$$
\begin{aligned}
& \vec{F}_{12}=\frac{k q_{1} q_{2}}{r^{2}} \hat{r} \quad \text { (Coulomb's law) } \\
& \vec{E}=\int d \vec{E}=\int \frac{k d q}{r^{2}} \hat{r} \quad\binom{\text { field of a continuous }}{\text { charge distribution }} \\
& E=\frac{\sigma}{\epsilon_{0}} \quad \text { (field at conductor surface) } \\
& E=\frac{2 k \lambda}{r} \quad \text { (field of electrical line) } \\
& \Delta V_{A B}=\frac{\Delta U_{A B}}{q}=-\int_{A}^{B} \vec{E} \cdot d \vec{r} \quad \text { (electric potential difference) } \\
& V_{\infty r}=V(r)=\frac{k q}{r} \quad(\text { point-charge potential }) \\
& V=\int d V=\int \frac{k d q}{r} \quad\binom{\text { potential of a continuous }}{\text { charge distribution }} \\
& C=\frac{Q}{V} \quad \text { (capacitance) } \\
& U=\frac{1}{2} C V^{2} \quad \text { (energy in a capacitor) } \\
& u_{E}=\frac{1}{2} \epsilon_{0} E^{2} \quad \text { (electric energy density) } \\
& u_{B}=\frac{B^{2}}{2 \mu_{0}} \quad \text { (magnetic-energy density) } \\
& I=\frac{d Q}{d t} \quad \text { (instantaneous current) } \\
& \vec{J}=\sigma \vec{E} \quad \text { (Ohm's law, microscopic version) } \\
& I=\frac{V}{R} \quad \text { (Ohm's law, macroscopic version) } \\
& P=I V \quad \text { (electric power) } \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad \text { (magnetic force) } \\
& \vec{F}=q \vec{E}+q \vec{v} \times \vec{B} \quad \text { (electromagnetic force) } \\
& \vec{F}=\vec{l} \times \vec{B} \quad \text { (magnetic force on a current) }
\end{aligned}
$$

$$
\begin{aligned}
\vec{d} & =\frac{\mu_{0}}{4 \pi} \frac{I d \dot{l} \times \hat{r}}{r^{2}} \quad(\text { Biot-Savart law }) \\
\vec{\mu} & =N I \vec{A} \quad\binom{\text { magnetic dipole moment, }}{N \text {-turn current loop }} \\
\vec{S} & =\frac{\vec{E} \times \vec{B}}{\mu_{0}} \quad \text { (Poynting vector) }
\end{aligned}
$$

$$
\text { Gauss for } \vec{E} \quad \oint \vec{E} \cdot d \vec{A}=\underline{q} \quad \begin{gathered}
\text { How charges produce electric } \\
\text { field; field lines begin and }
\end{gathered}
$$

$\mathcal{E}=-\frac{d \Phi_{B}}{d t} \quad$ (Faraday's law)
$U=\frac{1}{2} L I^{2} \quad$ (energy stored in inductor)
$R=\frac{\rho L}{A}$
$B=\mu_{0} n I \quad$ (solenoid field)

