
ERRATA for An introduction to Chemical Thermodynamics, Second edition 2009

Page 15, line 11 . . . of one calcium carbide molecule into . . .

Page 25, last line In the literature, the term exergonic is used for processes that can deliver work and
for processes that need work to go the term endergonic is used.

Page 29, first equation from top kJ/mol

Page 42, following eq. 4.5 Footnote added: “Important to note is that the reference temperature for
this coefficient is taken to be 0 K which is correct for gasses. For other substances, other reference
temperatures may apply.”

Page 41, line 5 . . . of one calcium carbide molecule into . . .

Page 44, second line from bottom . . . whereas the enthalpy does not.

Page 48, line 12 . . . the reversible heat plus the lost work, . . .

Page 52, second and third equation from top
Q

T
=
Qrev +Wlost

T
= ∆S + ∆Sirr

which implies that

∆Sirr ≥ 0

Figure 5.4, legend Horizontal axis velocity in m/s, vertical axis probability density.

Page 57, eq. 6.5
(
∂G

∂ξ

)
eq

= 0 and
(
∂2G

∂ξ2

)
eq

> 0

Page 61, second equation K =
a(Ag+)a(Cl−)

a(AgCl)
≈ s2

Page 66, Table 6.2, page 66 ∆vapH
◦− = 30.7 kJ/mol

Page 75, Figure 7.4 Vv − V and V − Vl interchanged.

Page 88, legend figure 8.8 Characteristic shape of a Langmuir isotherm in a semi-logarithmic plot.

Page 89, paragraph below first equation . . . occurring when the pressure equals p = K−1p◦−.

Page 97, Label horizontal axis figure 9.5 ”mole fraction”

Page 97, Label horizontal axis figure 9.6 ”mole fraction”

Page 99, legend figure 9.8 Tx-diagrams . . .

Page 106, eq 10.6 ∆mixH =
1
2
nxAxBh̃AB

Page 106, equation at bottom of page xB,max = exp
(
−hAB

RT

)
Page 106, bottom line For the solubility parameter defined as hAB/RT one finds -5.5 for sweet water

at room temperature.

Page 109, top equation ∆vapS(xB) = ∆vapS + ∆mixSA(xB) = ∆vapS −RxB

Page 109, third equation ∆T =
RTvap

∆vapS
xB

1



Page 113, below eq. 11.2 fj = pj exp

(
(pj − p◦−)Bj

RT

)
and the last two equations of the intermezzo

Vj =
∂V

∂nj
=
RT

pj
+Bj

and

µj = µ◦−j +RT ln
pj

p◦−
+ (pj − p◦−)Bj

Page 115, second equation from top ∆mixµB =
∂∆mixG

∂nB
= RT lnxB +

1
2

(1− xB)2hAB

Page 117, table 11.1 10−3

Page 117, equation below table 11.1 κ−1 ≈ 0.3

√
m◦−
I

nm

Page 123, line 5 from bottom ... between the two parts.

Page 142, 3rd paragraph from bottom According to Prigogine, “in the linear regime, the total en-
tropy production in a system subject to flow of energy and matter reaches a minimum value at the
non-equilibrium stationary state”.

Page 154, add to bottom last paragraph Also, there is a special situation that arises when the sec-
ond virial coefficient vanishes. Whereas for gases this defines the Boyle temperature, for macro-
molecular solutions this defines the theta condition such as the theta temperature.

Page 157, eq. 15.5 . . . be expressed as

a = RTK2VA

where VA denotes the molar volume of the solvent.

Page 159, equation at bottom F g
j,m = −Mjg

Page 162, ea. 15.10 c(r) ≈ c0 exp
{

(Mp − ρVp)ω2

2RT
(r2 − r20)

}

Page 163, eq. 15.11 c(r) ≈ c0 exp
{
ZeffFE

RT
(z − z0)

}
(1)

Page 165, first equation
Π
RT

=
c

M
+ [BHS −K2Vm]

( c

M

)2

+ · · ·

Page 165, second equation
Π
RT

=
c

M

{
1 +B1s

cs
Ms

}
+
[
BHS −K2Vm

{
1 + (2B1s −B2s)

cs
Ms

}]( c

M

)2

+ · · ·

Page 165, third and fourth equation B1s =
2π
3
N (d+ ds)3

and

2B1s −B2s =
2π
3
Nd2

s(3d+ 2ds)

Page 169, last equation of embedded text θ =
1
N

a

Ξ
dΞ
da

=
1
N

d log Ξ
d log a
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Page 171, Eq. 16.7 Ξ =
∑
n,m

(
N − n+ 1
n−m

)(
n− 1
m

)
anumKn '

(
1 + aKu+

√
4aK + (1− aKu)2

2

)N

Page 174, Bottom [B+](V + ∆V ) = ∆V cB

Page 180, Embedded text, first paragraph . . . the Landau potential or semi grand potential

Page 182, fifth line from bottom ...and hence Ξ2 = a2(K2
t ut + gK2

gug).

Page 189, first equation

∆G ≈ ns,inµs,in − ns,totµ
i
s + ns,outµs,out

= RT

{
ns,in ln

ns,in

no,in
+ ns,out ln

(
ns,out

ns,tot

no,in

no,out

)}
< 0

Page 190, Embedded text

d(cs,in − cs,out)
dt

=
1
Vin

dns,in

dt
− 1
Vout

dns,out

dt

= AJs

(
1

Vout
+

1
Vin

)
= −ADs

L

(
1

Vout
+

1
Vin

)
(cs,in − cs,out)

The above equation is a linear differential equation which yields an equilibration time scale that is
equal to

τ =
{
ADs

L

(
1

Vout
+

1
Vin

)}−1

Page 191, third equation from top Js = −kT
f

dcs
dz

Page 192, second equation from bottom θ =

n∑
k=1

k[MLk]

[M]

Page 192, equation at bottom [L]tot = [L]in +
Vin

Vin + Vout

n∑
k=1

k[MLk]

o

Page 193, eq. 17.3 r =
[Cl−]in
[Cl−]out

=
Z[MZ+]
2[Cl−]out

+

√√√√( Z[MZ+]
2[Cl−]out

)2

+ 1
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