
THE WAVE NATURE OF PARTICLES 

 39.1. IDENTIFY and SET UP: 
h h

p mv
λ = = .  For an electron, 319.11 10  kgm −= × .  For a proton, 271.67 10  kgm −= × . 

EXECUTE: (a) 
34

10
31 6

6.63 10  J s
1.55 10  m 0.155 nm

(9.11 10  kg)(4.70 10  m/s)
λ

−
−

−

× ⋅= = × =
× ×

 

(b) λ is proportional to 
1

m
, so 

31
10 14e

p e 27
p

9.11 10  kg
(1.55 10  m) 8.46 10  m

1.67 10  kg

m

m
λ λ

−
− −

−

⎛ ⎞ ⎛ ⎞×= = × = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
. 

 39.2. IDENTIFY and SET UP: For a photon, 
hc

E
λ

= .  For an electron or proton, 
h

p
λ

= and 
2

2

p
E

m
= , so 

2

22

h
E

mλ
= . 

EXECUTE: (a) 
15 8

9

(4.136 10  eV s)(3.00 10  m/s)
6.2 keV

0.20 10  m

hc
E

λ

−

−

× ⋅ ×= = =
×

 

(b) 
22 34

18
2 9 31

6.63 10  J s 1
6.03 10  J 38 eV

2 0.20 10  m 2(9.11 10  kg)

h
E

mλ

−
−

− −

⎛ ⎞× ⋅= = = × =⎜ ⎟× ×⎝ ⎠
 

(c)
31

e
p e 27

p

9.11 10  kg
(38 eV) 0.021 eV

1.67 10  kg

m
E E

m

−

−

⎛ ⎞ ⎛ ⎞×= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE: For a given wavelength a photon has much more energy than an electron, which in turn has more 
energy than a proton. 

 39.3. (a) 
34

24
10

(6.63 10 J s)
λ 2.37 10 kg m s.

λ (2.80 10 m)

h h
p

p

−
−

−

× ⋅= ⇒ = = = × ⋅
×

 

(b) 
2 24 2

18
31

(2.37 10 kg m s)
3.08 10 J 19.3 eV.

2 2(9.11 10 kg)

p
K

m

−
−

−

× ⋅= = = × =
×

 

 39.4. λ
2

h h

p mE
= =  

34
15

27 6 19

(6.63 10 J s)
7.02 10 m.

2(6.64 10 kg) (4.20 10 eV) (1.60 10 J eV)

−
−

− −

× ⋅= = ×
× × ×

 

 39.5. IDENTIFY and SET UP: The de Broglie wavelength is .
h h

p mv
λ = = In the Bohr model, ( / 2 ),  nmvr n h π=  

so /(2 ).nmv nh rπ=  Combine these two expressions and obtain an equation for λ  in terms of n. Then 

2 2
.n nr r

h
nh n

π πλ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EXECUTE: (a) For 10
1 1 01,  2  with 0.529 10  m, son r r aλ π −= = = = × 10 102 (0.529 10  m) 3.32 10  mλ π − −= × = ×  

12 ;rλ π=  the de Broglie wavelength equals the circumference of the orbit. 

(b) For 44,  2 / 4.n rλ π= =  
2

0 4 0 so 16 .nr n a r a= =  
10 9

0 02 (16 ) / 4 4(2 ) 4(3.32 10  m) 1.33 10  ma aλ π π − −= = = × = ×  

42 / 4;rλ π=  the de Broglie wavelength is 
1 1

4n
=  times the circumference of the orbit. 

EVALUATE: As n increases the momentum of the electron increases and its de Broglie wavelength decreases. For 
any n, the circumference of the orbits equals an integer number of de Broglie wavelengths. 

39
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 39.6. (a) For a nonrelativistic particle, 
2

, so
2

p
K

m
= .

2

h h

p Km
λ = =  

(b) 34 -19 -31 11(6.63 10  J s) 2(800 eV)(1.60 10  J/eV)(9.11 10 kg) 4.34 10  m.− −× ⋅ × × = ×  

 39.7. IDENTIFY: A person walking through a door is like a particle going through a slit and hence should exhibit wave 
properties. 
SET UP: The de Broglie wavelength of the person is λ = h/mv. 
EXECUTE: (a) Assume m = 75 kg and v = 1.0 m/s. 

λ = h/mv = (6.626 × 10–34 J ⋅ s)/[(75 kg)(1.0 m/s)] = 8.8 × 10–36 m 

EVALUATE: (b) A typical doorway is about 1 m wide, so the person’s de Broglie wavelength is much too small 
to show wave behavior through a “slit” that is about 1035 times as wide as the wavelength. Hence ordinary objects 
do not show wave behavior in everyday life. 

 39.8. Combining Equations 37.38 and 37.39 gives 2 1.p mc γ= −  

(a) 2 12( ) 1 4.43 10 m.
h

h mc
p

λ γ −= = − = ×  (The incorrect nonrelativistic calculation gives 125.05 10 m.)−×  

(b) 2 13( ) 1 7.07 10 m.h mc γ −− = ×  

 39.9. IDENTIFY and SET UP: A photon has zero mass and its energy and wavelength are related by Eq.(38.2). An 
electron has mass. Its energy is related to its momentum by 2 / 2E p m=  and its wavelength is related to its 

momentum by Eq.(39.1). 
EXECUTE: (a) photon 

34 8

19

(6.626 10  J s)(2.998 10  m/s)
 so 62.0 nm

(20.0 eV)(1.602 10  J/eV)

hc hc
E

E
λ

λ

−

−

× ⋅ ×= = = =
×

 

electron 
2 /(2 ) so 2E p m p mE= = = 31 19 242(9.109 10  kg)(20.0 eV)(1.602 10  J/eV) 2.416 10  kg m/s− − −× × = × ⋅  

/ 0.274 nmh pλ = =  

(b) photon 19/ 7.946 10  J 4.96 eVE hc λ −= = × =  

electron 27/  so / 2.650 10  kg m/sh p p hλ λ −= = = × ⋅  
2 24 5/(2 ) 3.856 10  J 2.41 10  eVE p m − −= = × = ×  

(c) EVALUATE: You should use a probe of wavelength approximately 250 nm. An electron with 250 nmλ =  has 
much less energy than a photon with 250 nm,λ =  so is less likely to damage the molecule. Note that /h pλ =  

applies to all particles, those with mass and those with zero mass. /E hf hc λ= =  applies only to photons and 
2 / 2E p m=  applies only to particles with mass. 

39.10. IDENTIFY: Any moving particle has a de Broglie wavelength. The speed of a molecule, and hence its de Broglie 
wavelength, depends on the temperature of the gas. 
SET UP: The average kinetic energy of the molecule is Kav = 3/2 kT, and the de Broglie wavelength is λ =  
h/mv = h/p. 

EXECUTE: (a) Combining Kav = 3/2 kT and K = p2/2m gives 3/2 kT = pav
2/2m and pav = 3mkT . The de Broglie 

wavelength is 
3

h h

p mkT
λ = = =

( )( )( )

34
10

27 23

6.626 10  J s
1.08 10  m

3 2 1.67 10  kg 1.38 10  J/K 273  K

−
−

− −

× ⋅ = ×
× × ×

. 

(b) For an electron, λ = h/p = h/mv gives 

( )( )
34

31 10

6.626 10  J s

9.11 10  kg 1.08 10  m

h
v

mλ

−

− −

× ⋅= =
× ×

 = 6.75 × 106 m/s 

This is about 2% the speed of light, so we do not need to use relativity. 
(c) For photon: 

E = hc/λ = (6.626 × 10–34 J ⋅ s)(3.00 × 108 m/s)/(1.08 × 10–10 m) = 1.84 × 10–15 J 

For the H2 molecule: Kav = (3/2)kT = 3/2 (1.38 × 10–23 J/K)(273 K) = 5.65 × 10–21 J 
For the electron: K = ½ mv2 = ½ (9.11 × 10–31 kg)(6.73 × 106 m/s)2 = 2.06 × 10–17 J 
EVALUATE: The photon has about 100 times more energy than the electron and 300,000 times more energy than 
the H2 molecule. This shows that photons of a given wavelength will have much more energy than particles of the 
same wavelength. 
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39.11. IDENTIFY and SET UP: Use Eq.(39.1). 

EXECUTE: 
34

34
3

6.626 10  J s
3.90 10  m

(5.00 10  kg)(340 m/s)

h h

p mv
λ

−
−

−

× ⋅= = = = ×
×

 

EVALUATE: This wavelength is extremely short; the bullet will not exhibit wavelike properties. 
39.12. (a) h mv v h mλ λ= → =  

Energy conservation: 21

2
e V mvΔ =  

2

2 2 34 2

2 19 31 9 2

(6.626 10 J s)
66.9 V

2 2 2 2(1.60 10 C) (9.11 10 kg) (0.15 10 m)

h
m

mv hm
V

e e em
λ

λ

−

− − −

⎛ ⎞
⎜ ⎟ × ⋅⎝ ⎠Δ = = = = =

× × ×
 

(b) 
34 8

15
photon 9

(6.626 10 J s) (3.0 10 m s)
1.33 10 J

0.15 10 m

hc
E hf

λ

−
−

−

× ⋅ ×= = = = ×
×

 

photone V K EΔ = =  and 
15

photon

19

1.33 10 J
8310 V

1.6 10 C

E
V

e

−

−

×Δ = = =
×

 

39.13. (a) 0.10 nmλ = .  6so ( ) 7.3 10 m sp mv h v h mλ λ= = = = × . 

(b) 21
150 eV

2
E mv= =  

(c) E / 12 KeVhc λ= =  
(d) The electron is a better probe because for the same λ  it has less energy and is less damaging to the structure 
being probed. 

39.14. IDENTIFY: The electrons behave like waves and are diffracted by the slit. 
SET UP: We use conservation of energy to find the speed of the electrons, and then use this speed to find their de 
Broglie wavelength, which is λ = h/mv. Finally we know that the first dark fringe for single-slit diffraction occurs 
when a sin θ = λ. 
EXECUTE: (a) Use energy conservation to find the speed of the electron: ½ mv2 = eV. 

v = 
( )19

31

2 1.60 10  C (100 V)2

9.11 10  kg

eV

m

−

−

×
=

×
 = 5.93 × 106 m/s 

which is about 2% the speed of light, so we can ignore relativity. 
(b) First find the de Broglie wavelength: 

( )( )
34

31 6

6.626 10  J s

9.11 10  kg 5.93 10  m/s

h

mv
λ

−

−

× ⋅= =
× ×

 = 1.23 × 10–10 m = 0.123 nm 

For the first single slit dark fringe, we have a sin θ = λ, which gives 
101.23 10  m

sin sin(11.5 )
a

λ
θ

−×= =
°

 = 6.16 × 10–10 m = 0.616 nm 

EVALUATE: The slit width is around 5 times the de Broglie wavelength of the electron, and both are much 
smaller than the wavelength of visible light. 

39.15. For m =1, sin
2

h
d θ

mE
λ = = . 

2 34 2
20

2 2 27 11 2 2

(6.63 10 J s)
6.91 10 J 0.432 eV.

2 sin 2(1.675 10 kg) (9.10 10 m) sin (28.6 )

h
E

md θ

−
−

− −

× ⋅= = = × =
× × °

 

39.16. Intensity maxima occur when sin λ.d θ m=  λ so sin .
2 2

h h mh
d θ

p ME ME
= = =  (Careful! Here, m is the order 

of the maxima, whereas M is the mass of the incoming particle.) 

(a) 
34

31 19

(2)(6.63 10  J s)

2 sin 2(9.11 10  kg)(188 eV)(1.60 10  J/eV) sin(60.6 )

mh
d

ME θ

−

− −

× ⋅= =
× × °

 

         102.06 10  m 0.206 nm.−= × =  

(b) m = 1 also gives a maximum. 
34

31 19 10

(1) (6.63 10 J s)
arcsin 25.8

2(9.11 10 kg) (188 eV) (1.60 10 J eV) (2.06 10 m)
θ

−

− − −

⎛ ⎞× ⋅⎜ ⎟= = °
⎜ ⎟× × ×⎝ ⎠

. 
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This is the only other one. If we let 3,m ≥  then there are no more maxima. 

(c) 
2 2 2 34 2

2 2 31 10 2 2

18

(1) (6.63 10 J s)

2 sin 2(9.11 10 kg) (2.60 10 m) sin (60.6 )

7.49 10  J 46.8 eV.

m h
E

Md θ

−

− −

−

× ⋅= =
× × °

= × =

 

Using this energy, if we let 2, then sin 1. Thus, there is no 2m θ m= > =  maximum in this case. 

39.17. The condition for a maximum is sin . ,  so arcsin .
h h mh

d m
p Mv dMv

θ λ λ θ ⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

 (Careful! Here, m is the order of 

the maximum, whereas M is the incoming particle mass.) 

(a) 11 arcsin
h

m θ
dMv

⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

 

         
34

6 31 4

6.63 10 J s
arcsin 2.07 .

(1.60 10 m) (9.11 10 kg) (1.26 10 m s)

−

− −

⎛ ⎞× ⋅= = °⎜ ⎟× × ×⎝ ⎠
 

34

2 6 31 4

(2) (6.63 10 J s)
2 arcsin 4.14 .

(1.60 10 m) (9.11 10 kg) (1.26 10 m s)
m θ

−

− −

⎛ ⎞× ⋅= ⇒ = =⎜ ⎟× × ×⎝ ⎠
°  

(b) For small angles (in radians!) , soy Dθ≅ 1

radians
(50.0 cm) (2.07 ) 1.81cm

180

π
y

⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
, 

2

radians
(50.0 cm) (4.14 ) 3.61 cm

180

π
y

⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 and 2 1 3.61 cm 1.81cm 1.81 cm.y y− = − =  

39.18. IDENTIFY: Since we know only that the mosquito is somewhere in the room, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is an uncertainty in its momentum. 
SET UP: The uncertainty principle is xx pΔ Δ ≥ . 

EXECUTE: (a) You know the mosquito is somewhere in the room, so the maximum uncertainty in its horizontal 
position is Δ x = 5.0 m. 
(b) The uncertainty principle gives xx pΔ Δ ≥ , and Δpx = mΔvx since we know the mosquito’s mass. This gives 

 xx m vΔ Δ ≥ , which we can solve for Δvx to get the minimum uncertainty in vx. 

34

-6

1.055 10  J s

(1.5 10  kg)(5.0 m)xv
m x

−× ⋅Δ = =
Δ ×

 = 1.4 × 10–29 m/s 

which is hardly a serious impediment! 
EVALUATE: For something as “large” as a mosquito, the uncertainty principle places a negligible limitation on 
our ability to measure its speed. 

39.19. (a) IDENTIFY and SET UP: Use / 2xx p h πΔ Δ ≥  to calculate xΔ  and obtain xvΔ  from this. 

EXECUTE: 
34

28
6

6.626 10  J s
1.055 10  kg m/s

2 2 (1.00 10  m)x

h
p

xπ π

−
−

−

× ⋅Δ ≥ = = × ⋅
Δ ×

 

28
321.055 10  kg m/s

8.79 10  m/s
1200 kg

x
x

p
v

m

−
−Δ × ⋅Δ = = = ×  

(b) EVALUATE: Even for this very small xΔ  the minimum xvΔ  required by the Heisenberg uncertainty principle 

is very small. The uncertainty principle does not impose any practical limit on the simultaneous measurements of 
the positions and velocities of ordinary objects. 

39.20. IDENTIFY: Since we know that the marble is somewhere on the table, there is an uncertainty in its position. The 
Heisenberg uncertainty principle tells us that there is therefore an uncertainty in its momentum. 
SET UP: The uncertainty principle is xx pΔ Δ ≥ . 

EXECUTE: (a) Since the marble is somewhere on the table, the maximum uncertainty in its horizontal position is 
Δ x = 1.75 m. 
(b) Following the same procedure as in part (b) of problem 39.18, the minimum uncertainty in the horizontal 
velocity of the marble is 

( )
341.055 10  J s

0.0100 kg (1.75 m)xv
m x

−× ⋅Δ = =
Δ

 = 6.03 × 10–33 m/s 

(c) The uncertainty principle tells us that we cannot know that the marble’s horizontal velocity is exactly zero, so 
the smallest we could measure it to be is 6.03 × 10–33 m/s, from part (b). The longest time it could remain on the 
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table is the time to travel the full width of the table (1.75 m), so t = x/vx = (1.75 m)/(6.03 × 10–33 m/s) = 2.90 × 1032 
s = 9.20 × 1024 years 
Since the universe is about 14 × 109 years old, this time is about 

24
14

9

9.0 10  yr
6 10

14 10  yr

× ≈ ×
×

 times the age of the universe! Don’t hold your breath! 

EVALUATE: For household objects, the uncertainty principle places a negligible limitation on our ability to 
measure their speed. 

39.21. Heisenberg’s Uncertainty Principles tells us that .
2x

h
x p

π
Δ Δ ≥  We can treat the standard deviation as a direct 

measure of uncertainty. 10 25 35 34Here  (1.2 10 m) (3.0 10 kg m s) 3.6 10 J s but 1.05 10 J s
2x

h
x p

π
− − − −Δ Δ = × × ⋅ = × ⋅ = × ⋅  

Therefore so the claim is .
2x

h
x p not valid

π
Δ Δ <  

39.22. (a) ( ) ( ) 2 ,xx m v h πΔ Δ ≥ and setting (0.010)x xv vΔ = and the product of the uncertainties equal to / 2h π  (for the 

minimum uncertainty) gives (2 (0.010) ) 57.9 m s.xv h πm x= Δ =  

(b) Repeating with the proton mass gives 31.6 mm s.  

39.23. 
34

32 13
3

(6.63 10 J s)
2.03 10 J 1.27 10 eV.

2 2 (5.2 10 s)

h
E

π t π

−
− −

−

× ⋅Δ > = = × = ×
Δ ×

 

39.24. IDENTIFY and SET UP: The Heisenberg Uncertainty Principle says 
2x

h
x p

π
Δ Δ ≥ .  The minimum allowed 

xx pΔ Δ is / 2h π .  x xp m vΔ = Δ . 

EXECUTE: (a) 
2x

h
m x v

π
Δ Δ = .  

34
4

27 12

6.63 10  J s
3.2 10  m/s

2 2 (1.67 10  kg)(2.0 10  m)x

h
v

m xπ π

−

− −

× ⋅Δ = = = ×
Δ × ×

 

(b) 
34

4
31

6.63 10  J s
4.6 10  m

2 2 (9.11 10  kg)(0.250 m/s)x

h
x

m vπ π

−
−

−

× ⋅Δ = = = ×
Δ ×

 

39.25. 
2

h
E t

π
Δ Δ = . 

34
14 4

21

(6.63 10 J s)
1.39 10 J 8.69 10 eV 0.0869 MeV.

2 2 (7.6 10 s)

h
E

π t π

−
−

−

× ⋅Δ = = = × = × =
Δ ×

 

2
5

2

0.0869 MeV
2.81 10 .

3097 MeV

E c

E c
−Δ = = ×  

39.26. 2 9 2 10 2. . 2.06 10 eV 3.30 10 J .
2

h
E t E mc m c c

π
−Δ Δ = Δ = Δ Δ = × = ×  

34
25

2 10

6.63 10 J s
3.20 10 s.

2 2 (3.30 10 J)

h
t

π mc π

−
−

−

× ⋅Δ = = = ×
Δ ×

 

39.27. IDENTIFY and SET UP: For a photon 
25

ph

1.99 10  J mhc
E

λ λ

−× ⋅= = .  For an electron 
22 2

e 2

1

2 2 2

p h h
E

m m mλ λ
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

EXECUTE: (a) photon 
25

17
ph 9

1.99 10  J m
1.99 10  J

10.0 10  m
E

−
−

−

× ⋅= = ×
×

 

electron 
34 2

21
e 31 9 2

(6.63 10  J s)
2.41 10  J

2(9.11 10  kg)(10.0 10  m)
E

−
−

− −

× ⋅= = ×
× ×

 

17
ph 3

21
e

1.99 10  J
8.26 10

2.41 10  J

E

E

−

−

×= = ×
×

 

(b) The electron has much less energy so would be less damaging. 
EVALUATE: For a particle with mass, such as an electron, 2~E λ− .  For a massless photon 1~E λ− . 

39.28. (a) 
2 2 2( ) ( )

,  so 419 V.
2 2 2

p h h
eV K V

m m me

λ λ= = = = =  

(b) The voltage is reduced by the ratio of the particle masses, 
31

27

9.11 10 kg
(419 V) 0.229 V.

1.67 10 kg

−

−

× =
×

 

39.29. IDENTIFY and SET UP: ( ) sin .x A kxψ =  The position probability density is given by 
2 2 2( ) sin .x A kxψ =  

EXECUTE: (a) The probability is highest where sin 1 so 2 / / 2,  1,  3,  5,kx kx x n nπ λ π= = = = … 
/ 4,  1,  3,  5,  so / 4,  3 / 4,  5 /4,x n n xλ λ λ λ= = =… … 
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(b) The probability of finding the particle is zero where 
2

0,ψ =  which occurs where sin 0kx =  and 

2 / ,  0,  1,  2,kx x n nπ λ π= = = … 
/ 2,  0,  1,  2,  so 0,  / 2,  ,  3 / 2,x n n xλ λ λ λ= = =… … 

EVALUATE: The situation is analogous to a standing wave, with the probability analogous to the square of the 
amplitude of the standing wave. 

39.30. sin ,ψ ωt∗ ∗Ψ =  so 
2 2* * 2 2sin sinψ ψ ωt ψ ωtΨ = Ψ Ψ = = .  

2Ψ  is not time-independent, so Ψ is not the 

wavefunction for a stationary state. 
39.31. IDENTIFY: To describe a real situation, a wave function must be normalizable. 

SET UP: |ψ |2 dV is the probability that the particle is found in volume dV. Since the particle must be somewhere, 
ψ  must have the property that ∫|ψ |2 dV = 1 when the integral is taken over all space. 

EXECUTE: (a) In one dimension, as we have here, the integral discussed above is of the form 2| ( ) | 1x dxψ
∞

−∞
=∫ . 

(b) Using the result from part (a), we have ( )
2

2 2

2

ax
ax ax e

e dx e dx
a

∞
∞ ∞

−∞ −∞
−∞

= = = ∞∫ ∫ . Hence this wave function cannot 

be normalized and therefore cannot be a valid wave function. 
(c) We only need to integrate this wave function of 0 to ∞ because it is zero for x < 0. For normalization we have 

21 | | dxψ
∞

−∞
= ∫  = ( )

2 2 2
2 2 2

0 0
0

2 2

bx
bx bx A e A

Ae dx A e dx
b b

∞−∞ ∞− −= = =
−∫ ∫ , which gives 

2

1
2

A

b
= , so 2A b= . 

EVALUATE: If b were positive, the given wave function could not be normalized, so it would not be allowable. 
39.32. (a) The uncertainty in the particle position is proportional to the width of ( )ψ x , and is inversely proportional to 

α . This can be seen by either plotting the function for different values of α , finding the expectation 

value 2 2 2x ψ x dx= ∫  for the normalized wave function or by finding the full width at half-maximum. The 

particle’s uncertainty in position decreases with increasing α . The dependence of the expectation value 2x〈 〉  on α  
may be found by considering 

2

2

2 2

2

2

x

x

x e dx

x

e dx

α

α

∞
−

−∞
∞

−

−∞

〈 〉 =
∫

∫
 =

221
ln

2
xe dxα

α

∞
−

−∞

⎡ ⎤∂− ⎢ ⎥∂ ⎣ ⎦
∫

21 1 1
ln ,

2 42
ue du

α αα

∞
−

−∞

⎡ ⎤∂= − =⎢ ⎥∂ ⎣ ⎦
∫  

where the substitution u xα= has been made. 
(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 

39.33. *( , ) and ( , )
x iy x iy

f x y f x y
x iy x iy

⎛ ⎞ ⎛ ⎞− += =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
 

2 * 1.
x iy x iy

f f f
x iy x iy

⎛ ⎞ ⎛ ⎞− +
⇒ = = ⋅ =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

 

39.34. The same. 
2 *( , , ) ( , , ) ( , , )ψ x y z ψ x y z ψ x y z=  

2 *( , , ) ( ( , , ) )( ( , , ) )i i iψ x y z e ψ x y z e ψ x y z eφ φ φ− += *( , , ) ( , , ).ψ x y z ψ x y z=   

The complex conjugate means convert all i’s to–i’s and vice-versa. 1.i ie eφ φ−⋅ =  
39.35. IDENTIFY: To describe a real situation, a wave function must be normalizable. 

SET UP: |ψ |2 dV is the probability that the particle is found in volume dV. Since the particle must be somewhere, 
ψ must have the property that ∫|ψ |2 dV = 1 when the integral is taken over all space. 
EXECUTE: (a) For normalization of the one-dimensional wave function, we have 

21 | | dxψ
∞

−∞
= ∫  = ( ) ( )0 02 2 2 2 2 2

0 0

bx bx bx bxAe dx Ae dx A e dx A e dx
∞ ∞− −

−∞ −∞
+ = +∫ ∫ ∫ ∫ . 

02 2 2
2

0

1
2 2

bx bxe e A
A

b b b

∞−

−∞

⎧ ⎫⎪ ⎪= + =⎨ ⎬−⎪ ⎪⎩ ⎭
, which gives 12.00  mA b −= =  = 1.41 m–1/2 

(b) The graph of the wavefunction versus x is given in Figure 39.35. 

(c) (i) 
5.00 m 2

0.500 m
| |P dxψ

+

−
= ∫  = 

5.00 m 2 2

0
2 bxA e dx

+ −∫ , where we have used the fact that the wave function is an even 

function of x. Evaluating the integral gives 

P = ( ) ( )
2 1

2 (0.500 m) 2.00
1

(2.00 m )
1 1 0.865

2.00 m
bA

e e
b

−
− −

−

− −− = − =  

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin. 
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(ii) P = ( )
2 1

0 02 2 2
1

2.00  m 1

2 2(2.00  m ) 2
bx bx A

Ae dx A e dx
b

−

−−∞ −∞
= = = =∫ ∫  = 0.500 

There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact that the 
wave function is symmetric about the y-axis. 

(iii) P = 
1.00 m 2 2

0.500 m

bxA e dx−∫  

= ( ) ( )-1 -1
2

2(2.00 m )(1.00 m) 2(2.00 m )(0.500 m) 4 21
0.0585

2 2

A
e e e e

b
− − − −− = − − =

−
 

EVALUATE: There is little chance of finding the particle in regions where the wave function is small. 

 
Figure 39.35 

39.36. Eq. (39.18): 
2 2

22

d ψ
Uψ Eψ

m dx

− + = .  Let 1 2Aψ Bψψ = +  

2 2

1 2 1 2 1 22
( ) ( ) ( )

2

d
Aψ Bψ U Aψ Bψ E Aψ Bψ

m dx

−
⇒ + + + = +

2 2 2 2
1 2

1 1 2 22 2
0.

2 2

d ψ d ψ
A Uψ Eψ B Uψ Eψ

m dx m dx

⎛ ⎞ ⎛ ⎞
⇒ − + − + − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

But each of 1ψ  and 2ψ  satisfy Schrödinger’s equation separately so the equation still holds true, for any A or B. 

39.37. 
2 2

1 1 2 22
.

2

d ψ
Uψ BEψ CE ψ

m dx
− + = +  If ψ were a solution with energy E, then 1 1 2 2 1 2BEψ CE ψ BEψ CEψ+ = +  or 

1 1 2 2( ) ( ) .B E E ψ C E E ψ− = −  This would mean that 1ψ  is a constant multiple of 2 1 2,  and andψ ψ ψ  would be wave 

functions with the same energy. However, 1 2E E≠ , so this is not possible, and ψ  cannot be a solution to Eq. (39.18). 

39.38. (a) 
34

31 19

(6.63 10  J s)

2 2(9.11 10  kg)(40 eV)(1.60 10 J eV)

h

mK
λ

−

− −

× ⋅= =
× ×

101.94 10  m.−= ×  

(b) 
31 1 2

7

19

(2.5 m)(9.11 10  kg)
6.67 10  s.

2 2(40 eV)(1.6 10 J eV)

R R

v E m

−
−

−

×= = = ×
×

 

(c) The width
λ

is 2 ' and ,y yw w R w v t p t m
a

= = Δ = Δ  where t is the time found in part (b) and a is the slit width. 

Combining the expressions for 282
, 2.65 10  kg m s.y

m R
w p

at

λ −Δ = = × ⋅  

(d) 0.40 m,
2 y

h
y μ

π p
Δ = =

Δ
 which is the same order of magnitude. 

39.39. (a) 12 eVE hc λ= =  

(b) Find E for an electron with 60.10 10  m.λ −= ×  27so 6.626 10  kg m sh p p hλ λ −= = = × ⋅ . 
2 4(2 ) 1.5 10  eVE p m −= = × .  4so 1.5 10  VE q V V −= Δ Δ = ×  

27 31 3(6.626 10  kg m s) (9.109 10  kg) 7.3 10 m sv p m − −= = × ⋅ × = ×  

(c) Same λ so same p. 2 27 8/(2 ) but now 1.673 10  kg so 8.2 10  eV andE p m m E− −= = × = × 88.2 10  V.V −Δ = ×  
27 27(6.626 10  kg m s) (1.673 10  kg) 4.0 m sv p m − −= = × ⋅ × =  

39.40. (a) Single slit diffraction: sina θ mλ= . 9 8sin (150 10  m)sin20 5.13 10  ma θλ − −= = × ° = ×  

h mv v h mλ λ= → = . 
34

4
31 8

6.626 10  J s
1.42 10 m s

(9.11 10  kg)(5.13 10  m)
v

−

− −

× ⋅= = ×
× ×

 

(b) 2sin 2a θ λ= . 
8

2 9

5.13 10  m
sin 2 2 0.684

150 10  m
θ

a

λ −

−

⎛ ⎞×= ± = ± = ±⎜ ⎟×⎝ ⎠
.  2 43.2θ = ± °  
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39.41. IDENTIFY: The electrons behave like waves and produce a double-slit interference pattern after passing through 
the slits. 
SET UP: The first angle at which destructive interference occurs is given by d sin θ = λ/2. The de Broglie 
wavelength of each of the electrons is λ = h/mv. 
EXECUTE: (a) First find the wavelength of the electrons. For the first dark fringe, we have d sin θ = λ/2, which gives 
(1.25 nm)(sin 18.0°) = λ/2 , and λ = 0.7725 nm. Now solve the de Broglie wavelength equation for the speed of the 
electron: 

34

31 9

6.626 10  J s

(9.11 10  kg)(0.7725 10  m)

h
v

mλ

−

− −

× ⋅= =
× ×

 = 9.42 × 105 m/s 

which is about 0.3% the speed of light, so they are nonrelativistic. 
(b) Energy conservation gives eV = ½ mv2 and 

V = mv2/2e = (9.11 × 10–31 kg)(9.42 × 105 m)2/[2(1.60 × 10–19 C)] = 2.52 V 

EVALUATE: The hole must be much smaller than the wavelength of visible light for the electrons to show diffraction. 
39.42. IDENTIFY: The alpha particles and protons behave as waves and exhibit circular-aperture diffraction after passing 

through the hole. 
SET UP: For a round hole, the first dark ring occurs at the angle θ for which sinθ = 1.22λ /D, where D is the 
diameter of the hole. The de Broglie wavelength for a particle is λ = h/p = h/mv. 
EXECUTE: Taking the ratio of the sines for the alpha particle and proton gives 

p p p

sin 1.22

sin 1.22
α α αθ λ λ

θ λ λ
= =  

The de Broglie wavelength gives λp = h/pp and λα = h/pα, so p

p p

sin /

sin /

ph p

h p p
α α

α

θ
θ

= = . Using K = p2/2m, we have 

2p mK= . Since the alpha particle has twice the charge of the proton and both are accelerated through the same 

potential difference, Kα = 2Kp. Therefore p p p2p m K=  and p p2 2 (2 ) 4p m K m K m Kα α α α α= = = . 

Substituting these quantities into the ratio of the sines gives 

p pp p

p p

2sin

sin 24

m Kp m

p mm K
α

α αα

θ
θ

= = =  

Solving for sin θα gives 
27

27

1.67 10  kg
sin  sin1 5.0

2(6.64 10  kg)αθ
−

−

×= °
×

 and θα = 5.3°. 

EVALUATE: Since sin θ is inversely proportional to the mass of the particle, the larger-mass alpha particles form 
their first dark ring at a smaller angle than the ring for the lighter protons. 

39.43. IDENTIFY: Both the electrons and photons behave like waves and exhibit single-slit diffraction after passing 
through their respective slits. 
SET UP: The energy of the photon is E = hc/λ and the de Broglie wavelength of the electron is λ = h/mv = h/p. 
Destructive interference for a single slit first occurs when a sin θ  = λ. 
EXECUTE: (a) For the photon: λ = hc/E  and  a sinθ  = λ. Since the a and θ are the same for the photons and 
electrons, they must both have the same wavelength. Equating these two expressions for λ gives a sin θ = hc/E.  

For the electron, λ = h/p = 
2

h

mK
 and a sin θ = λ. Equating these two expressions for λ gives a sin θ = 

2

h

mK
. 

Equating the two expressions for asinθ gives hc/E = 
2

h

mK
, which gives 7 1/22 (4.05 10  J )E c mK K−= = ×  

(b) 
22 2E c mK mc

K K K
= = .  Since v << c, mc2 > K, so the square root is >1. Therefore E/K > 1, meaning that the 

photon has more energy than the electron. 
EVALUATE: As we have seen in Problem 39.10, when a photon and a particle have the same wavelength, the 
photon has more energy than the particle. 

39.44. According to Eq.(35.4) 
6sin (40.0 10  m)sin(0.0300 rad)

600 nm.
2

d θ
m

λ
−×= = =  The velocity of an electron with 

this wavelength is given by Eq.(39.1) 
34

3
31 9

(6.63 10  J s)
1.21 10 m s.

λ (9.11 10  kg)(600 10  m)

p h
v

m m

−

− −

× ⋅= = = = ×
× ×
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Since this velocity is much smaller than c we can calculate the energy of the electron classically 

2 31 3 2 251 1
(9.11 10  kg)(1.21 10 m s) 6.70 10  J 4.19 eV.

2 2
K mv μ− −= = × × = × =  

39.45. The de Broglie wavelength of the blood cell is 
34

17
14 3

(6.63 10  J s)
λ 1.66 10 m.

(1.00 10  kg)(4.00 10 m s)

h

mv

−
−

− −

× ⋅= = = ×
× ×

 

We need not be concerned about wave behavior. 

39.46. (a) 

1 22

21
v

h
ch

p mv
λ

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
2 2 2

2 2 2 2 2
2 2

1
v h v

m v h h
c c

λ ⎛ ⎞
⇒ = − = −⎜ ⎟

⎝ ⎠
 

2
2 2 2 2 2

2

v
m v h h

c
λ⇒ + =  

2 2
2

2 2 2 2
2 2

2 2
1

h c
v

h m c
m

c h

λλ
⇒ = =

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 1 22
.

1

c
v

mc

h

λ
⇒ =

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

(b) 
2

1 22

1
1 (1 ) .

2
1

( )

c mc
v c c

h

h mc

λ

λ

⎛ ⎞⎛ ⎞= ≈ − = − Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎝ ⎠⎛ ⎞
⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  
2 2 2

2
.

2

m c

h

λΔ =  

(c) 151.00 10 m .
h

mc
λ −= × <<  

31 2 8 2 15 2
8

34 2

(9.11 10  kg) (3.00 10 m s) (1.00 10 m)
8.50 10

2(6.63 10  J s)

− −
−

−

× × ×Δ = = ×
× ⋅

 

8(1 Δ) (1 8.50 10 ) .v c c−⇒ = − = − ×  

39.47. (a) Recall .
2 2

h h h

p mE mq V
λ = = =

Δ
So for an electron: 

34
10

31 19

6.63 10  J s
λ 1.10 10  m.

2(9.11 10  kg)(1.60 10  C)(125 V)
λ

−
−

− −

× ⋅= ⇒ = ×
× ×

 

(b) For an alpha particle: 
34

13

27 19

6.63 10  J s
9.10 10  m.

2(6.64 10  kg)2(1.60 10  C)(125 V)
λ

−
−

− −

× ⋅= = ×
× ×

 

39.48. IDENTIFY and SET UP: The minimum uncertainty product is 
2x

h
x p

π
Δ Δ = .  1x rΔ = , where 1r is the radius of the 

1n = Bohr orbit.  In the 1n = Bohr orbit, 1 1 2

h
mv r

π
= and 1 1

12

h
p mv

rπ
= = . 

EXECUTE: 
34

24
10

1

6.63 10  J s
2.0 10  kg m/s

2 2 2 (0.529 10  m)x

h h
p

x rπ π π

−
−

−

× ⋅Δ = = = = × ⋅
Δ ×

.  This is the same as the magnitude of 

the momentum of the electron in the 1n = Bohr orbit. 
EVALUATE: Since the momentum is the same order of magnitude as the uncertainty in the momentum, the 
uncertainty principle plays a large role in the structure of atoms. 

39.49. IDENTIFY and SET UP: Combining the two equations in the hint gives 2( 2 )PC K K mc= +  and 
2

.
( 2 )

hc

K K mc
λ =

+
 

EXECUTE: (a) With 23K mc=  this becomes 
2 2 2

.
153 (3 2 )

hc h

mcmc mc mc
λ = =

+
 

(b) (i) 2 31 8 2 133 3(9.109 10  kg)(2.998 10  m/s) 2.456 10  J 1.53 MeVK mc − −= = × × = × =  
34

13

31 8

6.626 10  J s
6.26 10  m

15 15(9.109 10  kg)(2.998 10  m/s)

h

mc
λ

−
−

−

× ⋅= = = ×
× ×

 

(ii) K is proportional to m, so for a proton p e( / )(1.53 MeV) 1836(1.53 MeV) 2810 MeVK m m= = =  

λ  is proportional to 1/m, so for a proton 13 13 16
e p( / )(6.26 10  m) (1/1836)(6.626 10  m) 3.41 10  mm mλ − − −= × = × = ×  

EVALUATE: The proton has a larger rest mass energy so its kinetic energy is larger when 23 .K mc=  The proton 
also has larger momentum so has a smaller .λ  
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39.50. (a) 
34

20
15

(6.626 10  J s)
2.1 10  kg m s.

2 (5.0 10  m)π

−
−

−

× ⋅ = × ⋅
×

 

(b) 2 2 2 2 13( ) ( ) 1.3 10  J 0.82 MeV.K pc mc mc −= + − = × =  

(c) The result of part (b), about 61 MeV 1 10  eV= × , is many orders of magnitude larger than the potential energy 

of an electron in a hydrogen atom. 
39.51. (a) IDENTIFY and SET UP: / 2xx p h πΔ Δ ≥  

Estimate 15 as 5.0 10  m.x x −Δ Δ ≈ ×  

EXECUTE: Then the minimum allowed xpΔ  is 
34

20
15

6.626 10  J s
2.1 10  kg m/s

2 2 (5.0 10  m)x

h
p

xπ π

−
−

−

× ⋅Δ ≈ = = × ⋅
Δ ×

 

(b) IDENTIFY and SET UP: Assume 202.1 10  kg m/s.p −≈ × ⋅  Use Eq.(37.39) to calculate E, and then 2.K E mc= −  

EXECUTE: 2 2 2( ) ( )E mc pc= +  
2 31 8 2 14(9.109 10  kg)(2.998 10  m/s) 8.187 10  Jmc − −= × × = ×  

20 8 12(2.1 10  kg m/s)(2.998 10  m/s) 6.296 10  Jpc − −= × ⋅ × = ×  
14 2 12 2 12(8.187 10  J) (6.296 10  J) 6.297 10  JE − − −= × + × = ×  

2 12 14 12 196.297 10  J 8.187 10  J 6.215 10  J(1 eV/1.602 10 J) 39 MeVK E mc − − − −= − = × − × = × × =  

(c) IDENTIFY and SET UP: The Coulomb potential energy for a pair of point charges is given by Eq.(23.9). The 
proton has charge +e and the electron has charge –e. 

EXECUTE: 
2 9 2 2 19 2

14
15

(8.988 10  N m / C )(1.602 10  C)
4.6 10  J 0.29 MeV

5.0 10  m

ke
U

r

−
−

−

× ⋅ ×= − = − = − × = −
×

 

EVALUATE: The kinetic energy of the electron required by the uncertainty principle would be much larger than 
the magnitude of the negative Coulomb potential energy. The total energy of the electron would be large and 
positive and the electron could not be bound within the nucleus. 

39.52. (a) Take the direction of the electron beam to be the x-direction and the direction of motion perpendicular to the 

beam to be the y-direction.  
34

31 3

6.626 10  J s
0.23 m/s

2 2 (9.11 10  kg)(0.50 10  m)
y

y

p h
v

m m yπ π

−

− −

Δ × ⋅Δ = = = =
Δ × ×

 

(b) The uncertainty rΔ  in the position of the point where the electrons strike the screen is 

109.56 10 m,
2 2

y
y

x

p x h x
r v t

m v πm y K m
−Δ

Δ = Δ = = = ×
Δ

 

(c) This is far too small to affect the clarity of the picture. 

39.53. IDENTIFY and SET UP: 
2

h
E t

π
Δ Δ ≥ .  Take the minimum uncertainty product, so 

2

h
E

tπ
Δ =

Δ
, with 

178.4 10  st −Δ = × .  e264m m= .  
2

E
m

c

ΔΔ = . 

EXECUTE: 
34

18
17

6.63 10  J s
1.26 10  J

2 (8.4 10  s)
E

π

−
−

−

× ⋅Δ = = ×
×

.  
18

35
8 2

1.26 10  J
1.4 10  kg

(3.00 10  m/s)
m

−
−×Δ = = ×

×
.  

35
8

31

1.4 10  kg
5.8 10

(264)(9.11 10  kg)

m

m

−
−

−

Δ ×= = ×
×

 

39.54. IDENTIFY: The insect behaves like a wave as it passes through the hole in the screen. 
SET UP: (a) For wave behavior to show up, the wavelength of the insect must be of the order of the diameter of 
the hole. The de Broglie wavelength is λ = h/mv. 
EXECUTE: The de Broglie wavelength of the insect must be of the order of the diameter of the hole in the screen, 
so λ ≈ 5.00 mm. The de Broglie wavelength gives 

( )( )
34

6

6.626 10  J s

1.25 10  kg 0.00400  m

h
v

mλ

−

−

× ⋅= =
×

 = 1.33 × 10–25 m/s 

(b) t = x/v = (0.000500 m)/(1.33 × 10–25 m/s) = 3.77 × 1021 s = 1.4 × 1010 yr 
The universe is about 14 billion years old (1.4 × 1010 yr), so this time would be about 85,000 times the age of the 
universe. 
EVALUATE: Don’t expect to see a diffracting insect! Wave behavior of particles occurs only at the very small scale. 

39.55. IDENTIFY and SET UP: Use Eq.(39.1) to relate your wavelength and speed. 

EXECUTE: (a) 
34

356.626 10  J s
,  so 1.1 10  m/s

(60.0 kg)(1.0 m)

h h
v

mv m
λ

λ

−
−× ⋅= = = = ×  
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(b) 34 7 27
35

distance 0.80 m
7.3 10  s(1 y/3.156 10  s) 2.3 10  y

velocity 1.1 10  m/s
t −= = = × × = ×

×
 

Since you walk through doorways much more quickly than this, you will not experience diffraction effects. 
EVALUATE: A 1 kg object moving at 1 m/s has a de Broglie wavelength 346.6 10  m,λ −= ×  which is exceedingly 
small. An object like you has a very, very small λ  at ordinary speeds and does not exhibit wavelike properties. 

39.56. (a) 19 72.58 eV 4.13 10 J, with a wavelength of 4.82 10 m 482 nm
hc

E
E

λ− −= = × = = × =  

(b) 
34

28 9
7

(6.63 10 J s)
6.43 10 J 4.02 10 eV.

2 2 (1.64 10 s)

h
E

π t π

−
− −

−

× ⋅Δ = = = × = ×
Δ ×

 

(c) ,  so  ( ) 0, andE hc E E E Eλ λ λ λ λ= Δ + Δ = Δ = Δ , so 
28

7 16 7
19

6.43 10 J
(4.82 10 m) 7.50 10 m 7.50 10 nm.

4.13 10 J
E Eλ λ

−
− − −

−

⎛ ⎞×Δ = Δ = × = × = ×⎜ ⎟×⎝ ⎠
 

39.57. IDENTIFY: The electrons behave as waves whose wavelength is equal to the de Broglie wavelength. 
SET UP: The de Broglie wavelength is λ = h/mv, and the energy of a photon is E = hf = hc/λ. 
EXECUTE: (a) Use the de Broglie wavelength to find the speed of the electron. 

( )( )
34

31 9

6.626 10  J s

9.11 10  kg 1.00 10  m

h
v

mλ

−

− −

× ⋅= =
× ×

 = 7.27 × 105 m/s 

which is much less than the speed of light, so it is nonrelativistic. 
(b) Energy conservation gives eV = ½ mv2. 

V = mv2/2e = (9.11 × 10–31 kg)(7.27 × 105 m/s)2/[2(1.60 × 10–19 C)] = 1.51 V 

(c) K = eV = e(1.51 V) = 1.51 eV, which is about ¼ the potential energy of the NaCl crystal, so the electron would 
not be too damaging. 
(d) E = hc/λ = (4.136 × 10–15 eV s)(3.00 × 108 m/s)/(1.00 × 10–9 m) = 1240 eV 
which would certainly destroy the molecules under study. 
EVALUATE: As we have seen in Problems 39.10 and 39.43, when a particle and a photon have the same 
wavelength, the photon has much more energy. 

39.58. sin sin , and ( ) ( 2 ), and soθ θ h p h mE
λ λ
λ
′′ ′ ′ ′= = = arcsin sin

2

hθ θ
mEλ

⎛ ⎞′ = ⎜ ⎟′⎝ ⎠
. 

34

11 31 3 19

(6.63 10 J s)sin 35.8
arcsin 20.9

(3.00 10 m) 2(9.11 10 kg)(4.50 10 )(1.60 10 J eV)
θ

−

− − + −

⎛ ⎞× ⋅ °′ ⎜ ⎟= = °
⎜ ⎟× × × ×⎝ ⎠

 

39.59. (a) The maxima occur when 2 sind θ mλ=  as described in Section 38.7. 

(b) 
2

h h

p mE
λ = = .  

( )
34

10

37 19

(6.63 10 J s)
1.46 10 m 0.146 nm

2(9.11 10 kg)(71.0 eV) 1.60 10 J/eV
λ

−
−

− −

× ⋅= = × =
× ×

. 

1sin (Note: This
2

mθ m
d

λ− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 is the order of the maximum, not the mass.) 

10
1

11

(1)(1.46 10 m)
sin 53.3 .

2(9.10 10 m)

−
−

−

⎛ ⎞×
⇒ = °⎜ ⎟×⎝ ⎠

 

(c) The work function of the metal acts like an attractive potential increasing the kinetic energy of incoming 
electrons by .eφ  An increase in kinetic energy is an increase in momentum that leads to a smaller wavelength. A 
smaller wavelength gives a smaller angle θ  (see part (b)). 

39.60. (a) Using the given approximation, ( )2 21
( ) , ( )

2
E h x m kx dE dx kx= + = − 2 3( ),h mx  and the minimum energy 

occurs when 2 3 2( ), or .
h

kx h mx x
mk

= =  The minimum energy is then .h k m  

(b) They are the same. 
39.61. (a) IDENTIFY and SET UP: .U A x=  Eq.(7.17) relates force and potential. The slope of the function A x  is not 

continuous at 0x =  so we must consider the regions x > 0 and x < 0 separately. 

EXECUTE: For 
( )

0,   so  and .
d Ax

x x x U Ax F A
dx

> = = = − = −  For 0,   so  andx x x U Ax< = − = −  

( )
 .

d Ax
F A

dx

−= − = +  We can write this result as / ,F A x x= −  valid for all x except for x = 0. 
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(b) IDENTIFY and SET UP: Use the uncertainty principle, expressed as ,p x hΔ Δ ≈  and as in Problem 39.50 

estimate pΔ  by p and xΔ  by x. Use this to write the energy E of the particle as a function of x. Find the value of x 

that gives the minimum E and then find the minimum E. 

EXECUTE: 
2

2

p
E K U A x

m
= + = +  

,  so /px h p h x≈ ≈  

Then 
2

2
.

2

h
E A x

mx
≈ +  

For 
2

2
0, .

2

h
x E Ax

mx
> = +  

To find the value of x that gives minimum E set 0.
dE

dx
=  

2

3

2
0

2

h
A

mx

−= +  

1/ 32 2
3  and 

h h
x x

mA mA

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

With this x the minimum E is 
1/ 32 / 32 2

2 / 3 1/ 3 2 / 3 2 / 3 1/ 3 2 / 3
2

1

2 2

h mA h
E A h m A h m A

m h mA
− −⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

1/ 32 2
3
2

h A
E

m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

EVALUATE: The potential well is shaped like a V. The larger A is the steeper the slope of U and the smaller the 
region to which the particle is confined and the greater is its energy. Note that for the x that minimizes E, 2K = U. 

39.62. For this wave function, 1 2
1 2 , soiω t iω tψ e ψ e∗ ∗ ∗Ψ = +  

1 2 1 2 1 2 2 1( ) ( )2
1 2 1 2 1 1 2 2 1 2 2 1( )( )iω t iω t iω t iω t i ω ω t i ω ω t*ψ e ψ e ψ e ψ e ψ ψ ψ ψ ψ ψ e ψ ψ e .− − − −∗ ∗ ∗ ∗ ∗ ∗Ψ = Ψ Ψ = + + = + + +  

The frequencies 1 2andω ω  are given as not being the same, so 
2Ψ is not time-independent, and Ψ is not the 

wave function for a stationary state. 
39.63. The time-dependent equation, with the separated form for ( , )x tΨ  as given becomes 

2 2

2
( ) ( ) .

2

d ψ
i ψ iω U x ψ

m dx

⎛ ⎞
− = − +⎜ ⎟

⎝ ⎠
 

Since ψ  is a solution of the time-independent solution with energy ,E  the term in parenthesis is ,Eψ  and so 

, and ( ).ω E ω E= =  

39.64. (a) 
2

2
π E Eω π f .
h

= = =  
2 2π π p

k p .
hλ

= = =    
2 2 2( )

2 2 2

p k kω E K ω .
m m m

= = = = ⇒ =  

(b) From Problem 39.63 the time-dependent Schrödinger’s equation is 
2 2

2

( , )

2

ψ x t

m x

∂− +
∂

 

( , )
( ) ( , ) . ( ) 0 for a free particle, so

ψ x t
U x ψ x t i U x

t

∂= =
∂

2

2

( , ) 2 ( , )
.

ψ x t mi ψ x t

x t

∂ ∂= −
∂ ∂

 

Try ( , ) cos( )ψ x t kx ωt= − : 

 
2

2
2

( , ) sin( )

( , )
sin( ) and cos( ).

ψ
x t Aω kx ωt

t

ψ x t ψ
Ak kx ωt Ak kx ωt

x x

∂ = −
∂
∂ ∂= − − = −

∂ ∂

 

Putting this into the Schrödinger’s equation, 2 2
cos( ) sin( ).

mi
Ak kx ωt Aω kx ωt

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

 

This is not generally true for all andx t so is not a solution. 
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(c) Try ( , ) sin( )ψ x t A kx ωt= − : 

2
2

2

( , )
cos( )

( , ) ( , )
cos( ) and sin( ).

ψ x t
Aω kx ωt

t

ψ x t ψ x t
Ak kx ωt Ak kx ωt

x x

∂ = − −
∂

∂ ∂= − = − −
∂ ∂

 

Again, 2 2
sin( ) cos( ) is not generally true for

mi
Ak kx ωt Aω kx ωt all

⎛ ⎞− − = − −⎜ ⎟
⎝ ⎠

andx t  so is not a solution. 

(d) Try ( , ) cos( ) sin( )ψ x t A kx ωt B kx ωt= − + − : 

2
2 2

2

( , )
sin( ) cos( )

( , ) ( , )
sin( ) cos( ) and cos(( ) sin( ).

ψ x t
Aω kx ωt Bω kx ωt

t

ψ x t ψ x t
Ak kx ωt Bk kx ωt Ak kx ωt Bk kx ωt

x x

∂ = + − − −
∂

∂ ∂= − − + − = − − − −
∂ ∂

 

Putting this into the Schrödinger’s equation, 

2 2 2
cos( ) sin( ) ( sin( ) cos( )).

mi
Ak kx ωt Bk kx ωt Aω kx ωt Bω kx ωt− − − − = − + − − −  

Recall that 
2

.
2

kω
m

=  Collect sin and cos terms. 

2 2( ) cos( ) ( ) sin (A iB k kx ωt iA B k kx+ − + − − ) 0.ωt =  This is only true if B = iA. 

39.65. (a) IDENTIFY and SET UP: Let the y-direction be from the thrower to the catcher, and let the x-direction be 
horizontal and perpendicular to the y-direction. A cube with volume 3 3 3125 cm 0.125 10  mV −= = ×  has side length 

1/ 3 3 3 1/ 3(0.125 10  m ) 0.050 m.l V −= = × =  Thus estimate as 0.050 m.x xΔ Δ ≈  Use the uncertainty principle to 

estimate .xpΔ  

EXECUTE: / 2xx p h πΔ Δ ≥  then gives 
0.0663 J s

0.21 kg m/s
2 2 (0.050 m)x

h
p

xπ π
⋅Δ ≈ = = ⋅

Δ
 

(The value of h in this other universe has been used.) 
(b) IDENTIFY and SET UP: ( )xx v tΔ = Δ  is the uncertainty in the x-coordinate of the ball when it reaches the 

catcher, where t is the time it takes the ball to reach the second student. Obtain xvΔ  from .xpΔ  

EXECUTE: The uncertainty in the ball’s horizontal velocity is 
0.21 kg m/s

0.84 m/s
0.25 kg

x
x

p
v

m

Δ ⋅Δ = = =  

The time it takes the ball to travel to the second student is 
12 m

2.0 s.
6.0 m/s

t = =  The uncertainty in the x-coordinate 

of the ball when it reaches the second student that is introduced by is ( ) (0.84 m/s)(2.0 s) 1.7 m.x xv x v tΔ Δ = Δ = =  

The ball could miss the second student by about 1.7 m. 
EVALUATE: A game of catch would be very different in this universe. We don’t notice the effects of the 
uncertainty principle in everyday life because h is so small. 

39.66. (a) 
2 2 22 2 2 2( ).αx βy γzψ A x e− + += To save some algebra, let 2,u x= so that 

2ψ = 2 ( , )uue f y zα− .  

2 2

0 0

1 1
(1 2 ) ; the maximum occurs at ,  .

2 2
ψ u ψ u x

u
α

α α
∂ = − = = ±
∂

  

(b) ψ vanishes at 0,x =  so the probability of finding the particle in the 0x =  plane is zero. The wave function 

vanishes for .x = ±∞  

39.67. (a) IDENTIFY and SET UP: The probability is 
2 2 with 4P dV dV r drψ π= =  

EXECUTE: 
2 22 2 2 2 2 2 so 4r rA e P A r e drα αψ π− −= =  

(b) IDENTIFY and SET UP: P is maximum where 0
dP

dr
=  

EXECUTE: 
22 2( ) 0rd

r e
dr

α− =  

2 22 3 22 4 0r rre r eα αα− −− =  and this reduces to 32 4 0r rα− =  
r = 0 is a solution of the equation but corresponds to a minimum not a maximum. Seek r not equal to 0 so divide by 
r and get 22 4 0rα− =  



39-14 Chapter 39 

This gives 
1

2
r

α
=  (We took the positive square root since r must be positive.) 

EVALUATE: This is different from the value of r, r = 0, where 
2ψ  is a maximum. At 

2
0,  r ψ=  has a 

maximum but the volume element 24dV r drπ=  is zero here so P does not have a maximum at r = 0. 

39.68. (a) 
2 2

max( ) (0) 1kB k e B Bα−= = =  

2 2
h 2 2

h h

1
( ) ln(1 2)

2
kB k e kα α−= = ⇒ = −  h

1
ln(2) .kk ω

α
⇒ = =  

(b) Using integral tables: 
2 2 2 2/ 4

0
( ) cos ( ).

2
k xπψ x e kxdk eα α

α
∞ − −= =∫ ( )ψ x  is a maximum when x = 0. 

(c) 
2 2
h

2
/ 4 h

h 2

1
( ) when ln(1/2)

4 2 4
xπ xψ x e α

α α
− −= = ⇒ =  h x2 ln2x ωα⇒ = =  

(d) ( )1 ln 2
ln2 2 ln2 (2ln2) .

2 2 2
k

p x x

hω h h hω ω ω
π π π π

α
α

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

39.69. (a) 
0

0 0

0 0
0 0 00

1 sin sin
( ) ( )cos cos

k
k kx k xψ x B k kxdk kxdk

k k x k x

∞ ⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∫ ∫  

(b) ( )ψ x has a maximum value at the origin 0 0 0 0
0

0. ( ) 0 when so .
π

x ψ x k x π x
k

= = = = Thus the width of this 

function 0
0

2
2 .x

π
w x

k
= =  If 0

2
, .x

π
k w L

L
= = ( )B k  versus k is graphed in Figure 39.69a.  The graph of ( )ψ x versus 

x is in Figure 39.69b. 

(c) If 0 2 .xk w L
L

π= =  

(d) 0

0 0 0

2
.

2
k k

p x

hw π hw hk
w w h

π k k k

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 The uncertainty principle states that .
2p x

h
w w

π
≥  For us, no matter what 

0 is, ,p xk w w h= which is greater than .
2

h

π
 

   
Figure 39.69 

39.70. (a) For a standing wave, 2 ,n Lλ = and 
2 2 2 2

2

( )
.

2 2 8n

p h n h
E

m m mL

λ= = =  

(b) With 10 17
0 10.5292 10 m, 2.15 10 J 134 eV.L a E− −= = × = × =  
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39.71. Time of flight of the marble, from a free-fall kinematic equation is just 
2

2 2(25.0 m)
2.26 s

9.81 m s

y
t

g
= = = .  

( )
2

x
f i x i i

i

p ht
x x v t x t x

m x mπ
Δ⎛ ⎞Δ = Δ + Δ = Δ + = + Δ⎜ ⎟ Δ⎝ ⎠

 

To minimize fxΔ with respect to ixΔ , 
2

( )
0 1

( ) 2 ( )
f

i i

d x ht

d x πm x

Δ −= = +
Δ Δ

 

(min)
2i

ht
x

πm
⎛ ⎞⇒ Δ = ⎜ ⎟
⎝ ⎠

34
16 72 2(6.63 10 J s)(2.26 s)

(min) 2.18 10 m 2.18 10 nm.
2 2 (0.0200 kg)f

ht ht ht
x

πm πm πm π

−
− −× ⋅

⇒ Δ = + = = = × = ×  



 


