$$\vec{F}_{12} = \frac{kq_1q_2}{r^2} \hat{r} \quad (Coulomb's law)$$

$$\vec{E} = \int d\vec{E} = \int \frac{k}{r^2} dq^2 \hat{r} \qquad (field of a continuous) (charge distribution)$$

$$E = \frac{\sigma}{\epsilon_0} \qquad (field at conductor surface)$$

$$E = \frac{2k\lambda}{r} \qquad (field of electrical line)$$

$$\Delta v_{ss} = \frac{\Delta U_{ss}}{q} = -\int_{s}^{s} \vec{E} \cdot d\vec{r} \qquad (electric potential difference)$$

$$V_{sr} = V(r) = \frac{kq}{r} \qquad (point-charge potential)$$

$$V = \int dV = \int \frac{k}{q} \frac{q}{r} \qquad (potential of a continuous) (charge distribution)$$

$$U = \frac{1}{2}CV^2 \qquad (energy in a capacitor)$$

$$u_E = \frac{1}{2}\epsilon_0 E^2 \qquad (electric energy density)$$

$$I = \frac{dQ}{dt} \qquad (instantaneous current)$$

$$I = \frac{Q}{R} \qquad (Ohm's law, microscopic version)$$

$$P = IV \qquad (electric power)$$

$$\vec{F}_B = q\vec{v} \times \vec{B} \qquad (magnetic force)$$

$$\vec{F} = d\vec{I} \times \vec{B} \qquad (magnetic force on a current)$$

$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\hat{l} \times \hat{r}}{r^2}$ (Biot–Savart law)			
$\vec{\mu} = N \vec{IA}$ (magnetic dipole moment, <i>N</i> -turn current loop)			
$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$ (Poynting vector)			
Gauss for \vec{E}	$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$	How charges produce electric field; field lines begin and end on charges.	(29.2)
Gauss for \vec{B}	$\oint \overrightarrow{B} \cdot d\overrightarrow{A} = 0$	No magnetic charge; magnetic field lines don't begin or end.	(29.3)
Faraday	$\oint \vec{E} \cdot d\vec{r} = -\frac{d\Phi_B}{dt}$	Changing magnetic flux produces electric field.	(29.4)
Ampère	$\oint \vec{B} \cdot d\vec{r} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$	Electric current and changing electric flux produce magnetic field.	(29.5)
$B = \mu_0 n I$	(solenoid field)	$R = \frac{\rho L}{A}$	

$$\mathcal{E} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)}$$
$$U = \frac{1}{2}LI^2 \quad \text{(energy stored in inductor)}$$