
	
	 	

T u 	 D e l f t 	

Summary	of	Electricity	and	Magnetism	
Wouter	van	de	Ketterij	
A	summary	of	Introduction	to	Electrodynamics	by	David	J.	Griffiths	



	
1	

Table	of	Contents	

Electrostatics	 2	
Coulomb’s	Law	 2	
Electric	Field	 2	
Continues	Charge	Distribution	 3	
Dipoles	 5	
Materials	 5	
Flux	 5	
Gauss’s	Law	 6	
Applications	of	Gauss’s	Law	 7	
Electrostatic	Potential	energy	 8	
Electric	Potential	 8	
Interrelation	between	charge,	E-field	and	Potential	 10	
Conductors	 10	
Capacitors	 11	
Electrostatic	Potential	Energy	for	Capacitors	 12	

Electrodynamics	 13	
Electric	current	 13	
Current	Density	 13	
Ohm’s	Law	 14	
Electric	Power	 15	
Conduction	Mechanisms	 15	

Magnetostatics	 16	
Lorentz	Force	Law	 16	
Cyclotron	Motion	 16	
Magnetic	Forces	do	no	Work	 16	
Lorentz	Force	on	a	Current	 16	
Magnetic	Field	due	to	Current	 17	
Magnetic	dipoles	 18	
Torque	on	a	current	loop	 18	
Magnetism	is	Matter	 18	
Ampère’s	Law	 19	
Applications	of	Ampère’s	Law	 20	
Comparison	of	Electrostatics	and	Magnetostatics	 21	

Electromagnetic	Induction	 22	
Faraday’s	Law	 22	
Lenz’s	Law	 22	
Applications	of	Faraday’s	Law	 23	
Inductance	 23	
LRC-circuits	 24	
Energy	in	Magnetic	Fields	 25	
Paradox	in	Ampère’s	Law	 26	
Maxwell’s	equations	 27	
Electromagnetic	Waves	 27	
Poynting	vector	 28	
Radiation	pressure	 29	
Polarization	 30	
Sources	of	Electromagnetic	waves	 30	

	
	
	



	
2	

Electrostatics	

Coulomb’s	Law	
Coulomb’s	law	gives	the	force	[N]	on	a	test	charge	Q	due	to	a	single	point	charge	q,	which	
is	at	rest	at	a	distance	r:	
	

𝑭 = 𝑘
𝑞𝑄
𝑟! 𝒓	

	
Where	𝑘 = !

!!!!
	and	𝒓	equals	a	unit	vector	in	the	direction	from	q	to	Q.	

The	constant	𝜀!	is	called	the	permittivity	of	free	space.	
	
	q	 	 	 Q	

							𝒓	
	 	 𝑭 = 𝑘 !"

!!
𝒓		

	 							r	
	
If	we	have	several	point	charges	q1,	q2,	…	,	qn,	at	distances	r1,	r2,	…	,	rn	respectively.	The	
total	force	on	Q	is:	
	

𝑭 = 𝑭𝟏 + 𝑭𝟐 +⋯+ 𝑭𝒏 = 𝑘𝑄
𝑞!
𝑟!!
𝒓!

!

!!!
	

	

Electric	Field	
	The	electric	field	[N/C]	is	the	force	per	unit	charge	that	would	be	exerted	on	a	test	
charge,	if	one	were	placed.	So	𝑭 = 𝑄𝑬,	where	
	

𝑬 𝒓 = 𝑘
𝑞!
𝑟!!
𝒓!

!

!!!
	

	
Notice	that	it	is	a	function	of	r,	because	the	separation	vectors	ri	depend	on	the	location	
of	the	field	point	P.	
	
Example.	 Find	the	electric	field	a	distance	z	above	the	midpoint	between	two	equal	
charges	q,	a	distance	d	from	the	midpoint.	
	
We	calculate	the	electric	field	due	to	the	left	charge:	
	
𝑟 = 𝑑! + 𝑧!	,	𝒓 = !𝒙!!𝒛

!!!!! 
		

	
So	𝑬! !"#$ 𝒓 = 𝑘 !

!!!!!
!
!𝒙!!𝒛
!!!!! 

= 𝑘 !

!!!!!
!
!
𝑑𝒙+ 𝑧𝒛 	
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Now	we	calculate	the	electric	field	due	to	the	right	charge:	
		
𝑟 = 𝑑! + 𝑧!	,	𝒓 = !!𝒙!!𝒛

!!!!! 
		

	
So	𝑬! !"#!! 𝒓 = 𝑘 !

!!!!!
!
!!𝒙!!𝒛
!!!!! 

= 𝑘 !

!!!!!
!
!
−𝑑𝒙+ 𝑧𝒛 	

	
We	can	add	them	vectorially:	
	

𝑬 𝒓 = 𝑬! !"#$ 𝒓 + 𝑬! !"#$! 𝒓 	
	

𝑬 𝒓 = 𝑘
𝑞

𝑑! + 𝑧!
!
!
𝑑𝒙+ 𝑧𝒛 + 𝑘

𝑞

𝑑! + 𝑧!
!
!
−𝑑𝒙+ 𝑧𝒛 	

	

𝑬 𝒓 = 𝑘
2𝑞𝑧

𝑑! + 𝑧!
!
!
𝒛	

	

Continues	Charge	Distribution	
Our	definition	of	the	eclectic	field,	assumes	that	the	source	of	the	field	is	a	collection	of	
discrete	point	charges	qi.	If,	instead,	the	charge	is	distributed	continuously	over	some	
region,	the	sum	becomes	an	integral:	
	

𝑬 𝒓 = 𝑘
1
𝑟! 𝒓 𝑑𝑞	

	
Where	q	is	spread	out	over	a	line,	an	area,	or	a	volume.	
	
Line	 𝑑𝑞 = 𝜆 𝑑𝑙	
Area	 𝑑𝑞 = 𝜎 𝑑𝑎	
Volume	 𝑑𝑞 = 𝜌 𝑑𝜏	
	
Example.	 Find	the	Electric	field	anywhere	in	space,	due	to	an	infinite	straight	line,	
that	carries	a	uniform	line	charge	𝜆.	
	
A	line	segment	dl	that	is	at	distance	r	(x	along	the	line	and	distance	z	perpendicular	to	
the	line)	produces	an	electric	field:	
	
𝑟 = 𝑥! + 𝑧!,	𝒓 = !!𝒙!!𝒛

!!!!! 
	

𝑬 𝒓 = 𝑘
𝜆
𝑟! 𝒓 𝑑𝑥

!

!!
= 𝑘

𝜆

𝑥! + 𝑧!
!
−𝑥𝒙+ 𝑧𝒛
𝑥! + 𝑧! 

 𝑑𝑥
!

!!
	

	
	

𝑬 𝒓 = 𝑘
𝜆

𝑥! + 𝑧!
!
!
(−𝑥𝒙+ 𝑧𝒛) 𝑑𝑥

!

!!
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𝑬 𝒓 = −𝑘𝜆
𝑥

𝑥! + 𝑧!
!
!
𝒙 𝑑𝑥

!

!!
+ 𝑘𝜆

𝑧

𝑥! + 𝑧!
!
!
𝒛 𝑑𝑥

!

!!
	

	

𝑬 𝒓 = −𝑘𝜆
𝑥

𝑥! + 𝑧!
!
!
𝒙 𝑑𝑥

!

!!
+ 𝑘𝜆

𝑧

𝑥! + 𝑧!
!
!
𝒛 𝑑𝑥

!

!!
	

	

𝑬 𝒓 = −𝑘𝜆 −
1

𝑥! + 𝑧!
!
! !!

!

𝒙+ 𝑘𝜆𝑧
𝑥

𝑧! 𝑥! + 𝑧! !!

!
𝒛	

	

𝑬 𝒓 = 𝑘
2𝜆
𝑧 𝒛  lim

!→!

𝑥
𝑥! + 𝑧!

= 𝑘
2𝜆
𝑧 𝒛	

	
Example.	 Find	the	Electric	field	anywhere	in	space,	due	to	an	infinite	circular	plane,	
that	carries	a	uniform	surface	charge	𝜎.	
	
A	surface	segment	da	is	at	distance	r	(x	over	the	surface	and	distance	z	perpendicular	to	
the	surface)	produces	an	electric	field:	
	
𝑟 = 𝑥! + 𝑧!,	𝒓 = !!𝒙!!𝒛

!!!!! 
	

𝑬 𝒓 = 𝑘
𝜎
𝑟! 𝒓 𝑑𝑎

 

!
	

	

𝑬 𝒓 = 𝑘
𝜎

𝑥! + 𝑧!
!
−𝑥𝒙+ 𝑧𝒛
𝑥! + 𝑧! 

 𝑑𝑎
 

!
	

	
For	symmetry	reasons	the	electric	field	can	only	point	in	the	z	direction.	To	make	the	
calculations	easier,	we	compute	only	the	component	of	E	in	the	z	direction.	
	

𝐸! =  𝑬 𝒓 ∙ 𝒛 = 𝑘
𝜎

𝑥! + 𝑧!
!
−𝑥𝒙+ 𝑧𝒛
𝑥! + 𝑧! 

 𝑑𝑎
 

!
∙ 𝒛 = 𝑘

𝜎

𝑥! + 𝑧!
!

𝑧
𝑥! + 𝑧! 

 𝑑𝑎
 

!
	

	
We	can	write	a	surface	element	da	as	a	ring	at	distance	x	and	width	dx.	
	

𝐸! =  
1

4𝜋𝜀!
 

𝜎𝑧

𝑥! + 𝑧!
!
!
2𝜋𝑥 𝑑𝑥

!

!
	

	

𝐸! =  
𝜎𝑧
2𝜀!

 
𝑥

𝑥! + 𝑧!
!
!

 𝑑𝑥
!

!
=  

𝜎𝑧
2𝜀!

 −
1

𝑥! + 𝑧!
!
! !!!

!

=  
𝜎
2𝜀!
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We	can	summarize	the	decay	for	different	charge	distributions	in	a	table:	

Point	charge	 𝑬(𝒓) = 𝑘
𝑞
𝑟! 𝒓	 𝐸(𝑟) ∝

1
𝑟!	

Infinite	line	 𝑬(𝒓) = 𝑘
2𝜆
𝑟 𝒓	 𝐸(𝑟) ∝

1
𝑟	

Infinite	plate	 𝑬 𝒓 =
𝜎
2𝜀!

𝒓	 𝐸 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	

	

Dipoles	
Assume	we	have	a	charge	configuration	of	+q	and	–q	at	a	distance	d	apart.	This	
configuration	is	called	a	dipole.		
	
We	can	define	the	dipole	moment	as:	
	

𝑝 = 𝑞𝑑	
	
As	a	dipole	is	placed	in	a	constant	electric	field,	the	torque	𝑇 = 𝒅 × 𝑭 = 𝒅 × 𝑞𝑬 =
𝑞𝒅 × 𝑬 = 𝒑 × 𝑬.	
	

𝑇 = 𝒅 × 𝑭 = 𝒑 × 𝑬	
	

Materials	
In	a	conductor,	charge	is	free	to	move.	
	
In	an	insulator,	charge	is	NOT	free	to	move.	
	
Insulators	that	contain	molecular	dipoles	are	called	dielectrics.	
	

Flux	
The	amount	of	electric	field	going	through	a	surface	is	called	flux.	The	flux	Φ! 	of	E	
through	a	surface	S	is	a	scalar:	
	

Φ! ≡ 𝑬 ∙ 𝑑𝒂
 

!
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Gauss’s	Law	
Assume	we	have	a	point	charge	q,	is	produces	an	electric	field	𝐸 = 𝑘 !

!!
𝒓.	This	electric	

field	points	always	away	from	charge	q	(or	towards	q	if	q	is	negative).	We	calculate	the	
flux	through	a	spherical	surface	with	in	the	centre	charge	q.		
	

Φ! = 𝑘
𝑞
𝑟! 𝒓 ∙ 𝑑𝒂

 

!
	

	
Since	the	normal	vector	of	the	spherical	surface	area	is	always	parallel	to	the	electric	
field,	which	points	radially	away	from	q,	the	integral	becomes:	
	

Φ! = 𝑘
𝑞
𝑟! 𝑑𝑎

!

!
= 𝑘

𝑞
𝑟! 𝑑𝑎

 

!
= 𝑘

𝑞
𝑟! 4𝜋𝑟

! =
1

4𝜋𝜀!
𝑞
𝑟! 4𝜋𝑟

! =
𝑞
𝜀!
	

	
In	fact	this	results	holds	for	every	closed	surface,	since	the	same	amount	of	field	passes	
through	every	closed	surface	that	encloses	charge	is	the	same:	
	
	
Gauss’s	Law	

𝑬 ∙ 𝑑𝒂 =
𝑄!"#
𝜀!

 

𝑺
	

	
	
By	the	divergence	theorem:	
	

∇ ∙ 𝑬 𝑑𝜏
 

!
= 𝑬 ∙ 𝑑𝒂 =

𝑄!"#
𝜀!

 

𝑺
	

	
Rewriting	Qenc	in	terms	of	the	charge	density	𝜌,	we	have	𝑄!"#. = 𝜌 𝑑𝜏 

! .	So	gauss’s	law	
becomes:	

∇ ∙ 𝑬 𝑑𝜏
 

!
=

𝜌
𝜀!

 𝑑𝜏
 

!
	

	
This	result	holds	for	any	volume,	so	the	integrands	must	be	equal:	
	
Gauss’s	Law	in	differential	form	

∇ ∙ 𝑬 =
𝜌
𝜀!
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Applications	of	Gauss’s	Law	
Suppose	we	have	a	spherical	surface	at	radius	R	and	total	charge	q.		
From	Gauss’s	law	we	know	that	𝐸𝐴 = !!"#

!!
,	here:	

	

𝐸4𝜋𝑟! =
𝑄!"#
𝜀!

	

Rewriting	the	equation:	

𝐸 𝑟 =
𝑄!"#
4𝜋𝜀!𝑟!

= 𝑘
𝑄!"#
𝑟! 	

	
Meaning	that	the	electric	field	at	r	from	the	centre	of	the	sphere	equals	0	if	r<R,	since	no	
charge	is	enclosed.	And	the	electric	field	equals	𝑘 !

!!
	for	any	r>R.	Notice	that	this	is	equal	

to	the	electric	field	of	a	point	charge	Q.	
	
Consider	again	an	infinite	straight	line	that	carries	a	uniform	line	charge	𝜆.	Imagine	a	
Gaussian	surface	in	the	shape	of	a	cylinder	around	a	line	segment	with	length	L.	From	
Gauss’s	Law	we	know	that	𝐸𝐴 = !!"#

!!
.	

Here	the	electric	field	is	parallel	to	the	base	of	the	cylinder	and	perpendicular	to	the	
other	surface	area	so	Gauss’s	law	becomes:	

𝐸2𝜋𝑟𝐿 =
𝜆𝐿
𝜀!
	

Rewriting	the	equation:	
	

𝐸 𝑟 =
𝜆

2𝜋𝑟𝜀!
=

2𝜆
4𝜋𝜀!𝑟

= 𝑘
2𝜆
𝑟 	

As	derived	earlier.	
	
Example	 Consider	an	infinite	plane	that	carries	a	uniform	surface	charge	𝜎.	Find	its	
electric	field.	
We	draw	a	Gaussian	box	extending	equal	distances	above	and	below	the	plane.	The	sides	
of	the	box	are	parallel	to	the	electric	field	and	the	top	and	bottom	of	the	box	are	
perpendicular	to	the	electric	field.	All	the	cross-sections	parallel	to	the	plane	are	
perpendicular	to	the	electric	field,	so	Gauss’s	law	becomes:	
	

𝐸(𝐴!"# + 𝐴!"##"$) =
𝜎𝐴!!"##
𝜀!

	

Where:	
𝐴!"# = 𝐴!"##"$ = 𝐴!"#$$ = 𝐴	

So:	

𝐸2𝐴 =
𝜎𝐴
𝜀!
	

Rewriting	the	equation:	
	

𝐸(𝑟) = 2
𝜎
𝜀!
	

As	derived	earlier.	
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Electrostatic	Potential	energy	
Imagine	two	charges	q	and	Q	a	distance	d	apart.	It	is	very	clear	that	work	had	to	be	done	
to	bring	those	charges	at	their	location.	The	amount	of	work	to	bring	a	collection	of	
charges	at	their	position	is	called	Electrostatic	Potential	Energy	U	[J].	For	the	
configuration	as	describes	the	amount	of	work	is:	
	

𝑈 = −𝑄𝑬 ∙ 𝑑𝒓 = 𝑄𝑬 ∙ 𝑑𝒓
!

!

!

!
= 𝑘

𝑞𝑄
𝑟!

!

!
𝑑𝑟 = −𝑘

𝑞𝑄
𝑟 !

!

= 𝑘
𝑞𝑄
𝑑   𝐽  	

	
Notice	that	U	is	independent	from	the	path	(E	is	conservative).	
	

Electric	Potential	
The	Electric	Potential	[V]	is	the	work	per	unit	charge	to	bring	an	imaginary	charge	from	
infinity	to	a	position.	Notice	that	the	electric	potential	can	be	different	at	different	
locations:	

𝑉 𝑟 = 𝑬 ∙ 𝑑𝒓
!

!
	

	
Since	E	is	a	conservative	field	we	can	choose	any	path	to	come	from	infinity	to	r,	so	the	
definition	of	the	electric	potential	is:	
	

𝑉 𝑟 ≡ 𝑬 ∙ 𝑑𝒍
!

!
	

	
In	some	cases	it	is	necessary	to	calculate	the	electric	potential	with	respect	to	a	
reverence	point	(in	stead	of	infinity).	Integrating	𝑬 ∙ 𝑑𝒍	from	the	common	reference	
point	to	r,	it	follows	that	V	also	satisfies	the	super	position	principle.	
	
The	Potential	Difference	between	two	points	a	and	b	is	
	

𝑉 𝒃 − 𝑉 𝒂 = 𝑬 ∙ 𝑑𝒍− 𝑬 ∙ 𝑑𝒍
!

!

!

!
= 𝑬 ∙ 𝑑𝒍

!

!
= − 𝑬 ∙ 𝑑𝒍

!

!
	

	
So	the	potential	difference	is:	
	

∆𝑉 =  𝑉 𝒃 − 𝑉 𝒂 = − 𝑬 ∙ 𝑑𝒍
!

!
	

	
The	fundamental	theorem	for	gradients	states	that	
	

𝑉 𝒃 − 𝑉 𝒂 = ∇𝑉
!

!
∙ 𝑑𝒍	

So	

∇𝑉
!

!
∙ 𝑑𝒍 = − 𝑬 ∙ 𝑑𝒍

!

!
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Since	this	is	true	for	any	points	a	and	b,	the	integrands	must	be	equal:	
	

𝑬 = −∇𝑉	
	
Assume	there	is	a	point	charge	q	at	the	origin.	Then	the	potential	is	
	

𝑉 𝑑 = −𝑬 ∙ 𝑑𝒓 = 𝑬 ∙ 𝑑𝒓
!

!

!

!
= 𝑘

𝑞
𝑟!

!

!
𝑑𝑟 = −𝑘

𝑞
𝑟 !

!
= 𝑘

𝑞
𝑑   𝑉  	

	
The	potential	due	to	a	point	charge	with	respect	to	infinity	is:	
	

𝑉! 𝒓 =  𝑘
𝑞
𝑟 	

	
Or	for	a	collection	of	charges	it	is:	
	

𝑉! 𝒓 =  𝑘
𝑞!
𝑟!

!

!!!

	

	
In	particular,	for	a	volume	charge	it	is:	
	

𝑉 𝒓 = 𝑘
𝜌 𝒓
𝑟 𝑑𝜏

 

!
	

	
	
Example	 Find	the	potential	inside	and	outside	a	spherical	shell	of	radius	R	that	
carries	a	uniform	surface	charge.	Set	the	reference	point	at	infinity.	
	
From	Gauss’s	law,	the	field	outside	is	
	

𝑬(𝒓) = 𝑘
𝑞
𝑟! 𝒓	

	
Where	q	is	the	total	charge	on	the	sphere.	The	field	inside	is	zero.	
	
Since,	the	field	of	a	spherical	shell	is	like	a	point	charge	for	𝑟 > 𝑅,	we	can	say	that	
	

𝑉 𝒓 =  𝑘
𝑞
𝑟 , 𝑓𝑜𝑟 𝑟 > 𝑅	

	
For	𝑟 < 𝑅,	we	know	that	𝑬 𝒓 = 0.	So	there	is	no	potential	difference	inside	the	sphere.	
Inside	the	sphere	is	an	equipotential.	So	the	potential	inside	the	sphere	equals	the	
potential	of	the	surface:		

𝑉 𝒓 =  𝑘
𝑞
𝑅 , 𝑓𝑜𝑟 𝑟 < 𝑅	
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Interrelation	between	charge,	E-field	and	Potential	
The	volumetric	charge	distribution	𝜌,	the	electric	field	E	and	the	electric	potential	V	are	
the	three	fundamental	quantities	of	electrostatics.	We	can	interrelate	these	quantities	by	
the	following	equations:	
	

𝜌 → 𝑬	
𝑬 𝒓 = 𝑘

𝜌
𝑟! 𝒓𝑑𝜏

 

!
	

	

𝑬 → 𝜌	
∇ ∙ 𝑬 =

𝜌
𝜀!
	

(Gauss’s	Law	in	differential	form)	

𝑬 → 𝑉	 𝑉 𝑟 ≡ 𝑬 ∙ 𝑑𝒍
!

!
	

	

𝑉 → 𝑬	 𝑬 = −∇𝑉	
	

𝑉 → 𝜌	
−∇!𝑉 =

𝜌
𝜀!
	

𝑉 → 𝑬 → 𝜌 	

𝜌 → 𝑽	
𝑉 𝒓 = 𝑘

𝜌
𝑟 𝑑𝜏

 

!
	

	
	

Conductors	
In	a	conductor	charge	is	free	to	move.	In	an	electrostatic	situation	all	the	charges	are	at	
rest,	meaning	there	is	no	electric	field	inside	a	conductor.	From	Gauss’s	law	follows:	If	E	
is	zero,	also	𝜌	is	zero.	Meaning	there	is	no	net	charge	inside	a	conductor.	If	there	is	any	
charge	on	the	conductor	it	cannot	be	at	the	inside,	so	it	must	be	on	the	surface.	Since	the	
E	field	is	zero	inside	the	conductor,	the	conductor	is	an	equipotential.	Even	the	potential	
difference	of	two	points	on	the	surface	is	zero;	because	the	integral	can	be	take	over	any	
path,	including	a	path	through	the	conductor.	The	electric	field	is	always	perpendicular	
to	equipotential	surfaces,	so	the	E	field	is	perpendicular	to	the	surface,	just	outside	a	
conductor.	
	
Example	 Suppose	an	uncharged	conductor	has	a	cavity	inside.	Somewhere	within	
the	cavity	is	a	charge	+q.	What	will	happen	inside	and	on	the	surface	of	the	conductor?	
	
Imagine	a	closed	Gaussian	surface	enclosing	the	cavity.	Since	we	know	the	E	field	inside	
the	conductor	is	zero,	there	must	be	a	net	charge	inside	the	Gaussian	surface.	There	is	
one	charge	q	inside	the	cavity,	so	a	total	charge	of	–q	must	be	distributed	over	the	
surface	of	the	cavity.		Then	if	the	conductor	as	a	whole	is	electrically	neutral,	there	must	
be	a	charge	+q	on	its	outer	surface.	
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Capacitors	
Suppose	we	have	two	conductors,	and	we	put	charge	+Q	on	one	and	–Q	on	the	other.	
Since	the	potential	is	constant	over	a	conductor,	we	can	speak	unambiguously	of	the	
potential	difference	between	them:	
	

𝑉 = 𝑉! − 𝑉! = − 𝑬 ∙ 𝑑𝒍
(!)

(!)
	

	
The	constant	of	proportionality	between	the	charge	Q	and	the	potential	difference	is	
called	capacitance	[F].	
	

𝐶 ≡
𝑄
𝑉	

	
Example	 Find	the	capacitance	of	a	parallel-plate	capacitor	consisting	of	two	metal	
surfaces	of	area	A	held	a	distance	d	apart.	
	
Assuming	d	is	small	compared	to	A,	we	use	for	a	single	plate	𝑬 𝒓 = !

!!!
𝒛.	

	

		
	

										–Q												+Q	
	
The	potential	difference	V	between	the	plates	is	therefore:	
	

𝑉 =
𝜎
𝜀!
𝑑 =

𝑄𝑑
𝐴𝜀!

	

So		

𝐶 =
𝑄
𝑉 =

𝑄
𝑄𝑑
𝐴𝜀!

=
𝐴𝜀!
𝑑 	

	
In	practice	the	capacitance	is	linearly	proportional	to	the	area	𝐴	and	inverse	
proportional	to	the	distance	𝑑.	Usually	there	is	a	dielectric	material	between	the	plates	
in	order	to	increase	the	capacitance.	Due	to	a	dielectric	the	electric	field	decreases,	so	
the	potential	difference	decreases	and	the	capacitance	increases.	The	capacitance	C	with	
the	use	of	a	dielectric	is	proportional	to	the	capacitance	without	dielectric:	
	

𝐶! = 𝜅𝐶	
𝑊ℎ𝑒𝑟𝑒 𝜅 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	

	
For	capacitors	in	Circuits:	𝐶!"#"$$%$ = 𝐶! + 𝐶!	and	

!
!!"#$"!

= !
!!
+ !

!!
	

		

From	the	picture	it	is	clear	that	the	E	field	between	the	plates	
is	two	times	the	field	for	a	single	plate:	𝑬 = 2 !

!!!
= !

!!
.	

Everywhere	else	the	field	is	zero.	
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Electrostatic	Potential	Energy	for	Capacitors	
To	charge	a	capacitor	in	the	first	place,	work	has	to	be	done.	The	work	done	to	bring	an	
infinitesimal	piece	of	charge	𝑑𝑞	from	low	to	higher	potential	is:	
	

𝑑𝑊 = 𝑉𝑑𝑞 =
𝑞
𝑐 𝑑𝑞	

	
So	the	total	work	necessary,	then	to	go	from	𝑞 = 0	to	𝑞 = 𝑄,	is:	
	

𝑊 =
𝑞
𝑐 𝑑𝑞

!

!
=
1
𝐶
1
2 𝑞

!

!

!

=
1
2
𝑄!

𝐶 	

Or,	since	𝑄 = 𝐶𝑉	
	

𝑈 =
1
2𝐶𝑉

!	
 𝑤ℎ𝑒𝑟𝑒 𝑉 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	

	
Suppose	we	have	a	parallel-plate	capacitor	consisting	of	two	metal	surfaces	of	area	A	
held	a	distance	d	apart.	Then	we	know:	
	

𝑉 =
𝜎
𝜀!
𝑑 =

𝑄𝑑
𝐴𝜀!

,𝐶 =
𝑄
𝑉 =

𝑄
𝑄𝑑
𝐴𝜀!

=
𝐴𝜀!
𝑑 ,𝑎𝑛𝑑 𝐸 =

𝑄
𝐴𝜀!

	

	
Substitute	both	results	in	the	equation	for	W:	
	

𝑊 =
1
2
𝐴𝜀!
𝑑

𝑄𝑑
𝐴𝜀!

!

=
1
2
𝐴𝜀!
𝑑 𝐸𝑑 ! =

1
2𝐴𝜀!𝐸

!𝑑 =
𝜀!
2 𝐸

!𝜏	

	
So	the	energy	stored	in	an	electric	field	E	is:	
	

𝑈! =
𝜀!
2 𝐸! 𝑑𝜏

 

!
	

	
Rewriting	this	formula	results	in	the	energy	density	of	an	electric	field:	
	

𝑢! =
𝜀!
2 𝐸

!	
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Electrodynamics	

Electric	current	
Electric	current	[A]	is	a	net	flow	of	electric	charge	crossing	a	given	area	per	unit	time:	
	

𝐼 =
𝑑𝑄
𝑑𝑡 	

	
The	direction	of	the	current	corresponds	with	the	flow	of	positive	charges.		
	
The	speed	at	which	the	charges	are	moving	is	called	drift	velocity.	The	current	is	related	
to	the	drift	velocity	by	the	following	equation:	
	

𝐼 =
𝑑𝑄
𝑑𝑡 = 𝑛𝑞𝐴

𝑑𝐿
𝑑𝑡 = 𝑛𝑞𝐴𝑣! 	

	
Where	𝜈! 	is	the	drift	velocity.	
	

𝑣! =
𝐼

𝑛𝑞𝐴	

	
Suppose	a	wire	carrying	line	charge	𝜆.	The	current	is	related	to	the	drift	velocity	by	the	
following	equation:	

𝐼 =
𝑑𝑄
𝑑𝑡 = 𝜆

𝑑𝑙
𝑑𝑡 = 𝜆𝑣! 	

Current	Density	
The	current	density	[Am-2]	is	the	current	per	unit	area.	Unlike	the	current,	the	current	
density	is	a	vector	quantity.	
	

𝑱 ≡
𝑑𝐼
𝑑𝑎!

	

	
In	general,	the	current	through	an	area	is	the	flux	of	the	current	density	over	that	area:	
	

𝐼 = 𝑱 ∙ 𝑑𝒂
 

!
	

	
Since	𝐼 = !"

!"
= !"#$

!"
= 𝜌𝐴𝑣! .	We	can	write	

!
!
= 𝜌𝑣! 	and	take	the	limit	𝐴 → 0:	

	
𝑱 = 𝜌𝒗! 	
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Ohm’s	Law	
Assume	a	single	charge,	q	in	vacuum	is	accelerated	by	an	electric	field	E.	The	force	on	the	
charge	is	given	by:	F=qE.	The	velocity	of	the	charge	is:	
	

𝒗 = 𝑎𝑡 =
𝑭
𝑚!

𝑡 =
𝑞𝑬
𝑚𝒒

𝑡	

We	know	that	

𝒗 =
𝑱
𝜌	

So:	
𝑞𝑬
𝑚𝒒

𝑡 =
𝑱
𝜌	

⟺	

𝑱 =
𝜌𝑞𝑬
𝑚𝒒

𝑡	

	
In	materials,	due	to	collisions,	the	charge	is	only	being	accelerated	for	a	very	short	
period	of	time.	The	process	of	accelerating	a	charge	and	collision	of	charges	with	the	
material	structure,	results	in	a	net	velocity	of	the	charge.	The	current	density	is	
proportional	to	the	electric	field.	The	proportionality	factor	𝜎	(not	to	be	confused	with	
surface	charge)	is	called	conductivity.	
	
Ohm’s	Law	

𝑱 = 𝜎𝑬	
	
Ohm’s	Law	can	be	represented	by	an	equivalent	equation:	
	

𝑱 =
𝑬
𝜌	

Where	𝜌 = !
!
	is	called	resistivity.	(Not	to	be	confused	with	charge	density)	

	
Suppose	we	have	a	wire	of	length	L	with	a	constant	electric	field	E.	Assume	J	is	constant	
and	in	the	direction	of	E.	
	

𝑱 =
𝑬
𝜌	

Then	

𝐼 = 𝑱 ∙ 𝑑𝒂
 

!
= 𝐼 =

𝑬
𝜌 ∙ 𝑑𝒂

 

!
=
𝐸𝐴
𝜌 =

𝐸𝐿
𝜌
𝐴
𝐿 = 𝑉

𝐴
𝜌𝐿	

Resulting	in:	
	
Macroscopic	Ohm’s	Law	

𝑉 = 𝐼𝑅	
	
Where	𝑅 = 𝜌 !

!
	is	called	resistance	[Ω].	
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Electric	Power	
In	order	to	move	electrons	work	has	to	be	done.	We	know	that	the	work	per	unit	charge	
is	called	eclectic	potential.	If	we	multiply	the	electric	potential	by	𝐼	we	have:	
	

𝑉𝐼 = 𝑉
𝑑𝑄
𝑑𝑡 =

𝑑𝑊
𝑑𝑇 	

	
We	call	this	expression	Electric	Power	[W].	
	

𝑃 =
𝑑𝑊
𝑑𝑇 = 𝑉𝐼	

	
Using	Ohm’s	law,	this	can	be	expressed	in	three	equivalent	ways:	
	

𝑃 = 𝑉𝐼 = 𝐼!𝑅 =
𝑉!

𝑅 	
	
The	power	in	a	resistance	is	dissipated	as	heat.	

Conduction	Mechanisms	
Conduction	occurs	in	different	types	of	materials.	In	metallic	conductors	is	current	the	
movement	of	free	electrons.	In	ionic	solution	positive	and	negative	ions	carry	current.	
Plasmas,	which	are	ionized	gases,	can	carry	a	current	because	of	the	present	of	ions	and	
electrons.	
In	Semiconductors,	current	is	the	movement	of	both	electrons	and	the	lac	of	electrons	in	
a	crystal	structure.	
A	Superconductor	offers	zero	resistance,	so	electric	power	can	be	transmitted	without	
loss.	Low	temperature	is	required	for	a	material	to	be	superconducting.	
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Magnetostatics	

Lorentz	Force	Law	
	
Lorentz	force	law	gives	the	force	[N]	on	a	test	charge	q,	moving	with	velocity	v	in	
magnetic	field	B:	
	

𝑭 = 𝑞 𝒗×𝑩 	
	
		
	

	
			
	

	
Where	𝑭	goes	into	the	paper	and	𝐹 = 𝑞𝑣𝐵 sin𝜃.	
	

Cyclotron	Motion	
The	Lorentz	force	is	always	perpendicular	to	the	velocity,	resulting	in	a	circular	motion	
of	the	charged	particle:	
	

𝑞𝑣𝐵 =
𝑚𝑣!

𝑟 ⟺ 𝑟 =
𝑚𝑣
𝑞𝐵 	

	
For	the	period	holds:	

𝑃 =
2𝜋𝑟
𝑣 =

2𝜋𝑚
𝑞𝐵 ⟺ 𝑓 =

𝑞𝐵
2𝜋𝑚	

Magnetic	Forces	do	no	Work	
If	q	moves	a	distance	𝑑𝒍 = 𝒗𝑑𝑡,	the	work	done	is:	
	

𝑑𝑊 = 𝑭 ∙ 𝑑𝒍 = 𝑞 𝒗×𝑩 ∙ 𝒗𝑑𝑡 = 0	
	
This	follows	because	 𝒗×𝑩 	is	perpendicular	to 𝒗,	so	 𝒗×𝑩 ∙ 𝒗 = 0	
	

Lorentz	Force	on	a	Current	
Suppose	we	have	a	wire	carrying	a	current	𝐼.	The	Lorentz	force	on	a	small	piece	of	wire	
𝑑𝒍	is:	

𝑑𝑭 = 𝑑𝑞
𝑑𝒍
𝑑𝑡×𝑩 =

𝑑𝑞
𝑑𝑡 𝑑𝒍×𝑩 = 𝐼 𝑑𝒍×𝑩 	

	
So	the	Lorentz	force	on	a	wire	is:	
	

𝑭 = 𝐼 𝑑𝒍×𝑩
 

!"#$
	

𝒗	

𝑩	𝑞	 𝜃	



	
17	

Magnetic	Field	due	to	Current	
The	Biot-Savart	law	gives	the	magnetic	field	𝑩	due	to	a	steady	current	𝐼	in	an	element	𝑑𝒍:	
	
Biot-Savart	Law	

𝑑𝑩 =
𝜇!
4𝜋

𝐼 𝑑𝒍×𝒓
𝒓! 	

	
The	constant	𝜇!	is	called	the	permeability	of	free	space.	
	
Example.	 Find	the	magnetic	field	anywhere	in	space,	due	to	an	infinite	straight	wire	
that	carries	a	current	𝐼.	
	
A	line	segment	dl	that	is	at	distance	r	(x	along	the	line	and	distance	s	perpendicular	to	
the	line)	produces	a	magnetic	field:	
	

𝑟 = 𝑥! + 𝑠!	
	

𝐵 = 𝑑𝐵
!

!!
=

𝜇!
4𝜋

𝐼 𝑑𝑥
𝑟!

𝑠
𝑟

!

!!
=

𝜇!𝐼𝑠
4𝜋

𝑑𝑥

𝑥! + 𝑠!
!
!
=
𝜇!𝐼𝑠
4𝜋

𝑥
𝑠! 𝑥! + 𝑠! !!

!!

!!
	

𝐵 =
𝜇!𝐼𝑠
4𝜋 lim

!→!

𝑥
𝑠! 𝑥! + 𝑠! !!

!
=
𝜇!𝐼𝑠
4𝜋 lim

!→!

1

𝑠! 1+ 𝑠
𝑝

!
−

−1

𝑠! 1+ 𝑠
−𝑝

!
=
𝜇!𝐼
2𝜋𝑠	

	

𝐵 =
𝜇!𝐼
2𝜋𝑠	

	
This	result	can	be	used	to	calculate	the	force	between	two	parallel	wires	of	length	L	a	
distance	d	apart,	carrying	current	𝐼!	and	𝐼!.	
	

𝐵! =
𝜇!𝐼!
2𝜋𝑠 	

By	the	Lorentz	force	law:	

𝑭!" = 𝐼! 𝑑𝒍×𝑩𝟏
!

!
= 𝐼!

𝜇!𝐼!
2𝜋𝑑 𝑑𝒍

!

!
=
𝜇!
2𝜋

𝐼!𝐼!
𝑑 𝐿	

Parallel	currents	attract.	
Antiparallel	currents	repel.	
	
Example.	Find	the	magnetic	field	a	distance	s	above	a	ring	with	radius	a	carrying	a	
current	𝐼.	

𝐵 𝑠 =
𝜇!𝐼
4𝜋

𝑑𝑙
𝑟!

 

!"#$

𝑎
𝑟 =

𝜇!𝐼
4𝜋

𝑎 𝑑𝑙

𝑎! + 𝑠!
!
!

 

!"#$
=
𝜇!𝐼
4𝜋

𝑎

𝑎! + 𝑠!
!
!
2𝜋𝑎 =

𝜇!𝐼
2

𝑎!

𝑎! + 𝑠!
!
!
	

For	very	large	values	of	s:	

𝐵 𝑠 =
𝜇!𝐼
2
𝑎!

𝑠! =
𝜇!𝐼
2𝜋

𝜋𝑎!

𝑠! =
𝜇!𝐼
2𝜋

𝐴
𝑠! =

𝜇!𝜇
2𝜋𝑠!	

	
Where	𝜇 = 𝐼𝐴	is	called	the	magnetic	dipole	moment.	For	an	N-turn	loop	𝝁 = 𝑁𝐼𝑨.	
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Magnetic	dipoles	
Nobody	has	even	found	a	magnetic	monopole.	So	the	magnetic	dipole	is	the	simplest	
configuration.	Magnetic	dipoles	produce	circular	magnetic	field	lines,	while	a	magnetic	
monopole,	if	existed,	would	be	the	source	of	a	radial	magnetic	field.	
	
Since	magnetic	field	lines	always	return	we	can	never	have	any	magnetic	flux	trough	a	
closed	surface:	
	

𝑩 ∙ 𝑑𝒂 = 0
 

𝑺
	

	

Torque	on	a	current	loop	
Suppose	we	have	a	square	loop	with	sides	a	carrying	a	current	𝐼	which	runs	clockwise.	
This	loop	was	placed	in	a	uniform	magnetic	field	𝑩	coming	out	of	the	paper.		

	
The	Lorentz	force	law	tells	us	there	is	a	force	𝐹!"# = 𝐼𝑎𝐵	pointing	
upwards	and	a	force	𝐹!"##"$ = 𝐼𝑎𝐵,	so	these	cancel.	
	
The	force	on	the	right	side	of	the	loop	is	𝐹!"#!! = 𝐼𝑎𝐵	pointing	to	
the	right.	The	force	on	the	left	side	is	𝐹!"#$ = 𝐼𝑎𝐵	pointing	left.	
	

	
When	we	turn	this	loop	around	the	vertical	axis,	the	forces	both	sides	do	not	align,	
resulting	in	a	torque:	
	

𝑇 = 𝒅 × 𝑭 = 𝒂×𝐼𝑎𝑩 = 𝝁×𝑩	
	
This	torque	can	be	used	to	make	a	DC	motor.	For	the	DC	motor	to	work,	the	current	has	
to	be	reversed	to	keep	the	loop	spinning.	
	

Magnetism	is	Matter	
All	magnetic	phenomena	are	due	to	electric	charges	in	motion.	Electrons	orbiting	
around	nuclei	are	magnetic	dipoles.	Due	to	their	random	orientation	most	materials	are	
non-magnetic.	But	in	the	facility	of	a	magnetic	field,	these	magnetic	dipoles	tend	to	align	
with	the	magnetic	field,	and	the	material	has	become	magnetically	polarized	or	
magnetized.	
Paramagnets	acquire	a	magnetization	parallel	to	the	applied	magnetic	field.	These	
materials	exhibit	much	weaker	magnetism.	
Diamagnets	acquire	a	magnetic	polarization	opposite	to	the	applied	B-field.	Magnets	
repel	these	materials.	
In	ferromagnetic	materials	the	magnetic	polarization	retains	after	the	external	field	has	
been	removed.	These	materials	become	permanent	magnets.	Most	ferromagnets	are	
made	from	iron.	

𝐼	

𝑩	
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Ampère’s	Law	
Suppose	an	infinite	wire	carrying	a	current	I	going	into	the	paper.	The	magnetic	field	
around	this	wire	is	in	clockwise	direction	and	has	magnitude	𝐵 = !!!

!!"
.	We	calculate	the	

closed	integral	 𝑩 ∙ 𝑑𝒓 
ℓ 	of	a	circular	path	of	radius	s.	𝑩	and	𝑑𝒓	are	always	pointing	in	the	

same	direction:	

𝑩 ∙ 𝑑𝒓
 

ℓ
=

𝜇!𝐼
2𝜋𝑠 𝑑𝑟

 

ℓ
=
𝜇!𝐼
2𝜋𝑠 𝑑𝑟

 

ℓ
=
𝜇!𝐼
2𝜋𝑠 2𝜋𝑠 = 𝜇!𝐼	

	
Notice	the	answer	is	independent	of	s.	In	fact	every	closed	loop	that	encloses	the	wire	
would	give	the	same	answer.	Suppose	we	have	a	bundle	of	wires.	Each	wire	that	passes	
through	the	loop	contributes	𝜇!𝐼	to	the	integral:	
	
Ampère’s	law	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# 	

	
	
If	the	flow	of	chare	is	represented	by	a	current	density	𝑱,	the	closed	loop	integral	
becomes:	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇! 𝑱 ∙ 𝑑𝒂

 

!
	

Applying	strokes	theorem:	

𝛁×𝑩 ∙ 𝑑𝒂
 

!
= 𝑩 ∙ 𝑑𝒍

 

ℓ
= 𝜇! 𝑱 ∙ 𝑑𝒂

 

!
	

Ampère’s	law	becomes:	
	
Ampère’s	law	in	differential	form	

𝛁×𝑩 = 𝜇!𝑱	
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Applications	of	Ampère’s	Law	
Suppose	we	have	an	infinite	wire	with	radius	𝑅	carrying	a	current	𝐼.	We	apply	Ampère’s	
law.	Choose	a	circular	path	of	radius	𝑟 > 𝑅	encircling	the	wire.	From	Ampère’s	law	we	
know	that	𝐵𝑙 = 𝜇!𝐼!"# ,	here:	

𝐵2𝜋𝑟 = 𝜇!𝐼!"# 	
Rewriting	the	equation:	

𝐵 𝑟 =
𝜇!𝐼
2𝜋𝑟	

As	derived	earlier.	
	
We	can	also	calculate	the	magnetic	field	inside	the	wire.	Now	we	choose	𝑟 < 𝑅.	Ampère’s	
law	becomes:	

𝐵2𝜋𝑟 = 𝜇!𝐼
𝑟!

𝑅!	
Rewriting	the	equation:	

𝐵 𝑟 =
𝜇!𝐼𝑟
2𝜋𝑅!	

	
Example.	 Consider	an	infinite	current	sheet	carrying	a	current	per	unit	length	𝑲.	We	
know	that	𝑩	encircles	the	current	clockwise.	Here,	by	symmetry,	𝑩	must	be	straight	
lines	along	the	sheet	parallel	to	𝑲.	
We	choose	our	Ampèrian	loop	to	be	rectangular,	with	top	and	bottom	parallel	to	𝑩	and	
sides	perpendicular	to	the	sheet,	such	that	it	encircles	an	enclosed	current	𝑲𝑙	and	𝑩 ∙ 𝑑𝒓	
only	has	a	contribution	to	the	integral	on	the	top	and	bottom	of	the	loop.	
	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# 	

	
Becomes:	

𝐵2𝑙 = 𝜇!𝑲𝑙	
	
Rewriting	the	equation:	

𝐵 =
𝜇!𝑲
2 	
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Example.		 A	solenoid	is	a	long,	tightly	wound	coil	of	wire.	For	𝐿 ≫ 𝐷,	the	magnetic	
field	inside	is	approximately	uniform	and	outside	is	near	zero.	We	calculate	the	magnetic	
field	inside	the	solenoid	by	choosing	again	a	rectangular	Ampèrian	loop	of	length	𝑙,	
where	the	top	of	the	loop	is	inside	the	solenoid	is	parallel	to	𝑩	and	the	bottom	is	outside	
the	solenoid.	
Since	there	is	no	magnetic	field	outside	the	solenoid	and	the	sides	of	the	loop	are	
perpendicular	to	the	B-field,	neither	the	top	nor	sides	contribute	to	the	integral	of	
Ampère’s	law.	All	we	have	left	is:	

𝐵𝑙 = 𝜇!𝐼!"# 	
	
Where	𝐼!"# = 𝑛𝐼𝑙,	where	𝑛	is	the	number	of	turns	per	unit	length.	
	

𝐵𝑙 = 𝜇!𝑛𝐼𝑙	
	
So	the	magnetic	field	in	a	solenoid	of	length	L	having	N	turns	is:	
	

𝐵 =
𝜇!𝑁𝐼
𝐿 	

	

Comparison	of	Electrostatics	and	Magnetostatics	

𝑬 ∙ 𝑑𝒂 =
𝑄!"#
𝜀!

 

𝑺
	

	
∇ ∙ 𝑬 =

𝜌
𝜀!
	

Gauss’s	law;	Electric	
monopoles	create	electric	

field.	

𝑬 ∙ 𝑑𝒍
 

ℓ
= 0	 	

𝛁×𝑬 = 0	
Electric	fields	are	
conservative.	

𝑩 ∙ 𝑑𝒂 = 0
 

𝑺
	 	

∇ ∙ 𝑩 = 0	
Magnetic	field	lines	are	

closed.	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# 	

	
𝛁×𝑩 = 𝜇!𝑱	

Ampère’s	law;	Steady	
currents	create	magnetic	

field.	
	
We	can	summarize	the	decay	for	different	charge	distributions	and	current	distributions	
in	a	table:	
	
Distribution	 Electric	field	 Magnetic	field	 Decay	

Dipole	 𝑬(𝒓) =
1

4𝜋𝜀!
𝑞𝑑
𝑟! 𝒓	

𝑩 𝒓 =
𝜇!
4𝜋𝑟! 3 𝝁 ∙ 𝒓 𝒓− 𝝁 	 1

𝑟!	

Point	charge	 𝑬(𝒓) =
1

4𝜋𝜀!
𝑞
𝑟! 𝒓	 Not	found	 1

𝑟!	

Infinite	line	 𝑬(𝒓) =
1

4𝜋𝜀!
2𝜆
𝑟 𝒓	

𝑩 𝑟 =
𝜇!𝜆𝒗×𝒓
2𝜋𝑟 	

	

1
𝑟	

Infinite	plate	 𝑬 𝒓 =
𝜎
2𝜀!

𝒓	 𝑩 𝑟 =
𝜇!𝑲×𝒓
2 𝑠𝑖𝑔𝑛 𝒓 	
	

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	
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Electromagnetic	Induction	

Faraday’s	Law	
When	a	magnet	approaches	a	loop	of	wire	a	current	starts	to	flow.	At	the	moment	the	
magnet	comes	to	rest	the	current	stops.	Faraday	had	an	ingenious	inspiration:	A	
changing	magnetic	field	induces	an	electric	field:	
	

ℰ = 𝑬 ∙ 𝑑𝒍
 

ℓ
= −

𝜕𝑩
𝜕𝑡 ∙ 𝑑𝒂

 

!
	

	
Rewriting	the	equation	in	terms	of	magnetic	flux	Φ! = 𝑩 ∙ 𝑑𝒂 

! ,	the	equation	becomes	
Faraday’s	law:	
	
Faraday’s	law	

𝑬 ∙ 𝑑𝒍
 

ℓ
= −

𝑑Φ!

𝑑𝑡 	

	
	
It	is	this	induced	magnetic	field	that	accounts	for	the	electromotive	force,	ℰ = 𝑬 ∙ 𝑑𝒍 

ℓ .	
Indeed	the	emf	is	equal	to	the	rate	of	change	of	magnetic	flux.	
	
We	can	convert	Faraday’s	law	into	differential	form	by	applying	strokes	theorem:	
	

𝛁×𝑬 ∙ 𝑑𝒂
 

!
= 𝑬 ∙ 𝑑𝒍

 

ℓ
= −

𝜕𝑩
𝜕𝑡 ∙ 𝑑𝒂

 

!
	

	
Faraday’s	law	becomes:	
	
Faraday’s	law	in	differential	form	

𝛁×𝑬 = −
𝜕𝑩
𝜕𝑡 	

	
	

Lenz’s	Law	
The	direction	of	the	induced	emf	and	current	is	described	by	the	minus	sign	in	Faraday’s	
law,	but	it’s	easier	to	get	the	direction	from	the	law	of	conservation	of	energy.	
	
Lenz’s	law	tells	that	the	direction	of	the	induced	current	must	be	such	that	it	opposes	the	
change	of	magnetic	flux.	In	other	words,	an	induced	current	cannot	support	a	rise	in	
magnetic	flux,	because	then	it	would	blow	up.	
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Applications	of	Faraday’s	Law	
Suppose	a	loop	of	wire	of	radius	𝑎	and	resistance	𝑅.	The	loop	is	in	a	changing	magnetic	
field	𝑩.	The	rate	of	change	is	𝐵 = !𝑩

!"
.	Then	the	induced	emf	is:	

	

ℰ = −
𝜕𝑩
𝜕𝑡 ∙ 𝑑𝒂

 

!
= −

𝑑𝐵
𝑑𝑡 𝑑𝑎

 

!
= −𝜋𝑎!𝐵	

	
So	the	induced	current	𝐼 = ℰ

!
= !!!!

!
𝐵	

	
Example.	Consider	a	bar	sliding	on	a	conducting	rails	with	speed	𝑣,	increasing	the	
circuit	area.	Calculate	the	induced	current.	
	

𝑑𝐴
𝑑𝑡 =

𝑑ℎ𝑥
𝑑𝑡 =

ℎ 𝑑𝑥
𝑑𝑡 = ℎ𝑣	

So	the	induced	emf	is:	

ℰ = −
𝜕𝑩
𝜕𝑡 ∙ 𝑑𝒂

 

!
= −𝐵

𝑑𝐴
𝑑𝑡 = −𝐵ℎ𝑣	

So	the	induced	current	is:	

𝐼 =
ℰ

𝑅!"#!$"%
=
−𝐵ℎ𝑣
𝑅!"#!$"%

	

	

Inductance	
Mutual	inductance	occurs	when	a	changing	current	in	one	circuit	results	in,	via	changing	
magnetic	flux,	in	an	induced	current	in	an	adjacent	circuit.	
	
Self-inductance	occurs	when	a	changing	current	in	a	circuit	results	in	an	induced	emf	
that	opposes	the	change	in	the	circuit	itself.	
	
The	self-inductance	[H]	of	a	circuit	is	defined	as	the	ratio	of	the	magnetic	flux	through	
the	circuit	to	the	current	in	the	circuit:	
	

Φ! = 𝐿𝐼	
	
Consider	a	long	solenoid	of	cross-sectional	area	𝐴,	length	𝑙	and	a	total	of	N	turns.	The	
magnetic	field	in	the	solenoid	is:	

𝐵 =
𝜇!𝑁𝐼
𝑙 	

Since	the	magnetic	field	is	perpendicular	to	the	cross-section	the	magnetic	flux	is:	
	

Φ! = 𝐵 𝑑𝒂
 

!
=
𝜇!𝑁𝐼
𝑙 𝑁𝐴 =

𝜇!𝑁!𝐼𝐴
𝑙 	

	
So	the	self-inductance	of	the	solenoid	is:	
	

𝐿 = 𝜇!𝑁! 𝐴
𝑙 	



	
24	

LRC-circuits	
The	self-inductance	L	is:	

Φ! = 𝐿𝐼	
	
And	by	Faradays	law:	
	

ℰ!"# = −
𝑑Φ!

𝑑𝑡 = −
𝑑𝐿𝐼
𝑑𝑡 = −𝐿

𝑑𝐼
𝑑𝑡	

So:	
	

ℰ!"# = −𝐿
𝑑𝐼
𝑑𝑡	

	
Such	a	differential	equation	can	be	derived	for	the	capacitance	as	well:	
	

𝐶 ≡
𝑄
𝑉	

Becomes:	

𝑉 =
𝑄
𝐶 	

	
Taking	the	derivative	with	respect	to	time:	
	

𝑑𝑉
𝑑𝑡 =

1
𝐶
𝑑𝑄
𝑑𝑡 =

𝐼
𝐶	

So:	
	

𝐼 = 𝐶
𝑑𝑉
𝑑𝑡 	

	
Example.	 Suppose	an	RL-circuit.	Calculate	the	current	𝐼	as	a	function	of	time.	Take	
for	𝑡 = 0	the	moment	you	connect	the	circuit	to	a	battery	of	V	volts.	
	
Apply	Faraday’s	Law:	
	

ℰ = 𝐼𝑅 − 𝑉 = −𝐿
𝑑𝐼
𝑑𝑡	

	
The	solution	of	the	differential	equation	is:	
	

𝐼 =
𝑉
𝑅 1− 𝑒!

!
!! 	
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Energy	in	Magnetic	Fields	
It	takes	energy	to	start	a	current	flowing	in	a	circuit.	This	is	not	the	power	delivered	by	
the	battery	in	the	steady	situation.	This	is	the	fixed	amount	of	you	get	back	when	the	
battery	is	removed	from	the	circuit.	
	
That	energy	stored	in	the	solenoids	magnetic	field	is:	
	

𝑊 = 𝑃 𝑑𝑡
 

!"#$
= −ℰ𝐼 𝑑𝑡

 

!"#$
= 𝐿

𝑑𝐼
𝑑𝑡 𝐼 𝑑𝑡

 

!"#$
= 𝐿 𝐼 𝑑𝐼

 

!"#$
=
1
2 𝐿𝐼

!	

	
So:	
	

𝑈! =
1
2 𝐿𝐼

!	
	
Since	this	energy	was	stored	inside	the	solenoids	magnetic	field.	Where	𝐵 = !!!"

!
,	so:	

𝐼 =
𝐵𝑙
𝜇!𝑁

	

And	the	self-inductance	𝐿 = 𝜇!𝑁! !
!
.	

	
The	stored	energy	becomes:	
	

𝑈! =
1
2 𝐿𝐼

! =
1
2 𝜇!𝑁

! 𝐴
𝑙

𝐵𝑙
𝜇!𝑁

!

=
𝐵!

2𝜇!
𝐴𝐿	

	
So	the	energy	stored	in	an	electric	field	B	is:	
	

𝑈! =
1
2𝜇!

𝐵! 𝑑𝜏
 

!
	

	
Rewriting	this	formula	results	in	the	energy	density	of	a	magnetic	field:	
	

𝑢! =
𝐵!

2𝜇!
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Paradox	in	Ampère’s	Law	
Suppose	a	capacitor	is	being	charged	by	a	current	𝐼.	The	electric	field	between	the	
capacitor	plates	is	𝐸 = !

!!
,	so:	

𝑑𝐸
𝑑𝑡 =

1
𝜀!
𝑑𝜎
𝑑𝑡 =

1
𝐴𝜀!

𝐴𝑑𝜎
𝑑𝑡 =

𝐼
𝐴𝜀!

	

	
The	magnetic	field	created	by	the	charging	wire	can	be	calculated	by	applying	Ampère’s	
law:	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# 	

Becomes:	
𝐵2𝜋𝑟 = 𝜇!𝐼!"# 	

So	the	magnetic	field	is:	
	

𝐵 =
𝜇!𝐼!"#
2𝜋𝑟 	

	
When	we	want	to	find	𝐼!"# 	it	depends	now	on	the	open	surface	we	define	attached	to	me	
Ampèrian	loop;	when	we	take	a	flat	surface	𝐼!"# = 𝐼,	but	when	we	choose	an	open	
surface	between	the	plates	of	the	capacitor	then	𝐼!"# = 0.	
	
Maxwell	came	with	a	solution	for	this	paradox:	The	changing	electric	field	!"

!"
	can	also	

induce	a	magnetic	field:	
𝑑𝐸
𝑑𝑡 =

𝐼
𝐴𝜀!

	

So:	

𝐼 = 𝐴𝜀!
𝑑𝐸
𝑑𝑡 = 𝜀!

𝑑Φ!

𝑑𝑡 	
	
Using	this	insight	Ampère’s	law	becomes:	
	
Modified	Ampère’s	law	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# + 𝜇!𝜀!

𝑑Φ!

𝑑𝑡 	

	
	
Where	𝜀!

!!!
!"
	is	called	the	displacement	current.	

	
Applying	strokes	theorem:	

𝛁×𝑩 ∙ 𝑑𝒂
 

!
= 𝑩 ∙ 𝑑𝒓

 

ℓ
= 𝜇! 𝑱 ∙ 𝑑𝒂

 

!
+ 𝜇!𝜀!

𝑑
𝑑𝑡 𝑬 ∙ 𝑑𝒂

 

!
	

Ampère’s	law	becomes:	
	

𝛁×𝑩 = 𝜇!𝑱+ 𝜇!𝜀!
𝑑𝑬
𝑑𝑡 	
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Maxwell’s	equations	
The	four	complete	laws	of	electromagnetism	are	collectively	called	Maxwell’s	equations:	

Gauss,	E	 𝑬 ∙ 𝑑𝒂 =
𝑄!"#
𝜀!

 

𝑺
	

	
∇ ∙ 𝑬 =

𝜌
𝜀!
	

Electric	field	lines	
begin	and	end	on	

charges.	

Gauss,	B	 𝑩 ∙ 𝑑𝒂 = 0
 

𝑺
	 	

∇ ∙ 𝑩 = 0	
Magnetic	field	lines	
don’t	begin	or	end.	

Faraday	 𝑬 ∙ 𝑑𝒍
 

ℓ
= −

𝑑Φ!

𝑑𝑡 	

	

𝛁×𝑬 = −
𝜕𝑩
𝜕𝑡 	

	

Changing	magnetic	
flux	produces	
electric	field.	

Modified	
Ampère	

𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝐼!"# + 𝜇!𝜀!

𝑑Φ!

𝑑𝑡 	

	
𝛁×𝑩 = 𝜇!𝑱+ 𝜇!𝜀!

𝑑𝑬
𝑑𝑡 	

Electric	current	and	
changing	electric	
flux	produce	
magnetic	field.	

	

Electromagnetic	Waves	
In	vacuum	there	are	no	electric	charges,	so	the	Maxwell	equations	become:	
	

𝑬 ∙ 𝑑𝒂 = 0
 

𝑺
	 𝑩 ∙ 𝑑𝒂 = 0

 

𝑺
	

𝑬 ∙ 𝑑𝒍
 

ℓ
= −

𝑑Φ!

𝑑𝑡 	 𝑩 ∙ 𝑑𝒍
 

ℓ
= 𝜇!𝜀!

𝑑Φ!

𝑑𝑡 	

	
Combining	the	last	two	equations	leads	to:	
	

𝜕𝐵
𝜕𝑥 = −𝜇!𝜀!

𝜕𝐸
𝜕𝑡 ⟺

𝜕!𝐵
𝜕𝑥! = −𝜇!𝜀!

𝜕!𝐸
𝜕𝑥𝜕𝑡⟺

𝜕!𝐵
𝜕𝑡𝜕𝑥 = −𝜇!𝜀!

𝜕!𝐸
𝜕𝑡! 	

And	
𝜕𝐸
𝜕𝑥 = −

𝜕𝐵
𝜕𝑡 ⟺

𝜕!𝐸
𝜕𝑥! = −

𝜕!𝐵
𝜕𝑥𝜕𝑡⟺

𝜕!𝐸
𝜕𝑡𝜕𝑥 = −

𝜕!𝐵
𝜕𝑡! 	

	
Now	we	can	conclude	that:	

𝜕!𝐸
𝜕𝑥! = −

𝜕!𝐵
𝜕𝑥𝜕𝑡 = 𝜀!𝜇!

𝜕!𝐸
𝜕𝑡! 	

And	
𝜕!𝐵
𝜕𝑥! = −𝜇!𝜀!

𝜕!𝐸
𝜕𝑥𝜕𝑡 = 𝜀!𝜇!

𝜕!𝐵
𝜕𝑡! 	

	
So	both	E	and	B	are	satisfying	the	wave	equation:	
	
	

𝜕!𝑦 𝑥, 𝑡
𝜕𝑥! =

1
𝑣!
𝜕!𝑦 𝑥, 𝑡
𝜕𝑡! 	

Where	𝑣 = !
!!!!

= 3.0 ∙ 10! = 𝑐	
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Solving	both	equations	with	respect	to	Maxwell’s	equations	give:	
	

𝐸 𝑥, 𝑡 = 𝐸! sin 𝑘𝑥 − 𝜔𝑡 	
	

𝐵 𝑥, 𝑡 = 𝐵! sin 𝑘𝑥 − 𝜔𝑡 	
	

𝜔
𝑘 =

1
𝜀!𝜇!

= 𝑐	

	
𝐸 = 𝑐𝐵	

	
The	constant	c	is	called	the	speed	of	light.	And	light	is	an	electromagnetic	wave	of	any	
frequency	or	wavelength.	These	electromagnetic	waves	come	in	a	vast	range	of	
frequencies	and	wavelengths,	from	radio	waves	to	gamma	rays.	The	human	eye	can	see	
electromagnetic	waves	with	wavelengths	of	about	380nm	to	780nm	as	visible	light.	
	

Poynting	vector	
Electromagnetic	wave	containing	electric	and	magnetic	fields	carry	energy.	The	energy	
density	of	electric	fields	is:	

𝑢! =
1
2 𝜀!𝐸

!	
	
And	je	energy	density	of	magnetic	fields	is:	
	

𝑢! =
1
2𝜇!

𝐵!	

	
Since	for	electromagnetic	waves	𝐵 = !

!
	and	𝑐 = !

!!!!
	the	equation	becomes:	

	

𝑢! =
1
2𝜇!

𝐸
𝑐

!

=
1
2𝜇!

𝐸!𝜀!𝜇! =
1
2 𝜀!𝐸

! = 𝑢! 	

	
So	the	total	energy	density	in	an	electromagnetic	wave	is:	
	

𝑢 = 𝑢! + 𝑢! = 2𝑢! = 𝜀!𝐸! = 𝜀!𝐸𝐵𝑐	
	
The	energy	passing	through	an	area	per	second	is	(power	per	square	meter):	
	

𝑑𝑈
𝑑𝑡 = 𝑢𝐴𝑐 = 𝜀!𝐸𝐵𝑐!𝐴 =

𝐸𝐵
𝜇!

𝐴	

	
We	define	the	Poynting	vector	𝑆 = !

!
!"
!"
,	so	𝑆	becomes:	

	

𝑆 ≡
𝑬×𝑩
𝜇!
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The	average	of	𝑆over	time	is:	
	

𝑆 =
1
𝑃

𝐸!𝐵!
𝜇!

 

!"#$%&
sin! 𝜃 𝑑𝑡 =

𝐸!𝐵!
2𝜇!

	

	
The	Average	intensity	is:	
	

𝑆 =
𝐸!𝐵!
2𝜇!

=
𝑐𝐵!!

2𝜇!
=

𝐸!!

2𝑐𝜇!
	

	

Radiation	pressure	
Besides	energy,	electromagnetic	waves	also	carry	momentum	𝑃.	
	

𝑃 = 𝑚𝑣	
	
Since	𝐹 = 𝑚 !"

!"
,	it	holds	that:	

𝐹 =
𝑑𝑝
𝑑𝑡 	

The	energy:	

𝑑𝑈 = 𝐹𝑑𝑟 =
𝑑𝑝
𝑑𝑡 𝑑𝑟 = 𝑑𝑝 𝑐	

	
So	the	momentum	of	an	electromagnetic	wave	is:	
	

𝑝 = 𝑈/𝑐	
	
The	average	momentum	per	unit	area	is:	
	

𝑝
𝐴 =

𝑈
𝐴𝑐 =

𝑆
𝑐	

	
We	can	also	call	this	radiation	pressure,	because	pressure	is:	
	

𝑃 =
𝐹
𝐴 =

𝑑𝑝
𝐴 𝑑𝑡 =

1
𝐴
𝑑𝑈
𝐶 𝑑𝑡 =

𝑆
𝑐	
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Polarization	
In	electromagnetic	waves	the	E-field	and	the	B-filed	are	perpendicular	to	each	other	and	
both	are	perpendicular	to	the	direction	of	propagation	of	the	wave.	But	any	orientation	
is	allowed.	
	
The	direction	of	the	electric	field	with	respect	to	the	direction	of	propagation	defines	the	
direction	of	the	wave’s	polarization.	
	
Typical	sources	of	light	emit	a	max	of	polarizations:	
The	sun	emits	a	combination	of	waves	with	uniformly	distribution	of	polarization.	
Sunlight	is	unpolarized.	
Partially	polarized	light	is	a	combination	of	waves	with	randomly	distributed	
polarizations	centred	around	one	direction.	
If	the	oscillation	of	the	electric	fields	is	in	a	single	direction	the	waves	are	linear	
polarized	and	when	the	direction	rotates	at	the	optical	frequency	the	wave	are	circular	
or	elliptical	polarized.	
	
In	some	materials	only	one	polarization	passes	the	material.	Only	the	polarization	along	
the	transmission	axis	can	pass.	Crossing	two	polarizers	results	in	no	transmission.	
	
When	a	wave	passes	a	polarizer	it	emerges	with	a	reduced	intensity	given	by	Malus’s	
law:	
	

𝑆 = 𝑆! cos! 𝜃	
	
When	unpolarized	light	passes	such	a	polarizer.	The	intensity	will	be:	
	

𝑆 =
𝑆!
2 	

	

Sources	of	Electromagnetic	waves	
Electromagnetic	waves	are	generated	ultimately	by	accelerated	eclectic	charge:	
Radio	waves	of	about	are	generated	by	alternating	currents	in	metal	antennas.	Molecular	
vibrations	and	rotation	produce	infrared	waves.	Visible	light	arises	largely	from	atomic-
scale	processes	and	X-rays	are	produces	in	the	rapid	deceleration	of	electric	charge.	
Lastly	Gamma	rays	result	from	nuclear	processes.	
	


