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RELATIVITY 

 37.1. IDENTIFY and SET UP: Consider the distance A to O′  and B to O′  as observed by an observer on the ground 
(Figure 37.1). 

 
Figure 37.1 

EXECUTE: Simultaneous to observer on train means light pulses from and A B′ ′  arrive at O′  at the same time. 
To observer at O light from A′  has a longer distance to travel than light from B′ so O will conclude that the pulse 
from ( )A A′  started before the pulse at ( ).B B′  To observer at O bolt A appeared to strike first. 

EVALUATE: Section 37.2 shows that if they are simultaneous to the observer on the ground then an observer on 
the train measures that the bolt at B′ struck first. 

 37.2. (a) 
2

1
γ 2.29.

1 (0.9)
= =

−
  6 6

γ (2.29) (2.20 10 s) 5.05 10 s.t τ − −= = × = ×  

(b) 8 6 3(0.900) (3.00 10 m s) (5.05 10 s) 1.36 10 m 1.36 km.d vt −= = × × = × =  

 37.3. IDENTIFY and SET UP: The problem asks for u such that 0

1
/ .

2
t tΔ Δ =  

EXECUTE: 0

2 21 /

t
t

u c

ΔΔ =
−

 gives ( )
2

2 8 8
0

1
1 / (3.00 10  m/s) 1 2.60 10  m/s

2
u c t t

⎛ ⎞= − Δ Δ = × − = ×⎜ ⎟
⎝ ⎠

; 0.867
u

c
=  

Jet planes fly at less than ten times the speed of sound, less than about 3000 m/s.  Jet planes fly at much lower 
speeds than we calculated for u. 

 37.4. IDENTIFY: Time dilation occurs because the rocket is moving relative to Mars. 
SET UP: The time dilation equation is 0t tγΔ = Δ , where t0 is the proper time. 

EXECUTE: (a) The two time measurements are made at the same place on Mars by an observer at rest there, so 
the observer on Mars measures the proper time. 

(b) 0 2

1
(75.0 s) 435 s

1 (0.985)
t tγ μ μΔ = Δ = =

−
 

EVALUATE: The pulse lasts for a shorter time relative to the rocket than it does relative to the Mars observer. 
 37.5. (a) IDENTIFY and SET UP: 8 7

0 2.60 10  s; 4.20 10  s.t t− −Δ = × Δ = ×  In the lab frame the pion is created and decays 

at different points, so this time is not the proper time. 

EXECUTE: 
22

0 0
22 2

 says 1
1 /

t u t
t

c tu c

Δ Δ⎛ ⎞Δ = − = ⎜ ⎟Δ⎝ ⎠−
 

22 8
0

7

2.60 10  s
1 1 0.998;  0.998

4.20 10  s

u t
u c

c t

−

−

⎛ ⎞Δ ×⎛ ⎞= − = − = =⎜ ⎟⎜ ⎟Δ ×⎝ ⎠ ⎝ ⎠
 

EVALUATE: ,u c<  as it must be, but u/c is close to unity and the time dilation effects are large. 
(b) IDENTIFY and SET UP: The speed in the laboratory frame is 0.998 ;u c=  the time measured in this frame is 

,tΔ  so the distance as measured in this frame is d u t= Δ  

EXECUTE: 8 7(0.998)(2.998 10  m/s)(4.20 10  s) 126 md −= × × =  

EVALUATE: The distance measured in the pion’s frame will be different because the time measured in the pion’s 
frame is different (shorter). 
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 37.6. γ 1.667=  

(a) 
8

0

1.20 10 m
0.300 s.

γ γ(0.800 )

t
t

c

Δ ×Δ = = =  

(b) 7(0.300 s) (0.800 ) 7.20 10 m.c = ×  

(c) 0 0.300 s γ 0.180 s.tΔ = =  (This is what the racer measures your clock to read at that instant.) At your origin 

you read the original 
8

8

1.20 10 m
0.5 s.

(0.800) (3 10 m s)

× =
×

 Clearly the observers (you and the racer) will not agree on the 

order of events! 
 37.7. IDENTIFY and SET UP: A clock moving with respect to an observer appears to run more slowly than a clock at rest 

in the observer’s frame. The clock in the spacecraft measurers the proper time 0.tΔ  365 days 8760 hours.tΔ = =  

EXECUTE: The clock on the moving spacecraft runs slow and shows the smaller elapsed time.  
2 2 6 8 2

0 1 / (8760 h) 1 (4.80 10 /3.00 10 ) 8758.88 ht t u cΔ = Δ − = − × × = .  The difference in elapsed times is 

8760 h 8758.88 h 1.12 h− = . 
 37.8. IDENTIFY and SET UP: The proper time is measured in the frame where the two events occur at the same point. 

EXECUTE: (a) The time of 12.0 ms measured by the first officer on the craft is the proper time. 

(b) 0

2 21 /

t
t

u c

ΔΔ =
−

gives 2 3 2
01 ( / ) 1 (12.0 10 / 0.190) 0.998u c t t c c−= − Δ Δ = − × = . 

EVALUATE: The observer at rest with respect to the searchlight measures a much shorter duration for the event. 

 37.9. IDENTIFY and SET UP: 2 2
0 1 / .l l u c= −  The length measured when the spacecraft is moving is 074.0 m; l l=  is 

the length measured in a frame at rest relative to the spacecraft. 

EXECUTE: 0 2 2 2

74.0 m
92.5 m.

1 / 1 (0.600 / )

l
l

u c c c
= = =

− −
 

EVALUATE:  0 .l l>  The moving spacecraft appears to an observer on the planet to be shortened along the 

direction of motion. 
37.10. IDENTIFY and SET UP: When the meterstick is at rest with respect to you, you measure its length to be 1.000 m, 

and that is its proper length, 0l .  0.3048 ml = . 

EXECUTE: 2 2
0 1 /l l u c= − gives 2 2 8

01 ( / ) 1 (0.3048/1.00) 0.9524 2.86 10  m/su c l l c c= − = − = = × . 

37.11. IDENTIFY and SET UP: The 2.2 μs lifetime is Δt0 and the observer on earth measures Δt.  The atmosphere is 
moving relative to the muon so in its frame the height of the atmosphere is l and l0 is 10 km. 
EXECUTE: (a) The greatest speed the muon can have is c, so the greatest distance it can travel in 62.2 10  s−×  is 

8 6(3.00 10  m/s)(2.2 10  s) 660 m 0.66 kmd vt −= = × × = = . 

(b) 
6

50

2 2 2

2.2 10  s
4.9 10  s

1 / 1 (0.999)

t
t

u c

−
−Δ ×Δ = = = ×

− −
 

8 5(0.999)(3.00 10  m/s)(4.9 10  s) 15 kmd vt −= = × × =  

In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime. 

(c) 2 2 2
0 1 / (10 km) 1 (0.999) 0.45 kml l u c= − = − =  

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime. 
37.12. IDENTIFY and SET UP: The scientist at rest on the earth’s surface measures the proper length of the separation 

between the point where the particle is created and the surface of the earth, so 0 45.0 kml = . The transit time 

measured in the particle’s frame is the proper time, 0tΔ . 

EXECUTE: (a) 
3

40
8

45.0 10  m
1.51 10  s

(0.99540)(3.00 10  m/s)

l
t

v
−×= = = ×

×
 

(b) 2 2 2
0 1 / (45.0 km) 1 (0.99540) 4.31 kml l u c= − = − =  

(c) time dilation formula:  2 2 4 2 5
0 1 / (1.51 10  s) 1 (0.99540) 1.44 10  st t u c − −Δ = Δ − = × − = ×  

from lΔ :  
3

5
8

4.31 10  m
1.44 10  s

(0.99540)(3.00 10  m/s)

l
t

v
−×= = = ×

×
 

The two results agree. 
37.13. (a) 0 3600 ml = . 

2 7 2

0 02 8 2

(4.00 10 m s)
1 (3600 m) 1 (3600 m)(0.991) 3568 m.

(3.00 10 m s)

u
l l l

c

×= − = − = =
×
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(b) 50
0 7

3600 m
9.00 10 s.

4.00 10 m s

l
t

u
−Δ = = = ×

×
 

(c) 5
7

3568 m
8.92 10 s.

4.00 10 m s

l
t

u
−Δ = = = ×

×
 

37.14. Multiplying the last equation of (37.21) by u and adding to the first to eliminate t gives 
2

2

1
1 ,

u
x ut x x

c
γ

γ
⎛ ⎞′ ′+ = − =⎜ ⎟
⎝ ⎠

 

and multiplying the first by 
2

u

c
 and adding to the last to eliminate x gives 

2

2 2

1
γ 1 ,

γ

u u
t x t t

c c

⎛ ⎞′ ′+ = − =⎜ ⎟
⎝ ⎠

 

2so γ( ) and γ( ),x x ut t t ux c′ ′ ′ ′= + = + which is indeed the same as Eq. (37.21) with the primed coordinates 

replacing the unprimed, and a change of sign of u. 

37.15. (a) 
2

0.400 0.600
0.806

1 1 (0.400) (0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) 
2

0.900 0.600
0.974

1 1 (0.900)(0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

(c) 
2

0.990 0.600
0.997 .

1 1 (0.990)(0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

37.16. γ 1.667(γ 5 3 if (4 5) ).u c= = =  

(a) In Mavis’s frame the event “light on” has space-time coordinates 0x′ =  and 5.00t′ = s, so from the result of 

Exercise 37.14 or Example  37.7, γ( )x x ut′ ′= +  and 9
2

γ γ 2.00 10 m, γ 8.33 s
ux

t t x ut t t
c

′⎛ ⎞′ ′ ′= + ⇒ = = × = =⎜ ⎟
⎝ ⎠

. 

(b) The 5.00-s interval in Mavis’s frame is the proper time 0tΔ  in Eq.(37.6), so 0γ 8.33 s,t tΔ = Δ = as in part (a). 

(c) 9(8.33 s) (0.800 ) 2.00 10c = ×  m, which is the distance x found in part (a). 

37.17. IDENTIFY: The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP: The relativistic velocity addition formula is 

21

x
x

x

v u
v

uv

c

−′ =
−

. 

EXECUTE: (a) For the pursuit ship to catch the cruiser, the distance between them must be decreasing, so the 
velocity of the cruiser relative to the pursuit ship must be directed toward the pursuit ship. 
(b) Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity v′  of the 
cruiser knowing the velocity of the primed frame u  and the velocity of the cruiser v  in the unprimed frame (Tatooine). 

2

0.600 0.800
0.385

1 (0.600) (0.800)1

x
x

x

v u c c
v c

uv

c

− −′ = = = −
−−

 

The result implies that the cruiser is moving toward the pursuit ship at 0.385 .c  
EVALUATE: The nonrelativistic formula would have given –0.200c, which is considerably different from the 
correct result. 

37.18. Let yu be the y-component of the velocity of S′ relative to S.  Following the steps used in the derivation of 

Eq.(37.23) we get 
21 /

y y
y

y y

v u
v

u v c

′ +
=

′+
. 

37.19. IDENTIFY and SET UP: Reference frames S and S′  are shown in Figure 37.19. 

 

Frame S is at rest in the 
laboratory. Frame S′  is 
attached to particle 1. 
 

Figure 37.19  
u is the speed of S′  relative to S; this is the speed of particle 1 as measured in the laboratory. Thus 0.650 .u c= +  
The speed of particle 2 in S′  is 0.950c. Also, since the two particles move in opposite directions, 2 moves in the 

x′−  direction and 0.950 .xv c′ = −  We want to calculate ,xv  the speed of particle 2 in frame S; use Eq.(37.23). 
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EXECUTE: 
2 2

0.950 0.650 0.300
0.784 .

1 / 1 (0.950 )( 0.650 ) / 1 0.6175
x

x

x

v u c c c
v c

uv c c c c

′ + − + −= = = = −
′+ + − −

 The speed of the second particle, 

as measured in the laboratory, is 0.784c. 
EVALUATE:  The incorrect Galilean expression for the relative velocity gives that the speed of the second particle 
in the lab frame is 0.300c. The correct relativistic calculation gives a result more than twice this. 

37.20. IDENTIFY and SET UP: Let S be the laboratory frame and let S′ be the frame of one of the particles, as shown in 
Figure 37.20. Let the positive x direction for both frames be from particle 1 to particle 2. In the lab frame particle 1 
is moving in the +x direction and particle 2 is moving in the x− direction. Then 0.9520u c= and 0.9520v c= − . 
v′ is the velocity of particle 2 relative to particle 1. 

EXECUTE: 
2 2

0.9520 0.9520
0.9988

1 / 1 (0.9520 )( 0.9520 ) /

v u c c
v c

uv c c c c

− − −′ = = = −
− − −

. The speed of particle 2 relative to particle 1 

is 0.9988c . 0v′ < shows particle 2 is moving toward particle 1. 

 
Figure 37.20 

37.21. IDENTIFY: The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP: The relativistic velocity addition formula is 

21

x
x

x

v u
v

uv

c

−′ =
−

. 

EXECUTE: In the relativistic velocity addition formula for this case, xv ′  is the relative speed of particle 1 with 

respect to particle 2, v is the speed of particle 2 measured in the laboratory, and u is the speed of particle 1 
measured in the laboratory, u = – v. 

2 2 2

( ) 2

1 ( ) 1x

v v v
v

v v c v c

− −′ = =
− − +

. 2
2

2 0x
x

v
v v v

c

′ ′− + =  and 2 2 3(0.890 ) 2 (0.890 ) 0c v c v c− + = . 

This is a quadratic equation with solution v = 0.611c (v must be less than c). 
EVALUATE: The nonrelativistic result would be 0.445c, which is considerably different from this result. 

37.22. IDENTIFY and SET UP: Let the starfighter’s frame be S and let the enemy spaceship’s frame be S′ . Let the 
positive x direction for both frames be from the enemy spaceship toward the starfighter. Then 0.400u c= + . 

0.700v c′ = + .  v  is the velocity of the missile relative to you. 

EXECUTE: (a) 
2

0.700 0.400
0.859

1 / 1 (0.400)(0.700)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) Use the distance it moves as measured in your frame and the speed it has in your frame to calculate the time it 

takes in your frame.  
9

8

8.00 10  m
31.0 s

(0.859)(3.00 10  m/s)
t

×= =
×

. 

37.23. IDENTIFY and SET UP: The reference frames are shown in Figure 37.23. 

 

S = Arrakis frame 
S′  = spaceship frame 
The object is the rocket. 
 

Figure 37.23  

u is the velocity of the spaceship relative to Arrakis. 
0.360 ;  0.920x xv c v c′= + = +  

(In each frame the rocket is moving in the positive coordinate direction.) 
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Use the Lorentz velocity transformation equation, Eq.(37.22):  
2
.

1 /
x

x
x

v u
v

uv c

−′ =
−

 

EXECUTE: 
2 2 2

 so  and 1
1 /

x x x x x
x x x x x

x

v u v v v v
v v u v u u v v

uv c c c

′ ′− ⎛ ⎞ ⎛ ⎞′ ′ ′= − = − − = −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
 

2 2

0.360 0.920 0.560
0.837

1 / 1 (0.360 )(0.920 ) / 0.6688
x x

x x

v v c c c
u c

v v c c c c

′− −= = = − = −
′− −

 

The speed of the spacecraft relative to Arrakis is 80.837 2.51 10  m/s.c = ×  The minus sign in our result for u means 
that the spacecraft is moving in the -direction,x−  so it is moving away from Arrakis. 
EVALUATE:  The incorrect Galilean expression also says that the spacecraft is moving away from Arrakis, but 
with speed 0.920c – 0.360c = 0.560c. 

37.24. IDENTIFY: We need to use the relativistic Doppler shift formula. 

SET UP: The relativistic Doppler shift formula, Eq.(37.25), is 0

c u
f f

c u

+=
−

. 

EXECUTE: 2 2
0

c u
f f

c u

+=
−

.  2 2
0( ) ( )c u f c u f− = + . 2 2 2 2

0 0cf uf cf uf− = + . 2 2 2 2
0 0cf cf uf uf− = + and 

2 2 2
0 0

2 2 2
0 0

( ) ( / ) 1

( / ) 1

c f f f f
u c

f f f f

− −= =
+ +

. 

(a) For f/f0 = 0.95, u = – 0.051c moving away from the source. 
(b) For f/f0 = 5.0, u = 0.923c moving towards the source. 
EVALUATE: Note that the speed required to achieve a 10 times greater Doppler shift is not 10 times the original 
speed. 

37.25. IDENTIFY and SET UP: Source and observer are approaching, so use Eq.(37.25):  0.
c u

f f
c u

+=
−

 Solve for u, the 

speed of the light source relative to the observer. 

(a) EXECUTE: 2 2
0

c u
f f

c u

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

2 2 2
2 2 0 0

0 2 2 2
0 0

( ) ( / ) 1
( ) ( )  and 

( / ) 1

c f f f f
c u f c u f u c

f f f f

⎛ ⎞− −− = + = = ⎜ ⎟+ +⎝ ⎠
 

0 675 nm, 575 nmλ λ= =  
2

8 7
2

(675 nm/575 nm) 1
0.159 (0.159)(2.998 10  m/s) 4.77 10  m/s;

(675 nm/575 nm) 1
u c c

⎛ ⎞−= = = × = ×⎜ ⎟+⎝ ⎠
 definitely speeding 

(b) 7 7 84.77 10  m/s (4.77 10  m/s)(1 km/1000 m)(3600 s/1 h) 1.72 10  km/h.× = × = ×  Your fine would be 8$1.72 10×  

(172 million dollars). 
EVALUATE:  The source and observer are approaching, so 0 0and .f f λ λ> <  Our result gives ,u c<  as it must. 

37.26.  Using ( )0.600 3 5u c c= − = −  in Eq.(37.25) gives 

( )
( ) 0 0 0

1 3 5 2 5
2.

1 3 5 8 5
f f f f

−
= = =

+
 

37.27. IDENTIFY and SET UP: If F  is parallel to then v F  changes the magnitude of v  and not its direction. 

2 21 /

dp d mv
F

dt dt v c

⎛ ⎞
= = ⎜ ⎟

−⎝ ⎠
 

Use the chain rule to evaluate the derivative:  ( ( )) .
d df dv

f v t
dt dv dt

=  

EXECUTE: (a) 
2 2 1/ 2 2 2 3/ 2 2

1 2

(1 / ) (1 / ) 2

m dv mv v dv
F

v c dt v c c dt
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

2 2

2 2 3 / 2 2 2 2 2 3 / 2
1

(1 / ) (1 / )

dv m v v dv m
F

dt v c c c dt v c

⎛ ⎞
= − + =⎜ ⎟− −⎝ ⎠

 

But 2 2 3 / 2,  so ( / )(1 / ) .
dv

a a F m v c
dt

= = −  

EVALUATE: Our result agrees with Eq.(37.30). 
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(b) IDENTIFY and SET UP: If F  is perpendicular to then v F  changes the direction of v  and not its magnitude. 

2 2
.

1 /

d m

dt v c

⎛ ⎞
⎜ ⎟

−⎝ ⎠

v
F =  

/d dta v=  but the magnitude of v in the denominator of Eq.(37.29) is constant. 

EXECUTE: 
2 21 /

ma
F

v c
=

−
 and 2 2 1/ 2( / )(1 / ) .a F m v c= −  

EVALUATE:  This result agrees with Eq.(37.33). 

37.28. IDENTIFY and SET UP: 
2 2

1

1 /v c
γ =

−
.  If γ  is 1.0% greater than 1 then 1.010γ = , if γ is 10% greater than 1 

then 1.10γ = and if γ  is 100% greater than 1 then 2.00γ = . 

EXECUTE: 21 1/v c γ= −  

(a) 21 1/(1.010) 0.140v c c= − =  

(b) 21 1/(1.10) 0.417v c c= − =  

(c) 21 1/(2.00) 0.866v c c= − =  

37.29. (a) 
2 2

2
1

mv
p mv

v c
= =

−
. 

2
2 2 2 2

2

1 3 3
1 2 1 1  0.866 .

4 4 2

v
v c v c v c c

c
⇒ = − ⇒ = − ⇒ = ⇒ = =  

(b) 3 3 1/ 3 2 / 3 2 / 3
2

2

1
γ 2 γ 2 γ (2) so 2 1 2 0.608

1

v
F ma ma

v c
c

−= = ⇒ = ⇒ = = ⇒ = − =
−

 

37.30. The force is found from Eq.(37.32) or Eq.(37.33). 
(a) Indistinguishable from 0.145 N.F ma= =  

(b) 3
γ 1.75 N.ma =  

(c) 3
γ 51.7 N.ma =  

(d) γ 0.145 N,ma = 0.333 N,1.03 N.  

37.31. (a) 
2

2 2

2 21

mc
K mc mc

v c
= − =

−
 

2

22 2

1 1 3
2 1 0.866 .

4 41

v
v c c

cv c
⇒ = ⇒ = − ⇒ = =

−
 

(b) 
2

2
22 2

1 1 35
5 6 1 0.986 .

36 361

v
K mc v c c

cv c
= ⇒ = ⇒ = − ⇒ = =

−
 

37.32. 2 27 8 2 10 9= 2 = 2(1.67×10 kg)(3.00×10 m s) = 3.01×10 J = 1.88×10 eV.E mc − −  

37.33. IDENTIFY and SET UP: Use Eqs.(37.38) and (37.39). 

EXECUTE: (a) 2 2 2 10,  so 4.00  means 3.00 4.50 10  JE mc K E mc K mc −= + = = = ×  

(b) 2 2 2 2 2 2 2 2( ) ( ) ; 4.00 ,  so 15.0( ) ( )E mc pc E mc mc pc= + = =  
1815 1.94 10  kg m/sp mc −= = × ⋅  

(c) 2 2 2/ 1 /E mc v c= −  
2 2 24.00  gives 1 / 1/16 and 15/16 0.968E mc v c v c c= − = = =  

EVALUATE: The speed is close to c since the kinetic energy is greater than the rest energy. Nonrelativistic 
expressions relating E, K, p and v will be very inaccurate. 

37.34. (a) 2 3 2
f(γ 1) (4.07 10 ) .W K mc mc−= Δ = − = ×  

(b) ( 2 2
f iγ γ ) 4.79 .mc mc− =  

(c) The result of part (b) is far larger than that of part (a). 
37.35. IDENTIFY: Use 2E mc=  to relate the mass increase to the energy increase. 

(a) SET UP: Your total energy E increases because your gravitational potential energy mgy increases. 
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EXECUTE: E mg yΔ = Δ  
2 2 2( )  so / ( ) /E m c m E c mg y cΔ = Δ Δ = Δ = Δ  

2 2 8 2 13/ ( ) / (9.80 m/s )(30 m)/(2.998 10  m/s) 3.3 10 %m m g y c −Δ = Δ = × = ×  

This increase is much, much too small to be noticed. 
(b) SET UP: The energy increases because potential energy is stored in the compressed spring. 
EXECUTE: 2 4 21 1

2 2 (2.00 10  N/m)(0.060 m) 36.0 JE U kxΔ = Δ = = × =  
2 16( ) / 4.0 10  kgm E c −Δ = Δ = ×  

Energy increases so mass increases. The mass increase is much, much too small to be noticed. 
EVALUATE: In both cases the energy increase corresponds to a mass increase. But since 2c  is a very large 
number the mass increase is very small. 

37.36. (a) 2
0 0E m c= . 2 2

02 2E mc m c= = .  Therefore, 0
0 02 2

2 2
1 /

m
m m m

v c
= ⇒ =

−
. 

2 2
8

2 2

1 3
1 3 4 0.866 2.60 10 m s

4 4

v v
v c c

c c
= − ⇒ = ⇒ = = = ×  

(b) 2 2 20
0 2 2

10
1

m
m c mc c

v c
= =

−
. 

2 2
8

2 2

1 99 99
1 .  0.995 2.98 10 m s

100 100 100

v v
v c c

c c
− = ⇒ = = = = × . 

37.37. IDENTIFY and SET UP: The energy equivalent of mass is 2E mc= .  3 3 37.86 g/cm 7.86 10  kg/mρ = = × .  For a 

cube, 3V L= . 

EXECUTE: (a) 
20

3
2 8 2

1.0 10  J
1.11 10  kg

(3.00 10  m/s)

E
m

c

×= = = ×
×

 

(b) 
m

V
ρ =  so 

3
3

3 3

1.11 10  kg
0.141 m

7.86 10  kg/m

m
V

ρ
×= = =

×
.  1/ 3 0.521 m 52.1 cmL V= = =  

EVALUATE: Particle/antiparticle annihilation has been observed in the laboratory, but only with small quantities 
of antimatter. 

37.38. 27 8 2 10(5.52 10 kg)(3.00 10 m s) 4.97 10 J 3105 MeV.− −× × = × =  

37.39. IDENTIFY and SET UP: The total energy is given in terms of the momentum by Eq.(37.39). In terms of the total 
energy E, the kinetic energy K is 2K E mc= −  (from Eq.37.38). The rest energy is 2.mc  

EXECUTE: (a) 2 2 2( ) ( )E mc pc= + =  
27 8 2 2 18 8 2[(6.64 10 )(2.998 10 ) ] [(2.10 10 )(2.998 10 )]  J− −× × + × ×  

108.67 10  JE −= ×  
(b) 2 27 8 2 10(6.64 10  kg)(2.998 10  m/s) 5.97 10  Jmc − −= × × = ×  

2 10 10 108.67 10  J 5.97 10  J 2.70 10  JK E mc − − −= − = × − × = ×  

(c) 
10

2 10

2.70 10  J
0.452

5.97 10  J

K

mc

−

−

×= =
×

 

EVALUATE: The incorrect nonrelativistic expressions for K and p give 2 10/ 2 3.3 10  J;K p m −= = ×  the correct 

relativistic value is less than this. 

37.40. 

1 22
2 4 2 2 1 2 2( ) 1

p
E m c p c mc

mc

⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 2
2 2 2 2

2 2

1 1
1

2 2 2

p p
E mc mc mc mv

m c m

⎛ ⎞
≈ + = + = +⎜ ⎟

⎝ ⎠
, the sum of the rest mass energy and the classical kinetic energy. 

37.41. (a) 7

2 2

1
8 10 m s γ 1.0376

1
v

v c
= × ⇒ = =

−
.  For pm m= , 2 12

nonrel

1
5.34 10 J

2
K mv −= = × .  

2 12 rel
rel

nonrel

(γ 1) 5.65 10 J.  1.06.
K

K mc
K

−= − = × =  

(b) 82.85 10 m s; γ 3.203.v = × =  

2 11 2 10
rel rel rel nonrel

1
6.78 10 J;  (γ 1) 3.31 10 J; 4.88.

2
K mv K mc K K− −= = × = − = × =  
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37.42. IDENTIFY: Since the speeds involved are close to that of light, we must use the relativistic formula for kinetic energy. 

SET UP: The relativistic kinetic energy is 2 2

2 2

1
( 1) 1

1 /
K mc mc

v c
γ

⎛ ⎞
= − = −⎜ ⎟

−⎝ ⎠
. 

(a) 
( )

2 2 27 8 2

2 2 2

1 1
( 1) 1 (1.67 10 kg)(3.00 10 m s) 1

1 / 1 0.100 /
K mc mc

v c c c
γ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = − = × × −⎜ ⎟ ⎜ ⎟−⎝ ⎠ −⎝ ⎠

 

10 131
(1.50 10 J) 1 7.56 10 J 4.73 MeV

1 0.0100
K − −⎛ ⎞= × − = × =⎜ ⎟−⎝ ⎠

 

(b) 10 11

2

1(1.50 10 J) 1 2.32 10 J 145 MeV
1 (0.500)

K − −
⎛ ⎞
⎜ ⎟= × − = × =
⎜ ⎟−⎝ ⎠

 

(c) 10 10

2

1(1.50 10 J) 1 1.94 10 J 1210 MeV
1 (0.900)

K − −
⎛ ⎞
⎜ ⎟= × − = × =
⎜ ⎟−⎝ ⎠

 

(d) 11 13 112.32 10  J 7.56 10  J 2.24 10  J 140 MeVE − − −Δ = × − × = × =  
(e) 10 11 101.94 10  J 2.32 10  J 1.71 10  J 1070 MeVE − − −Δ = × − × = × =  

(f) Without relativity, 21

2
K mv= . The work done in accelerating a proton from 0.100c to 0.500c in the 

nonrelativistic limit is 2 2 111 1
(0.500 ) (0.100 ) 1.81 10  J 113 MeV

2 2
E m c m c −Δ = − = × = . 

The work done in accelerating a proton from 0.500c to 0.900c in the nonrelativistic limit is 

2 2 111 1
(0.900 ) (0.500 ) 4.21 10  J 263 MeV

2 2
E m c m c −Δ = − = × = . 

EVALUATE: We see in the first case the nonrelativistic result is within 20% of the relativistic result. In the second 
case, the nonrelativistic result is very different from the relativistic result since the velocities are closer to c. 

37.43. IDENTIFY and SET UP: Use Eq.(23.12) and conservation of energy to relate the potential difference to the kinetic 
energy gained by the electron. Use Eq.(37.36) to calculate the kinetic energy from the speed. 
EXECUTE: (a) K q V e V= Δ = Δ  

2 2 13

2 2

1
1 4.025 3.295 10  J 2.06 MeV

1 /
K mc mc

v c

−⎛ ⎞
= − = = × =⎜ ⎟

−⎝ ⎠
 

6/ 2.06 10  VV K eΔ = = ×  
(b) From part (a), 133.30 10  J 2.06 MeVK −= × =  
EVALUATE: The speed is close to c and the kinetic energy is four times the rest mass. 

37.44. (a) According to Eq.(37.38) and conservation of mass-energy 

2 2 2 9.75
2 2 1 1 1.292.

2 2(16.7)

m
Mc mc Mc

M
γ γ+ = ⇒ = + = + =  

Note that since 
2 2

1 ,
1 v c

γ =
−

we have that 
2 2

1 1
1 1 0.6331.

(1.292)

v

c γ
= − = − =  

(b) According to Eq.(37.36), the kinetic energy of each proton is 

2 27 8 2
13

1.00 MeV
( 1) (1.292 1)(1.67 10 kg)(3.00 10 m s) 274 MeV.

1.60 10 J
K Mcγ −

−

⎛ ⎞
= − = − × × =⎜ ⎟×⎝ ⎠

  

(c) The rest energy of 0η  is 2 28 8 2
13

1.00 MeV
(9.75 10 kg)(3.00 10 m s) 548 MeV.

1.60 10 J
mc −

−

⎛ ⎞
= × × =⎜ ⎟×⎝ ⎠

 

(d) The kinetic energy lost by the protons is the energy that produces the 0 ,η  

548 MeV 2(274 MeV).=  

37.45. IDENTIFY: The relativistic expression for the kinetic energy is 2( 1)K mcγ= − , where 
1

1 x
γ =

−
and 2 2/x v c= .  

The Newtonian expression for the kinetic energy is 2
N

1

2
K mv= . 

SET UP: Solve for v such that N

3

2
K K= . 
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EXECUTE: 2 23
( 1)

4
mc mvγ − = .  

1 3
1

41
x

x
− =

−
.  

2
1 3

1
1 4

x
x

⎛ ⎞= +⎜ ⎟− ⎝ ⎠
.  After a little algebra this becomes 

29 15 8 0x x+ − = .  ( )21
15 (15) 4(9)(8)

18
x = − ± + .  The positive root is 0.425x = .  2 2/x v c= , so 

 0.652v x c c= = . 
EVALUATE: The fractional increase of the relativistic expression above the nonrelativistic one increases as v increases. 

37.46. The fraction of the initial mass (a) that becomes energy is 3(4.0015 u)
1 6.382 10 ,

2(2.0136 u)
−− = × and so the energy released 

per kilogram is 3 8 2 14(6.382 10 )(1.00 kg)(3.00 10 m s) 5.74 10 J.−× × = ×  

(b) 
19

4
14

1.0 10  J
1.7 10  kg.

5.74 10  J kg

× = ×
×

 

37.47. (a) 2 2 26 8 2 9, (3.8 10 J) (2.998 10 m s) 4.2 10 kgE mc m E c= = = × × = × . 

1 kg is equivalent to 2.2 lbs, so 64.6 10m = ×  tons 
(b) The current mass of the sun is 301.99 10 kg,×  so it would take it 

30 9 20 13(1.99 10 kg) (4.2 10 kg s) 4.7 10 s 1.5 10 years× × = × = ×  to use up all its mass. 

37.48. IDENTIFY: Since the final speed is close to the speed of light, there will be a considerable difference between the 
relativistic and nonrelativistic results. 

SET UP: The nonrelativistic work-energy theorem is 2 2
0

1 1

2 2
F x mv mvΔ = − , and the relativistic formula for a 

constant force is 2( 1)F x mcγΔ = − . 

(a) Using the classical work-energy theorem and solving for xΔ , we obtain 
2 2 9 8 2

0
6

( ) (0.100 10 kg)[(0.900)(3.00 10 m s)]
3.65 m.

2 2(1.00 10 N)

m v v
x

F

−− × ×Δ = = =
×

 

(b) Using the relativistic work-energy theorem for a constant force, we obtain 
2( 1)
.

mc
x

F

γ −Δ =  

For the given speed, 
2

1 2.29,
1 0.900

γ = =
−

 thus 

9 8 2

6

(2.29 1)(0.100 10 kg)(3.00 10 m s)
11.6 m.

(1.00 10 N)
x

−− × ×Δ = =
×

 

EVALUATE: (c) The distance obtained from the relativistic treatment is greater. As we have seen, more energy is 
required to accelerate an object to speeds close to c, so that force must act over a greater distance. 

37.49. (a) IDENTIFY and SET UP: 8
0 2.60 10  st −Δ = ×  is the proper time, measured in the pion’s frame. The time 

measured in the lab must satisfy ,d c t= Δ  where .u c≈  Calculate tΔ  and then use Eq.(37.6) to calculate u. 

EXECUTE: 
3

6
8

1.20 10  m
4.003 10  s

2.998 10  m/s

d
t

c
−×Δ = = = ×

×
 

0

2 21 /

t
t

u c

ΔΔ =
−

 so 2 2 1/ 2 0(1 / )
t

u c
t

Δ− =
Δ

 and 
2

2 2 0(1 / )
t

u c
t

Δ⎛ ⎞− = ⎜ ⎟Δ⎝ ⎠
 

Write (1 )u c= − Δ  so that 2 2 2( / ) (1 ) 1 2 1 2u c = − Δ = − Δ + Δ ≈ − Δ  since Δ  is small. 

Using this in the above gives 
2

01 (1 2 )
t

t

Δ⎛ ⎞− − Δ = ⎜ ⎟Δ⎝ ⎠
 

22 8
50

6

1 1 2.60 10  s
2.11 10

2 2 4.003 10  s

t

t

−
−

−

⎛ ⎞Δ ×⎛ ⎞Δ = = = ×⎜ ⎟⎜ ⎟Δ ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:  An alternative calculation is to say that the length of the tube must contract relative to the moving 
pion so that the pion travels that length before decaying. The contracted length must be 

8 8
0 (2.998 10  m/s)(2.60 10  s) 7.79 m.l c t −= Δ = × × =  

2 2
0 1 /l l u c= −  so 

2

2 2

0

1 /
l

u c
l

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
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Then (1 )u c= − Δ  gives 
2 2

5
3

0

1 1 7.79 m
2.11 10 ,

2 2 1.20 10  m

l

l
−⎛ ⎞ ⎛ ⎞Δ = = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 which checks. 

(b) IDENTIFY and SET UP: 2E mcγ=  (Eq.(37.38). 

EXECUTE: 
2 2 5

1 1 1
154

21 / 2(2.11 10 )u c
γ

−
= = = =

Δ− ×
 

4154(139.6 MeV) 2.15 10  MeV 21.5 GeVE = = × =  

EVALUATE: The total energy is 154 times the rest energy. 
37.50. IDENTIFY and SET UP: The proper length of a side is 0l a= .  The side along the direction of motion is shortened 

to 2 2
0 1 /l l v c= − .  The sides in the two directions perpendicular to the motion are unaffected by the motion and 

still have a length a.  

EXECUTE: 2 3 2 21 /V a l a v c= = −  
37.51. IDENTIFY and SET UP: There must be a length contraction such that the length a becomes the same as b; 

0 0,  . l a l b l= =  is the distance measured by an observer at rest relative to the spacecraft. Use Eq.(37.16) and solve 

for u. 

EXECUTE: 2 2

0

1 /
l

u c
l

= −  so 2 21 / ;
b

u c
a

= −  

1.40a b=  gives 2 2/1.40 1 /b b u c= −  and thus 2 2 21 / 1/(1.40)u c− =  
2 81 1/(1.40) 0.700 2.10 10  m/su c c= − = = ×  

EVALUATE:  A length on the spacecraft in the direction of the motion is shortened. A length perpendicular to the 
motion is unchanged. 

37.52. IDENTIFY and SET UP: The proper time 0tΔ is the time that elapses in the frame of the space probe.  tΔ is the 

time that elapses in the frame of the earth.  The distance traveled is 42.2 light years, as measured in the earth frame. 

EXECUTE: (a) Light travels 42.2 light years in 42.2 yr, so (42.2 yr) 42.6 yr
0.9910

c
t

c
⎛ ⎞Δ = =⎜ ⎟
⎝ ⎠

. 

2 2 2
0 1 / (42.6 yr) 1 (0.9910) 5.7 yrt t u cΔ = Δ − = − = .  She measures her biological age to be 

19 yr 5.7 yr 24.7 yr.+ =  

(b) Her age measured by someone on earth is 19 yr 42.6 yr 61.6 yr+ = . 

37.53. (a) 
2

2
22

1 γ 1 99
 and 10 0.995.

γ 1001 ( )

v v
E mc

c cv c
γ γ −= = = ⇒ = ⇒ = =

−
 

(b) 
2

2 2 2 2 2 2 2 4 2( ) γ , γ 1
v

pc m v c E m c
c

⎛ ⎞⎛ ⎞= = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 2

22 2
2

( ) 1 1
0.01 1%.

1 (10 (0.995))
1

E pc

E v

c
γ

−
⇒ = = = =

+⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 

37.54. IDENTIFY and SET UP: The clock on the plane measures the proper time 0.tΔ  
44.00 h 4.00 h (3600 s/1 h) 1.44 10  s.tΔ = = = ×  

0

2 21 /

t
t

u c

ΔΔ =
−

 and 2 2
0 1 /t t u cΔ = Δ −  

EXECUTE: 
u

c
 small so 

2
2 2 2 2 1/ 2

2

1
1 / (1 / ) 1 ;

2

u
u c u c

c
− = − ≈ −  thus 

2

0 2

1
1

2

u
t t

c

⎛ ⎞
Δ = Δ −⎜ ⎟

⎝ ⎠
 

The difference in the clock readings is 
22

4 9
0 2 8

1 1 250 m/s
(1.44 10  s) 5.01 10  s.

2 2 2.998 10  m/s

u
t t t

c
−⎛ ⎞Δ − Δ = Δ = × = ×⎜ ⎟×⎝ ⎠

 The 

clock on the plane has the shorter elapsed time. 
EVALUATE: 0tΔ  is always less than ;tΔ  our results agree with this. The speed of the plane is much less than the 

speed of light, so the difference in the reading of the two clocks is very small. 
37.55. IDENTIFY: Since the speed is very close to the speed of light, we must use the relativistic formula for kinetic 

energy. 
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SET UP: The relativistic formula for kinetic energy is 2

2 2

1
1

1
K mc

v c

⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 and the relativistic mass is 

rel 2 21

m
m

v c
=

−
. 

EXECUTE: (a) 12 67 10  eV 1.12 10  JK −= × = × . Using this value in the relativistic kinetic energy formula and 

substituting the mass of the proton for m, we get 2

2 2

1
1

1
K mc

v c

⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 

which gives  3

2 2

1
7.45 10

1 v c
= ×

−
and 

2

2 3 2

1
1

(7.45 10 )

v

c
− =

×
.  Solving for v gives 

2

2 2

( )( ) 2( )
1

v c v c v c v

c c c

+ − −− = = , since c + v ≈ 2c. Substituting (1 )v c= − Δ , we have. 

[ ]2

2

2 (1 )2( )
1 2

c cv c v

c c c

− − Δ−− = = = Δ .  Solving for Δ  gives 
( )232 2

9

1

7.45 101 /
9 10

2 2

v c −
×−Δ = = = × , to one 

significant digit. 

(b) Using the relativistic mass formula and the result that 3

2 2

1
7.45 10

1 v c
= ×

−
, we have 

3
rel 2 2 2 2

1
(7 10 )

1 1

m
m m m

v c v c

⎛ ⎞
⎜ ⎟= = = ×
⎜ ⎟− −⎝ ⎠

, to one significant digit. 

EVALUATE: At such high speeds, the proton’s mass is over 7000 times as great as its rest mass. 

37.56. IDENTIFY and SET UP: The energy released is 2( )E m c= Δ .  
4

1
(8.00 kg)

10
m

⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

.  av

E
P

t
= .  The change in 

gravitational potential energy is mg yΔ . 

EXECUTE: (a) 2 8 2 13
4

1
( ) (8.00 kg)(3.00 10  m/s) 7.20 10  J

10
E m c

⎛ ⎞= Δ = × = ×⎜ ⎟
⎝ ⎠

 

(b) 
13

19
av 6

7.20 10  J
1.80 10  W

4.00 10  s

E
P

t −

×= = = ×
×

 

(c) E U mg y= Δ = Δ .  
13

9
2 3

7.20 10  J
7.35 10  kg

(9.80 m/s )(1.00 10  m)

E
m

g y

×= = = ×
Δ ×

 

37.57. IDENTIFY and SET UP: In crown glass the speed of light is .
c

v
n

=  Calculate the kinetic energy of an electron that 

has this speed. 

EXECUTE: 
8

82.998 10  m/s
1.972 10  m/s.

1.52
v

×= = ×  

2 ( 1)K mc γ= −  
2 31 8 2 14 19(9.109 10  kg)(2.998 10  m/s) 8.187 10  J(1 eV/1.602 10  J) 0.5111 MeVmc − − −= × × = × × =  

2 2 8 8 2

1 1
1.328

1 / 1 ((1.972 10  m/s)/(2.998 10  m/s))v c
γ = = =

− − × ×
 

2 ( 1) (0.5111 MeV)(1.328 1) 0.168 MeVK mc γ= − = − =  

EVALUATE:  No object can travel faster than the speed of light in vacuum but there is nothing that prohibits an 
object from traveling faster than the speed of light in some material. 

37.58. (a) 
( )

,
p E c E

v
m m mc

= = =  where the atom and the photon have the same magnitude of momentum, .E c  

(b) ,
E

v c
mc

=  so 2.E mc  

37.59. IDENTIFY and SET UP: Let S be the lab frame and S′  be the frame of the proton that is moving in the +x direction, 
so / 2u c= + .  The reference frames and moving particles are shown in Figure 37.59. The other proton moves in 
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the x−  direction in the lab frame, so / 2v c= − .  A proton has rest mass 27
p 1.67 10  kgm −= ×  and rest energy 

2
p 938 MeVm c = . 

EXECUTE: (a) 
2 2

/ 2 / 2 4

1 / 1 ( / 2)( / 2) / 5

v u c c c
v

uv c c c c

− − −′ = = = −
− − −

 

The speed of each proton relative to the other is 
4

5
c . 

(b) In nonrelativistic mechanics the speeds just add and the speed of each relative to the other is c. 

(c) 
2

2

2 21 /

mc
K mc

v c
= −

−
 

(i) Relative to the lab frame each proton has speed / 2v c= .  The total kinetic energy of each proton is 

2

938 MeV
(938 MeV) 145 MeV

1
1

2

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

. 

(ii) In its rest frame one proton has zero speed and zero kinetic energy and the other has speed 
4

5
c .  In this frame 

the kinetic energy of the moving proton is 
2

938 MeV
(938 MeV) 625 MeV

4
1

5

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

(d) (i) Each proton has speed / 2v c=  and kinetic energy   

( )
2

221 1 938 MeV
/ 2 117 MeV

2 2 8 8

mc
K mv m c

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

 

(ii) One proton has speed 0v =  and the other has speed c.  The kinetic energy of the moving proton 

is 21 938 MeV
469 MeV

2 2
K mc= = =  

EVALUATE: The relativistic expression for K gives a larger value than the nonrelativistic expression.  The kinetic 
energy of the system is different in different frames. 

 
Figure 37.59 

37.60. IDENTIFY and SET UP: Let S be the lab frame and let S′ the frame of the proton that is moving in the +x direction 
in the lab frame, as shown in Figure 37.60. In S′ the other proton moves in the x′− direction with speed / 2c , so 

/ 2v c′ = − .  In the lab frame each proton has speed cα , where α is a constant that we need to solve for. 

EXECUTE: (a) 
21 /

v u
v

uv c

′ +=
′+

with v cα= − , u cα= + and 0.50v c′ = − gives 
2

0.50

1 ( )( 0.50 ) /

c c
c

c c c

αα
α
− +− =

+ −
and 

0.50

1 0.50

αα
α

− +− =
−

.  2 4 1 0α α− + = and 0.268α = or 3.73α = .  Can’t have v c> , so only 0.268α = is physically 

allowed.  The speed measured by the observer in the lab is 0.268c. 

(b) (i) 0.269v c= .  1.0380γ = .  2( 1) 35.6 MeVK mcγ= − = . 
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(ii) 0.500v c= .  1.1547γ = .  2( 1) 145 MeVK mcγ= − = . 

 
Figure 37.60 

37.61. 2 2 2x c t′ ′= ( )22 2 2 2 2( )x ut c t ux cγ γ⇒ − = −  

2 2 2 21
( ) 1 ( ) ( )  .

u
x ut c t ux c x x u c t u c x ct x c t

c c
⎛ ⎞⇒ − = − ⇒ + = + = + ⇒ = ⇒ =⎜ ⎟
⎝ ⎠

 

37.62. IDENTIFY and SET UP: Let S be the lab frame and let S′ be the frame of the nucleus. Let the +x direction be the 
direction the nucleus is moving.  0.7500u c= . 

EXECUTE: (a) 0.9995v c′ = + .  
2

0.9995 0.7500
0.999929

1 / 1 (0.7500)(0.9995)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) 0.9995v c′ = − .  
0.9995 0.7500

0.9965
1 (0.7500)( 0.9995)

c c
v c

− += = −
+ −

 

(c) emitted in same direction: 

(i) 2

2 2 2

1 1
1 (0.511 MeV) 1 42.4 MeV

1 / 1 (0.999929)
K mc

v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(ii) 2

2 2 2

1 1
1 (0.511 MeV) 1 15.7 MeV

1 / 1 (0.9995)
K mc

v c

⎛ ⎞⎛ ⎞
′ ⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(d) emitted in opposite direction: 

(i) 2

2 2 2

1 1
1 (0.511 MeV) 1 5.60 MeV

1 / 1 (0.9965)
K mc

v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(ii) 2

2 2 2

1 1
1 (0.511 MeV) 1 15.7 MeV

1 / 1 (0.9995)
K mc

v c

⎛ ⎞⎛ ⎞
′ ⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

37.63. IDENTIFY and SET UP: Use Eq.(37.30), with / ,a dv dt=  to obtain an expression for / .dv dt  Separate the 
variables v and t and integrate to obtain an expression for ( ).v t  In this expression, let .t → ∞  

EXECUTE: 2 2 3 / 2(1 / ) .
dv F

a v c
dt m

= = −  (One-dimensional motion is assumed, and all the F, v, and a refer to x-

components.) 

2 2 3/ 2(1 / )

dv F
dt

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 

Integrate from 0,t =  when 0,v =  to time t, when the velocity is v. 

2 2 3 / 20 0(1 / )

v tdv F
dt

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠∫ ∫  

Since F is constant, 
0

.
t F Ft

dt
m m

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  In the velocity integral make the change of variable / ;y v c=  then / .dy dv c=  

/
/

2 2 3/ 2 2 3 / 2 2 1/ 2 2 20 0
0

(1 / ) (1 ) (1 ) 1 /

v c
v v cdv dy y v

c c
v c y y v c

⎡ ⎤
= = =⎢ ⎥− − − −⎣ ⎦

∫ ∫  

Thus 
2 2

.
1 /

v Ft

mv c
=

−
 



37-14 Chapter 37 

Solve this equation for v: 
22

2 21 /

v Ft

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 and 
2

2 2 2(1 / )
Ft

v v c
m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

2 2
2 1

Ft Ft
v

mc m

⎛ ⎞⎛ ⎞ ⎛ ⎞+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 so 

2 2 2 2 2

( / )

1 ( / )

Ft m Ft
v c

Ft mc m c F t
= =

+ +
 

As 
2 2 2 2 2 2

,  1,
Ft Ft

t
m c F t F t

→ ∞ → →
+

 so .v c→  

EVALUATE: Note that 
2 2 2 2

Ft

m c F t+
 is always less than 1, so v c<  always and v approaches c only when .t → ∞  

37.64. Setting 0x =  in Eq.(37.21), the first equation becomes x utγ′ = −  and the last, upon multiplication by ,c  becomes 

.ct ctγ′ = Squaring and subtracting gives 2 2 2 2 2 2 2 2 2 2
γ ( ) ,c t x c t u t c t′ ′− = − = or 2 2 84.53 10 m.x c t t′ ′= − = ×  

37.65. (a) IDENTIFY and SET UP: Use the Lorentz coordinate transformation (Eq.37.21) for 1 1( , )x t  and 2 2( , ) :x t  

1 1
1 2 2

,
1 /

x ut
x

u c

−′ =
−

 2 2
2 2 21 /

x ut
x

u c

−′ =
−

 

2
1 1

1 2 2

/
,

1 /

t ux c
t

u c

−′ =
−

 
2

2 2
2 2 2

/

1 /

t ux c
t

u c

−′ =
−

 

Same point in S′  implies 1 2.x x′ ′=  What then is 2 1 ?t t t′ ′ ′Δ = −  

EXECUTE: 1 2x x′ ′=  implies 1 1 2 2x ut x ut− = −  

2 1 2 1( )u t t x x− = −  and 2 1

2 1

x x x
u

t t t

− Δ= =
− Δ

 

From the time transformation equations, 
2

2 1 2 2

1
( / )

1 /
t t t t u x c

u c
′ ′ ′Δ = − = Δ − Δ

−
 

Using the result that 
x

u
t

Δ=
Δ

 gives 

2 2

2 2 2

1
( ( ) /(( ) ))

1 ( ) /(( ) )
t t x t c

x t c
′Δ = Δ − Δ Δ

− Δ Δ
 

2 2

2 2 2
( ( ) /(( ) ))

( ) ( ) /

t
t t x t c

t x c

Δ′Δ = Δ − Δ Δ
Δ − Δ

 

2 2 2
2 2

2 2 2

( ) ( ) /
( ) ( / ) ,

( ) ( ) /

t x c
t t x c

t x c

Δ − Δ′Δ = = Δ − Δ
Δ − Δ

 as was to be shown. 

This equation doesn’t have a physical solution (because of a negative square root) if 2 2( / ) ( )x c tΔ > Δ  or .x c tΔ ≥ Δ  

(b) IDENTIFY and SET UP: Now require that 2 1t t′ ′=  (the two events are simultaneous in S′ ) and use the Lorentz 

coordinate transformation equations. 
EXECUTE: 2 1t t′ ′=  implies 2 2

1 1 2 2/ /t ux c t ux c− = −  

2 1
2 1 2

x x
t t u

c

−⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 so 
2

x
t u

c

Δ⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

 and 
2c t

u
x

Δ=
Δ

 

From the Lorentz transformation equations, 

2 1 2 2

1
( ).

1 /
x x x x u t

u c

⎛ ⎞
′ ′ ′Δ = − = Δ − Δ⎜ ⎟

−⎝ ⎠
 

Using the result that 2 /u c t x= Δ Δ  gives 

2 2

2 2 2

1
( ( ) / )

1 ( ) /( )
x x c t x

c t x
′Δ = Δ − Δ Δ

− Δ Δ
 

2 2

2 2 2
( ( ) / )

( ) ( )

x
x x c t x

x c t

Δ′Δ = Δ − Δ Δ
Δ − Δ

 

2 2 2
2 2 2

2 2 2

( ) ( )
( ) ( )

( ) ( )

x c t
x x c t

x c t

Δ − Δ′Δ = = Δ − Δ
Δ − Δ

 

(c) IDENTIFY and SET UP: The result from part (b) is 2 2 2( ) ( )x x c t′Δ = Δ − Δ  
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Solve for 2 2 2 2:  ( ) ( ) ( )t x x c t′Δ Δ = Δ − Δ  

EXECUTE: 
2 2 2 2

8
8

( ) ( ) (5.00 m) (2.50 m)
1.44 10  s

2.998 10  m/s

x x
t

c
−′Δ − Δ −

Δ = = = ×
×

 

EVALUATE:  This provides another illustration of the concept of simultaneity (Section 37.2): events observed to 
be simultaneous in one frame are not simultaneous in another frame that is moving relative to the first. 

37.66. (a) 80.0 m s is non-relativistic, and 21
186 J.

2
K mv= =  

(b) 2 15( 1) 1.31 10 J.mcγ − = ×  

(c) In Eq. (37.23), c) 8 8 72.20 10 m s, 1.80 10 m s,and so 7.14 10 m s.v u v′ = × = − × = ×  

(d)
20.0 m

13.6 m.
γ

=  

(e) 8
8

20.0 m
9.09 10 s.

2.20 10 m s
−= ×

×
 

(f) 8 8
8

13.6 m
6.18 10 s, or 6.18 10 s.

2.20 10 m s

t
t t

γ
− −′ ′= = × = = ×

×
 

37.67. IDENTIFY and SET UP: An increase in wavelength corresponds to a decrease in frequency ( / ),f c λ=  so the 

atoms are moving away from the earth. Receding, so use Eq.(37.26): 0

c u
f f

c u

−=
+

 

EXECUTE: Solve for u: 2
0( / ) ( )f f c u c u+ = −  and 

2
0

2
0

1 ( / )

1 ( / )

f f
u c

f f

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 

0 0/ ,  /f c f cλ λ= =  so 0 0/ /f f λ λ=  
2 2

80
2 2

0

1 ( / ) 1 (656.3/953.4)
0.357 1.07 10  m/s

1 ( / ) 1 (656.3/953.4)
u c c c

λ λ
λ λ

⎛ ⎞ ⎛ ⎞− −= = = = ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE: The relative speed is large, 36% of c. The cosmological implication of such observations will be 
discussed in Section 44.6. 

37.68. The baseball had better be moving non-relativistically, so the Doppler shift formula (Eq.(37.25)) becomes 

0 (1 ( )).f f u c≅ −  In the baseball’s frame, this is the frequency with which the radar waves strike the baseball, and 

the baseball reradiates at f. But in the coach’s frame, the reflected waves are Doppler shifted again, so the detected 
frequency is 2

0 0 0(1 ( )) (1 ( )) (1 2( )), so 2 ( )f u c f u c f u c f f u c− = − ≈ − Δ = and the fractional frequency shift is 

0

2( ).
f

u c
f

Δ =  In this case, 

7
8

0

(2.86 10 )
(3.00 10 m) 42.9 m s 154 km h 92.5 mi h.

2 2

f
u c

f

−Δ ×= = × = = =  

37.69. IDENTIFY and SET UP: 18500 light years 4.73 10  m= × .  The proper distance l0 to the star is 500 light years.  The 

energy needed is the kinetic energy of the rocket at its final speed. 

EXECUTE: (a) 0.50u c= .  
18

10
8

4.73 10  m
3.2 10  s 1000 yr

(0.50)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

 

The proper time is measured by the astronauts.  2 2
0 1 / 866 yrt t u cΔ = Δ − =  

2
2 8 2 19

2 2 2

1
(1000 kg)(3.00 10  m/s) 1 1.4 10  J

1 / 1 (0.500)

mc
K mc

v c

⎛ ⎞
⎜ ⎟= − = × − = ×
⎜ ⎟− −⎝ ⎠

 

This is 140% of the U.S. yearly use of energy. 

(b) 0.99u c= .  
18

10
8

4.73 10  m
1.6 10  s 505 yr

(0.99)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

, 0 71 yrtΔ =  

19 20

2

1
(9.00 10  J) 1 5.5 10  J

1 (0.99)
K

⎛ ⎞
⎜ ⎟= × − = ×
⎜ ⎟−⎝ ⎠

 

This is 55 times the U.S. yearly use. 
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(c) 0.9999u c= .  
18

10
8

4.73 10  m
1.58 10  s 501 yr

(0.9999)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

, 0 7.1 yrtΔ =  

19 21

2

1
(9.00 10  J) 1 6.3 10  J

1 (0.9999)
K

⎛ ⎞
⎜ ⎟= × − = ×
⎜ ⎟−⎝ ⎠

 

This is 630 times the U.S. yearly use. 
The energy cost of accelerating a rocket to these speeds is immense. 

37.70. (a) As in the hint, both the sender and the receiver measure the same distance. However, in our frame, the ship has 
moved between emission of successive wavefronts, and we can use the time 1T f= as the proper time, with the 

result that 0 0.f f fγ= >  

(b) Toward: 
1/2

0

1 0.758
345 MHz 930 MHz

1 0.758

c u
f f

c u

+ +⎛ ⎞= = =⎜ ⎟− −⎝ ⎠
 

0 930 MHz 345 MHz 585 MHz.f f− = − =  

Away: 
1/2

0 0

1 0.758
345 MHz 128 MHz and 217 MHz.

1 0.758

c u
f f f f

c u

− −⎛ ⎞= = = − = −⎜ ⎟+ +⎝ ⎠
 

(c) 0 0 0γ 1.53 528 MHz, 183 MHz.f f f f= = − = The shift is still bigger than 0f , but not as large as the approaching 

frequency. 
37.71. The crux of this problem is the question of simultaneity. To be “in the barn at one time” for the runner is different 

than for a stationary observer in the barn. The diagram in Figure 37.71a shows the rod fitting into the barn at time 
0t = , according to the stationary observer. The diagram in Figure 37.71b is in the runner’s frame of reference. The 

front of the rod enters the barn at time 1t and leaves the back of the barn at time 2.t  However, the back of the rod 

does not enter the front of the barn until the later time 3.t  

   
Figure 37.71 

37.72. In Eq.(37.23), , ( ),u V v c n′= =  and so 

2

( / ) ( / )
.

1 ( / )1

c n V c n V
v

cV V nc
nc

+ += =
++

 For V non-relativistic, this is 

2 2
2

1
(( ) )(1 ( / )) ( / ) ( / ) ( / ) 1

c
v cn V V nc nc n V V n V nc V

n n
⎛ ⎞≈ + − = + − − ≈ + −⎜ ⎟
⎝ ⎠

 , so 
2

1
1 .k

n
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For water, 1.333n =  

and 0.437.k =  
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37.73. (a) 
dv

a
dt

′ =
′
.  2( )dt dt udx cγ′ = − .  

2 2 2 2(1 ) (1 )

dv v u u
dv dv

uv c uv c c

−′ = +
− −

 

22 22

1

1 (1 )

dv v u u

dv uv c cuv c

′ − ⎛ ⎞= + ⎜ ⎟− − ⎝ ⎠
. 

2 2 2

2 2 2 2 2

1 ( ) 1

1 (1 ) (1 )

v u u c u c
dv dv dv

uv c uv c uv c

⎛ ⎞ ⎛ ⎞− −′ = + =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
 

2 2

2 22 2

2 2 2 2

(1 )
(1 ) 1(1 )

γ (1 ) γ(1 )

u c
dv

dv u cuv c
a

dt u dx c dt uv c uv cγ

−
−−′ = =

− − −
 

2 2 3 2 2 3(1 ) (1 ) .a u c uv c −= − −  

(b) Changing frames from S S′ → just involves changing ,a a v v a′ ′→ → − ⇒ =
3

2 2 3 2
2

(1 ) 1 .
uv

a u c
c

−′⎛ ⎞′ − +⎜ ⎟
⎝ ⎠

 

37.74. (a) The speed v′ is measured relative to the rocket, and so for the rocket and its occupant, 0.v′ =  The acceleration 
as seen in the rocket is given to be ,a g′ =  and so the acceleration as measured on the earth is 

3 22

2
1 .

du u
a g

dt c

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 

(b) With 1 0v =  when 0t = , 

1 1 1
12 2 3 2 2 2 3 2 2 20 0

1

1 1
.  .  .

(1 ) (1 ) 1

t vdu du v
dt dt t

g u c g u c g v c
= = =

− − −∫ ∫  

(c) 2 2/ 1 ,dt dt dt u cγ′ = = − so the relation in part (b) between dt and du, expressed in terms of dt′ and du, is 

2 2 3 2 2 2 22 2

1 1
.

(1 ) (1 )1

du du
dt dt

g u c g u cu c
γ′ = = =

− −−
 

Integrating as above (perhaps using the substitution z u c= ) gives 1
1 arctanh .

c v
t

g c
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

 For those who wish to 

avoid inverse hyperbolic functions, the above integral may be done by the method of partial fractions; 
1

(1 )(1 ) 2 1 1

du du du
gdt

u c u c u c uc

⎡ ⎤′ = = +⎢ ⎥+ − + −⎣ ⎦
, which integrates to 1

1
1

c
1n

2

c v
t

g c v

⎛ ⎞+′ = ⎜ ⎟−⎝ ⎠
. 

(d) Solving the expression from part (c) for 1v in terms of 1 1 1, ( ) tanh( ),t v c gt c′=  so that 
2

1 11 ( ) 1 cosh ( ),v c gt c′− = using the appropriate indentities for hyperbolic functions. Using this in the expression 

found in part (b), 1
1 1

1

tanh( )
sinh( ),

1 cosh( )

c gt c c
t gt c

g gt c g

′ ′= =
′

 which may be rearranged slightly as 1 1sinh .
gt gt

c c

′⎛ ⎞= ⎜ ⎟
⎝ ⎠

 If 

hyperbolic functions are not used, 1v  in terms of 1t′  is found to be 
1 1

1 1

/ /
1

/ /

gt c gt c

gt c gt c

v e e

c e e

′ ′−

′ ′−

−=
+

 which is the same as 

tanh( 1gt c′ ). Inserting this expression into the result of part (b) gives, after much algebra, 1 1
1 ( ),

2
gt c gt cc

t e e
g

′ ′−= −  

which is equivalent to the expression found using hyperbolic functions. 
(e) After the first acceleration period (of 5 years by Stella’s clock), the elapsed time on earth is 

9
1 1sinh( ) 2.65 10 s 84.0 yr.

c
t gt c

g
′ ′= = × =  

The elapsed time will be the same for each of the four parts of the voyage, so when Stella has returned, Terra has 
aged 336 yr and the year is 2436. (Keeping more precision than is given in the problem gives February 7 of that 
year.) 

37.75. (a) 14 14 14
0 4.568110 10 Hz; 4.568910 10 Hz; 4.567710 10 Hzf f f+ −= × = × = ×  

0 2 2
0

2 2
0

0

( )
 

( ) ( ( )) ( ( ))

( ( )) ( ( ))( )
 

( )

c u v
f f

c u v f c u v f c u v

f c u v f c u vc u v
f f

c u v

+
+

−
−

⎫+ += ⎪− + − + = + +⎪⇒⎬ − − = + −+ − ⎪= ⎪− − ⎭
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where u  is the velocity of the center of mass and v  is the orbital velocity. 
2

0
2

0

( ) 1
( )

( ) 1

f f
u v c

f f
+

+

−
⇒ + =

+
 and 

2 2
0

2 2
0

( ) 1
( )

( ) 1

f f
u v c

f f
−

−

−− =
+

 

4 45.25 10 m s and 2.63 10 m su v u v⇒ + = × − = − × . 

This gives  41.31 10 m su = + × (moving toward at 13.1 km s)  and 43.94 10  m/sv = × . 

(b) 43.94 10 m s; 11.0 days.v T= × =  2 R vtπ = ⇒  
4

9(3.94 10 m s)(11.0 days)(24 hrs day)(3600 sec hr)
5.96 10 m

2
R

π
×= = × .  This is about 

0.040 times the earth-sun distance.  

Also the gravitational force between them (a distance of 2R) must equal the centripetal force from the center of 
mass: 

2 2 2 9 4 2
29

sun2 11 2 2

( ) 4 4(5.96 10 m)(3.94 10 m s)
5.55 10 kg 0.279 m .

(2 ) 6.672 10 N m kg

Gm mv Rv
m

R R G −

× ×= ⇒ = = = × =
× ⋅

 

37.76. For any function ( , )f f x t= and ( , ), ( , ),x x x t t t x t′ ′ ′ ′= =  let ( , ) ( ( , ), ( , ))F x t f x x t t x t′ ′ ′ ′ ′ ′=  and use the standard 

(but mathematically improper) notation ( , ) ( , ).F x t f x t′ ′ ′ ′=  The chain rule is then 

( , ) ( , ) ( , )
,

( , ) ( , ) ( , )
.

f x t f x t x f x t t

x x x t x
f x t f x t x f x t t

t x t t t

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

In this solution, the explicit dependence of the functions on the sets of dependent variables is suppressed, and the 

above relations are then 
f f x f t

x x x t x

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

, .
f f x f t

t x t t t

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

(a) 
2 2

2 2
1, , 0 and 1. Then, , and .

x x t t E E E E
v

x t x t x x x x

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = − = = = =
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 For the time derivative, 

.
E E E

v
t x t

∂ ∂ ∂= − +
′ ′∂ ∂ ∂

 To find the second time derivative, the chain rule must be applied to both terms; that is, 

2 2

2

2 2

2

,

.

E E E
v

t x x t x

E E E
v

t t x t t

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 

Using these in
2

2
,

E

t

∂
∂

 collecting terms and equating the mixed partial derivatives gives 

2 2 2 2
2

2 2 2
2

E E E E
v v

t x x t t

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

, and using this and the above expression for 
2

2

E

x

∂
′∂

gives the result. 

(b) For the Lorentz transformation, 2
γ, , /  and γ.

x x t t
v v c

x t x t
γ γ

′ ′ ′ ′∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

 

The first partials are then 

2
γ γ , γ γ

E E v E E E E
v

x x c t t x t

∂ ∂ ∂ ∂ ∂ ∂= − = − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 

and the second partials are (again equating the mixed partials) 
2 2 2 2 2

2 2 2
2 2 4 2 2

2 2 2 2
2 2 2 2

2 2 2

γ γ 2γ

γ γ 2γ .

E E v E v E

x x c t c x t

E E E E
v v

t x t x t

∂ ∂ ∂ ∂= + −
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= + −
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 

Substituting into the wave equation and combining terms (note that the mixed partials cancel), 
2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 4 2 2 2 2 2

1 1 1
γ 1 0.

E E v E v E E E

x c t c x c c t x c t
γ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− = − + − = − =⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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37.77. (a) In the center of momentum frame, the two protons approach each other with equal velocities (since the protons 
have the same mass). After the collision, the two protons are at rest─but now there are kaons as well. In this 

situation the kinetic energy of the protons must equal the total rest energy of the two kaons 2
cm p2(γ 1)m c⇒ − =  

2
k2m c ⇒  k

cm
p

γ 1 1.526.
m

m
= + =  The velocity of a proton in the center of momentum frame is then 

2
cm

cm 2
cm

γ 1
0.7554 .

γ
v c c

−= =  

To get the velocity of this proton in the lab frame, we must use the Lorentz velocity transformations. This is the 
same as “hopping” into the proton that will be our target and asking what the velocity of the projectile proton is. 
Taking the lab frame to be the unprimed frame moving to the left, cm cmandu v v v′= = (the velocity of the projectile 

proton in the center of momentum frame). 

2cm
lab lab lab lab p2 2

cm lab
2 2 2

2 1
0.9619 γ 3.658 (γ 1) 2494 MeV.

1 1 1

v u v
v c K m c

uv v v
c c c

′ += = = ⇒ = = ⇒ = − =′
+ + −

 

(b) lab

k

2494 MeV
2.526.

2 2(493.7 MeV)

K

m
= =  

(c) The center of momentum case considered in part (a) is the same as this situation. Thus, the kinetic energy 
required is just twice the rest mass energy of the kaons. cm 2(493.7 MeV) 987.4 MeV.K = = This offers a 

substantial advantage over the fixed target experiment in part (b). It takes less energy to create two kaons in the 
proton center of momentum frame.



 

 


