APPLYING NEWTON’S LAWS

5.1.

5.2.

5.3.

IDENTIFY: a =0 for each object. Apply ZF‘ =ma, to each weight and to the pulley.

SET Up: Take +y upward. The pulley has negligible mass. Let 7, be the tension in the rope and let T, be the

tension in the chain.
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a.

D F,=ma, gives T, =w=250N .
(b) The free-body diagram for the pulley is given in Figure 5.1b. 7, =27, =50.0 N .

EVALUATE: The tension is the same at all points along the rope.
¥y ¥

w = 25.0N T\ T,
Figure 5.1a, b

IDENTIFY: Apply ZF = ma to each weight.
SET UP: Two forces act on each mass: w down and T'(= w) up.

EXECUTE: In all cases, each string is supporting a weight w against gravity, and the tension in each string is w.
EVALUATE: The tension is the same in all three cases.
IDENTIFY: Both objects are at rest and @ =0. Apply Newton’s first law to the appropriate object. The maximum

tension 7, is at the top of the chain and the minimum tension is at the bottom of the chain.

SETUP: Let +y be upward. For the maximum tension take the object to be the chain plus the ball. For the

minimum tension take the object to be the ball. For the tension 7 three-fourths of the way up from the bottom of
the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of these
three cases are sketched in Figures 5.3a, 5.3b and 5.3c. m,,. =75.0 kg+26.0 kg=101.0 kg . m, =75.0kg . m is

the mass of three-fourths of the chain: m =2(26.0 kg)=19.5 kg .

EXECUTE: (a) From Figure 5.3a, ZF‘ =0gives T,, —m,..g=0and T, =(101.0 kg)(9.80 m/s*) =990 N .
From Figure 5.3b, ZFy =0gives T,,, —m,g=0and T, =(75.0 kg)(9.80 m/s’)=735N .

(b) From Figure 5.3c, ZF) =0gives T—(m+m,)g=0and T =(19.5 kg +75.0 kg)(9.80 m/s*) =926 N .
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5.4.

5.5.

EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain.
¥ ¥ ¥

.'rnr.lx ) Tlnin L T

Whae = Myie 8 [ wy, = my, g [w=(m+my)g

Figure 5.3a—c

IDENTIFY: Apply Newton’s 1st law to the person. Each half of the rope exerts a force on him, directed along the
rope and equal to the tension 7 in the rope.
SET UpP: (a) The force diagram for the person is given in Figure 5.4

v

7 __ Nsin® | Tsing o

7, and T, are the

T,cos0 T cosP x tensions in each half of
- the rope.

w =mg

Figure 5.4

EXECUTE: ) F,=0

T,cos0—T,cos@=0

This says that 7, =7, =T (The tension is the same on both sides of the person.)
S5 =0

Tisin@+T,sinf —mg =0

But 7,=7,=T, so 2Tsinf =mg

mg  (90.0 kg)(9.80 m/s*)

=— > =2540 N
2sin@ 2sin10.0°

(b) The relation 2Tsiné =mg still applies but now we are given that 7 =2.50x10* N (the breaking strength) and
are asked to find 6.

mg _ (90.0 kg)(9.80 m/s’)
2T 2(2.50x10* N)

EVALUATE: T =mg/(2sin@) says that T =mg/2 when 8 =90° (rope is vertical).

sinf =

=0.01764, 6=1.01°.

T — o when 8 — 0 since the upward component of the tension becomes a smaller fraction of the tension.
IDENTIFY: Apply ZF = ma to the frame.

SET UpP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the tension
is the same in each wire. 7 =0.75w .
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight, and

. . . . . . . . w 3w
this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical. > =—cosf

and @ =arccos%=48°.

EVALUATE: If 6=0°, T=w/2and T — 0 as 6 — 90°. Therefore, there must be an angle where T'=3w/4 .
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5.6.

5.7.

5.8.

IDENTIFY: Apply Newton’s 1st law to the car. The forces are the same as in Example 5.5.
SET UpP: The free-body diagram is sketched in Figure 5.6.
.\I
a=10
n costt
e === EXECUTE:

T, S.F. =ma,

Tcosa—nsina =0

Tcosa =nsina

a S F,=ma,

T cosa ncosa+Tsina—w=0
ncosa+Tsina =w

n sine

w

Figure 5.6

. . cosx
The first equation gives n=T| — .
sina

Use this in the second equation to eliminate :

cosa .
T— cosa+Tsina=w
sina

Multiply this equation by sina :
T(cos® a +sin’ &) = wsina

T =wsina (since cos’a +sin’a =1).

cosa . cosa
Then n=T| — =wsina| — =wcosa.
sina sina

EVALUATE: These results are the same as obtained in Example 5.5. The choice of coordinate axes is up to us.
Some choices may make the calculation easier, but the results are the same for any choice of axes.

IDENTIFY: Apply ZF = ma to the car.
SET UpP: Use coordinates with +x parallel to the surface of the street.
EXECUTE: Y F,=0gives T =wsina . F =mgsin6 = (1390 kg)(9.80 n/s*)sin17.5° =4.10x10° N .

EVALUATE: The force required is less than the weight of the car by the factor sine .

IDENTIFY: Apply Newton’s 1st law to the wrecking ball. Each cable exerts a force on the ball, directed along the
cable.

SET Up: The force diagram for the wrecking ball is sketched in Figure 5.8.

¥

TH cos 40

]

T sin 407
b

mg
Figure 5.8
EXECUTE:
@ YF,=ma,
T,cos40°-mg =0
_mg (4090 kg)(9.80 m/s®)
P cos40° cos40°
(b) > F.=ma,
T,sin40°-T,=0
T,=T,sin40°=336x10* N
EVALUATE: If the angle 40° is replaces by 0° (cable B is vertical), then 7, =mg and 7, =0.

=523x10* N
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5.9. IDENTIFY: Apply ZF = mad to the object and to the knot where the cords are joined.
SETUP: Let +y be upward and +x be to the right.
EXECUTE: (a) T. =w, T, sin30°+7,sin45° =T, =w, and T,cos30°—T, cos45°=0. Since sin45°=cos45°,

adding the last two equations gives 7,(cos30°+sin30°)=w, andso T, = W _0.732w. Then,

7 =1 3% _( 897,

B c0s45°

(b) Similar to part (a), T, =w, —T,c0860°+7,sin45°=w, and 7,sin60°—7,cos45°=0.

Adding these two equations, T, = S AN— 273w, and T, =T, sSin60° _ 3.35w.

(sin60° — cos 60°) cos45°
EVALUATE: Inpart (a), T, + 7, > wsince only the vertical components of 7, and 7, hold the object against

gravity. In part (b), since 7, has a downward component T, is greater than w.

5.10. IDENTIFY: Apply Newton’s first law to the car.
SET Up: Use x and y coordinates that are parallel and perpendicular to the ramp.
EXECUTE: (a) The free-body diagram for the car is given in Figure 5.10. The vertical weight w and the tension 7
in the cable have each been replaced by their x and y components.

sin25.0° sin25.0°

b F =0gives Tco0s31.0°-~wsin25.0°=0and 7T =w =(1130 kg)(9.80 m/s? =5460 N .
®) z »=08 c0s31.0° ( e )c0s31.0°

(¢) D F,=0gives n+Tsin31.0°~wcos25.0°=0and

n=wcos25.0°—T'sin31.0° = (1130 kg)(9.80 m/s*)c0s25.0° — (5460 N)sin31.0° = 7220 N

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same values of n
and T.

Figure 5.10
5.11. IDENTIFY: Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the man
must oppose the component of gravity down the incline.

SETUP: The free-body diagrams for the two cases are shown in Figures 5.11a and b. F is the force applied by
the man. Use the coordinates shown in the figure.

EXECUTE: (a) ZFX =0gives F—wsinl1.0°=0and F = (180 kg)(9.80 m/s*)sin11.0°=337 N .

w

b F =0gives ncosl1.0°~w=0and n=——
®) z y=U8 cos11.0°

. Y F,=0gives F—nsin11.0°=0and

F :[L sin11.0°= wtan11.0°= 343 N .
cos11.0°
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A slightly greater force is required when the man pushes parallel to the floor. If the slope angle of
the incline were larger, sin¢o and tan & would differ more and there would be more difference in the force needed
in each case.

X
qncos 11.0°

wsin 11,07 nsin 11° g

X

weos 11,07

pushes parallel to incline

5.12.

pushes parallel to floor
Figure S.11a, b
IDENTIFY:

Apply Newton’s 1st law to the hanging weight and to each knot. The tension force at each end of a
string is the same.

(a) Let the tensions in the three strings be 7, T’, and 7", as shown in Figure 5.12a.

Figure 5.12a
SET Up: The free-body diagram for the block is given in Figure 5.12b.
¥

1 — EXECUTE:
(
\_ SF, =0
’ T -w=0
1}1, T'=w=60.0 N
Figure 5.12b

SET UpP: The free-body diagram for the lower knot is given in Figure 5.12c.
y

EXECUTE:
2F,=0
Tsind5°-T'=0
= T :—6,0'0 N =849 N
sin45° sin45°

Figure 5.12¢
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5.13.

5.14.

(b) Apply ZFX =0 to the force diagram for the lower knot:

SF.=0

F, =T cos45°=(84.9 N)cos45°=60.0 N

SET UP: The free-body diagram for the upper knot is given in Figure 5.12d.
'

i EXECUTE:
T
>F=0
Fy T cos 45° . Tcos45°—F, =0
s F, =(84.9 N)cos45°
L ! F,=60.0 N
Tsind45'= - - - ¢
Figure 5.12d

Note that F| = F,.

EVALUATE: Applying ZFy =0 to the upper knot gives 7" =T'sin45° = 60.0 N = w. If we treat the whole
system as a single object, the force diagram is given in Figure 5.12e.

ZFX =0 gives F, =F,, which checks
ZF) =0 gives T" =w, which checks

Figure 5.12¢

IDENTIFY: Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball on the
wall are related by Newton’s third law.

SET UpP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall.
16.0 cm

0cm
EXECUTE: (a) The free-body diagram is shown in Figure 5.13b. Use the x and y coordinates shown in the figure.

2
ZFV =0gives Tcosg—w=0and T = L (450 kg)(9.800m/s )
’ cos¢ c0s20.35

(b) ZFX =0gives Tsing—n=0. n=(470 N)sin20.35°=163 N . By Newton’s third law, the force the ball
exerts on the wall is 163 N, directed to the right.

To calculate the angle ¢ that the wire makes with the wall, use Figure 5.13a. sing =

and ¢ =20.35°

=470 N

w
EVALUATE: n= [

¢]sin¢ =wtang . As the angle ¢ decreases (by increasing the length of the wire), T
cos

decreases and n decreases.

Tcos

30cm [ T'sin ¢b

Yw
Figure 5.13a, b

IDENTIFY: Apply 217" =ma to each block. a=0.

SET UP: Take +y perpendicular to the incline and +x parallel to the incline.
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5.15.

5.16.

EXECUTE: The free-body diagrams for each block, 4 and B, are given in Figure 5.14.

(a) For B, ZFX =ma,_ gives T, —wsina =0 and 7} =wsinax .

(b) For block 4, ZFX =ma, gives I, -T,—wsina=0 and 7, =2wsin«x .

() ZF) =ma, for each block gives n, =n, =wcosa .

(d)For «a >0, 7,=7,—>0 and n,=n, >w.For a >90°, T,=w, T,=2w and n,=n, =0.

EVALUATE: The two tensions are different but the two normal forces are the same.
V vV

wsinea wsinea

WCOs WCOs

Figure 5.14a, b

IDENTIFY: Apply Newton’s first law to the ball. Treat the ball as a particle.

SET UP: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface.
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical.
EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.15. The normal force has been replaced by
its x and y components.

p o mg
b F =0gives ncos35.0°-~w=0and n=—=>—=1.22mg .
®) Z y=78 €0835.0° &

() ZFX =0gives T —nsin35.0°=0and T = (1.22mg)sin35.0°=0.700mg .

EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle of the
ramp increases towards 90° . The tension in the wire is wtang , where ¢ is the angle of the ramp and T also
increases without limit as ¢ — 90°.

|
|
|
|
|
|
|
|
| e

n sin 35°

[ w

Figure 5.15

IDENTIFY: Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the rocket
and the power supply have the same acceleration.

SET UpP: The free-body diagrams for the rocket and for the power supply are given in Figures 5.16a and b. Since
the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a downward gravity
force on each object. Let +y be upward, since that is the direction of the acceleration. The power supply has

mass m_, =(15.5 N)/(9.80 m/s*) =1.58 kg
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5.17.

5.18.

EXECUTE: (a) ZF) =ma, applied to the rocket gives F'—m g=ma .

_F=mg 1720 N-(125 kg)(9.80 m/s’)
m 125 kg

T

=3.96 m/s*.

(b) ZFy = ma, applied to the power supply gives n—m g=m a .
n=m (g+a)=(158 kg)(9.80 m/s® +3.96 m/s*) =21.7 N .

EVALUATE: The acceleration is constant while the thrust is constant and the normal force is constant while the
acceleration is constant. The altitude of 120 m is not used in the calculation.

A A
F T(: n Tﬂ

Y mg Y Mg
Figure 5.16a, b

IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time. Use
Newton’s second law to find the force F that the ground exerted on the capsule during the crash.
SETUP: Let +y be upward. 311 km/h =86.4 m/s . The free-body diagram for the capsule is given in

Figure 15.17.
EXECUTE: y—y,=-0.810m , v, =—-864m/s, v, =0. v =v; +2a,(y—y,) gives
ViV, 0—(-86.4 m/s)

2(y-,) 2(-0.810) m
(b) ZFy = ma, applied to the capsule gives F'—mg =ma and
F=m(g+a)=(210 kg)(9.80 m/s> + 4610 m/s*) =9.70x10° N =47 1w.

Vy, +V ) 2(y— 2(-0.810
(©) y—y,=| =2—2 |t gives t= =y) _ 208 Zm) =0.0187 s
2 Vo, Vv,  —86.4m/s”+0
EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and stops the
capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a force mg on the
capsule, but the large 9.00x10° N force is exerted only for 0.0187 s.

¥

JFI(;

=4610 m/s’ =470g .

a,

Y mg
Figure 5.17

IDENTIFY: Apply Newton’s second law to the three sleds taken together as a composite object and to each
individual sled. All three sleds have the same horizontal acceleration a.

SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.18a and for
each individual sled in Figure 5.18b-d. Let +x be to the right, in the direction of the acceleration. m,, =60.0 kg .

EXECUTE: (a) ZFY =ma,_ for the three sleds as a composite object gives P =m, a and

P 125N
60.0 kg

—_— =2.08 m/s*.
mtot
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5.19.

(b) ZFX =ma_ applied to the 10.0 kg sled gives P—T, =ma and

T,=P-mya=125N-(10.0 kg)(2.08 m/s’) =104 N . ZFX =ma, applied to the 30.0 kg sled gives

T, = mya =(30.0 kg)(2.08 m/s*) =62.4 N .

EVALUATE: If we apply Z:FY =ma,_ to the 20.0 kg sled and calculate a from T, and 7, found in part (b), we get

T,-T, 104N-624N

T,-T,=mya. a=
4oe T my, 20.0 kg

=2.08 m/s>, which agrees with the value we calculated in part (a).

[
—

¥ v
LT 30
g
> T, P Ty Ty Ty
—_—x - - — X - - — X - —— X
I’” 108 I’” 208

LTI
10.0 kg sled 20.0 kg sled 30.0 kg sled

Figure 5.18a—d

IDENTIFY: Apply 217" =ma to the load of bricks and to the counterweight. The tension is the same at each end
of the rope. The rope pulls up with the same force (7") on the bricks and on the counterweight. The counterweight

accelerates downward and the bricks accelerate upward; these accelerations have the same magnitude.
(a) SET Up: The free-body diagrams for the bricks and counterweight are given in Figure 5.19.

m
1

J'H] g m o 'y

bricks m‘:uﬁterweig}n
Figure 5.19

(b) EXECUTE: Apply ZF} =ma, to each object. The acceleration magnitude is the same for the two objects.
For the bricks take +y to be upward since @ for the bricks is upward. For the counterweight take +y to be
downward since a is downward.

bricks: ZFy =ma,

T-mg=ma

counterweight: » F, =ma,

myg —T =m,a

Add these two equations to eliminate 7

(my, —m,)g =(m +m,)a

a=| e |, [ 280ke=150ke ) g o)) 96 mys?
m+m, 15.0 kg + 28.0 kg

(©) T-mg=ma gives T =m,(a+g)=(15.0kg)(2.96 m/s> +9.80 m/s’) =191 N
As a check, calculate T using the other equation.
m,g —T =mya gives T =m,(g—a)=28.0kg(9.80 m/s* —2.96 m/s*) =191 N, which checks.
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5.20.

5.21.

EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate upward. The
tension is 0.696 times the weight of the counterweight; this causes the counterweight to accelerate downward. If

m =m,, a=0 and T =mg =m,g. In this special case the objects don’t move. If m; =0, a=g and 7 =0; in

this special case the counterweight is in free-fall. Our general result is correct in these two special cases.
IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate the

acceleration of the ice. Then apply ZF =ma . In part (b) use ZF = ma to find the acceleration and use this in

the constant acceleration equations to find the final speed.
SET UP: Figures 5.20a and b give the free-body diagrams for the ice both with and without friction. Let +x be
directed down the ramp, so +y is perpendicular to the ramp surface. Let ¢ be the angle between the ramp and the

horizontal. The gravity force has been replaced by its x and y components.

EXECUTE: (a) x—x,=1.50m, v,, =0, v, =2.50 m/s. v} =v] +2a (x—x,) gives
Y- Vi—ve, _ (250 m/s)’—0
T 2(x—x,) 2(1.50 m)

$=123°.

(b) ZFX =ma_gives mgsing— f =ma and

g mgsing— f _ (8.00 kg)(9.80 m/s*)sin12.3°~10.0 N
m 8.00 kg

Then x-x,=1.50m, v,, =0, a, =0.838 m/s’and v} =v,_+2a (x—x,) gives

a _2.08 m/s’
g 9.80m/s*

=208 m/s’. Y F, =ma, gives mgsing=ma and sing =

=0.838 m/s’.

v, =[2a,(x — x,) =+/2(0.838 m/s>)(1.50 m) =1.59 m/s

EVALUATE: With friction present the speed at the bottom of the ramp is less.
. y

\

mg cos ¢

Figure 5.20a, b

IDENTIFY: Apply 217" = ma to each block. Each block has the same magnitude of acceleration a.

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg block,
the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and the suspended
block accelerates downward. Let +x be to the right for the 4.00 kg block, so for it @, =a , and let +y be

downward for the suspended block, so forit a, =a.

EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.21a and b.

T 100N
b F =ma_applied to the 4.00 kg block gives T'=(4.00 kg)aand a =——=———
(b) Y F, =ma, app gblock g (4.00 kg) 400 kg 400 kg

=2.50 m/s” .
(©) ZF) =ma, applied to the suspended block gives mg —T = ma and
T 10.0N
m= =
g—a 9.80 m/s>—2.50 m/s’
(d) The weight of the hanging block is mg = (1.37 kg)(9.80 m/s*) =13.4 N . This is greater than the tension in the
rope; T =0.75mg .

=137kg.
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5.22.

5.23.

EVALUATE: Since the hanging block accelerates downward, the net force on this block must be downward and

the weight of the hanging block must be greater than the tension in the rope. Note that the blocks accelerate no

matter how small m is. It is not necessary to have m > 4.00 kg, and in fact in this problem m is less than 4.00 kg.
¥

a A

n —
l a

nyg

mg

.\I
Figure 5.21a, b

IDENTIFY: (a) Consider both gliders together as a single object, apply 217" =mad , and solve for a. Use ¢ in a

constant acceleration equation to find the required runway length.

(b) Apply ZF =ma to the second glider and solve for the tension 7, in the towrope that connects the two

gliders.

SET UP: In part (a), set the tension 7, in the towrope between the plane and the first glider equal to its maximum

value, 7, =12,000 N .

EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2m =1400 kg is given in Figure

T,-2f 12,000 N-5000 N
2m 1400 kg

5.22a. ZFX =ma,_ gives T, —2f =(2m)a and a= =5.00 m/s*. Then

2 2
v _VO\‘

a,=5.00m/s’, v,, =0 and v, =40 m/s in v} =v;, +2a (x—x,) gives (x—x,)= "'2 * =160 m .
a

X

(b) The free-body diagram for the second glider is given in Figure 5.22b.
ZFt =ma, gives T,— f=ma and T = f +ma=2500 N + (700 kg)(5.00 m/s*) = 6000 N .

EVALUATE: We can verify that ZFX =ma,_ is also satisfied for the first glider.

y ¥

Mot a n a

2mg 2mg
Figure 5.22a, b

IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply 217" = ma to the composite

object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to the time.
SETUP: Let +y be upward. The free-body diagram for the composite object is given in Figure 5.23.

T=2.50w

chain *

mtm = mchain + mboulder = 1325 kg .

EXECUTE: (a) ZF) =ma, gives T —m,g=m,a. a=

mtot mtol

T- mtotg — 2'50mchaing — mtotg — [2'50mchain _ ljg
m

tot

a=| 2BBKE 4o 90 mys?) =0.832 mis?.
1325 kg
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(b) Assume the acceleration has its maximum value: a, =0.832 m/s*, y—y, =125 mand Vo, =0.

2(125 m)
0.832 m/s?

=173s

Y= Yo = vyt +5a,t’ gives 1= 20— :\/
e
EVALUATE: The tension in the chain is 7 =1.41x10* N and the total weight is 1.30x10* N. The upward force

exceeds the downward force and the acceleration is upward.
¥

I
J tn
T

Yomyg

Figure 5.23

5.24. IDENTIFY: Apply 217" = ma to the composite object of elevator plus student (m,, =850 kg ) and also to the

student (w =550 N ). The elevator and the student have the same acceleration.

SETUP: Let +y be upward. The free-body diagrams for the composite object and for the student are given in
Figure 5.24a and b. T is the tension in the cable and # is the scale reading, the normal force the scale exerts on the
student. The mass of the student is m=w/g =56.1kg.

EXECUTE: (a) ZFy =ma, applied to the student gives n—mg=ma, .

, _n-mg _450N-550N

=-1.78 m/s’ . The elevator has a downward acceleration of 1.78 m/s”.

v m 56.1 kg
(b) a, _OTONZSON )y s
) 56.1kg

(¢) n=0means a, =—g . The student should worry; the elevator is in free-fall.

(d) ZF} = ma, applied to the composite object gives T —m,, g =m,a. T =m,(a,+g). In part (a),

tot
T = (850 kg)(~1.78 m/s> +9.80 m/s>) = 6820 N . In part (c), @, =—g and T =0.

EVALUATE: In part (b), T = (850 kg)(2.14 m/s* +9.80 m/s*) =10,150 N . The weight of the composite object is

8330 N. When the acceleration is upward the tension is greater than the weight and when the acceleration is

downward the tension is less than the weight.
.‘.

v
| |
[ T I n

x x
1 j‘”lmﬁ{ 1

5.25. IDENTIFY: Apply ZF = ma to the puck. Use the information about the motion to calculate the acceleration. The

ng

Figure 5.24a, b

table must slope downward to the right.
SETUP: Let a be the angle between the table surface and the horizontal. Let the +x -axis be to the right and
parallel to the surface of the table.

EXECUTE: ZFX =ma, gives mgsina = ma, . The time of travel for the puck is L/v, , where L =1.75 m and

2
a, 2xv,

where x=0.0250 m. sing =—%*= o
g gL

. 2x  2xv;
v, =3.80 m/s . x—x, =v, f+1at’gives a == =""1,
’ ’ R L

2(2.50x1072m)(3.80 m/s)’
(9.80 m/s?)(1.75 m)’

o = arcsin =1.38°.
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5.26.

5.27.

5.28.

EVALUATE: The table is level in the direction along its length, since the velocity in that direction is constant. The
angle of slope to the right is small, so the acceleration and deflection in that direction are small.

dv, -
IDENTIFY: Acceleration and velocity are related by a, = d—; . Apply ZF = ma to the rocket.

SETUP: Let +y be upward. The free-body diagram for the rocket is sketched in Figure 5.26. F is the thrust
force.
EXECUTE: (a) v, =At+Bt’. a = A+2Bt . At t=0, a,=1.50 m/s’so A=1.50 m/s*. Then v, =2.00 m/s at

t=1.00 s gives 2.00 m/s = (1.50 m/s*)(1.00 s)+ B(1.00 s)* and B =0.50 m/s*.
(b) At t=4.00's, a,=1.50 m/s* +2(0.50 m/s*)(4.00 s) =5.50 m/s’ .

(©) ZF‘ =ma, applied to the rocket gives 7' —mg = ma and

T =m(a+g)=(2540 kg)(9.80 m/s* +5.50 m/s*) =3.89x10* N. T =1.56w.
(d) When a=1.50 m/s>, T = (2540 kg)(9.80 m/s* +1.50 m/s*) =2.87x10* N

EVALUATE: During the time interval when v(¢) = At + Bt” applies the magnitude of the acceleration is increasing,
and the thrust is increasing.

mg
Figure 5.26

IDENTIFY: Consider the forces in each case. There is the force of gravity and the forces from objects that touch
the object in question.

SET UP: A surface exerts a normal force perpendicular to the surface, and a friction force, parallel to the surface.
EXECUTE: The free-body diagrams are sketched in Figure 5.27a-c.

EVALUATE: Friction opposes relative motion between the two surfaces. When one surface is stationary the
friction force on the other surface is directed opposite to its motion.

n n n
i". iu' I in'

Figure 5.27a—

IDENTIFY: f, < punand f, = yn. The normal force n is determined by applying ZF’ = ma to the block.

Normally, gz, <y, . f,1is only as large as it needs to be to prevent relative motion between the two surfaces.
SET UP: Since the table is horizontal, with only the block present » =135 N . With the brick on the
block, n=270 N .

EXECUTE: (a) The friction is static for P=0to P =75.0 N . The friction is kinetic for P >75.0 N .

(b) The maximum value of f;is zn . From the graph the maximum f;is f, =75.0 N, so

max f, 750N fi 500N
=—5= =0.556. f = . From the graph, f, =50.0 Nand p, =<*= =0.370.
oo 135N =t graph. e T35 N

(c) When the block is moving the friction is kinetic and has the constant value f, = s, n, independent of P. This is

why the graph is horizontal for P >75.0 N . When the block is at rest, f, = P since this prevents relative motion.
This is why the graph for P <75.0 N has slope +1.
(d) max f, and f, would double. The values of f'on the vertical axis would double but the shape of the graph

would be unchanged.
EVALUATE: The coefficients of friction are independent of the normal force.
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5.29.

5.30.

(a) IDENTIFY: Constant speed implies a =0. Apply Newton’s Ist law to the box. The friction force is directed
opposite to the motion of the box.

SET Up: Consider the free-body diagram for the box, given in Figure 5.29a. Let F be the horizontal force

applied by the worker. The friction is kinetic friction since the box is sliding along the surface.
v

EXECUTE:

T“ 2. F,=ma,
F

n—mg=0

ai.r n=mg
[

So fi =mn=pmg

mg

Figure 5.29a

ZF‘( = max
F—f, =0
F = f, = mg =(0.20)(11.2 kg)(9.80 m/s’) = 22 N

(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s 2nd law to
the box to calculate its acceleration. Once we have the acceleration, we can find the distance using a constant
acceleration equation. The friction force is f, = g, mg, just as in part (a).

SET UpP: The free-body diagram is sketched in Figure 5.29b.
.\I

EXECUTE:
" 2 F =ma,
—f = ma,
_;'k"'_ ! —Hmg =ma,

a, =—u.g =—(0.20)(9.80 m/s*) =—1.96 m/s’

mg

Figure 5.29b

Use the constant acceleration equations to find the distance the box travels:

v, =0, v, =3.50m/s, a =-1.96 m/s*, x—x,="?

vi=vi +2a.(x—x,)

o, = vi-ve _0-(3:50 m/s)’ _
2a, 2(-1.96 m/s*)

EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface. Its

magnitude is determined by ZF =mad. In this case n and mg are the only vertical forces and a, =0, so n=mg.

3.1m

Also note that f, and n are proportional in magnitude but perpendicular in direction.

IDENTIFY: Apply Y F =m to the box.

SET UP: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static friction
is as large as it needs to be to prevent relative motion between the box and the surface, up to its maximum possible
value of f™ = yn . If the box is sliding then the friction force is f, = g n.

EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest.

(b) ™ = pun=(0.40)(40.0 N)=16.0 N . If a horizontal force of 6.0 N is applied to the box, then f, =6.0 N in
the opposite direction.

(¢) The monkey must apply a force equal to /™, 16.0 N.

(d) Once the box has started moving, a force equal to f, = 14, n =8.0 N is required to keep it moving at constant
velocity.

EVALUATE: g, < u, and less force must be applied to the box to maintain its motion than to start it moving.
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5.31.

5.32.

5.33.

IDENTIFY: Apply 217" =ma to the crate. f,<punand f, =pyn.

SETUP: Let +y be upward and let +x be in the direction of the push. Since the floor is horizontal and the push
is horizontal, the normal force equals the weight of the crate: n =mg =441 N . The force it takes to start the crate
moving equals max f; and the force required to keep it moving equals f,

:%:0.710 . £, =208 N, s0 =%=0.472.

(b) The friction is kinetic. ZFX =ma, gives F— f, =ma and F = f, + ma =208+ (45.0 kg)(1.10 m/s*) =258 N .
(¢) (i) The normal force now is mg =72.9 N . To cause it to move, F' =max f, = un=(0.710)(72.9 N) =51.8 N..

F—f 258 N-(0.472)(72.9 N)
m

EXECUTE: max f, =313 N,so x4,

= =497 m/s’
45.0 kg

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of the
crate is the same as on earth, but the weight and normal force are less.

(ii)) F=f +maand a=

IDENTIFY: Apply ZF = ma to the box and calculate the normal and friction forces. The coefficient of kinetic

friction is the ratio <% .

n

SETUP: Let +x be in the direction of motion. a, =-0.90 m/s*. The box has mass 8.67 kg.

EXECUTE: The normal force has magnitude 85 N+25 N =110 N. The friction force, from F,, — f, =ma is

28 N

110N
EVALUATE: The normal force is greater than the weight of the box, because of the downward component of the
push force.

f, =F,—ma=20N-(8.67 kg)(-0.90 m/s’) =28 N. 4 = =0.25.

IDENTIFY: Apply ZF = ma to the composite object consisting of the two boxes and to the top box. The friction

the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower box, so the
friction between the two boxes is static. Since the speed is constant the acceleration is zero.
SETUP: Let +x be up the incline. The free-body diagrams for the composite object and for the upper box are

given in Figures 5.33a and b. The slope angle ¢ of the ramp is given by tang = % , 80 ¢=27.76°. Since the
75 m

boxes move down the ramp, the kinetic friction force exerted on the lower box by the ramp is directed up the
incline. To prevent slipping relative to the lower box the static friction force on the upper box is directed up the

incline. m,, =32.0 kg +48.0 kg =80.0 kg .

EXECUTE: (a) ZFy =ma, applied to the composite object gives n,, =m,gcosg and f, = ym,gcosg.

Z:EC =ma,gives f, +T —m gsing=0and

T =(sing — p, cos@)m,, g = (sin27.76° —[0.444]¢c0s 27.76°)(80.0 kg)(9.80 m/s’)=57.1N .

The person must apply a force of 57.1 N, directed up the ramp.

(b) ZFX =ma, applied to the upper box gives f, = mgsing = (32.0 kg)(9.80 m/s*)sin27.76° =146 N, directed up

the ramp.

EVALUATE: For each object the net force is zero.
v

\ a=10

My x

Myy& 51"(?, A

Myt

Figure 5.33a, b
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5.34.

5.35.

5.36.

IDENTIFY: Use ZF =mad to find the acceleration that can be given to the car by the kinetic friction force. Then

use a constant acceleration equation.
SETUp: Take +x in the direction the car is moving.

EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.34. ZFy =ma, gives n=mg .
D F.=ma, gives —un=ma,. —pmg=ma, and a, =—pg.Then v, =0 and v; =v;, +2a,(x—x,) gives

(r—x) = v, . Ve, _ (29.1 m/s) _
" 2a,  2mg  2(0.80)(9.80 m/s*)

X

(b) vy, =/224,8(x—x,) =/2(0.25)(9.80 m/s>)(54.0 m) =16.3 m/s

2
. . Vor - . .
EVALUATE: For constant stopping distance —2* is constant and V,, 18 proportional to /z, . The answer to
Hy

part (b) can be calculated as (29.1 m/s)~/0.25/0.80 =16.3 m/s ..

N

540m.

fi = yn

mg

Figure 5.34

IDENTIFY: For a given initial speed, the distance traveled is inversely proportional to the coefficient of kinetic
friction.
SET UpP: From Table 5.1 the coefficient of kinetic friction is 0.04 for Teflon on steel and 0.44 for brass on steel.

EXECUTE: The ratio of the distances is 832 =11.

EVALUATE: The smaller the coefficient of kinetic friction the smaller the retarding force of friction, and the
greater the stopping distance.
IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving the friction force the

tabletop exerts on it is kinetic friction. Apply 217" = ma to each block.

SET Up: The free-body diagrams and choice of coordinates for each block are given by Figure 5.36.
m,=4.59 kg and m, =2.55kg .

EXECUTE: (a) ZF) =ma, with a, =0 applied to block B gives m,g—T=0and 7=25.0N. ZFX =ma,_with

a, =0applied to block 4 gives T — f, =0and f, =25.0N. n,=m,g=45.0 Nand ﬂk:i:iz‘gi
n .

A

(b) Now let 4 be block 4 plus the cat, so m, =9.18 kg. n, =90.0 N and f, = 4,n=(0.556)(90.0 N)=50.0 N .
ZFX =ma_for A gives T — f, =m,a, . ZF‘ =ma, for block B gives myg—T =mya, . a, for 4 equals a, for B,
myg—f, 250N-50.0N

so adding the two equations gives m,g — f, =(m,+my)a, and a, = = 5 18ka 1255k =213 m/s’.
m,+my A8 kg +2.55 kg

=0.556.

The acceleration is upward and block B slows down.
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EVALUATE: The equation m,g — f, =(m, + my)a, has a simple interpretation. If both blocks are considered
together then there are two external forces: m,g that acts to move the system one way and f, that acts oppositely.

The net force of m,g — f, must accelerate a total mass of m, +m, .

—
"y ‘l a

T — [ S

| a

myg

mpg ¥

Figure 5.36

5.37. IDENTIFY: Apply ZF =ma to each crate. The rope exerts force T to the right on crate 4 and force T to the left

on crate B. The target variables are the forces T and F. Constant v implies a = 0.
SET Up: The free-body diagram for 4 is sketched in Figure 5.37a

N
EXECUTE:

SF,=ma,
n,—m,g=0
n,=m,g

j Ja =, = phm,g
my g

Figure 5.37a

T=pm,g
SET UP: The free-body diagram for B is sketched in Figure 5.37b.
v
) EXECUTE:
ny —myg =0
: g =mgg
S = Mg = pmgg
mp g

Figure 5.37b

Y F, = ma,
F-T-f,=0

F=T+pumyg

Use the first equation to replace 7T in the second:

F=pm,g+ pmyg.

(@) F=pu(m,+my)g

(b) T'=pm,g

EVALUATE: We can also consider both crates together as a single object of mass (m, +m,). ZFX =ma, for

this combined object gives F = f, = u, (m, +m,)g, in agreement with our answer in part (a).
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5.38.

5.39.

5.40.

5.41.

IDENTIFY: = pun. Apply 217“ = mad to the tire.

SETUP: n=mgand f=ma.

2 2
Vv =V
EXECUTE: a_= 0

x

, where L is the distance covered before the wheel’s speed is reduced to half its original

2_ .2 2 1,,2 2
speed and v=v,/2. ,urzﬁzv‘) vV _Y—a% :3 Yo
g 2Lg 2Lg 8Lg

3 (3.50 m/s)?
8 (18.1 m)(9.80 m/s”)
3(3.50m/s)’

High pressure, L=92.9 m and ——=0.00505.
8(3.50 m/s)

=0.0259.

Low pressure, L =18.1mand

EVALUATE: g is inversely proportional to the distance L, so Hn % .
M 1
IDENTIFY: Apply ZF = ma to the box. Use the information about sliding to calculate the mass of the box.
SETUP: f =un, f,=punand n=mg .
EXECUTE: Without the dolly: n=mg and F —,n=0 (a, =0 since speed is constant).
F 160 N
m=——= 3
g (0.47)(9.80 m/s?)

=34.74 kg

With the dolly: the total mass is 34.7 kg + 5.3 kg =40.04 kg and friction now is rolling friction, f, = s, mg.

F—
F—umg=ma . a=""H"8 _38) m/s? .
m

EVALUATE: f, = u,mg=160N and f, = umg=436N, or, %: . The rolling friction force is much less
K My

than the kinetic friction force.
IDENTIFY: Apply 217" = ma to the truck. For constant speed, =0 and F, , = f..

SETUP:  f =pun=pumg.Let my=142m and p, =081y, .

EXECUTE: Since the speed is constant and we are neglecting air resistance, we can ignore the 2.4 m/s, and F in

net

the horizontal direction must be zero. Therefore f, = yn=F,

toriz = 200 N before the weight and pressure changes
are made. After the changes, (0.81y,) (1.42n) = F,

because the speed is still constant and F,, =0. We can

O8Lu)A42m) _ s 0d (0.81) (1.42) (200 N) = F,..
L 200 N

et

simply divide the two equations: =230N.

EVALUATE: The increase in weight increases the normal force and hence the friction force, whereas the decrease
in y, reduces it. The percentage increase in the weight is larger, so the net effect is an increase in the friction force.

IDENTIFY: Apply ZF =ma to each block. The target variables are the tension 7 in the cord and the

acceleration « of the blocks. Then a can be used in a constant acceleration equation to find the speed of each block.
The magnitude of the acceleration is the same for both blocks.
SET UP: The system is sketched in Figure 5.41a.

a

—_—
’T S For each block take a positive
m, — 295k coordinate direction to be the
AT el kg a . . , .
L direction of the block’s acceleration.

my = 1.30 kg

Figure 5.41a
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5.42.

block on the table: The free-body is sketched in Figure 5.41b.
A EXECUTE:

myg So=mn=pm,g
Figure 5.41b
2, =ma,
T-fi=m,a
T —pum,g=m,a

SET Up: hanging block: The free-body is sketched in Figure 5.41c.

T
EXECUTE:
S F, =ma,
a
l iy myg —T =mya
T =myg—mua
y
Figure 5.41c

(a) Use the second equation in the first
mpg —myd — [hm,g =m,a
(m+my)a=(my—ppm,)g
(my—pm,)g _ (1.30 kg —(0.45)(2.25 kg))(9.80 m/s>)
m, +m, 2.25kg+1.30 kg

SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the same
speeds. x —x,=0.0300 m, a, =0.7937 m/s*, v, =0, v, =?

=0.7937 m/s?

a=

vi=ve +2a.(x-x,)

EXECUTE: v, =2 (x - x,) =+/2(0.7937 m/s*)(0.0300 m) = 0.218 m/s = 21.8 cm/s.

(b) T=m,g —mya=m,(g—a)=1.30kg(9.80 m/s* —0.7937 m/s*) =11.7 N

Or, to check, T'— ym, g =m a

T=m,(a+ug)=2.25kg0.7937 m/s* +(0.45)(9.80 m/s*)) =11.7 N, which checks.

EVALUATE: The force T exerted by the cord has the same value for each block. 7 <m,g since the hanging block

accelerates downward. Also, f, = x#,m,g=9.92 N. T > f, and the block on the table accelerates in the direction
of T.
IDENTIFY: Apply ZF = ma to the box. When the box is ready to slip the static friction force has its maximum

possible value, f, =un.

SET Up: Use coordinates parallel and perpendicular to the ramp.
EXECUTE: (a) The normal force will be wcos 8 and the component of the gravitational force along the ramp

is wsin 6 . The box begins to slip when wsin& > g wcosf, or tanfd > = 0.35, so slipping occurs at

6 = arctan(0.35)=19.3°.

(b) When moving, the friction force along the ramp is g, wcosé , the component of the gravitational force along
the ramp is wsiné, so the acceleration is

(wsinf —wy, cos 9)/m = g(sinf — g, cosf)=0.92 m/sz.

(¢) Since v,, =0, 2ax=v*, 50 v=(2ax)"?, or v=[(2)(0.92m/s*)(5 m)]"* =3 m/s .

EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force becomes
smaller.
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5.43. (a) IDENTIFY: Apply ZF =mad to the crate. Constant v implies a =0. Crate moving says that the friction is

kinetic friction. The target variable is the magnitude of the force applied by the woman.

SET UP: The free-body diagram for the crate is sketched in Figure 5.43.
¥

EXECUTE:

2 F, =ma,
n—mg—Fsind=0
n=mg+ Fsinf

S = = pmg + p Fsin@

Figure 5.43

SF, = ma,
Fcosf-f, =0
FcosO— pumg—p Fsinf=0
F(cos@— p, sinf) =y mg

_ Hmg

cos@ — u, siné

(b) IDENTIFY and SET UP:  “start the crate moving” means the same force diagram as in part (a), except that
Hing

4, isreplaced by z.Thus F=——""—=——.
cos@— u sind

. . . 1
EXECUTE: F — o if cos@ -y sind=0. This gives p, = Cf)SH = .
| sind tand
EVALUATE: F has a downward component so n > mg. If =0 (woman pushes horizontally), n=mg and

F = f =pumg.
5.44. IDENTIFY: Apply D F =ma to the box.
SETUP: Let +y be upward and +x be horizontal, in the direction of the acceleration. Constant speed means ¢ =0.
EXECUTE: (a) There is no net force in the vertical direction, so n+ Fsind—-w=0, or
n=w-—Fsin0 =mg — Fsin0. The friction force is f, = yn = p, (mg — Fsin@). The net horizontal force
is Fcosf — f, = Fcosf — p (mg — Fsinf), and so at constant speed,
_ H Mg
cos@ + 4, sinf
(0.35)(90 kg)(9.80m/s?) B
(c0s25°+(0.35)sin25°)
EVALUATE: If 0=0°, F=pyumg.
5.45. IDENTIFY: Apply 217" = ma to each block.

SET UpP: For block B use coordinates parallel and perpendicular to the incline. Since they are connected by ropes,
blocks 4 and B also move with constant speed.

EXECUTE: (a) The free-body diagrams are sketched in Figure 5.45.

(b) The blocks move with constant speed, so there is no net force on block 4; the tension in the rope connecting A4
and B must be equal to the frictional force on block 4, x4, =(0.35) (25.0 N)=9 N.

(¢) The weight of block C will be the tension in the rope connecting B and C; this is found by considering the
forces on block B. The components of force along the ramp are the tension in the first rope (9 N, from part (a)), the
component of the weight along the ramp, the friction on block B and the tension in the second rope. Thus, the
weight of block C'is

we =9 N +w, (sin36.9°+ 14, c0s36.9°) =9 N +(25.0 N)(sin 36.9° + (0.35)cos 36.9°) =31.0N

The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the common
weight w of blocks 4 and B, w. = w(y, + (sin8 + g, cosf)), giving the same result.

290 N.

(b) Using the given values, F =

(d) Applying Newton’s Second Law to the remaining masses (B and C) gives:
a=g(we — tw,cosd —w,sind)/(w, +w,)=1.54m/s”.
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5.46.

5.417.

5.48.

5.49.

EVALUATE: Before the rope between 4 and B is cut the net external force on the system is zero. When the rope is
cut the friction force on 4 is removed from the system and there is a net force on the system of blocks B and C.

T ny n, T,
Ja T

l " e

Figure 5.45

Wwp

IDENTIFY and SET UP:  The derivative of v, gives a, as a function of time, and the integral of v, gives y as a
function of time.
EXECUTE: Differentiating Eq. (5.10) with respect to time gives the acceleration

a=v, (ijew'")' = ge " where Eq. (5.9), v, = mg/k , has been used. Integrating Eq. (5.10) with respect to time
m

with y, =0 gives

‘ —(k/m)t m _(km) m m ke
y=_[ovt[1—e“/ th:v[z%(z} (k] ):|_Vt(;J:vt|:t_;(l_e(k/ ))}

EVALUATE: We can verify that dy/dt=v, .
IDENTIFY and SET UP: Apply Eq.(5.13).

p_mg _(80kg) (9.80 m/s?)
o (42 m/s)’

t

EXECUTE: (a) Solving for D in terms of v, ,

b v, :JE:J(45 kg)(9.80 m/s) 42 s,
D (0.25 kg/m)

EVALUATE: v, is less for the daughter since her mass is less.

=0.44 kg/m.

IDENTIFY: Apply 217" = ma to the ball. At the terminal speed, f =mg .

SET Up: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed, the
magnitude of the frictional force is one-fourth the weight.

EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is (5/4)w
and the acceleration is (5/4)g, down.

(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration
is (3/4)g, down.

EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward and the
acceleration is downward.

IDENTIFY: Apply 217" = ma to one of the masses. The mass moves in a circular path, so has acceleration

2

a., = VE , directed toward the center of the path.

rad

SET UpP: Ineach case, R =0.200 m. In part (a), let +x be toward the center of the circle, so a_=a,_, . In part (b)

rad
let +y be toward the center of the circle, so a, =a,,. +y is downward when the mass is at the top of the circle
and +y is upward when the mass is at the bottom of the circle. Since a,,, has its greatest possible value, F isin
the direction of a,, at both positions.
. ’ FR . 2
EXECUTE: (a) Y F, =ma, gives F =ma,, = m% . F=750Nand v= TR _ |03 011\11)20k 00m) _3 61 mys.
m A5 kg

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in figure 5.49.
At the top, sz =ma, gives F =ma,, —mg and at the bottom it gives F =mg +ma

. For a given rotation rate

rad

and hence value of a_, , the value of F required is larger at the bottom of the path.
2

F
(¢) F=mg+ma_, so V—:——gand
rad R m

v= R[E—gj =\/(0.200 m)(M—QfBO m/szj =3.33 m/s
m g

1.15k
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EVALUATE: The maximum speed is less for the vertical circle. At the bottom of the vertical path F and the
weight are in opposite directions so F' must exceed ma,,, by an amount equal to mg. At the top of the vertical path

F and mg are in the same direction and together provide the required net force, so /' must be larger at the bottom.
¥

mg

top bottom
Figure 5.49

5.50. IDENTIFY: Since the car travels in an arc of a circle, it has acceleration @, =v*/R , directed toward the center of

the arc. The only horizontal force on the car is the static friction force exerted by the roadway. To calculate the
minimum coefficient of friction that is required, set the static friction force equal to its maximum value, f, = un.

Friction is static friction because the car is not sliding in the radial direction.
SET UP: The free-body diagram for the car is given in Figure 5.50. The diagram assumes the center of the curve
is to the left of the car.

v v

EXECUTE: (a) Z:Ft =ma, gives n=mg . ZE =ma, gives ,usnsz. ysmgzm; and

V¢ (250ms}
TR T (980 mis )220 m)
v v I /3
(b) —=Rg =constant ,so ——=—2%_ v, =y, [ =(25.0 m/s) [—=L— =144 m/s.
:us :usl :us2 :usl :usl

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible

acceleration and therefore a smaller speed.
.\.

Urad

fo = uan |

Figure 5.50

n

mg

5.51. IDENTIFY: We can use the analysis done in Example 5.23. As in that example, we assume friction is negligible.
2

SET Up: From Example 5.23, the banking angle £ is given by tan = V—R . Also, n=mg/cosf .
&

65.0 mi/h =29.1m/s.

(29.1 m/s)*
(9.80 m/s*)(225 m)
of the vehicle, so the truck and car should travel at the same speed.
(1125 kg)(9.80 m/s®)

cos21.0°
EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the normal
force is proportional to m.

5.52. IDENTIFY: The acceleration of the person is @, =v*/R , directed horizontally to the left in the figure in the

EXECUTE: (a) tanf = and B =21.0°. The expression for tan £ does not involve the mass

=1.18x10* N and » 2n,, =2.36x10* N, since m 2m

truck car *

(b) For the car, n,,,

truck

problem. The time for one revolution is the period 7 = 27R . Apply ZF = mad to the person.
v
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5.53.

SET UP: The person moves in a circle of radius R =3.00 m+ (5.00 m)sin30.0° = 5.50 m . The free-body diagram
is given in Figure 5.52. F is the force applied to the seat by the rod.
mg
c0s30.0°
Combining these two equations gives v=./Rgtand = \/(5.50 m)(9.80 m/s*)tan30.0° = 5.58 m/s . Then the period
27R  27(5.50 m)
v 5.58m/s

(b) The net force is proportional to m so in ZF = ma the mass divides out and the angle for a given rate of

2

EXECUTE: (a) ZF) =ma, gives Fcos30.0°=mg and F = ) ZR, =ma, gives Fsin30.0°= m%

is T= =6.19s.

rotation is independent of the mass of the passengers.
EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward force
required for circular motion is produced by a component of the force exerted on the seat by the rod.

b
[
[
I 30°
Crad : Fcos30°
[
[
I

Fsin30° |

mg

Figure 5.52

IDENTIFY: Apply ZF = ma to the composite object of the person plus seat. This object moves in a horizontal

circle and has acceleration a,, , directed toward the center of the circle.
SET UP: The free-body diagram for the composite object is given in Figure 5.53. Let +x be to the right, in the
direction of a_, . Let +» be upward. The radius of the circular path is R =7.50 m. The total mass is
(255 N +825 N)/(9.80 m/s*) =110.2 kg . Since the rotation rate is 32.0 rev/min = 0.5333 rev/s , the period T'is
. 1.875s.
0.5333 rev/s

mg  255N+825N
c0s40.0° c0s40.0°

EXECUTE: sz =ma, gives T,c0s40.0°~mg=0and T, = =1410N.

> F,=ma, gives T,sin40.0°+T, = ma,, and
2 2
T, = mﬁ—n sin40.0° = (110.2 kg)w—(mo N)sin40.0°=8370 N .
T (1.875 s)

The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N.
EVALUATE: The weight of the composite object is 1080 N. The tension in cable A4 is larger than this since its
vertical component must equal the weight. ma,_, =9280 N . The tension in cable B is less than this because part of

the required inward force comes from a component of the tension in cable A.
y Arad
—
T, sin 40°
——————— A

T, cos 40°
x

TB

Y mg
Figure 5.53
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5.54. IDENTIFY: Apply 217" = ma to the button. The button moves in a circle, so it has acceleration a_, .

SET Up: The situation is equivalent to that of Example 5.22.
2

2
EXECUTE: (a) u, = ;— Expressing v in terms of the period T, v = ZﬂTR SO i, = ‘;{[TR A platform speed of
g g

2
4z (20.150 m) =026,
(1.50 5)*(9.80 m/s?)
(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the period
(longer periods mean slower speeds, so the button may be moved further out) and so is inversely proportional to

2
the square of the speed. Thus, at the higher speed, the maximum radius is (0.150 m) (%} =0.067 m.

40.0 rev/min corresponds to a period of 1.50 s, so u, =

47°R . , . . o .
EVALUATE: a,, = - The maximum radial acceleration that friction can give is z mg . At the faster rotation
rate T is smaller so R must be smaller to keep a,, the same.
. . . 47°R
5.55. IDENTIFY: The acceleration due to circular motion is a,_, = 7

SETUpP: R =800 m. 1/T is the number of revolutions per second.
EXECUTE: (a) Setting a,, = g and solving for the period T gives

T2 B oop [ 200M 4015,
g 9.80 m/s

so the number of revolutions per minute is (60 s/min)/(40.1s)=1.5 rev/min .
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of the square
root of the ratio of the accelerations, 7' = (1.5 rev/min) x4/3.70/9.8 =0.92 rev/min.

2
. . o v
EVALUATE: In part (a) the tangential speed of a point at the rim is given by a_, = R S0

v=./Ra_, =+/Rg =62.6 m/s ; the space station is rotating rapidly.
5.56. IDENTIFY: T = 27R . The apparent weight of a person is the normal force exerted on him by the seat he is sitting
v

on. His acceleration is a,, =v* /R, directed toward the center of the circle.
SET UP: The period is T =60.0 s. The passenger has mass m =w/g =90.0 kg .

2 2
27R _ 27(50.0 m) =5.24 m/s . Note that a,_, =Y - (.24 m/s)’
T 60.0 s R 50.0 m

(b) The free-body diagram for the person at the top of his path is given in Figure 5.56a. The acceleration is

EXECUTE: (a) v= =0.549 m/s*.

downward, so take +y downward. ZF) =ma, gives mg—n=md,,.

n=m(g—a,,)=(90.0 kg)(9.80 m/s* —0.549 m/s’) =833 N .
The free-body diagram for the person at the bottom of his path is given in Figure 5.56b. The acceleration is
upward, so take +y upward. sz =ma, gives n—mg=ma,, and n=m(g+a,)=931N.

2

(c) Apparent weight=0 means n=0 and mg=ma,,. g = VE and v=,/gR =22.1 m/s . The time for one

2zR _ 27(50.0 m)
v 22.1m/s
d) n=m(g+a,)=2mg=2(882 N)=1760 N, twice his true weight.

revolution would be 7 =

=142 s .Note that a,, =g .
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5.57.

5.58.

EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his path
his apparent weight is greater than his true weight.

n

mg

i
mg

Figure 5.56a, b

IDENTIFY: Apply 217" =ma to the motion of the pilot. The pilot moves in a vertical circle. The apparent weight

is the normal force exerted on him. At each point @, is directed toward the center of the circular path.

(a) SET Up: “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by the chair on
which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in Figure 5.57a.
. EXECUTE:

SF,=ma,

mg = marad

y g=%

Figure 5.57a

Thus v=1/gR =+/(9.80 m/s*)(150 m) = 38.34 m/s

v=(38.34 m/s)( L km I%OO i

10°m/){ 1h
(b) SETUpP: The force diagram for the pilot at the bottom of the path is given in Figure 5.57b. Note that the

vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward.
EXECUTE:

SF, = ma,
V2
n—mg=m-—

n

1“1’&1 R
x 2
n=mg+m—
R

j=138 km/h

.\I

mg . . . .
This normal force is the pilot’s apparent weight.

Figure 5.57b

w=700 N, so m=—=71.43 kg
g

3
v=(280km/h)[ Lh j 107 m )77 78 s
3600s | 1 km

(77.78 m/s)*
0m
EVALUATE: In part (b), n>mg since the acceleration is upward. The pilot feels he is much heavier than when at

Thus n=700 N +71.43 kg =3580 N.

rest. The speed is not constant, but it is still true that a,, =v*/R at each point of the motion.

IDENTIFY: a_, =Vv’/R, directed toward the center of the circular path. At the bottom of the dive, @, is upward.

The apparent weight of the pilot is the normal force exerted on her by the seat on which she is sitting.
SET UP: The free-body diagram for the pilot is given in Figure 5.58.
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5.59.

5.60.

2 2 2
EXECUTE: (a) a,, = gives R :v_:(95.0—m/s)2: Om.
R a,, 4.0009.80 m/s%)
(b) sz =ma, gives n—mg =ma,, .

n=m(g+a,,)=m(g+400g)=5.00mg = (5.00)(50.0 kg)(9.80 m/s*) = 2450 N

EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her.
y

n
1“|';l(|

mg
Figure 5.58

IDENTIFY: Apply ZF =ma to the water. The water moves in a vertical circle. The target variable is the speed

v; we will calculate a,,, and then get v from a,, =v’/R

SET Up: Consider the free-body diagram for the water when the pail is at the top of its circular path, as shown in
Figures 5.59a and b.
Ny

= -~ The radial acceleration is in toward the center
i N of the circle so at this point is downward.
n is the downward normal force exerted on

l a., the water by the bottom of the pail.

Figure 5.59a

EXECUTE:
SF,=ma,
+ v
n+mg=m—
R

Figure 5.59b

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed, n — 0.

(Note that the force n cannot be upward.)
2

With n— 0 the equation becomes mg = m% v=4/gR = \/(9.80 m/s*)(0.600 m) =2.42 m/s.

EVALUATE: At the minimum speed a,, = g. If v is less than this minimum speed, gravity pulls the water (and
bucket) out of the circular path.

IDENTIFY: The ball has acceleration a,, =v*/R , directed toward the center of the circular path. When the ball is
at the bottom of the swing, its acceleration is upward.

SET Up: Take +y upward, in the direction of the acceleration. The bowling ball has mass m =w/g =7.27 kg .
v (4.20 m/s)’
R 380m
(b) The free-body diagram is given in Figure 5.60. ZF} =ma, gives T—mg=ma,, .

T =m(g+a,,)=(7.27 kg)(9.80 m/s> +4.64 m/s’) =105 N

EXECUTE: (a) a,, = =4.64 m/s , upward.
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5.61.

5.62.

5.63.

EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight.
N

T
1 1“ rad

mg

Figure 5.60
IDENTIFY:  Apply _ F = mi to the knot.

SETUP: a=0. Use coordinates with axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.61.

T, is more vertical so supports more of the weight and is larger. You can also see this from > F. =ma, :
T,c0s40°—T,cos60°=0. T, cos40°—7,cos60°=0.

(b) T, is larger so set 7, =5000 N. Then 7, =T7,/1.532=3263.5 N. X F, = ma, gives
7,5in60°+7,sin40° =w and w= 6400 N .

EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended object.
The sum of the tensions is greater than the weight.

Figure 5.61

IDENTIFY: Apply ZF = ma to each object . Constant speed means a=0.

SET UpP: The free-body diagrams are sketched in Figure 5.62. 7, is the tension in the lower chain, 7, is the
tension in the upper chain and 7 = F is the tension in the rope.

EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must have
no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope, which equals F, is
w/2 . Then, the downward force on the upper pulley due to the rope is also w, and so the upper chain exerts a force
w on the upper pulley, and the tension in the upper chain is also w.

EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only w/2.
T T T T

TI w
Figure 5.62

IDENTIFY: Apply 217" = ma to the rope.

SET Up: The hooks exert forces on the ends of the rope. At each hook, the force that the hook exerts and the
force due to the tension in the rope are an action-reaction pair.

EXECUTE: (a) The vertical forces that the hooks exert must balance the weight of the rope, so each hook exerts
an upward vertical force of w/2 on the rope. Therefore, the downward force that the rope exerts at each end is

T, ,sin0=w/2,so0 T, =w/(2sinf) = Mg/(2sin0).
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(b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance the horizontal force that

each hook exerts, which is the same as the horizontal component of the force due to the tension at the end,
T,4€080 =T g5 8O Tgq. = Mgcosd/(2sin0) = Mg /(2tan ).
(¢) Mathematically speaking, 6 # 0 because this would cause a division by zero in the equation for T, or 7,

Physically speaking, we would need an infinite tension to keep a non-massless rope perfectly straight.
EVALUATE: The tension in the rope is not the same at all points along the rope.

5.64. IDENTIFY: Apply 217" =ma to the combined rope plus block to find a. Then apply ZF =md to a section of
the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.64a.
F

b,
At the top of the rope T =F
m At the bottom of the rope 7= M (g +a)

M

Figure 5.64a

SET UP: Consider the rope and block as one combined object, in order to calculate the acceleration: The free-
body diagram is sketched in Figure 5.64b.
g EXECUTE:

aT F ZFyzmay
F-(M+m)g=(M+m)a
F
M+m

a

(M+m)g
Figure 5.64b

SET Up: Now consider the forces on a section of the rope that extends a distance x < L below the top. The
tension at the bottom of this section is 7(x) and the mass of this section is m(x/L). The free-body diagram is
sketched in Figure 5.64c.
y
" T EXECUTE:
F
SF,=ma,

¥ F-T(x)-m(x/L)g=m(x/L)a

T(x)=F-m(x/L)g—m(x/L)a

Figure 5.64c
Using our expression for a and simplifying gives
T(x)=F|1-—"
L(M +m)

EVALUATE: Important to check this result for the limiting cases:
x=0: The expression gives the correct value of 7 = F.
x =L The expression gives T = F(M /(M + m)). This should equal 7 = M (g + a), and when we use the
expression for a we see that it does.
5.65. IDENTIFY: Apply ZF = ma to each block.

SETUP: Constant speed means a =0 . When the blocks are moving, the friction force is f, and when they are at
rest, the friction force is f; .

EXECUTE: (a) The tension in the cord must be m,g in order that the hanging block move at constant speed. This

tension must overcome friction and the component of the gravitational force along the incline, so
m,g =(mgsina + wmgcosa) and m, =m(sina + g, cosa) .

(b) In this case, the friction force acts in the same direction as the tension on the block of mass m, , so

m,g = (mgsina — u,mgcosa), or m, =m(sino— u, cosa) .

middle *
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(c) Similar to the analysis of parts (a) and (b), the largest m, could be is m,(sina + 4, cosa) and the smallest m,
could be is m, (sina — y, cosa) .

EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of

m, changes. In part (c), for the largest m, the static friction force on m, is directed down the incline and for the
smallest m, the static friction force on m; is directed up the incline.

5.66. IDENTIFY: The system is in equilibrium. Apply Newton’s 1st law to block 4, to the hanging weight and to the
knot where the cords meet. Target variables are the two forces.
(a) SET Up: The free-body diagram for the hanging block is given in Figure 5.66a.
¥

=10
“ EXECUTE:

SF, -ma
I,-w=0
I,=12.0N

Figure 5.66a

SETUP: The free-body diagram for the knot is given in Figure 5.66b.

¥

EXECUTE:
7, 2, =ma,
T,sin45.0°-7, =0
Iycos45" T,= T, _ 120N
1 sin45.0°  sin45.0°
T, I,=17.0N

3

Figure 5.66b

SF, = ma,

T,c0s45.0°-1, =0

T, =T,c0845.0°=12.0 N

SET Up: The free-body diagram for block 4 is given in Figure 5.66c.
.

a=0 EXECUTE:
f_ n T] ZF‘( = max
: x T-f=0
f.=T,=12.0N
ll'r_‘
Figure 5.66¢

EVALUATE: Also can apply ZE =ma, to this block:
n-w,=0
n=w,=60.0N
Then p.n=(0.25)(60.0 N)=15.0 N; this is the maximum possible value for the static friction force. We see that

f. < u.n; for this value of w the static friction force can hold the blocks in place.

(b) SETUP: We have all the same free-body diagrams and force equations as in part (a) but now the static
friction force has its largest possible value, f, = 4n=15.0 N. Then 7, = f, =15.0 N.
EXECUTE: From the equations for the forces on the knot
T,c0s45.0°—17, =0 implies 7, =17,/cos45.0° = ISON 212N
cos45.0°
T,sin45.0°—7, =0 implies 7, =7,sin45.0°=(21.2 N)sin45.0°=15.0 N
And finally 7, —w=0 implies w=T,=15.0 N.
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is larger by
this same ratio.
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5.67.

5.68.

IDENTIFY: Apply 217" = md to each block. Use Newton’s 3" law to relate forces on 4 and on B.

SET Up: Constant speed means a =0.

EXECUTE: (a) Treat 4 and B as a single object of weight w=w, + w, =4.80 N . The free-body diagram for this
combined object is given in Figure 5.67a. ZF‘ =ma, gives n=w=480N. f, =4n=144N. ZFX =ma,
gives F' = f, =1.44 N

(b) The free-body force diagrams for blocks A and B are given in Figure 5.67b. n and f, are the normal and
friction forces applied to block B by the tabletop and are the same as in part (a). f,, is the friction force that 4
applies to B. It is to the right because the force from A4 opposes the motion of B. n,, is the downward force that A
exerts on B. f,, is the friction force that B applies to 4. It is to the left because block B wants A to move with it.
n, is the normal force that block B exerts on 4. By Newton’s third law, f,, = f,, and these forces are in opposite
directions. Also, n, =n, and these forces are in opposite directions.

D F,=ma, forblock 4 gives n, =w, =120 N, s0 n, =120 N

Jou =tn,=(0300)(1.20 N)=0.36 N, and f,, =036 N.

ZFX =ma,_ forblock 4 gives T'=f,, =036 N ..

ZFX =ma, forblock B gives F = f,,+ f, =036 N+1.44 N=1.80 N

EVALUATE: In part (a) block 4 is at rest with respect to B and it has zero acceleration. There is no horizontal
force on A4 besides friction, and the friction force on 4 is zero. A larger force F is needed in part (b), because of the
friction force between the two blocks.

v ¥ ¥

1y

F f . F Jin

T ' | -
wg
ng Wa

14/ block B block A
Figure 5.67a—

IDENTIFY: Apply ZF =ma to the brush. Constant speed means a = 0. Target variables are two of the forces

on the brush.

SET Up: Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall. The
kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is vertically
downward. The free-body diagram is given in Figure 5.68.

N

EXECUTE:

S, = ma,
n—Fcos53.1°=0

X n=Fcos53.1°
S =un=pFcos53.1°

Figure 5.68

ZF)*:may
Fsin53.1°-w—f, =0
Fsin53.1°—=w— g, Fcos53.1°=0
F(sin53.1° — g4, cos53.1%) =w
Fe w

sin53.1° — g, cos53.1°
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(@ F=— > =— 120N =169 N
sin53.1°— g, c0s53.1°  sin53.1°—(0.15)cos53.1°
(b) n=Fcos53.1°=(16.9 N)cos53.1°=10.1 N

EVALUATE: In the absence of friction w= F'sin53.1°, which agrees with our expression.

5.69. IDENTIFY: The net force at any time is F,

et —ma.

SETUP: At t=0, a=62g . The maximum acceleration is 140g at t=1.2 ms .

EXECUTE: (a) F,, =ma=62mg=62(210x10" kg)(9.80 m/s*)=1.3x107* N . This force is 62 times the flea’s
weight.
(b) F,, =140mg =2.9x10" N

(c) Since the initial speed is zero, the maximum speed is the area under the a_ -t graph. This gives 1.2 m/s.

et

et

EVALUATE: a is much larger than g and the net external force is much larger than the flea's weight.
5.70. IDENTIFY: Apply ZF = ma to the instrument and calculate the acceleration. Then use constant acceleration

equations to describe the motion.
SET Up: The free-body diagram for the instrument is given in Figure 5.70. The instrument has mass

m=w/g=1531kg.

EXECUTE: (a) For on the instrument, > F, =ma, gives T —mg =ma and a = T-mg _ 13.07 m/s* .
’ m

Vo, =0, v, =330 m/s, a, =13.07 m/s’, t =2 Then v, =v,, +a,t gives t=253s. Consider forces on the
rocket; rocket has the same a, . Let F be the thrust of the rocket engines. F—mg =ma and

F =m(g+a)=(25,000 kg) (9.80 m/s* +13.07 m/s*)=5.72x10°N .

(b) y—y, =V, t+1a,t’ givesy—y,=4170 m.

EVALUATE: The rocket and instrument have the same acceleration. The tension in the wire is over twice the
weight of the instrument and the upward acceleration is greater than g.

mg
Figure 5.70

5.71. IDENTIFY: a=dv/dt . Apply ZF = mad to yourself.

SET Up: The reading of the scale is equal to the normal force the scale applies to you.
EXECUTE: The elevator’s acceleration is

a :@: 3.0 m/s? +2(0.20 m/s*)t =3.0 m/s* +(0.40 m/s*)t
t
At t=4.0s,a=3.0 m/s*+(0.40 m/s*)(4.0 s)=4.6 m/s’ . From Newton’s Second Law, the net force on you is

F =F

net scale

—w=ma and

F

Lo = wHma=(72kg)(9.8 m/s*)+ (72 kg)(4.6 m/s*)=1040 N
EVALUATE: a increases with time, so the scale reading is increasing.
5.72. IDENTIFY: Apply 217" = ma to the passenger to find the maximum allowed acceleration. Then use a constant

acceleration equation to find the maximum speed.
SET UpP: The free-body diagram for the passenger is given in Figure 5.72.

. P 1 — — — — 2
EXECUTE: ZFy =ma, gives n—mg=ma. n=1.6mg,so a=0.60 g =5.83 m/s .

y=y,=3.0m,a, =588 m/s’, v, =0 so v. =v; +2a,(y—y,) gives v, =5.0 m/s.
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EVALUATE: A larger final speed would require a larger value of a, , which would mean a larger normal force on

the person.
T a

mg
Figure 5.72
IDENTIFY: Apply ZF = ma to the package. Calculate a and then use a constant acceleration equation to

describe the motion.
SETUP: Let +x be directed up the ramp.

EXECUTE: (a) F,, =-mgsin37°— f, =—-mgsin37°— y,mg cos37° = ma and
a=—(9.8 m/s?)(0.602 +(0.30)(0.799)) = -8.25m/s’

Since we know the length of the slope, we can use v: =v;_+2a, (x—x,) with x,=0 and v, =0 at the top.

V2 =—2ax =-2(-8.25 m/s*)(8.0 m) =132 m?/s® and v, =+/132 m*/s> =11.5 m/s
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each other.

F , =-mgsin37°+ u,mg cos37° = ma and

a=g(-sin37°+0.30 cos37°) = (9.8 m/s?)((~0.602) +(0.30)(0.799)) = —3.55 m/s> .
Now we have v, =0, x, =-8.0 m, x =0and v* = v + 2a(x —x,) = 0+ 2(-3.55 m/s*)(=8.0 m) =56.8 m*/s?, so

v=1/56.8 m?/s* =7.54 m/s .

EVALUATE: In both cases, moving up the incline and moving down the incline, the acceleration is directed down
the incline. The magnitude of @ is greater when the package is going up the incline, because mgsin37°and f, are
in the same direction whereas when the package is going down these two forces are in opposite directions.
IDENTIFY: Apply 217" = ma to the hammer. Since the hammer is at rest relative to the bus its acceleration
equals that of the bus.

SET Up: The free-body diagram for the hammer is given in Figure 5.74.

EXECUTE: X F, =ma, gives Tsin74°—mg =0 so T'sin74°=mg. 2 F, =ma, gives T cos74° = ma. Divide the

. a
second equation by the first: —= anda=2.8 m/ s°.

4
EVALUATE: When the acceleration increases the angle between the rope and the ceiling of the bus decreases,

and the angle the rope makes with the vertical increases.

¥

4°

mg
Figure 5.74

IDENTIFY: Apply 217" = ma to the washer and to the crate. Since the washer is at rest relative to the crate, these

two objects have the same acceleration.
SET UP: The free-body diagram for the washer is given in Figure 5.75.
EXECUTE: It’s interesting to look at the string’s angle measured from the perpendicular to the top of the crate.

This angle is 6, , =90° — angle measured from the top of the crate . The free-body diagram for the washer then

string

leads to the following equations, using Newton’s Second Law and taking the upslope direction as positive:
+T'siné),

_mwg sm eslopc string

=m a and Tsin6,

string

=m,(a+g sin&slopc)

+ T cosb,

string

=0and Tcosb,,  =m,gcosb,

string — slope

—m,_, g cosf,

slope
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g . a+t gSin eslops
Dividing the two equations: tanf,,;, =—————
g cos eslops

For the crate, the component of the weight along the slope is —m, gsiné,

slope

and the normal force is m g cos6),

slope *

a+ gSin H@lo e .
——= "% This leads to the
gcoso,

slope

Using Newton’s Second Law again: —m.gsin 0+ m.gcost,,  =ma. i =

S|

interesting observation that the string will hang at an angle whose tangent is equal to the coefficient of kinetic
friction:

M, =tand . =tan(90°—68°) =tan 22°=0.40.

string

EVALUATE: In the limit that x4 — 0, 6,

string

— 0 and the string is perpendicular to the top of the crate.

As y, increases, 6, increases.

string

fl

slope

g
Figure 5.75
IDENTIFY: Apply ZF = ma to yourself and calculate a. Then use constant acceleration equations to describe

the motion.
SET UpP: The free-body diagram is given in Figure 5.76.
EXECUTE: (a) XF, =ma, gives n=mgcosa . X F, =ma, gives mgsina — f, = ma . Combining these two

equations, we have a = g(sina — g, cos ) =-3.094 m/ s* . Find your stopping distance:

v, =0, a, =-3.094 m/s?, v,, =20 m/s. v’ =vZ +2a,(x—x,) gives x —x, = 64.6 m, which is greater than 40 m.
You don’t stop before you reach the hole, so you fall into it.

(b) a, =-3.094 m/s*, x—x, =40 m, v, =0. v2 = v, +2a (x—x,) gives v,, =16 m/s.

EVALUATE: Your stopping distance is proportional to the square of your initial speed, so your initial speed is
proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your initial speed must

40 m
64.6 m

be (20 m/s) =16 m/s.

Figure 5.76

IDENTIFY: Apply 217" = ma to each block and to the rope. The key idea in solving this problem is to recognize

that if the system is accelerating, the tension that block A exerts on the rope is different from the tension that block
B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn’t accelerate.)

SET UP: Take a positive coordinate direction for each object to be in the direction of the acceleration of that
object. All three objects have the same magnitude of acceleration.

EXECUTE: The Second Law equations for the three different parts of the system are:

Block 4 (The only horizontal forces on A4 are tension to the right, and friction to the left): —ym,g+7, =m a.

Block B (The only vertical forces on B are gravity down, and tension up): m,g — T, = m,a.

Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight of the

portion of the rope that hangs vertically): m, (%)g +T, T, =m,a.
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To solve for a and eliminate the tensions, add the left hand sides and right hand sides of the three equations:

my,+m,(d/L)— um
—,ukmAg+mBg+mR(%)g:(mA+m3+mR)a, ora=g B(m R—Em -Zmﬂ)k 4,
A B R

my+my(d/L)

(a) When 4, =0, a= .
e g(mA +my +my)

As the system moves, d will increase, approaching L as a limit, and thus

. . . my+m
the acceleration will approach a maximum value of a = g(f—f) .
m,+mg+mpg

(b) For the blocks to just begin moving, a >0, so solve 0=[m, +m,(d/L)— um,] for d. Note that we must use

e . . L
static friction to find d for when the block will begin to move. Solving for d, d =—/(um, —m,) or
R

- 10m B _
4= 0160 kg 022 ke) =04 kg) =063 m.

(c) When m, =0.04 kg, d = Olf)(zlrlr(lg (0.25(2 kg)— 0.4 kg) =2.50 m . This is not a physically possible situation

since d > L. The blocks won’t move, no matter what portion of the rope hangs over the edge.
EVALUATE: For the blocks to move when released, the weight of B plus the weight of the rope that hangs
vertically must be greater than the maximum static friction force on 4, whichis yn=4.9 N.

IDENTIFY: Apply Newton’s 1st law to the rope. Let m; be the mass of that part of the rope that is on the table,
and let m, be the mass of that part of the rope that is hanging over the edge. (m, +m, = m, the total mass of the

rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the length of the rope.
Let T be the tension in the rope at that point that is at the edge of the table.

SET UP: The free-body diagram for the hanging section of the rope is given in Figure 5.78a
y

EXECUTE:
a=10 T T ZF;] =ma,
x T-mg=0
l T=m,g
m, g

Figure 5.78a

SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.78b.
¥

EXECUTE:

m g
Figure 5.78b
When the maximum amount of rope hangs over the edge the static friction has its maximum value:
fo=pn=pumg
Y, =ma,
T-f=0
T'=umg
Use the first equation to replace T
mg = Hmg
my = gsm,
The fraction that hangs over is M am K
m  m+pum 14+ p
EVALUATE: As pu, — 0, the fraction goes to zero and as x4, — oo, the fraction goes to unity.

IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case. Apply
ZF =ma to the case.
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(a) SET Up: The static friction force is to the right in Figure 5.79a (northward) since it tries to make the case
move with the truck. The maximum value it can have is f, = g N.

EXECUTE:
SF, =ma,
n—mg=0
n=mg
Jo=mn=pmg
Figure 5.79a

S.F. = ma,

f.=ma

Hmg =ma

a=ug=(0.30)(9.80 m/s*) =2.94 m/s’

The truck’s acceleration is less than this so the case doesn’t slip relative to the truck; the case’s acceleration is
a=220m/s’ (northward). Then f, =ma =(30.0 kg)(2.20 m/s*) = 66 N, northward.

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can give the
case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction force still tries to
keep the case moving with the truck, so the acceleration of the case and the friction force are both southward. The

free-body diagram is sketched in Figure 5.79b.
SET UP:

¥ EXECUTE:

sz =ma,

n—mg=0

n=mg

1 £ = u,mg =(0.20)(30.0 kg)(9.80 m/s*)
mg fi. =59 N, southward
Figure 5.79b

EVALUATE: f, =ma implies a = L = 3(5)902 =2.0 m/s’. The magnitude of the acceleration of the case is less
m .Okg

than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b) the friction is in the
direction of the motion and accelerates the case. Friction opposes relative motion between two surfaces in contact.

IDENTIFY: Apply ZF = ma to the car to calculate its acceleration. Then use a constant acceleration equation to
find the initial speed.

SET UP: Let +x be in the direction of the car’s initial velocity. The friction force f, is then in the —x-direction .
192 ft=58.52 m.

EXECUTE: n=mg and f, =y, mg . ZFX =ma,_gives —u, mg =ma, and
a, =—u.g=-(0.750)(9.80 m/s’) =-7.35 m/s*. v, =0 (stops), x —x, =58.52 m. v} =v] +2a (x—x,) gives
Vo, =+ 20, (X —x,) = \/—2(—7.35 m/s*)(58.52 m) = 29.3 m/s = 65.5 mi/h . He was guilty.

2 2 2
EVALUATE: x-x,= % = —;& . If his initial speed had been 45 mi/h he would have stopped in
a.X ax
. 2
ASmih Vs fy—o1 .
65.5 mi/h

IDENTIFY: Apply 217" = ma to the point where the three wires join and also to one of the balls. By symmetry
the tension in each of the 35.0 cm wires is the same.
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SET UP: The geometry of the situation is sketched in Figure 5.81a. The angle ¢ that each wire makes with the

vertical is given by sing = 1135 om

s and ¢=15.26°. Let T, be the tension in the vertical wire and let 7, be the
cm

tension in each of the other two wires. Neglect the weight of the wires. The free-body diagram for the left-hand
ball is given in Figure 5.81b and for the point where the wires join in Figure 5.81c. n is the force one ball exerts on
the other.

EXECUTE: (a) ZF) =ma, applied to the ball gives T cosg—mg =0.
T, - mg _ (15.0 kg)(9.80 m/s®)
cos¢g c0s15.26°

T,=2(152 N)cos¢ =294 N.
(b) ZE =ma,_ applied to the ball gives n—T,sing=0and n=(152 N)sin15.26°=40.0 N .

EVALUATE: T, equals the total weight of the two balls.

=152 N. Then ZF} = ma, applied in Figure 5.81c gives T, — 27, cos¢ =0and

35.0cm

L __ T,
] B
Tyeosd | &l

Ty sing
11 E—

\
g

Figure 5.81a—

IDENTIFY: Apply ZF = ma to the box. Compare the acceleration of the box to the acceleration of the truck and

use constant acceleration equations to describe the motion.
SET UP: Both objects have acceleration in the same direction; take this to be the +x -direction.
EXECUTE: If the block were to remain at rest relative to the truck, the friction force would need to cause an

acceleration of 2.20 m/ s*; however, the maximum acceleration possible due to static friction is
(0.19)(9.80 m/ s*)=1.86 m/ s>, and so the block will move relative to the truck; the acceleration of the box

would be g =(0.15)(9.80 m/ s?)=1.47 m/ s’. The difference between the distance the truck moves and the
distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time

o |28 2L80m) 55
A — Aoy (2.20 m/s* —1.47 m/s’)

In this time, the truck moves L, ¢* =1(2.20m/s?) (2.2215)* =5.43 m.

EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to be
u,=(220 m/s*)/ g =0.224.

IDENTIFY: Apply ZF =ma to each block. Forces between the blocks are related by Newton’s 3rd law. The

target variable is the force F. Block B is pulled to the left at constant speed, so block 4 moves to the right at
constant speed and a =0 for each block.

SETUP: The free-body diagram for block 4 is given in Figure 5.83a. n,, is the normal force that B exerts on A.
Jfea = #n,, is the kinetic friction force that B exerts on 4. Block 4 moves to the right relative to B, and f,

opposes this motion, so f;, is to the left.
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Note also that F acts just on B, not on A.
v

a=0 - EXECUTE:
Mpa ZF} =ma,
Tpa ro Ny, =w, =0
gy n,, =140 N
J For = i1y, =(0.30)(1.40 N) = 0.420 N
W

Figure 5.83a

ZF‘c:max
T—f3=0
T=f,=0420N

SET Up: The free-body diagram for block B is given in Figure 5.83b.

Al

Figure 5.83b

EXECUTE: n,, is the normal force that block 4 exerts on block B. By Newton’s third law n,, and n,, are equal
in magnitude and opposite in direction, so n,, =1.40 N. f,, is the kinetic friction force that 4 exerts on B. Block
B moves to the left relative to 4 and f,, opposes this motion, so f,, is to the right.

fus = tn,; =(0.30)(1.40 N) =0.420 N.

nand f, are the normal and friction force exerted by the floor on block B; f, = s, n. Note that block B moves to
the left relative to the floor and f, opposes this motion, so f, is to the right.

ZF} =ma,

n—wy—n,;=0

n=wy,+n,;, =420N+1.40 N=5.60 N

Then f, = y,n=(0.30)(5.60 N)=1.68 N.

SF, =ma,

fup+T+f—F=0

F=T+f,;+/f =0420N+0420 N+1.68 N=2.52 N

EVALUATE: Note that f,, and f,, are a third law action-reaction pair, so they must be equal in magnitude and
opposite in direction and this is indeed what our calculation gives.

IDENTIFY: Apply 217" = ma to the person to find the acceleration the PAPS unit produces. Apply constant

acceleration equations to her free-fall motion and to her motion after the PAPS fires.
SET UP: We take the upward direction as positive.

EXECUTE: The explorer’s vertical acceleration is —3.7 m/ s® for the first 20 s. Thus at the end of that time her

vertical velocity will be v, =a ¢ =(-3.7 m/ s7)(20 s) =74 m/s. She will have fallen a distance

av

d=v t= (#IH/SJ (20 s) =-740 m and will thus be 1200 m — 740 m = 460 m above the surface. Her vertical

velocity must reach zero as she touches the ground; therefore, taking the ignition point of the PAPS as



5-38

Chapter 5

5.85.

2

v Ve, _0-(-74 m/s)’
2(y—y,) —460 m
acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by

PR _0-(-74 st) 1245
a 5.95 m/s

¥

=5.95 m/s* , which is the vertical

¥, =0, vj =v§y +2a,(y-y,) gives a, =

Using Newton’s Second Law for the vertical direction F},,,q, +mg =ma . This gives

Foppsy =ma—mg =m(a+g)=(150kg)(5.95—-(-3.7)) m/s2 =1450 N,

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally in
12.4 seconds; the acceleration needed to do this is

v, =V, 0-33 m/s’
t 1245

and the force needed is F,,,g, = ma = (150 kg)(2.66 m/ s?) =400 N, since there are no other horizontal forces.

EVALUATE: The acceleration produced by the PAPS must bring to zero both her horizontal and vertical
components of velocity.

IDENTIFY: Apply ZF =ma to each block. Parts (a) and (b) will be done together.

a,= =2.66 m/s’

y

Figure 5.85a

Note that each block has the same magnitude of acceleration, but in different directions. For each block let the
direction of @ be a positive coordinate direction.

SET Up: The free-body diagram for block 4 is given in Figure 5.85b.

EXECUTE:

T 2, =ma,
Tyy—mg=m,a

x Typ=ma+g)
lm . T,, =4.00 kg(2.00 m/s* +9.80 m/s’)=47.2 N
Al

Figure 5.85b

SET UpP: The free-body diagram for block B is given in Figure 5.85b.
.\.

EXECUTE:
2. F,=ma,

n—myg =0

Figure 5.85¢

So=mn=pmyg=(0.25)12.0 kg)(9.80 m/SZ) =294 N
S =ma

Toe =Ty _fk =mya

Tooe =T+ fr +mua=472N+29.4 N+ (12.0 kg)(2.00 m/sz)
T,-=100.6 N
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SET UP:

TH(_'

!

me g

v

Figure 5.85d

The free-body diagram for block C is sketched in Figure 5.85d.

EXECUTE:
S, =ma,
meg —Tpe =mea
me(g—a)=Tye
Ty 100.6 N
g—a 9.80 m/s’ —2.00 m/s’

mC:

=129kg

EVALUATE: If all three blocks are considered together as a single object and ZF =ma is applied to this

combined object, m.g —m, g — ymyg =(m +m,+m.)a. Using the values for g, m, and m, given in the

problem and the mass m,. we calculated, this equation gives a =2.00 m/s*, which checks.

5.86.
SET UP:

EXECUTE:

IDENTIFY: Apply ZF =ma to each block. They have the same magnitude of acceleration, a.

Consider positive accelerations to be to the right (up and to the right for the left-hand block, down and
to the right for the right-hand block).
(a) The forces along the inclines and the accelerations are related by

T —(100 kg)gsin30° = (100 kg)a and (50 kg)gsin53°—T = (50 kg)a, where T is the tension in the cord and a the
mutual magnitude of acceleration. Adding these relations,
(50 kg sin 53°—100 kg sin 30°)g = (50 kg +100 kg)a, or a =—-0.067g. Since a comes out negative, the blocks will

slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so that positive
accelerations were to the left, a would be +0.067g.

(b) a=0.067(9.80 m/s’)=0.658 m/s".

(¢) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of the
above relations involving 7 yields 424 N.

EVALUATE:

system would move.

5.87. IDENTIFY:

For part (a) we could have compared mg sin@ for each block to determine which direction the

Let the tensions in the ropes be 7} and T,.

Figure 5.87a

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the

acceleration of that block.

SET UP: The free-body diagram for m, is given in Figure 5.87b.

¥

ay

—_—
EXECUTE:
n 7, ZF¥ =ma,
! T =ma,

m l.i.’

Figure 5.87b
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SET UpP: The free-body diagram for m, is given in Figure 5.87c.

EXECUTE:

SF,=ma,

m,g —T, =m,a,

Figure 5.87¢

This gives us two equations, but there are 4 unknowns (7;,, 7,, a,, and a, ) so two more equations are required.
SET UpP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.87d.

* EXECUTE:
mg a l ZF; = may

mg+T,—2T, =ma

Figure 5.87d

But our pulleys have negligible mass, so mg =ma =0 and T, =27,. Combine these three equations to eliminate 7}
and 7,: m,g—T, =m,a, gives m,g — 21T, = m,a,. And then with 7, =m,a, we have m,g —2m,a, = m,a,.

SET UP: There are still two unknowns, @, and a,. But the accelerations @, and a, are related. In any time
interval, if m, moves to the right a distance d, then in the same time m, moves downward a distance d/2. One of

the constant acceleration kinematic equations says x —x, = v, t+La>, soif m, moves half the distance it must

have half the acceleration of m,: a, =a,/2, or a, =2a,.

EXECUTE: This is the additional equation we need. Use it in the previous equation and get
m,g —2my(2a,) = m,a,.

a,(4m, + m,) =m,g

mg 2m,g

a,=—==— and q, =2a, =—=>—.
4m, +m, 4m, +m,

EVALUATE: If m, >0 or m; > o, a =a,=0. If m,>>m, a,=g and a, =2g.

IDENTIFY: Apply ZF = ma to block B, to block 4 and B as a composite object and to block C. If 4 and B slide

together all three blocks have the same magnitude of acceleration.

SET UpP: If 4 and B don’t slip the friction between them is static. The free-body diagrams for block B, for blocks
A and B, and for C are given in Figures 5.88a-c. Block C accelerates downward and 4 and B accelerate to the right.
In each case take a positive coordinate direction to be in the direction of the acceleration. Since block 4 moves to

the right, the friction force f; on block B is to the right, to prevent relative motion between the two blocks. When C
has its largest mass, f; has its largest value: f, = un.

EXECUTE: ZE =ma, applied to the block B gives f,=mya. n=myg and f, = ym,g . pmyg=mya and
a=ug. ZFX =ma_applied to blocks A+ Bgives T =m  a=mug . ZF} = ma, applied to block C gives
0.750

— 2= 1-39.0kg.
1-0.750

meg—T=m.a. m.g—mlg=m.pg. me :Ti—‘*ﬁs:(S.OO kg +8.00 kg)[

s
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EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C is.
If m_ is less than 39.0 kg, the friction force that 4 exerts on B is less than g n . If m, is greater than 39.0 kg,

blocks C and 4 have a larger acceleration than friction can give to block B and 4 accelerates out from under B.

% I 2 a
| —— | —
n Mg
1 T
—x —x
meg
|
mpg Maps v
block B blocks A+B block C
Figure 5.88

IDENTIFY: Apply the method of Exercise 5.19 to calculate the acceleration of each object. Then apply constant
acceleration equations to the motion of the 2.00 kg object.
SET Up:  After the 5.00 kg object reaches the floor, the 2.00 kg object is in free-fall, with downward acceleration g.

5.00 kg —2.00 kg _ L
500kg+2.00kg 3g/7, and the 5.00-kg object will

accelerate downward at 3g/7. Let the initial height above the ground be #,. When the large object hits the

EXECUTE: The 2.00-kg object will accelerate upward at g

ground, the small object will be at a height 2/, , and moving upward with a speed given by v; =2ah, = 6gh,/7.
The small object will continue to rise a distance v; / 2g =3h,/7, and so the maximum height reached will be

2h, +3h,/7=17h,/7 =1.46 m above the floor , which is 0.860 m above its initial height.

EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises an
additional 0.26 m after that.

IDENTIFY: Apply Y F =ma to the box.

SETUP: The box has an upward acceleration of @ =1.90 m/s” .

EXECUTE: The floor exerts an upward force n on the box, obtained from n—mg =ma, or n=m(a+ g). The
friction force that needs to be balanced is

wn=pm(a+g) =(0.32)(28.0 kg)(1.90 m/s* +9.80 m/s’) =105 N.

EVALUATE: If the elevator wasn't accelerating the normal force would be 7 = mg and the friction force that

would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and that
increases the friction force.

IDENTIFY: Apply ZF =mad to the block. The cart and the block have the same acceleration. The normal force
exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the right. The
friction force on the block is directed so as to hold the block up against the downward pull of gravity. We want to
calculate the minimum a required, so take static friction to have its maximum value, f, = yn.

SET UP: The free-body diagram for the block is given in Figure 5.91.

¥

EXECUTE:

Z Ft =ma,

n=ma
Jo=pun=pma

mg

Figure 5.91

2. F,=ma,

Jo—mg=0

Hma =mg

a=g/u

EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on it
because the block is at rest relative to the cart. Therefore, such an observer concludes that » =0 and thus f, =0,

and he doesn’t understand what holds the block up against the downward force of gravity. The reason for this
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difficulty is that ZF =md does not apply in a coordinate frame attached to the cart. This reference frame is
accelerated, and hence not inertial. The smaller 4 is, the larger @ must be to keep the block pinned against the
front of the cart.

IDENTIFY: Apply ZF = ma to each block.

SET UP: Use coordinates where +x is directed down the incline.

EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have
the same acceleration. For the smaller block, (4.00 kg)g(sin30°—(0.25)cos 30°)—T =(4.00 kg)a, or

11.11 N—=T =(4.00 kg)a, and similarly for the larger, 15.44 N+ 7 = (8.00 kg)a . Adding these two relations,
26.55 N =(12.00 kg)a, a=2.21 m/s’.

(b) Substitution into either of the above relations gives 7'=2.27 N.

(¢) The string will be slack. The 4.00-kg block will have a =2.78 m/ s* and the 8.00-kg block will have
a=193 m/ s?, until the 4.00-kg block overtakes the 8.00-kg block and collides with it.

EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that block and
will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block would have a smaller

acceleration even though it has a larger mass, since it has a larger g, .
IDENTIFY: Apply 217" = mad to the block and to the plank.

SET UP: Both objects have a =0.
EXECUTE: Let n, be the normal force between the plank and the block and n, be the normal force between the

block and the incline. Then, n, = wcosé and n, =n, +3wcosfd = 4wcosd. The net frictional force on the block is
H (n, +ny)=p 5Swcosd . To move at constant speed, this must balance the component of the block’s weight
along the incline, so 3wsin® = s, 5wcosf, and g, =itand =2tan37°=0.452.

EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and
coefficient of friction are related by tan& = g, . For 6 =36.9°, 1, =0.75 . A smaller 4, is needed when the plank

is present because the plank provides an additional friction force.

IDENTIFY: Apply ZF = ma to the ball, to m and to m,

SET UpP: The free-body diagrams for the ball, m, and m, are given in Figures 5.94a-c. All three objects have the

same magnitude of acceleration. In each case take the direction of @ to be a positive coordinate direction.

EXECUTE: (a) ZF) =ma, applied to the ball gives T cos@ =mg . ZFX =ma,_ applied to the ball gives

T'sin@ = ma . Combining these two equations to eliminate 7 gives tanf=a/g .

(b) ZFX =ma_applied to m, gives T =m,a . ZF) =ma, applied to m, gives m g —T =ma . Combining these
m, 250 kg

m, +m, 1500 kg

(c) As m,becomes much larger than m,, a —» g and tand —>1,s0 § —>45°.

two equations gives a :[ ™ j g .Then tan@= and 0=9.46°.

m, +m2

EVALUATE: The device requires that the ball is at rest relative to the platform; any motion swinging back and
forth must be damped out. When m, << m, the system still accelerates, but with small @ and 6 — 0°.

T cosé

mg msg v

Figure 5.94a—
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IDENTIFY: Apply 217" = ma to the automobile.

2

SET Up: The "correct" banking angle is for zero friction and is given by tan f§ = V—;z , as derived in Example 5.23.
&

Use coordinates that are vertical and horizontal, since the acceleration is horizontal.

EXECUTE: For speeds larger than v, , a frictional force is needed to keep the car from skidding. In this case, the

inward force will consist of a part due to the normal force n and the friction force f7; n sinf+ fcos f=ma,,.
normal and friction forces both have vertical components; since there is no vertical acceleration,

v _(L5v)”
R~ R

nsin f+ pncos f=2.25 mgtan f and ncos f — unsin f =mg . Dividing to cancel n gives
sin f + u cos 1.25 sinf cosfp

ncosf— f sinf=mg. Using f=un and a,, = =2.25 gtan 3, these two relations become

=2.25 tanf. Solving for and simplifying yields g = . Usin
cos 3 — p sin B 4 gron A prvingy & 1+1.25sin” 8 g
2
f = arctan (20 l’Izl/S) =18.79° gives u, =0.34.
(9.80 m/s*)(120 m)

The

EVALUATE: If g is insufficient, the car skids away from the center of curvature of the roadway, so the friction in

inward.

IDENTIFY: Apply 217" =ma to the car. The car moves in the arc of a horizontal circle, so @ =da_, directed

rad,

toward the center of curvature of the roadway. The target variable is the speed of the car. a,, will be calculated

from the forces and then v will be calculated from a,,, =v*/R.

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At maximum

speed the static friction force has its maximum value f, = g n.

SET Up: The free-body diagram for the car is sketched in Figure 5.96a.

¥

EXECUTE:

B “ S F =,
ncosfB— f.sinf—mg=0
But f, = un, so

|_J'Lcnsﬁ ncosﬂ—,usnsinﬂ—mg:O
mg : mg

n=——————
: cos ff— u sin B
fsing " hs

Figure 5.96a

SF, =ma,
nsin f+ pncos f=ma,,
n(sin B+ p, cos f) =ma,,
Use the ZF} equation to replace n:

mg . _
[—cosﬂ o Sinﬂ}(sm B+ u cosfB)=ma,_,

0, = w g= sin25 +(0.30)C(.)825 (9.80 m/s?) =8.73 ms’
cos ff— y sin B €0s25°—(0.30)sin25°

a,, =v*/R implies v=\Ja_,R =+/(8.73 m/s*)(50 m) =21 m/s.

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the incline.

At the minimum speed the static friction force has its maximum value f, = yn.
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SET Up: The free-body diagram for the car is sketched in Figure 5.96b.
y a

n L'Usf,

The free-body diagram is identical to that
in part (a) except that now the components
nsinf of f, have opposite directions. The force

equations are all the same except for the
opposite sign for terms containing £

B)

mg

Figure 5.96b
Execute: a, =| P Z#COSP | [sin25°=(030)c0s25 | g g oy 43 s
cos f+ u sin § c0s25°+(0.30)sin 25°

v=Ja R =+/(1.43 m/s*)(50 m) =8.5 m/s.

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant height
by a static friction force that is less than gn. When u, — 0, a,, = gtan B. Our analysis agrees with the result of
Example 5.23 in this special case.

IDENTIFY: Apply 217" = mad to the car.

SETUP: 1 mi/h =0.447 m/s . The acceleration of the car is a,, =v*/r , directed toward the center of curvature

of the roadway.
EXECUTE: (a) 80 mi/h =35.7 m/s . The centripetal force needed to keep the car on the road is provided by

myv’ i_ (35.7 m/s)2

and r = =171m.

ug (0.76)9.8 m/s?)

friction; thus pmg =

(b) If 1, =0.20,

v=1Jrug =+/(171 m) (0.20) (9.8 m/s>) =18.3 m/s or about 41 mi/h .
(©) If 1 =037,

V= \/(171 m) (0.37) (9.8 m/s*) =24.9 m/s or about 56 mi/h
The speed limit is evidently designed for these conditions.
EVALUATE: The maximum safe speed is proportional to \/;S . +/0.20/0.76 =0.51, so the maximum safe speed

for wet-ice conditions is about half what it is for a dry road.

IDENTIFY: The analysis of this problem is the same as that of Example 5.21.
2

SETUP: From Example 5.21, tan =<t = 2
g 18
EXECUTE: Solving for v in terms of # and R, v=./gR tan f§ = \/(9.80 m/sz) (50.0) tan 30.0° =16.8 m/s, about

60.6 km/h.

EVALUATE: The greater the speed of the bus the larger will be the angle £, so T will have a larger horizontal,
inward component.

IDENTIFY and SET UP: The monkey and bananas have the same mass and the tension in the rope has the same
upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the same net force
and hence the same acceleration, in both magnitude and direction.

EXECUTE: (a) For the monkey to move up, 7 > mg . The bananas also move up.

(b) The bananas and monkey move with the same acceleration and the distance between them remains constant.
(c¢) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the distance
between them doesn’t change.

(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the
bananas.

EVALUATE: None of these actions bring the monkey any closer to the bananas.
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IDENTIFY:  Apply > F =ma , with f=kv.
SET Up:  Follow the analysis that leads to Eq.(5.10), except now the initial speed is v,, =3mg/k = 3v, rather than

Zero.
EXECUTE: The separated equation of motion has a lower limit of 3v, instead of 0; specifically,

v _ 1 1
J‘ dv — h,lu =n L__ - —ﬁl, orv= 2V1 — 4+ e—(k/m)r )
=2v, 2v, 2 m 2

t

EVALUATE: As ¢t — oo the speed approaches v, . The speed is always greater than v, and this limit is approached
from above.

IDENTIFY: Apply Y F =ma to the rock.

SET UpP: Equations 5.9 through 5.13 apply, but with a, rather than g as the initial acceleration.

EXECUTE: (a) The rock is released from rest, and so there is initially no resistive force and

a, = (18.0 N)/(3.00 kg) = 6.00 m/s’.

(b) (18.0 N—(2.20 N-s/m) (3.00 m/s))/(3.00 kg)=3.80 m/s’.

(¢) The net force must be 1.80 N, so kv=16.2 N and v=(16.2 N)/(2.20 N-s/m)=7.36 m/s.

(d) When the net force is equal to zero, and hence the acceleration is zero, kv, =18.0 N and

v, =(18.0 N)/(2.20 N-s/m)=8.18 m/s.

(e) From Eq.(5.12),

3.00 kg

(1 _ ef((z,zo N-s/m)/(3.00 kg))(2.00 s) ):| =47.78 m.

From Eq. (5.10), v =(8.18 m/s)[1—e (32 N/m/G0kIC09] _ 679 m/s,
From Eq.(5.11), but with a, instead of g, @ = (6.00 m/s?)e (*20NI/m/GOkN09 _1 38 /g2

) 1-2=0.1=e " and tz%ln (10)=3.14s.

t

EVALUATE: The acceleration decreases with time until it becomes zero when v =v, . The speed increases with
time and approaches v, as t > .

IDENTIFY: Apply ZF =ma to the rock. a = ? and v= % yield differential equations that can be integrated to
t

give v(¢) and x(?).
SET UP: The retarding force of the surface is the only horizontal force acting.

F., F, -k o v
EXECUTE: (a) Thus a=—"%=-2%= o = 4 and d]—/‘; = —ﬁdt . Integrating gives .[ dl—/‘; = —ﬁjtdt and
m m m dt v m Y m2o

kt . vkt Kt
22" = -2 This gives v =v, -+

0 m m  Am*’
. dx Wk kr vkidt  k*tdt
For the rock’s position: — =v, ———+—— and dx = v,dt - +—
dt m  4m m 4m
Vl/Zktz k2t3
Integrating gives x = vt ————+—.
2m 12m

vkt kKt

(b) v=0=vy,—- +—.
m

This is a quadratic equation in #; from the quadratic formula we can find the single

2mvY?
solution ¢ = 0

(¢) Substituting the expression for ¢ into the equation for x:

vaé/z v(])/zk 4m2v0 K’ 8m3v3/2 2mv3/2
. — . + . —
k 2m i’ 12m* i 3k
Av vy 1 /’cvé/2

Al Cmv? k) 2 m

x=v,

. The average force is

EVALUATE: The magnitude of the average acceleration is a,, =

F,, =ma, =1kv,”* , which is ] times the initial value of the force.
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IDENTIFY: Apply 217" = mad to the object, with and without including the buoyancy force.
SET UP: At the terminal speed v,, a=0.

EXECUTE: Without buoyancy, kv, =mg, so k = L mﬁ . With buoyancy included there is the additional

v, 036s

upward buoyancy force B, so B+ kv, =mg . B=mg—kv, =mg I_M =mg/3.
0.36 m/s

EVALUATE: At the terminal speed, B and f = kv together equal mg. The presence of B reduces the value of f
required, so the presence of B reduces the terminal speed.

IDENTIFY: The block has acceleration a,, =v*/r, directed to the left in the figure in the problem. Apply
D" F =mii to the block.

SET Up: The block moves in a horizontal circle of radius » = \/ (1.25 m)* —(1.00 m)* =0.75 m . Each string
1.00 m

makes an angle 8 with the vertical. cosd = 125m’ s0 8=36.9°. The free-body diagram for the block is given in
m

Figure 5.104. Let +x be to the left and let +y be upward.
EXECUTE: (a) ZFy =ma, gives T,cosf—T cosd—mg=0.
(4.00 kg)(9.80 m/s*)

T=T-""5 —800N- =310N.
cosd €0s36.9°

2

) YF, =ma, gives (T, +T)sin0=m—.
r

v= \/r(]:‘ *1)sind _ (0.75 m)0.0 N+31.0 N)sin36.97 _ 3.53 m/s . The number of revolutions per second is

m 4.00 kg
v 3.53 m/s

—=———=0.749 rev/s =44.9 rev/min .
2zr  27(0.75 m)

2 2
@©If I, >0, T cosd=mg and T, = mg__ (400 kg)O80 m/s) _ 49.0N. Tusingzmv—.
cosd €0836.9° r
V= \/rT“ sind _ \/(0'75 m)(j90.(()) S) sin36.97 _ 2.35 m/s . The number of revolutions per minute is
m .00 kg
(44.9 rev/min) 235 mls =29.9 rev/min
3.53 m/s

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that together
they produce an upward component of force that balances the weight of the block.
y

rad

L'."u cosfl

I
T,sinfl |

T)sinfl

[
|
|
: &~ mg
1

n——
Figure 5.104

IDENTIFY: Apply ZF = ma to the falling object.

SET Up: Follow the steps that lead to Eq.(5.10), except now v, = v, and is not zero.
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. dv, mg dv, k | .
EXECUTE: (a) Newton’s 2nd law gives m—==mg —kv , where —>=v,. j L= ——Idt . This is the same
dt k WV TV my

expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is the initial speed v,
instead of zero. Evaluating the integrals and rearranging gives v =v,e /" +v,(1—e™™) . Note that at 7 =0 this
expression says v, =v, and at t >« itsays v, ->v,.

(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is downward,
until the fluid resistance force equals gravity when the terminal speed is reached. The object speeds up

until v, =v,. Take +y to be downward. The graph is sketched in Figure 5.105a.

(¢) The upward resistance force is larger than the downward gravity force so the acceleration is upward and the
object slows down, until the fluid resistance force equals gravity when the terminal speed is reached. Take +y to

be downward. The graph is sketched in Figure 5.105b.
(d) When v, =v, the acceleration at ¢ =0 is zero and remains zero; the velocity is constant and equal to the

terminal velocity.
EVALUATE: In all cases the speed becomes v, as t — .

‘; _/_7 ’E)—¥
V. = LA

Figure 5.105a, b

IDENTIFY: Apply Y F =ma to the rock.

SET UP: At the maximum height, v, =0. Let +y be upward. Suppress the y subscripts on v and a.

EXECUTE: (a) To find the maximum height and time to the top without fluid resistance: v’ =v; +2a(y - y,) and
2 2 2

V=% 0 (6.0m/s2 isam oYW 0 6.0m/2s
2a 2(-9.8 m/s?) a 98 m/s

Y=> =0.61s.

. D d . .
(b) Starting from Newton’s Second Law for this situation m;v =mg —kv . We rearrange and integrate, taking
t

downward as positive as in the text and noting that the velocity at the top of the rock’s flight is zero:
v,

[ DK ey =l o 20
vy—v, m v=v, —-6.0 m/s —2.0 m/s

=1n(0.25) =—1.386

t

From Eq.(5.9), m/k=v,/g =(2.0 m/s*)/(9.8 m/s?)=0.204s,and ¢ = —%(—1.386) =(0.204 5) (1.386) =0.283 s

. . . dx _ N
to the top. Equation 5.10 in the text gives us — =v,(1—e ™"y =y, —v,e ™"
dt

X t t
vm,
x= de = J.vldt - J-vte’(k/”‘)’dt =yt +——(e WM 1),
0 0 0 k

x=(2.0 m/s) (0.283 s)+ (2.0 m/s) (0.204 s)(e** —1)=0.26 m .

EVALUATE:  With fluid resistance present the maximum height is much less and the time to reach it is less.
IDENTIFY: Apply ZF = ma to the car.

SETUpP: The forces on the car are the air drag force f;, = Dv’ and the rolling friction force u,mg. Take the
velocity to be in the +x -direction. The forces are opposite in direction to the velocity.

EXECUTE: (a) X F.=ma, gives —Dv’ — ymg =ma . We can write this equation twice, once with v=32 m/s
and a=- 0.42 m/s® and once with v=24 m/s and @ =-0.30 m/s>. Solving these two simultaneous equations in
the unknowns D and g, gives x4, =0.015 and D=0.36 N-s?/m’.

(b) n=mgcos S and the component of gravity parallel to the incline is mgsin , where £ =2.2°. For constant

speed, mgsin2.2°— ymgcos2.2°— Dv* =0. Solving for v gives v=29 m/s.
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5.109.

mg(sin f— a1, cosfp)
D

object is derived from Dv —mg =0, so v, =+/mg/D. v/vl =,/sin f — p cos B . And since
4, =0.015, v/v, = [sin f#—(0.015) cosf .
EVALUATE: In part (c), v— v, as f—90°, since in that limit the incline becomes vertical.

(c¢) For angle 3, mgsin B — umg cos f—Dv> =0 and v =\/ . The terminal speed for a falling

IDENTIFY: Apply ZF = ma to the person and to the cart.

SET UP: The apparent weight, w, , which is the same as the upward force on the person exerted by the car seat.

app ’
EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed to keep
him moving in its circular path:

(12 m/s)?

=434 N.
40 m }

2
L =mg —% =(70 kg) {(9.8 m/s”) -
(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no longer has to

2
exert any upward force on it: mg —% =0. v=4/Rg =+/(40 m) (9.8 m/s’) =19.8 m/s . The answer doesn’t

depend on the cart’s mass, because the centripetal force needed to hold it on the road is proportional to its mass and
so to its weight, which provides the centripetal force in this situation.

EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is provided by
gravity. For speeds greater than this more, downward force is needed and there is no source for it and the cart
leaves the circular path. For speeds less than this, less downward force than gravity is needed, so the roadway must
exert an upward vertical force.

(a) IDENTIFY: Use the information given about Jena to find the time ¢ for one revolution of the merry-go-round.

Her acceleration is a_,, directed in toward the axis. Let F, be the horizontal force that keeps her from sliding off.

rad >
Let her speed be v, and let R, be her distance from the axis. Apply Zf‘ =md to Jena, who moves in uniform

circular motion.
SET UP: The free-body dlagram for Jena is sketched in Figure 5.109a

EXECUTE:
..
rad ZF; =ma,
] n
F F =ma

2
l F=ml, y= /RF =1.90 m/s
mg R) m

Figure 5.109a

27R /
i =27R RE . Jackie goes around once in the same time but her speed
171

The time for one revolution is ¢ =

Y

(v,) and the radius of her circular path (R,) are different.

27R 1 RF R, |[RF
v =T _ogp | | [ /#
t 27R, m RN m

IDENTIFY: Now apply ZF =mad to Jackie. She also moves in uniform circular motion.

SET Up: The free-body diagram for Jackie is sketched in Figure 5.109b.

; EXECUTE:
Fy ZF; =ma,
X
F’Z = marad
lvm,s.:
Figure 5.109b
2 2
F=m2o ][R [Lj: Rp- (3 60 mj(600N) ~1200N
R, |R, : m R 1.80

2
(b) F,=m2, so v, = \/ BR, _ [A200NGB60m) 5 49 e
R 30.0 kg



Applying Newton’s Laws 5-49

5.110.

5.111.

EVALUATE: Both girls rotate together so have the same period 7. By Eq.(5.16), a,, is larger for Jackie so the
force on her is larger. Eq.(5.15) says R, /v, =R, /v, so v, =v,(R,/R)); this agrees with our result in (a).

IDENTIFY: Apply 217" = ma to the passenger. The passenger has acceleration a_, , directed inward toward the

rad ?
center of the circular path.
SETUpP: The passenger’s velocity is v =2z R/t =8.80 m/s. The vertical component of the seat’s force must

balance the passenger’s weight and the horizontal component must provide the centripetal force.
2

=188 N . Therefore

seat

EXECUTE: (a) F, sinf=mg =833 N and F,_, cosf = m]:

tan @ = (833 N)/(188 N) =4.43; 6 =77.3° above the horizontal. The magnitude of the net force exerted by the
seat (note that this is not the net force on the passenger) is
F., =833 N)> +(188 N)’ =854 N

(b) The magnitude of the force is the same, but the horizontal component is reversed.
2

EVALUATE: At the highest point in the motion, F, , =mg — m% =645 N . At the lowest point in the motion,

seat

2

F_ =mg+ m% =1021 N. The result in parts (a) and (b) lies between these extreme values.

seat

IDENTIFY: Apply ZF =ma to the person. The person moves in a horizontal circle so his acceleration is

a,, =Vv'/R, directed toward the center of the circle. The target variable is the coefficient of static friction between

ZHRJ =(0.60 rev/s)(M
1 rev 1 rev

(a) SETUP: The problem situation is sketched in Figure 5.111a.
|

the person and the surface of the cylinder. v =(0.60 rev/s)( j =9.425 m/s

The free-body diagram for the person is
sketched in Figure 5.111b.

The person is held up against gravity by
the static friction force exerted on him

by the wall. The acceleration of the person
is a_,, directed in towards the axis of rotation.

rad 2

Figure 5.111b

(b) EXECUTE: To calculate the minimum g, required, take f. to have its maximum value, f, = yn.

n=mv’/R
Combine these two equations to eliminate #:
umv' /R =mg

_Rg _(2.5m)(9.80 m/s”)

=== = 2-0.28
v (9.425 m/s)




5-50 Chapter 5

(c) EVALUATE: No, the mass of the person divided out of the equation for z,. Also, the smaller g, is, the larger
v must be to keep the person from sliding down. For smaller g, the cylinder must rotate faster to make » larger

enough.
5.112. IDENTIFY: Apply ZF = ma to the combined object of motorcycle plus rider.

SET UP:  The object has acceleration a,,, =v’/r , directed toward the center of the circular path.

EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the
2

. v
(downward) acceleration at the top of the sphere must exceed mg, so mE >mg, and

v>JgR =1/(9.80 m/s?) (13.0m) =11.3 m/s.

(b) The (upward) acceleration will then be 4g, so the upward normal force must be

Smg =5(110 kg) (9.80 m/sz) =5390 N.

EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the object.
5.113. IDENTIFY: Apply ZF =ma to your friend. Your friend moves in the arc of a circle as the car turns.

(a) Turn to the right. The situation is sketched in Figure 5.113a.

you friend As viewed in an inertial frame,

in the absence of sufficient friction
EI your friend doesn’t make the turn
completely and you move to the right
toward your friend.

Figure 5.113a

(b) The maximum radius of the turn is the one that makes a,, just equal to the maximum acceleration that static

friction can give to your friend, and for this situation f, has its maximum value f, = un.

SET UP: The free-body diagram for your friend, as viewed by someone standing behind the car, is sketched in
Figure 5.113b.

EXECUTE:
2 F, =ma,
n—mg=0
n=mg

Figure 5.113b

SF, =ma,
Jo=ma,
un=mv’/R
umg =mv’ /R
_ Vv (0ms)?
ug  (0.35)(9.80 m/s*)
EVALUATE: The larger g, is, the smaller the radius R must be.

0m

5.114. IDENTIFY: The tension F in the string must be the same as the weight of the hanging block, and must also
provide the resultant force necessary to keep the block on the table in uniform circular motion.

SET UP:  The acceleration of the block is a,,, =v* /7, directed toward the hole.
2

EXECUTE: Mg:F:mv—, so v=\/grM/m.
r

EVALUATE: The larger M is the greater must be the speed v, if  remains the same.
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5.115. IDENTIFY: Apply 217" =ma to the circular motion of the bead. Also use Eq.(5.16) to relate a,, to the period of

rotation 7.
SET UP: The bead and hoop are sketched in Figure 5.115a.
c:'_‘b
]
The bead moves in a circle of radius
R=rsinf.
The normal force exerted on the bead by
the hoop is radially inward.
I
Figure 5.115a

The free-body diagram for the bead is sketched in Figure 5.115b.
.‘-

EXECUTE:
ncos _
“rad ncos f—mg =0
I
| n=mg/cosf
n sin B ZF —ma
nsin f =ma,,
mg
Figure 5.115b
Combine these two equations to eliminate #:
m .
§_lsin P =ma,,
cosf3
sinf _a,,
cosf g
a.,=v'/R and v=2zR/T, so a,,=47"R/T*, where T is the time for one revolution.
. 47*rsin
R=rsinf, so a,, :—2’6
T

sinfi _ 4x’rsinf8
cos B T’g
This equation is satisfied by sin =0, so f=0, or by

Use this in the above equation:

1 47 L T’
—=#, which gives cos f = ‘Zg
cosfp T'g 4rzr

(a) 4.00 rev/s implies T =(1/4.00) s=0.250 s

(0.250 5)*(9.80 m/s?)

47°(0.100 m)
(b) This would mean £ =90°. But cos90°=0, so this requires 7 — 0. So S approaches 90° as the hoop rotates
very fast, but #=90° is not possible.
(c) 1.00 rev/s implies 7'=1.00 s

2 2 2

T ‘;g equation then says cos ff = (1.00 i) .80 m/s’)
4rr 477(0.100 m)

have the ZF =ma equations satisfied is for sin #=0. This means £ =0; the bead sits at the bottom of the hoop.

Then cos f =

and S =81.1°.

=2.48, which is not possible. The only way to

The cosf =
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5.116.

5.117.

5.118.

EVALUATE: f—90°as T — 0 (hoop moves faster). The largest value T can have is given by T°g/(4z°r)=1 so

T =2x.r/g =0.635s. This corresponds to a rotation rate of (1/0.635) rev/s =1.58 rev/s. For a rotation rate less

than 1.58 rev/s, f =0 is the only solution and the bead sits at the bottom of the hoop. Part (c) is an example of this.
2 2

IDENTIFY: a :d xand a,:d y.
: Tdr

ar’
SETUP: The components of F determine its magnitude and direction.
EXECUTE: (a) Differentiating twice, a, =—6f¢ and a, =-24, so
F.=ma_ =220 kg) (—0.72 N/s)t =—(1.58 N/s)¢ and F,=ma, =(2.20 kg) (-2.00 m/sz) =—440N.
(b) The graph is given in Figure 5.116.
() At 1=3.00s,F, =—475Nand F, =—4.40N, so F :\/(—4.75 N)’ +(—4.40 N)* =6.48 N at an angle of

Then apply ZF = mad to calculate the components of the net force.

—4.40) _ °
arctan(—_4.75) 223°,

EVALUATE: F, is constant and negative. F is zero at # =0 and becomes increasingly more negative as ¢

increases.
vi{m)

x{m)

Figure 5.116

IDENTIFY: The velocity is tangent to the path. The acceleration has a tangential component when the speed is
changing and a radial component when the path is curving.

SETUP: a4, is toward the center of curvature of the path. a,__ is parallel to v when the speed is increasing and

tan

antiparallel to ¥ when the speed is decreasing. The net force F is proportional to & .
EXECUTE: The diagram is sketched in Figure 5.117.

EVALUATE: ¥, @,and F all change during the motion.

l:

v

L & L
I - Ll
A — B/

[ W]

1
~
2
-

W i

Figure 5.117

IDENTIFY: Apply ZF = ma to the car. It has acceleration a_, , directed toward the center of the circular path.

rad >

SET Up: The analysis is the same as in Example 5.24.
2

2
EXECUTE: (a) F, = m(g +%j =(1.60 kg){9,80 m/s® + (12.0 m/s)

j=61.8 N.
m

v (12.0 m/s)
b) F, = —— |=(1.60 kg)| 9.80 m/s* -~———~-
(b) F, M[g R] ( g)[ s ~00m

pushes down on the car. The magnitude of this force is 30.4 N.
EVALUATE: |F|>|F,|. |F,|-2mg.

J =-30.4 N., where the minus sign indicates that the track
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5.119.

5.120.

5.121.

IDENTIFY: The analysis is the same as for Problem 5.96.
SETUP: The speed is related to the period by v=27R/T =2xh(tan 8)/T , or T =2rxh(tan )/ v .
EXECUTE: The maximum and minimum speeds are the same as those found in Problem 5.96,

+ p, si P
v = |ehtan pEOSBEASNS L a v~ Jehtan g HSE
sin 8 — u cos B sin 8 + y cos
The minimum and maximum values of the period 7 are then
T. =2x htan B s1nﬂ—,usclos/3 and T =27 htan B sm,B+,usc.0s/3 .
g cosf+pusinf g cosf—pusinf

EVALUATE: For u =0 the results for the speeds reduce to v, =v,,, =~/gh. h= % The result for v then
an

agrees with the result in Example 5.23, if we take into account that in this problem £ is measured from the vertical
whereas in Example 5.23 it is measured relative to the horizontal.
IDENTIFY: Apply ZF = ma to the block and to the wedge.

SET UP: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction to be
vertical and positive upward. The normal force between the block and the wedge is #; the normal force between the
wedge and the horizontal surface will not enter, as the wedge is presumed to have zero vertical acceleration. The
horizontal acceleration of the wedge is 4, and the components of acceleration of the block are a, and a, .

EXECUTE: (a) The equations of motion are then MA =—nsina , ma, =nsina and ma, =ncosa —mg . Note

that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the left. These are
three equations in four unknowns, 4, a,, a, and n. Solution is possible with the imposition of the relation between

A, a and a, . An observer on the wedge is not in an inertial frame, and should not apply Newton’s laws, but the
kinematic relation between the components of acceleration are not so restricted. To such an observer, the vertical

acceleration of the block is a, but the horizontal acceleration of the block is a, — A. To this observer, the block

a,

descends at an angle ¢, so the relation needed is =— tan a. At this point, algebra is unavoidable. A

a —A

possible approach is to eliminate a_by noting that @ = ——— A4, using this in the kinematic constraint to eliminate
m
a, and then eliminating n. The results are:

A= —sm
(M +m) tana + (M /tan @)

a, = sM
(M +m) tana + (M /tan )

0 = —-g(M +m) tanx
7 (M +m) tana + (M/tan )

(b) When M >>m,A— 0, as expected (the large block won’t move). Also,
g tan o
=g 2
tan a+(I/tana) ° tan’a +1

a, —> = gsina cosa which is the acceleration of the block ( gsinea in this case),

with the factor of cosa giving the horizontal component. Similarly, a, —>—g sin‘a .

(¢) The trajectory is a spiral.

EVALUATE: If m>>M , our general results give @, =0and a, =—g . The massive block accelerates straight
downward, as if it were in free-fall.

IDENTIFY: Apply ZF = ma to the block and to the wedge.

SET Up:  From Problem 5.120, ma, =nsina and ma, = ncosa —mg for the block. a, =0 gives a, =gtana .

EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal acceleration
and the applied force must be F' = (M +m)a = (M +m)gtane .

EVALUATE: F —0as a—>0and F —»>owas o —> .
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5.122. IDENTIFY: Apply D F=ma.
SETUP: Let +x be directed up the ramp.
EXECUTE: The normal force that the ramp exerts on the box will be n = wcosa — Tsine . The rope provides a force of
Tcos@ up the ramp, and the component of the weight down the ramp is wsine . Thus, the net force up the ramp is
F =Tcosf —wsina — y, (weosa —Tsinf) = T (cos@ + g, sinf) —w(sina + y, cosa)
The acceleration will be the greatest when the first term in parentheses is greatest and this occurs when tand = g, .
EVALUATE: Small 6 means F is more nearly in the direction of the motion. But 8 — 90° means F is directed to
reduce the normal force and thereby reduce friction. The optimum value of 8 is somewhere in between and
depends on 4z, . When g, =0, the optimum value of &is 6 =0°.
5.123. IDENTIFY: Use the results of Problem 5.44.

2
SETUP:  f(x) is a minimum when LA =0and d { >0.
dx dx
EXECUTE: (a) F =y w/(cos@+ p,sin0)

(b) The graph of F versus @ is given in Figure 5.123.

(c) Fis minimized at tan@ = g, . For g, =025, §=14.0°.

EVALUATE: Small @ means F is more nearly in the direction of the motion. But € — 90° means F is directed to
reduce the normal force and thereby reduce friction. The optimum value of & is somewhere in between and
depends on g, .
400
320
240
F(N)
160

80

0

0 10 20 30 40 50 60 70 80 90
0 (deg)

Figure 5.123

5.124. IDENTIFY: Apply 217" = mad to the ball. At the terminal speed, a=0.

SET UpP: For convenience, take the positive direction to be down, so that for the baseball released from rest, the
acceleration and velocity will be positive, and the speed of the baseball is the same as its positive component of
velocity. Then the resisting force, directed against the velocity, is upward and hence negative.

EXECUTE: (a) The free-body diagram for the falling ball is sketched in Figure 5.124.

(b) Newton’s Second Law is then ma = mg — Dv*. Initially, when v =0, the acceleration is g, and the speed
increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This continues
as the speed approaches the terminal speed.

(c) At terminal velocity, a=0, so v, = f% in agreement with Eq. (5.13).

(d) The equation of motion may be rewritten as L4 = %(vf —v?). This is a separable equation and may be
V[
dv g 1 v gt
expressed as j — =—2Jdt or — arctanh| — |==5. v=v, tanh(gt/v,).
vi—=vS v, v, v, ) v

ex _e—X
EVALUATE: tanhx=

—— . At t—0, tanh(gt/v,) >0 and v—> 0. At t > o0, tanh(gt/v,) > and v—>v, .

e +e
]

O

w Y

Figure 5.124
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5.125.

5.126.

5.127.

IDENTIFY: Apply 217" = ma to each of the three masses and to the pulley B.

SET Up: Take all accelerations to be positive downward. The equations of motion are straightforward, but the
kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If the

acceleration of pulley B is a,, then a, =—a,, and a, is the average of the accelerations of masses 1 and 2,

or a,+a, =2a,=-2a,.

EXECUTE: (a) There can be no net force on the massless pulley B, so T, = 27T,. The five equations to be solved
are then mg—-T,=ma,, mg—-T,=mya,, mg—-T.=ma,, a,+a,+2a,=0and 27, —T, =0. These are five
equations in five unknowns, and may be solved by standard means.

The accelerations a, and a, may be eliminated by using 2a, =—(a, + a,) = —(2g —T,((1/m,) + (1/m,))).

The tension 7, may be eliminated by using 7, = (1/2)T,. = (1/2)m,(g — a,).

. . . —4mm, + m,m, + mm
Combining and solving for a, gives aq,=g———2>—23—13

4mm, + mym, + mm,
(b) The acceleration of the pulley B has the same magnitude as @, and is in the opposite direction.
T, T m o . .
(©) a=g——=g———=g—-—-(g—a,). Substituting the above expression for a, gives
m, 2m, 2m,

4mm, —3m,m; + mm;

“] g 1

. . . . . 4mm, —3mm, + m,m

(d) A similar analysis (or, interchanging the labels 1 and 2) gives a, = g— L3 23

4m,m, + mym, + m,m,

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate equation
4mm,m, g 8m,m,m,

of motion, giving 7, =g , .
4m,m, + mym, + mm, 4mm, + m,m, + mm,
() If m; =m, =mand m, =2m, all of the accelerations are zero, T. =2mg and T, = mg. All masses and pulleys

are in equilibrium, and the tensions are equal to the weights they support, which is what is expected.
EVALUATE: It is useful to consider special cases. For example, when m, = m, >>m, our general result gives

a=a,=+gand a,=—-g .
IDENTIFY: Apply ZF = ma to each block. The tension in the string is the same at both ends. If 7 < wfor a

block, that block remains at rest.
SET Up: In all cases, the tension in the string will be half of F.
EXECUTE: (a) F/2=62 N, which is insufficient to raise either block; @, =a, =0.

(b) F/2=62N. The larger block (of weight 196 N) will not move, so @, =0, but the smaller block, of weight

. . . . 49N
98 N, has a net upward force of 49 N applied to it, and so will accelerate upwards with a, = ﬁ =49 m/ s
Vke
(¢) F/2=212 N, so the net upward force on block 4 is 16 N and that on block B is 114 N, so
16 N 114N
a, = 6N o3 m/s’ and @, =———=11.4 m/s>.
20.0 kg 10.0 kg

EVALUATE: The two blocks need not have accelerations with the same magnitudes.
IDENTIFY: Apply 217" = mad to the ball at each position.
SET UP: When the ball is at rest, a = 0. When the ball is swinging in an arc it has acceleration component

2

v . .
a., = E , directed inward.

rad
EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the tension
force must balance the weight, so T,cos f=w or T, =w/cos . At point B, the ball is not in equilibrium; its speed
is instantaneously 0, so there is no radial acceleration, and the tension force must balance the radial component of
the weight, so 7, =wcos f# and the ratio (TB/TA) =cos’ f.

EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration.






