=9.2x10" kWh
EVALUATE: The volume is A/ and the mass of water is pV = pAh. The average depth is #,, = h/2, so

U =mgh,,.
7.81. IDENTIFY: Apply F, = —a—U,F, :_6_U and F, :_6_U .
’ ox oy 0z
SETUP: r=(x*+*+2°)"%. oU/r) = al 7 oarr) = 24 and oU/r) = z

ox (x2+y2) ay (x2+y2)3/2 oz (x2+y2)3/2 .



Potential Energy and Energy Conservation 7-27

7.82.

7.83.

EXECUTE: (a) U(r)= Gimym, . F = v :+Gmlmz[a(1/r)} =—— szlmzxz — - Similarly,
r ’ X X X +y +z7)
Gmm,y Gmm,z
F =072 apd F=——— 2%
y (x2+y2+22)3/2 z (x2+y2+22)3/2
(b) (& + 5% + 222 =50 F= O g Gy g g Gz
r i r r

Gmm Gm,m
F=\F+F +F =—22x*+y +7 =—12.
y z r} rZ

(© F, Fy and F, are negative. F, =ax,F, =ay and F, =az, where « is a constant, so F and the vector 7 from

m,to m, are in the same direction. Therefore, F is directed toward m, at the origin and F is attractive.
EVALUATE: When m, moves to larger », the work done on it by the attractive gravity force is negative. Since

W =-AU , negative work done by gravity means the gravitational potential energy increases.

Gmm,

U(r)=-

does increase (becomes less negative) as » increases. For an object near the surface of the earth,

Ur)= _Gmmy will be shown in Chapter 12 to be equivalent to U, =mgy .
r

grav
IDENTIFY: Calculate the work W done by this force. If the force is conservative, the work is path independent.
SET UP: W:_"Pzﬁdi .
A

EXECUTE: (a) W = I: Fdy= CI: y*dy . W doesn't depend on x, so it is the same for all paths between P and
P, . The force is conservative.
b)) W= J.:Z Fdx=C J: ydx . W will be different for paths between points P and P, for which y has different

values. For example, if y has the constant value y, along the path, then W = Cy,(x, —x,) . W depends on the value
of y, . The force is not conservative.

3
EVALUATE: F =(C)?j has the potential energy function U(y) = _CTy . We cannot find a potential energy

function for F = Cy% .
F= —axyzf, a=2.50 N/m’

IDENTIFY: F is not constant so use Eq.(6.14) to calculate . F must be evaluated along the path.
(a) SET UP: The path is sketched in Figure 7.83a.

¥

dl = dxi + dyj
F-dl =—axy* dy
On the path, x=y so F-dl =—ay’ dy

im

Figure 7.83a

EXECUTE: W = LZF -dl =I jz (—ay’) dv=—(a/ 4)(y4 :) =—(a/4)(y; - )

y,=0, »,=3.00m, so W =-1(2.50 N/m*)(3.00 m)* =-50.6 J
(b) SET UP:  The path is sketched in Figure 7.83b.

3Im

Figure 7.83b

For the displacement from point 1 to point 2, dI =dxi, so F-dl =0 and W =0. (The force is perpendicular to
the displacement at each point along the path, so W =0.)
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7.84.

7.85.

For the displacement from point 2 to point 3, df = dyj', so F-dl =—axy® dy. On this path, x=3.00 m, so
F -dl =—(2.50 N/m*)(3.00 m)y* dy =—(7.50 N/m?)y* dy.
Exgcute: W= [ F-dl =—(7.50 N/m*)[ " y* dy=~(7.50 N/m*)3(; - )
V2

W =—(7.50 N/m*)($)(3.00 m)’ =—67.5 ]

(c) EVALUATE: For these two paths between the same starting and ending points the work is different, so the
force is nonconservative.

IDENTIFY: Use W = LPZ F -dI to calculate W for each segment of the path.

SETUP: F-dl = F.dx=axy dx

EXECUTE: (a) The path is sketched in Figure 7.84.

(b) (1): x=0 along this leg, so F =0 and W =0. (2): Along this leg, y=1.50m, so F -dl =(3.00 N/m)xdx,
and W =(1.50 N/m)((1.50 m)* —=0)=3.38J (3) F-dl=0,s0 W=0 (4) y=0,s0 F=0 and W =0. The work
done in moving around the closed path is 3.38 J.

(¢) The work done in moving around a closed path is not zero, and the force is not conservative.

EVALUATE: There is no potential energy function for this force.
2

A

4
Figure 7.84
IDENTIFY: Use Eq.(7.16) to relate F and U(x) . The equilibrium is stable where U(x) is a local minimum and
the equilibrium is unstable where U (x) is a local maximum.
SETUP: The maximum and minimum values of x are those for which U(x)=E . K = E—-U , so the maximum

speed is where U is a minimum.

EXECUTE: (a) For the given proposed potential U(x), —iI—U =—kx+ F , so this is a possible potential function.
X

For this potential, U(0)=—F" / 2k , not zero. Setting the zero of potential is equivalent to adding a constant to the

potential; any additive constant will not change the derivative, and will correspond to the same force.

(b) At equilibrium, the force is zero; solving —kx + F =0 for x gives x, = F/k . U(x,)=—F’/k , and this is a

minimum of U, and hence a stable point.

(c¢) The graph is given in Figure 7.85.

(d) No; F,, =0 at only one point, and this is a stable point.

(e) The extreme values of x correspond to zero velocity, hence zero kinetic energy, so U(x,)=E , where x, are

the extreme points of the motion. Rather than solve a quadratic, note that +k(x — Flk)’ = F*k,so U(x,)=E

2 2
becomes lk X, _E - Flk T X, L 125, $0X, = 35 X = —E.
2 7" &k k= k k k k
(f) The maximum kinetic energy occurs when U(x) is a minimum, the point x, = F/k found in part (b). At this

point K =E ~U = (F*/k)—(~-F*/k)=2F*/k , so v=2F/Imk .



Potential Energy and Energy Conservation 7-29

7.86.

7.87.

EVALUATE: As E increases, the magnitudes of x, and x_ increase. The particle cannot reach values of x for
which £ <U(x) because K cannot be negative.

—.4 . -2 0 2 4
Figure 7.85

IDENTIFY: Use Eq.(7.16) to relate F and U(x) . The equilibrium is stable where U(x) is a local minimum and

the equilibrium is unstable where U (x) is a local maximum.

SETUP: dU/dx is the slope of the graph of U versus x. K = E—U , so K is a maximum when U is a minimum.

The maximum x is where £ =U .

EXECUTE: (a) The slope of the U vs. x curve is negative at point 4, so F, is positive (Eq. (7.16)).

(b) The slope of the curve at point B is positive, so the force is negative.

(¢) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at around 0.75 m.

(d) The curve at point C looks pretty close to flat, so the force is zero.

(e) The object had zero kinetic energy at point 4, and in order to reach a point with more potential energy than

U(A), the kinetic energy would need to be negative. Kinetic energy is never negative, so the object can never be at

any point where the potential energy is larger than U(A4). On the graph, that looks to be at about 2.2 m.

(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m.
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C.

EVALUATE: If E is less than U at point C, the particle is trapped in one or the other of the potential "wells" and
cannot move from one allowed region of x to the other.

IDENTIFY: K =E -U determines v(x) .

SET UP: v is a maximum when U is a minimum and v is a minimum when U is a maximum. F, =—-dU/dx . The
extreme values of x are where £ =U(x) .

EXECUTE: (a) Eliminating 8 in favor of o and x,(f =alx,),
Ul B_ex o _a (x_j_(x_j |
¥oox ox X oxx x|\x X

Z11-1=0. U(x) is positive for x < x, and negative for x > x, (@ and £ must be taken as
2 0 0

U(x) = {x

0

positive). The graph of U(x) is sketched in Figure 7.87a.

2 2 ’ , o . S
b) v(x)=,——U = \/{ a2 j [(ﬁj - (ﬁj ] . The proton moves in the positive x-direction, speeding up until it
m

mx, x x

reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus sign in the
square root in the expression for v(x) indicates that the particle will be found only in the region where U <0, that

is, x> x, . The graph of v(x) is sketched in Figure 7.87b.
(¢) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential energy.

3 2
This minimum occurs when du _ 0,or d—U = ﬁ3 —2(EJ + (ﬁj =0,
dx dx X, x X

which has the solution x =2x,. U(2x,) = —iz ,S0 V= ¢ > -
4x; 2mx,

dau _
dx

(d) The maximum speed occurs at a point where 0, and from Eq. (7.15), the force at this point is zero.
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(e) x,=3x,,and U(3x,) :—%,
0

2w —vom= 1A[22e) af(xn) x| [2af(x) (%) _
v(x)= m(U(xl) U(x) = m[(9x§j xg[(xj xﬂ \/mxg[(xj (x} 2/9].

The particle is confined to the region where U(x) <U(x,) . The maximum speed still occurs at x = 2x,, but now

the particle will oscillate between x, and some minimum value (see part (f)).
(H) Note that U(x)—U(x,) can be written as

ATEHEAE )

which is zero (and hence the kinetic energy is zero) at x =3x, =x, and x=3x,. Thus, when the particle is
released from x,, it goes on to infinity, and doesn’t reach any maximum distance. When released from x,, it
oscillates between 2x, and 3x, .

EVALUATE: In each case the proton is released from rest and £ =U(x;), where x, is the point where it is
released. When x, = x, the total energy is zero. When x, = x, the total energy is negative. U(x) >0 as x = o, so

for this case the proton can't reach x — oo and the maximum x it can have is limited.
u v

S x[xg : - ; : 0 x[x

Figure 7.87



