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ELECTROMAGNETIC WAVES 

 32.1. IDENTIFY: Since the speed is constant, distance .x ct=  
SET UP: The speed of light is 83.00 10  m/sc = × . 71 yr 3.156 10  s.= ×  

EXECUTE: (a) 
8

8

3.84 10  m 1.28 s
3.00 10  m/s

xt
c

×
= = =

×
 

(b) 8 7 16 13(3.00 10  m/s)(8.61 yr)(3.156 10  s/yr) 8.15 10  m 8.15 10  kmx ct= = × × = × = ×  
EVALUATE: The speed of light is very great. The distance between stars is very large compared to terrestrial 
distances. 

 32.2. IDENTIFY: Since the speed is constant the difference in distance is .c tΔ  
SET UP: The speed of electromagnetic waves in air is 83.00 10  m/s.c = ×  
EXECUTE: A total time difference of 0.60 sμ corresponds to a difference in distance of 

8 6(3.00 10  m/s)(0.60 10  s) 180 m.c t −Δ = × × =  
EVALUATE: The time delay doesn�t depend on the distance from the transmitter to the receiver, it just depends on 
the difference in the length of the two paths. 

 32.3. IDENTIFY: Apply .c f λ=  

SET UP: 83.00 10  m/sc = ×  

EXECUTE: (a)
8

43.0 10 m s 6.0 10  Hz.
5000 m

cf
λ

×
= = = ×  

(b)
8

73.0 10 m s 6.0 10  Hz.
5.0 m

cf
λ

×
= = = ×  

(c) 
8

13
6

3.0 10 m s 6.0 10  Hz.
5.0 10 m

cf
λ −

×
= = = ×

×
 

(d)
8

16
9

3.0 10 m s 6.0 10 Hz.
5.0 10  m

cf
λ −

×
= = = ×

×
 

EVALUATE: f increases when λ decreases. 

 32.4. IDENTIFY: c f λ= and 2 .k π
λ

=  

SET UP: 83.00 10  m/sc = × . 

EXECUTE: (a) cf
λ

= . UVA: 147.50 10  Hz×  to 149.38 10  Hz× . UVB: 149.38 10  Hz×  to 151.07 10  Hz× . 

(b) 2k π
λ

= . UVA: 71.57 10  rad/m×  to 71.96 10  rad/m× . UVB: 71.96 10  rad/m× to 72.24 10  rad/m× . 

EVALUATE: Larger λ corresponds to smaller f and k. 
 32.5. IDENTIFY: c f λ= . max maxE cB= . 2 /k π λ= . 2 .fω π=  

SET UP: Since the wave is traveling in empty space, its wave speed is 83.00 10  m/sc = × . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s 6.94 10  Hz
432 10  m

cf
λ −

×
= = = ×

×
 

(b) 8 6
max max (3.00 10  m/s)(1.25 10  T) 375 V/mE cB −= = × × =  
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(c) 7
9

2 2  rad 1.45 10  rad/m
432 10  m

k π π
λ −= = = ×

×
. 14 15(2  rad)(6.94 10  Hz) 4.36 10  rad/sω π= × = × . 

7 15
max cos( ) (375 V/m)cos([1.45 10  rad/m] [4.36 10  rad/s] )E E kx t x tω= − = × − ×  

6 7 15
max cos( ) (1.25 10  T)cos([1.45 10  rad/m] [4.36 10 rad/s] )B B kx t x tω −= − = × × − ×  

EVALUATE: The cos( )kx tω− factor is common to both the electric and magnetic field expressions, since these 
two fields are in phase. 

 32.6. IDENTIFY: c f λ= . max maxE cB= . Apply Eqs.(32.17) and (32.19). 

SET UP: The speed of the wave is 83.00 10  m/s.c = ×  

EXECUTE: (a) 
8

14
9

3.00 10  m/s 6.90 10  Hz
435 10  m

cf
λ −

×
= = = ×

×
 

(b) 
3

12max
max 8

2.70 10  V/m 9.00 10  T
3.00 10  m/s

EB
c

−
−×

= = = ×
×

 

(c) 72 1.44 10  rad/mk π
λ

= = × . 152 4.34 10  rad/sfω π= = × . If max
�( ,  ) cos( )ω= +

!
z t E kz tE i , then 

max
�( ,  ) cos( )ω= − +

!
z t B kz tB j , so that ×E B

! !
will be in the �−k direction. 

3 7 15�( ,  ) (2.70 10  V/m)cos([1.44 10  rad/s) [4.34 10  rad/s] )−= × × + ×
!

z t z tE i and 
12 7 15�( ,  ) (9.00 10  T)cos([1.44 10  rad/s) [4.34 10  rad/s] )−= − × × + ×

!
z t z tB j . 

EVALUATE: The directions of E
!

and B
!

and of the propagation of the wave are all mutually perpendicular. The 
argument of the cosine is kz tω+ since the wave is traveling in the -directionz− . Waves for visible light have very 
high frequencies. 

 32.7. IDENTIFY and SET UP: The equations are of the form of Eqs.(32.17), with x replaced by z. B
!

 is along the y-axis; 
deduce the direction of .E

!
 

EXECUTE: 14 152 2 (6.10 10  Hz) 3.83 10  rad/sfω π π= = × = ×  
15

7
8

2 2 3.83 10  rad/s 1.28 10  rad/m
3.00 10  m/s

fk
c c

π π ω
λ

×
= = = = = ×

×
 

4
max 5.80 10  TB −= ×  

8 4 5
max max (3.00 10  m/s)(5.80 10  T) 1.74 10  V/mE cB −= = × × = ×  

B
!

 is along the y-axis. E B
! !
×  is in the direction of propagation (the +z-direction). From this we can deduce the 

direction of ,E
!

 as shown in Figure 32.7. 

 

E
!

 is along the x-axis. 
 

Figure 32.7  

max
�cos( )E kz tω−E i

!
= = 5 7 15�(1.74 10  V/m) cos[(1.28 10  rad/m) (3.83 10  rad/s) ]z t× × − ×i  

max
�cos( )B kz tω−B j

!
= = ( )4 7 15�5.80 10  T cos[(1.28 10  rad/m) (3.83 10  rad/s) ]−× × − ×z tj  

EVALUATE:  and E B
! !

 are perpendicular and oscillate in phase. 
 32.8. IDENTIFY: For an electromagnetic wave propagating in the negative x direction, max cos( )E E kx tω= + . 2 fω π=  

and 2k π
λ

= . 1T
f

= . max max.E cB=  

SET UP: The wave specified in the problem has a different phase, so max sin( )E E kx tω= − + . max 375 V/mE = , 
71.99 10  rad/mk = × and 155.97 10  rad/sω = × . 

EXECUTE: (a) max
max 1.25 TEB

c
μ= = . 
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(b) 149.50 10  Hz
2

f ω
π

= = × . 72 3.16 10  m 316 nm
k
πλ −= = × = . 151 1.05 10  sT

f
−= = × . This wavelength is too short 

to be visible. 
(c) 14 7 8(9.50 10  Hz)(3.16 10  m) 3.00 10  m/sc f λ −= = × × = × . This is what the wave speed should be for an 
electromagnetic wave propagating in vacuum. 

EVALUATE: 2
2

c f
k k

ω π ωλ
π

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is an alternative expression for the wave speed. 

 32.9. IDENTIFY and SET UP: Compare the ( ,  )
!

y tE  given in the problem to the general form given by Eq.(32.17). Use 

the direction of propagation and of E
!

 to find the direction of .B
!

 
(a) EXECUTE: The equation for the electric field contains the factor sin( )ky tω−  so the wave is traveling in the 
+y-direction. The equation for ( ,  )

!
y tE  is in terms of sin( )ky tω−  rather than cos( );ky tω−  the wave is shifted in 

phase by 90°  relative to one with a cos( )ky tω−  factor. 

(b) 5 12�( , ) (3.10 10  V/m) sin[ (2.65 10  rad/s) ]y t ky t− × − ×E k
!

=  
Comparing to Eq.(32.17) gives 122.65 10  rad/sω = ×  

8
4

12

2 2 2 (2.998 10  m/s)2  so 7.11 10  m
(2.65 10  rad/s)

π π πω π λ
λ ω

−×
= = = = = ×

×
c cf  

(c) 
E B
! !
×  must be in the +y-

direction (the direction in 
which the wave is traveling). 
When E

!
 is in the �z-direction 

then B
!

 must be in the �x-
direction, as shown in 
Figure 32.9. 
 

Figure 32.9  
12

3
8

2 2.65 10  rad/s 8.84 10  rad/m
2.998 10  m/s

k
c

π ω
λ

×
= = = = ×

×
 

5
max 3.10 10  V/mE = ×  

Then 
5

3max
max 8

3.10 10  V/m 1.03 10  T
2.998 10  m/s

EB
c

−×
= = = ×

×
 

Using Eq.(32.17) and the fact that B
!

 is in the �−i  direction when E
!

 is in the �−k  direction, 
3 3 12�(1.03 10  T) sin[(8.84 10  rad/m) (2.65 10  rad/s) ]y t−− × × − ×B i

!
=  

EVALUATE: E
!

 and B
!

 are perpendicular and oscillate in phase. 
32.10. IDENTIFY: Apply Eqs.(32.17) and (32.19). /f c λ= and 2 /k π λ= . 

SET UP: The wave in this problem has a different phase, so max( ,  ) sin( ).yB z t B kx tω= +  
EXECUTE: (a) The phase of the wave is given by kx tω+ , so the wave is traveling in the x−  direction. 

(b) 2 2 fk
c

π π
λ

= = . 
4 8

11(1.38 10 rad m)(3.0 10 m s) 6.59 10 Hz.
2 2
kcf
π π

× ×
= = = ×  

(c) Since the magnetic field is in the y+ -direction, and the wave is propagating in the x− -direction, then the 

electric field is in the z+ -direction so that ×
! !
E B will be in the x− -direction. 

max
� �( ,  ) ( ,  ) sin( ) .x t cB x t cB kx tω= + = +E k k

!

( )9 4 12 �( ,  ) ( (3.25 10  T))sin (1.38 10  rad/m) (4.14 10 rad/s) .x t c x t−= × × + ×E k
!

 

( )4 12 �( ,  ) (2.48 V m)sin (1.38 10  rad/m) (4.14 10  rad/s) .x t x t= + × + ×E k
!

 

EVALUATE: E
!

and B
!

have the same phase and are in perpendicular directions. 
32.11. IDENTIFY and SET UP: c f λ=  allows calculation of .λ  2 /k π λ=  and 2 .fω π=  Eq.(32.18) relates the electric 

and magnetic field amplitudes. 

EXECUTE: (a) 
8

3

2.998 10  m/s so 361 m
830 10  Hz

cc f
f

λ λ ×
= = = =

×
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(b) 2 2  rad 0.0174 rad/m
361 m

k π π
λ

= = =  

(c) 3 62 (2 )(830 10  Hz) 5.22 10  rad/sfω π π= = × = ×  

(d) Eq.(32.18): 8 11
max max (2.998 10  m/s)(4.82 10  T) 0.0144 V/mE cB −= = × × =  

EVALUATE: This wave has a very long wavelength; its frequency is in the AM radio braodcast band. The electric 
and magnetic fields in the wave are very weak. 

32.12. IDENTIFY: max max.E cB=  

SET UP: The magnetic field of the earth is about 410  T.−  

EXECUTE: 
3

11
8

3.85 10  V/m 1.28 10  T.
3.00 10  m/s

EB
c

−
−×

= = = ×
×

 

EVALUATE: The field is much smaller than the earth's field. 
32.13. IDENTIFY and SET UP: v f λ=  relates frequency and wavelength to the speed of the wave. Use Eq.(32.22) to 

calculate n and K. 

EXECUTE: (a) 
8

7
14

2.17 10  m/s 3.81 10  m
5.70 10  Hz

v
f

λ −×
= = = ×

×
 

(b) 
8

7
14

2.998 10  m/s 5.26 10  m
5.70 10  Hz

c
f

λ −×
= = = ×

×
 

(c) 
8

8

2.998 10  m/s 1.38
2.17 10  m/s

×
= = =

×
cn
v

 

(d) 2 2
m  so (1.38) 1.90n KK K K n= ≈ = = =  

EVALUATE: In the material  and v c f<  is the same, so λ  is less in the material than in air. v c<  always, so n is 
always greater than unity. 

32.14. IDENTIFY: Apply Eq.(32.21). max maxE cB= . v f λ= . Apply Eq.(32.29) with m 0Kμ μ= in place of 0μ . 
SET UP: 3.64K = . m 5.18K =  

EXECUTE: (a) 
8

7

m

(3.00 10 m s) 6.91 10 m s.
(3.64)(5.18)

cv
KK

×
= = = ×  

(b) 
7

66.91 10 m s 1.06 10 m.
65.0 Hz

v
f

λ ×
= = = ×  

(c) 
3

10max
max 7

7.20 10 V m 1.04 10 T.
6.91 10 m s

EB
v

−
−×

= = = ×
×

 

(d) 
3 10

8 2max max

m 0 0

(7.20 10 V m)(1.04 10 T) 5.75 10 W m .
2 2(5.18)

E BI
K μ μ

− −
−× ×

= = = ×  

EVALUATE: The wave travels slower in this material than in air.  
32.15. IDENTIFY: /I P A= . 21

0 max2I cE= P . max maxE cB= . 

SET UP: The surface area of a sphere of radius r is 24A rπ= . 12 2 2
0 8.85 10  C /N m−= × ⋅P . 

EXECUTE: (a) 2
2 2

(0.05)(75 W) 330 W/m
4 (3.0 10  m)

PI
A π −= = =

×
. 

(b) 
2

max 12 2 2 8
0

2 2(330 W/m ) 500 V/m
(8.85 10  C /N m )(3.00 10  m/s)

IE
c −= = =

× ⋅ ×P
. 6max

max 1.7 10  T 1.7 TEB
c

μ−= = × = . 

EVALUATE: At the surface of the bulb the power radiated by the filament is spread over the surface of the bulb. 
Our calculation approximates the filament as a point source that radiates uniformly in all directions. 

32.16. IDENTIFY and SET UP: The direction of propagation is given by ×
! !
E B . 

EXECUTE: (a) � � � �( ) .= × − = −S i j k  

(b) � � � �.= × = −S j i k  

(c) � � � �= − × − =( ) ( ) .S k i j  

(d) � � � �.= × − =( )S i k j  

EVALUATE: In each case the directions of E
!

, B
!

and the direction of propagation are all mutually perpendicular. 
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32.17. IDENTIFY: max maxE cB= . ×
! !
E B  is in the direction of propagation. 

SET UP: 83.00 10  m/sc = × . max 4.00 V/m.E =  

EXECUTE: 8
max max 1.33 10 TB E c −= = × . For E

!
 in the +x-direction, ×

! !
E B  is in the +z-direction when B

!
 is in 

the +y-direction. 
EVALUATE: E

!
, B
!

and the direction of propagation are all mutually perpendicular. 
32.18. IDENTIFY: The intensity of the electromagnetic wave is given by Eq.(32.29): 2 21

0 max 0 rms2 .= =I cE cEP P The total 
energy passing through a window of area A during a time t  is IAt. 
SET UP: 12

0 8.85 10  F/m−= ×P  

EXECUTE: 2 12 8 2 2
0 rmsEnergy (8.85 10  F m)(3.00 10  m s)(0.0200 V m) (0.500 m )(30.0 s) 15.9 Jμ−= = × × =cE AtP  

EVALUATE: The intensity is proportional to the square of the electric field amplitude. 
32.19. IDENTIFY and SET UP: Use Eq.(32.29) to calculate I, Eq.(32.18) to calculate max ,B  and use 2

av / 4I P rπ=  to 
calculate av.P  

(a) EXECUTE: 2 5 21
0 max max2 ;  0.090 V/m, so 1.1 10  W/mI E E I −= = = ×P  

(b) 10
max max max max so / 3.0 10  TE cB B E c −= = = ×  

(c) 2 5 2 3 2
av (4 ) (1.075 10  W/m )(4 )(2.5 10  m) 840 WP I rπ π−= = × × =  

(d) EVALUATE: The calculation in part (c) assumes that the transmitter emits uniformly in all directions. 
32.20. IDENTIFY and SET UP: av /I P A= and 2

0 rms.=I cEP  

EXECUTE: (a) The average power from the beam is 2 4 2 4
av (0.800 W m )(3.0 10  m ) 2.4 10  W− −= = × = ×P IA . 

(b) 
2

rms 12 8
0

0.800 W m 17.4 V m
(8.85 10  F m)(3.00 10  m s)−= = =

× ×
IE
cP

 

EVALUATE: The laser emits radiation only in the direction of the beam. 
32.21: IDENTIFY: av /I P A=  

SET UP: At a distance r from the star, the radiation from the star is spread over a spherical surface of area 
24A rπ= . 

EXECUTE: 2 3 2 10 2 25
av (4 ) (5.0 10 W m )(4 )(2.0 10  m) 2.5 10 JP I rπ π= = × × = ×  

EVALUATE: The intensity decreases with distance from the star as 21/ r . 
32.22. IDENTIFY and SET UP: c f λ= , max maxE cB= and max max 0/ 2I E B μ=  

EXECUTE: (a) 
8

83.00 10 m s 8.47 10 Hz.
0.354 m

cf
λ

×
= = = ×  

(b) 10max
max 8

0.0540 V m 1.80 10  T.
3.00 10 m s

EB
c

−= = = ×
×

 

(c) 
10

6 2max max
av

0 0

(0.0540 V m)(1.80 10  T) 3.87 10  W m .
2 2μ μ

−
−×

= = = = ×
E BI S  

EVALUATE: Alternatively, 21
0 max2=I cEP . 

32.23. IDENTIFY: avP IA= and 21
0 max2=I cEP  

SET UP: The surface area of a sphere is 24 .A rπ=  

EXECUTE: 
2

2max
av av

0

(4 )
2
EP S A r
c

π
μ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

8
av 0 0

max 2 2

(60.0 W)(3.00 10 m s) 12.0 V m.
2 2 (5.00 m)
P cE

r
μ μ

π π
×

= = =  

8max
max 8

12.0 V m 4.00 10  T.
3.00 10  m s

−= = = ×
×

EB
c

 

EVALUATE: maxE and maxB are both inversely proportional to the distance from the source. 

32.24. IDENTIFY: The Poynting vector is .= ×
! ! !
S E B  

SET UP: The electric field is in the +y-direction, and the magnetic field is in the +z-direction. 
2 1

2cos (1 cos2 )φ φ= +  

EXECUTE: (a) � � � �� � ( ) .= × = − × = −S E B j k i  The Poynting vector is in the �x-direction, which is the direction of 
propagation of the wave. 
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(b) ( )2max max max max

0 0 0

( ,  ) ( ,  )( ,  ) cos ( ) 1 cos(2( )) .
2

E x t B x t E B E BS x t kx t t kxω ω
μ μ μ

= = + = + +  But over one period, the 

cosine function averages to zero, so we have max max
av

02
E BS

μ
= . This is Eq.(32.29). 

EVALUATE: We can also show that these two results also apply to the wave represented by Eq.(32.17). 
32.25. IDENTIFY: Use the radiation pressure to find the intensity, and then 2

av (4 ).P I rπ=  

SET UP: For a perfectly absorbing surface, rad
Ip
c

=  

EXECUTE: radp I c= so 3 2
rad 2.70 10  W/m .= = ×I cp  Then 

2 3 2 2 5
av (4 ) (2.70 10 W m )(4 )(5.0 m) 8.5 10 W.P I rπ π= = × = ×  

EVALUATE: Even though the source is very intense the radiation pressure 5.0 m from the surface is very small. 
32.26. IDENTIFY: The intensity and the energy density of an electromagnetic wave depends on the amplitudes of the 

electric and magnetic fields. 
SET UP: Intensity is av /I P A= , and the average power is Pav = 2I /c, where 21

0 max2I cE= P . The energy density is 
2

0 .u E= P  

EXECUTE: (a) I = Pav /A = 2

316,000 W
2 (5000 m)π

 = 0.00201 W/m2. Pav = 2I /c = 
2

8

2(0.00201 W/m )
3.00 10  m/s×

 = 1.34 × 1110−  Pa 

(b) 21
0 max2I cE= P  gives 

max
0

2IE
c

=
P

 = 
2

12 2 2 8

2(0.00201 W/m )
(8.85 10  C /N m )(3.00 10  m/s)−× ⋅ ×

 = 1.23 N/C 

Bmax = Emax /c = (1.23 N/C)/(3.00 × 108 m/s) = 4.10 × 910−  T 

(c) 2
0 ,u E= P  so 2

av 0 av( )u E= P  and Eav = max

2
E , so 

uav = 
( )12 2 2 22

0 max
8.85 10  C /N m (1.23 N/C)

2 2
E −× ⋅

=
P  = 6.69 × 1210−  J/m3 

(d) As was shown in Section 32.4, the energy density is the same for the electric and magnetic fields, so each one 
has 50% of the energy density. 
EVALUATE: Compared to most laboratory fields, the electric and magnetic fields in ordinary radiowaves are 
extremely weak and carry very little energy. 

32.27. IDENTIFY and SET UP: Use Eqs.(32.30) and (32.31). 

EXECUTE: (a) By Eq.(32.30) the average momentum density is av
2 2

dp S I
dV c c

= =  

3 2
15 2

8 2

0.78 10  W/m 8.7 10  kg/m s
(2.998 10  m/s)

dp
dV

−×
= = × ⋅

×
 

(b) By Eq.(32.31) the average momentum flow rate per unit area is 
3 2

6av
8

0.78 10  W/m 2.6 10  Pa
2.998 10  m/s

S I
c c

−×
= = = ×

×
 

EVALUATE: The radiation pressure that the sunlight would exert on an absorbing or reflecting surface is very 
small. 

32.28. IDENTIFY: Apply Eqs.(32.32) and (32.33). The average momentum density is given by Eq.(32.30), with S 
replaced by avS I= . 

SET UP: 51 atm 1.013 10  Pa= ×  

EXECUTE: (a) Absorbed light: 
2

6
rad 8

2500 W m 8.33 10 Pa.
3.0 10 m s

Ip
c

−= = = ×
×

 Then 

6
11

rad 5

8.33 10  Pa 8.23 10  atm.
1.013 10  Pa atm

p
−

−×
= = ×

×
 

(b) Reflecting light: 
2

5
rad 8

2 2(2500 W m ) 1.67 10 Pa.
3.0 10 m s

Ip
c

−= = = ×
×

 Then 

5
10

rad 5

1.67 10  Pa 1.65 10  atm.
1.013 10  Pa atm

p
−

−×
= = ×

×
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(c) The momentum density is 
2

14 2av
2 8 2

2500 W m 2.78 10 kg m s.
(3.0 10 m s)

dp S
dV c

−= = = × ⋅
×

 

EVALUATE: The factor of 2 in radp for the reflecting surface arises because the momentum vector totally reverses 
direction upon reflection. Thus the change in momentum is twice the original momentum. 

32.29. IDENTIFY: Apply Eq.(32.4) and (32.9). 
SET UP: Eq.(32.26) is 2

0S cE= P . 

EXECUTE: 
2

2 2 20 0 0 0 0
0

0 0 0 0 0 00 0 0 0

1E EB ES E E Ec c EB EB cE
c cμ μ μ μ μ μμ μ

= = = = = = = =
P P P P P

P
P P

 

EVALUATE: We can also write 2 3 2
0 0( ) .S c cB c B= =P P  S can be written solely in terms of E or solely in terms of B. 

32.30. IDENTIFY: The electric field at the nodes is zero, so there is no force on a point charge placed at a node. 
SET UP: The location of the nodes is given by Eq.(32.36), where x is the distance from one of the planes. 

/ .c fλ =  

EXECUTE: 
8

nodes 8

3.00 10 m s 0.200 m 20.0 cm.
2 2 2(7.50 10 Hz)

cx
f

λ ×
Δ = = = = =

×
 There must be nodes at the planes, which 

are 80.0 cm apart, and there are two nodes between the planes, each 20.0 cm from a plane. It is at 20 cm, 40 cm, 
and 60 cm from one plane that a point charge will remain at rest, since the electric fields there are zero. 
EVALUATE: The magnetic field amplitude at these points isn�t zero, but the magnetic field doesn�t exert a force 
on a stationary charge. 

32.31. IDENTIFY and SET UP: Apply Eqs.(32.36) and (32.37). 
EXECUTE: (a) By Eq.(32.37) we see that the nodal planes of the B

!
 field are a distance / 2λ  apart, so 

/ 2 3.55 mmλ =  and 7.10 mm.λ =  
(b) By Eq.(32.36) we see that the nodal planes of the E

!
 field are also a distance / 2 3.55 mmλ =  apart. 

(c) 10 3 8(2.20 10  Hz)(7.10 10  m) 1.56 10  m/s.v f λ −= = × × = ×  

EVALUATE: The spacing between the nodes of E
!

 is the same as the spacing between the nodes of .B
!

 Note that 
,v c<  as it must. 

32.32. IDENTIFY: The nodal planes of E
!

and B
!

are located by Eqs.(32.26) and (32.27). 

SET UP: 
8

6

3.00 10  m/s 4.00 m
75.0 10  Hz

c
f

λ ×
= = =

×
 

EXECUTE: (a) 2.00 m.
2

x λ
Δ = =  

(b) The distance between the electric and magnetic nodal planes is one-quarter of a wavelength, so is 
2.00 m 1.00 m.

4 2 2
xλ Δ

= = =  

EVALUATE: The nodal planes of B
!

 are separated by a distance / 2λ  and are midway between the nodal planes of .E
!

 
32.33. (a) IDENTIFY and SET UP: The distance between adjacent nodal planes of is / 2.λB

!
 There is an antinodal plane 

of B
!

 midway between any two adjacent nodal planes, so the distance between a nodal plane and an adjacent 
antinodal plane is / 4.λ  Use v f λ=  to calculate .λ  

EXECUTE: 
8

10

2.10 10  m/s 0.0175 m
1.20 10  Hz

v
f

λ ×
= = =

×
 

30.0175 m 4.38 10  m 4.38 mm
4 4
λ −= = × =  

(b) IDENTIFY and SET UP: The nodal planes of E
!

 are at x = 0, / 2,  ,  3 /2, . . . ,λ λ λ  so the antinodal planes of E
!

 
are at / 4,  3 /4, 5 /4, . . . .x λ λ λ=  The nodal planes of B

!
 are at / 4,  3 / 4,  5 /4, . . . ,x λ λ λ=  so the antinodal planes 

of B
!

 are at / 2,  , 3 /2, . . . .λ λ λ  
EXECUTE: The distance between adjacent antinodal planes of E

!
 and antinodal planes of B

!
 is therefore 

/ 4 4.38 mm.λ =  
(c) From Eqs.(32.36) and (32.37) the distance between adjacent nodal planes of E

!
 and B

!
 is / 4 4.38 mm.λ =  

EVALUATE: The nodes of E
!

 coincide with the antinodes of ,B
!

 and conversely. The nodes of B
!

 and the nodes 
of E
!

 are equally spaced. 
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32.34. IDENTIFY: Evaluate the derivatives of the expressions for ( ,  )yE x t and ( ,  )zB x t that are given in Eqs.(32.34) and 
(32.35). 

SET UP: sin coskx k kx
x
∂

=
∂

, sin cost t
t

ω ω ω∂
=

∂
. cos sinkx k kx

x
∂

= −
∂

, cos sint t
t

ω ω ω∂
= −

∂
. 

EXECUTE: (a) 
2 2

max max2 2

( ,  )
( 2 sin sin ) ( 2 cos sin )yE x t

E kx t kE kx t
x x x

ω ω
∂ ∂ ∂

= − = −
∂ ∂ ∂

 and 

2 22
2

max max 0 02 2 2

( ,  ) ( ,  )
2 sin sin 2 sin sin .y yE x t E x t

k E kx t E kx t
x c t

ωω ω μ
∂ ∂

= = =
∂ ∂

P   

Similarly: 
2 2

max max2 2

( ,  ) ( 2 cos cos ) ( 2 sin cos )zB x t B kx t kB kx t
x x x

ω ω∂ ∂ ∂
= − = +

∂ ∂ ∂
and 

2 2 2
2

max max 0 02 2 2

( ,  ) ( ,  )2 cos cos 2 cos cos .z zB x t B x tk B kx t B kx t
x c t

ωω ω μ∂ ∂
= = =

∂ ∂
P  

(b) max max

( ,  )
( 2 sin sin ) 2 cos sinyE x t

E kx t kE kx t
x x

ω ω
∂ ∂

= − = −
∂ ∂

.

max
max max

( ,  )
2 cos sin 2 cos sin 2 cos sinyE x t EE kx t kx t B kx t

x c c
ω ω ω ω ω ω

∂
= − = − = −

∂
. 

max

( ,  ) ( ,  )(2 cos cos ) .y zE x t B x tB kx t
x t t

ω
∂ ∂ ∂

= + = −
∂ ∂ ∂

 

Similarly: max max
( ,  ) ( 2 cos cos ) 2 sin coszB x t B kx t kB kx t
x x

ω ω∂ ∂
− = + = −

∂ ∂
. 

max max2

( ,  ) 2 sin cos 2 sin coszB x t B kx t cB kx t
x c c

ω ωω ω∂
− = − = −

∂
. 

0 0 max 0 0 max 0 0

( ,  )( ,  ) 2 sin cos ( 2 sin sin ) .yz E x tB x t E kx t E kx t
x t t

μ ω ω μ ω μ
∂∂ ∂

− = − = − =
∂ ∂ ∂

P P P  

EVALUATE: The standing waves are linear superpositions of two traveling waves of the same k and ω . 
32.35. IDENTIFY: The nodal and antinodal planes are each spaced one-half wavelength apart. 

SET UP: 1
22  wavelengths fit in the oven, so ( )1

22 ,Lλ =  and the frequency of these waves obeys the equation fλ = c. 

EXECUTE: (a) Since ( )1
22 ,Lλ =  we have L = (5/2)(12.2 cm) = 30.5 cm. 

(b) Solving for the frequency gives f = c/λ = (3.00 × 108 m/s)/(0.122 m) = 2.46 × 109 Hz. 
(c) L = 35.5 cm in this case. ( )1

22 ,Lλ =  so λ = 2L/5 = 2(35.5 cm)/5 = 14.2 cm. 

f = c/λ = (3.00 × 108 m/s)/(0.142 m) = 2.11 × 109 Hz 
EVALUATE: Since microwaves have a reasonably large wavelength, microwave ovens can have a convenient size 
for household kitchens. Ovens using radiowaves would need to be far too large, while ovens using visible light 
would have to be microscopic. 

32.36. IDENTIFY: Evaluate the partial derivatives of the expressions for ( ,  )yE x t  and ( ,  )zB x t . 

SET UP: sin( ) cos( )kx t k kx t
x

ω ω∂
− = −

∂
, sin( ) cos( )kx t kx t

t
ω ω ω∂

− = − −
∂

. cos( ) sin( )kx t k kx t
x

ω ω∂
− = − −

∂
, 

cos( ) sin( )kx t kx t
t

ω ω ω∂
− = −

∂
 

EXECUTE: Assume max
�sin( )E kx tω= −E j

!
and max

�sin( ), with .B kx tω φ π φ π= − + − < <B k
!

 Eq. (32.12) is 

y zE B
x t

∂ ∂
= −

∂ ∂
. This gives max maxcos( ) cos( )kE kx t B kx tω ω ω φ− = + − + , so 0φ = , and max maxkE Bω= , so 

max max max max max
2 .

2 /
fE B B f B cB

k
ω π ω

π ω
= = = =  Similarly for Eq.(32.14), 0 0

yz EB
x t

μ
∂∂

− =
∂ ∂

P  gives 

max 0 0 maxcos( ) cos( )kB kx t E kx tω φ μ ω ω− − + = − −P , so 0φ = and max 0 0 maxkB Eμ ω= P , so 

0 0
max max max max max2 2

2 1 .
2 /

f fB E E E E
k c c c
μ ω π ω

π ω
= = = =
P  

EVALUATE: The E
!

and B
!

fields must oscillate in phase. 
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32.37. IDENTIFY and SET UP: Take partial derivatives of Eqs.(32.12) and (32.14), as specified in the problem. 

EXECUTE: Eq.(32.12): y zE B
x t

∂ ∂
= −

∂ ∂
 

Taking 
t
∂
∂

 of both sides of this equation gives 
2 2

2
y zE B

x t t
∂ ∂

= −
∂ ∂ ∂

. Eq.(32.14) says 0 0 .yz EB
x t

μ
∂∂

− =
∂ ∂

P  Taking 
x
∂
∂

 of 

both sides of this equation gives 
2 22 2

0 02 2
0 0

1,  so y yz zE EB B
x t x t x x

μ
μ

∂ ∂∂ ∂
− = = −
∂ ∂ ∂ ∂ ∂ ∂

P
P

. But 
2 2

y yE E
x t t x
∂ ∂

=
∂ ∂ ∂ ∂

 (The order in 

which the partial derivatives are taken doesn't change the result.) So 
2 2

2 2
0 0

1z zB B
t xμ

∂ ∂
− = −
∂ ∂P

 and 
2 2

0 02 2 ,z zB B
x t

μ∂ ∂
=

∂ ∂
P  

as was to be shown. 
EVALUATE: Both fields, electric and magnetic, satisfy the wave equation, Eq.(32.10). We have also shown that 
both fields propagate with the same speed 0 01/ .v μ= P  

32.38. IDENTIFY: The average energy density in the electric field is 21
,av 0 av2 ( )Eu E= P and the average energy density in 

the magnetic field is 2
,av av

0

1 ( )
2Bu B
μ

= . 

SET UP: ( )2 1
2av

cos ( )kx tω− = . 

EXECUTE: max( ,  ) cos( )yE x t E kx tω= − . 2 2 21 1
0 0 max2 2 cos ( )E yu E E kx tω= = −P P and 21

,av 0 max4Eu E= P . 

max( ,  ) cos( )zB x t B kx tω= − , so 2 2 2
max

0 0

1 1 cos ( )
2 2B zu B B kx tω
μ μ

= = − and 2
,av max

0

1
4Bu B
μ

= . max maxE cB= , so 

2 21
,av 0 max4Eu c B= P . 

0 0

1c
μ

=
P

, so 2
,av max

0

1
2Eu B
μ

= , which equals ,avBu . 

EVALUATE: Our result allows us to write 21
av ,av 0 max22 Eu u E= = P  and 2

av ,av max
0

12
2Bu u B
μ

= = . 

32.39. IDENTIFY: The intensity of an electromagnetic wave depends on the amplitude of the electric and magnetic 
fields. Such a wave exerts a force because it carries energy. 
SET UP: The intensity of the wave is 21

av 0 max2/I P A cE= = P , and the force is avF P A=  where av /P I c= . 
EXECUTE: (a) I = Pav /A = (25,000 W)/[4π(575 m)2] = 0.00602 W/m2 

(b) 21
0 max2I cE= P , so max

0

2IE
c

=
P

 = 
2

12 2 2 8

2(0.00602 W/m )
(8.85 10  C /N m )(3.00 10  m/s)−× ⋅ ×

 = 2.13 N/C. 

Bmax = Emax/c = (2.13 N/C)/(3.00 × 108 m/s) = 7.10 × 910−  T 

(c) F =Pav A = ( I /c)A = (0.00602 W/m2)(0.150 m)(0.400 m)/(3.00 × 108 m/s) = 1.20 × 1210−  N 
EVALUATE: The fields are very weak compared to ordinary laboratory fields, and the force is hardly worth 
worrying about! 

32.40. IDENTIFY: c f λ= . max maxE cB= . 21
0 max2I cE= P . For a totally absorbing surface the radiation pressure is .I

c
 

SET UP: The wave speed in air is 83.00 10  m/sc = × . 

EXECUTE: (a) 
8

9
2

3.00 10  m/s 7.81 10  Hz
3.84 10  m

cf
λ −

×
= = = ×

×
 

(b) 9max
max 8

1.35 V/m 4.50 10  T
3.00 10  m/s

EB
c

−= = = ×
×

 

(c) 2 12 2 2 8 2 3 21 1
0 max2 2 (8.854 10  C /N m )(3.00 10  m/s)(1.35 V/m) 2.42 10  W/mI cE − −= = × ⋅ × = ×P  

(d) 
3 2 2

12
8

(2.42 10  W/m )(0.240 m )(pressure) 1.94 10  N
3.00 10  m/s

IAF A
c

−
−×

= = = = ×
×

 

EVALUATE: The intensity depends only on the amplitudes of the electric and magnetic fields and is independent 
of the wavelength of the light. 
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32.41. (a) IDENTIFY and SET UP: Calculate I and then use Eq.(32.29) to calculate maxE  and Eq.(32.18) to calculate max.B  

EXECUTE: The intensity is power per unit area: 
3

2
3 2

3.20 10  W 652 W/m .
(1.25 10  m)

PI
A π

−

−

×
= = =

×
 

2
max

max 0
0

,  so 2
2
EI E cI

c
μ

μ
= =  

7 8 2
max 2(4 10  T m/A)(2.998 10  m/s)(652 W/m ) 701 V/mE π −= × ⋅ × =  

6max
max 8

701 V/m 2.34 10  T
2.998 10  m/s

EB
c

−= = = ×
×

 

EVALUATE: The magnetic field amplitude is quite small. 
(b) IDENTIFY and SET UP: Eqs.(24.11) and (30.10) give the energy density in terms of the electric and magnetic 
field values at any time. For sinusoidal fields average over 2E  and 2B  to get the average energy densities. 
EXECUTE: The energy density in the electric field is 21

02 .Eu E= P  max cos( )E E kx tω= −  and the average value of 
2 1

2cos ( ) is .kx tω−  The average energy density in the electric field then is 
2 12 2 2 2 6 31 1

,av 0 max4 4 (8.854 10  C / N m )(701 V/m) 1.09 10  J/m .Eu E − −= = × ⋅ = ×P  The energy density in the magnetic field 

is 
2

0

.
2B
Bu
μ

=  The average value is 
2 6 2

6 3max
,av 7

0

(2.34 10  T) 1.09 10  J/m .
4 4(4 10  T m/A)B
Bu
μ π

−
−

−

×
= = = ×

× ⋅
 

EVALUATE: Our result agrees with the statement in Section 32.4 that the average energy density for the electric 
field is the same as the average energy density for the magnetic field. 
(c) IDENTIFY and SET UP: The total energy in this length of beam is the total energy density 

6 3
av ,av ,av 2.18 10  J/mE Bu u u −= + = ×  times the volume of this part of the beam. 

EXECUTE: 6 3 3 2 11
av (2.18 10  J/m )(1.00 m) (1.25 10  m) 1.07 10  J.U u LA π− − −= = × × = ×  

EVALUATE: This quantity can also be calculated as the power output times the time it takes the light to travel L = 

1.00 m: 3 11
8

1.00 m(3.20 10  W) 1.07 10  J,
2.998 10  m/s

LU P
c

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 which checks. 

32.42. IDENTIFY: Use the gaussian surface specified in the hint. 
SET UP: The wave is in free space, so in Gauss�s law for the electric field, encl 0Q = and 0.d⋅ =E A

!!A  Gauss�s law 

for the magnetic field says 0d⋅ =B A
!!A  

EXECUTE: Use a gaussian surface such that the front surface is ahead of the wave front (no electric or magnetic 

fields) and the back face is behind the wave front, as shown in Figure 32.42. encl

0

0x
Qd E A
ε

⋅ = = =E A
!!A , so 0.xE =  

0xd B A⋅ = =B A
!!A and 0.xB =  

EVALUATE: The wave must be transverse, since there are no components of the electric or magnetic field in the 
direction of propagation. 

 
Figure 32.42 

32.43. IDENTIFY: av /I P A= . For an absorbing surface, the radiation pressure is rad
Ip
c

=  

SET UP: Assume the electromagnetic waves are formed at the center of the sun, so at a distance r from the center 
of the sun 2

av /(4 ).I P rπ=  
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EXECUTE: (a) At the sun�s surface: 
26

7 2av
2 8 2

3.9 10 W 6.4 10 W m
4 4 (6.96 10 m)

PI
Rπ π

×
= = = ×

×
and 

7 2

rad 8

6.4 10 W m 0.21 Pa.
3.00 10 m s

Ip
c

×
= = =

×
 

(b) Halfway out from the sun�s center, the intensity is 4 times more intense, and so is the radiation pressure: 
8 22.6 10  W/mI = × and rad 0.85 Pa.p =  At the top of the earth�s atmosphere, the measured sunlight intensity is 
2 61400 W m 5 10  Pa−= × , which is about 100,000 times less than the values above. 

EVALUATE: (b) The gas pressure at the sun�s surface is 50,000 times greater than the radiation pressure, and 
halfway out of the sun the gas pressure is believed to be about 136 10×  times greater than the radiation pressure. 
Therefore it is reasonable to ignore radiation pressure when modeling the sun�s interior structure. 

32.44. IDENTIFY: PI
A

= . 21
0 max2I cE= P . 

SET UP: 83.00 10  m/s×  

EXECUTE: 
3

2
2

2.80 10  W 77.8 W/m
36.0 m

PI
A

×
= = = . 

2

max 12 2 2 8
0

2 2(77.8 W/m ) 242 N/C
(8.854 10  C /N m )(3.00 10  m/s)

IE
c −= = =

× ⋅ ×P
. 

EVALUATE: This value of maxE is similar to the electric field amplitude in ordinary light sources. 
32.45. IDENTIFY: The same intensity light falls on both reflectors, but the force on the reflecting surface will be twice as 

great as the force on the absorbing surface. Therefore there will be a net torque about the rotation axis. 
SET UP: For a totally absorbing surface, av ( / ) ,F P A I c A= =  while for a totally reflecting surface the force will be 

twice as great. The intensity of the wave is 21
0 max2 .I cE= P  Once we have the torque, we can use the rotational form 

of Newton�s second law, τnet
 = Iα, to find the angular acceleration. 

EXECUTE: The force on the absorbing reflector is 
21

20 max2 1
Abs av 0 max2( / )

cE A
F p A I c A AE

c
= = = =

P
P  

For a totally reflecting surface, the force will be twice as great, which is 2
0 maxcEP . The net torque is therefore  

2
net Refl Abs 0 max( /2) ( /2) /4F L F L AE Lτ = − = P  

Newton�s 2nd law for rotation gives net .Iτ α= 2
0 max /4 2 ( /2)AE L m L α2=P  

Solving for α gives 
( )12 2 2 2 2

2 13 2
0 max

8.85 10  C /N m (0.0150 m) (1.25 N/C)
/(2 ) 3.89 10  rad/s

(2)(0.00400 kg)(1.00 m)
AE mLα

−
−

× ⋅
= = = ×P  

EVALUATE: This is an extremely small angular acceleration. To achieve a larger value, we would have to greatly 
increase the intensity of the light wave or decrease the mass of the reflectors. 

32.46. IDENTIFY: For light of intensity absI incident on a totally absorbing surface, the radiation pressure is 

abs
rad,abs

Ip
c

= . For light of intensity reflI  incident on a totally reflecting surface, refl
rad,refl

2Ip
c

= . 

SET UP: The total radiation pressure is rad rad,abs rad,reflp p p= + . absI wI= and refl (1 )I w I= −  

EXECUTE: (a) abs refl
rad rad,abs rad,refl

2 2(1 ) (2 )I I wI w I w Ip p p
c c c c c

− −
= + = + = + = . 

(b) (i) For totally absorbing rad1so Iw p
c

= = . (ii) For totally reflecting rad
20 so .Iw p
c

= =  These are just equations 

32.32 and 32.33. 

(c) For 2 20.9 and 1.40 10  W/m ,w I= = ×  
3 2

6
rad 8

(2 0.9)(1.40 10  W m ) 5.13 10  Pa.
3.00 10  m/s

p −− ×
= = ×

×
 For 0.1w =  and 

3 21.40 10  W m ,I = ×  
2 2

6
rad 8

(2 0.1)(1.40 10  W m ) 8.87 10  Pa.
3.00 10  m/s

p −− ×
= = ×

×
 

EVALUATE: The radiation pressure is greater when a larger fraction is reflected. 
32.47. IDENTIFY and SET UP: In the wire the electric field is related to the current density by Eq.(25.7). Use Ampere�s 

law to calculate .B
!

 The Poynting vector is given by Eq.(32.28) and the equation that follows it relates the energy 
flow through a surface to .S

!
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EXECUTE: (a) The direction of E
!

 is parallel to the axis of the cylinder, in the direction of the current. From 
Eq.(25.7), 2/ .E J I aρ ρ π= =  (E is uniform across the cross section of the conductor.) 
(b) A cross-sectional view of the conductor is given in Figure 32.47a; take the current to be coming out of the page. 

Apply Ampere�s law to a 
circle of radius a. 

(2 )d B aπ⋅B l =
!!A  

enclI I=  

Figure 32.47a  

0 encld Iμ⋅B l =
!!A  gives 0(2 )B a Iπ μ=  and 0

2
IB
a

μ
π

=  

The direction of B
!

 is counterclockwise around the circle. 
(c) The directions of  and E B

! !
 are shown in Figure 32.47b. 

The direction of 
0

1
μ

S = E B
! ! !

×  

is radially inward. 
0

2
0 0

1 1
2

I IS EB
a a
ρ μ

μ μ π π
⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

2 32
IS
a

ρ
π

=  

Figure 32.47b  
(d) EVALUATE: Since S is constant over the surface of the conductor, the rate of energy flow P is given by S 

times the surface of a length l of the conductor: 
2 2

2 3 2(2 ) (2 ) .
2

I lIP SA S al al
a a

ρ ρπ π
π π

= = = =  But 2 ,lR
a
ρ
π

=  so the 

result from the Poynting vector is 2.P RI=  This agrees with 2 ,RP I R=  the rate at which electrical energy is being 

dissipated by the resistance of the wire. Since S
!

 is radially inward at the surface of the wire and has magnitude 
equal to the rate at which electrical energy is being dissipated in the wire, this energy can be thought of as entering 
through the cylindrical sides of the conductor. 

32.48. IDENTIFY: The intensity of the wave, not the electric field strength, obeys an inverse-square distance law. 
SET UP: The intensity is inversely proportional to the distance from the source, and it depends on the amplitude 
of the electric field by I = Sav = 1

02 P cEmax
2. 

EXECUTE: Since I = 1
02 P cEmax

2, maxE I∝ . A point at 20.0 cm (0.200 m) from the source is 50 times closer to 
the source than a point that is 10.0 m from it. Since I ∝ 1/r2 and (0.200 m)/(10.0 m) = 1/50, we have I0.20 = 502 I10. 
Since maxE I∝ , we have E0.20 = 50E10 = (50)(1.50 N/C) = 75.0 N/C. 
EVALUATE: While the intensity increases by a factor of 502 = 2500, the amplitude of the wave only increases by 
a factor of 50. Recall that the intensity of any wave is proportional to the square of its amplitude. 

32.49. IDENTIFY and SET UP: The magnitude of the induced emf is given by Faraday�s law: .Bd
dt
Φ

=E  To calculate 

/Bd dtΦ  we need /dB dt  at the antenna. Use the total power output to calculate I and then combine Eq.(32.29) and 
(32.18) to calculate max .B  The time dependence of B is given by Eq.(32.17). 
EXECUTE: 2 ,B B RπΦ =  where R = 0.0900 m is the radius of the loop. (This assumes that the magnetic field is 

uniform across the loop, an excellent approximation.) 2 dBR
dt

π=E  

max maxcos( ) so sin( )dBB B kx t B kx t
dt

ω ω ω= − = −  

The maximum value of 2
max maxmax

 is ,  so .dB B R B
dt

ω π ω=E  

6 80.0900 m, 2 2 (95.0 10  Hz) 5.97 10  rad/sR fω π π= = = × = ×  
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Calculate the intensity I at this distance from the source, and from that the magnetic field amplitude max:B  
3

4 2
2 3 2

55.0 10  W 7.00 10  W/m .
4 4 (2.50 10  m)

PI
rπ π

−×
= = = ×

×
 

2 2
2max max
max

0 0 0

( )
2 2 2
E cB cI B

c cμ μ μ
= = =  

Thus 
7 4 2

90
max 8

2 2(4 10  T m/A)(7.00 10  W/m ) 2.42 10  T.
2.998 10  m/s

IB
c
μ π − −

−× ⋅ ×
= = = ×

×
 Then 

2 2 9 8
maxmax

(0.0900 m) (2.42 10  T)(5.97 10  rad/s) 0.0368 V.R Bπ ω π −= = × × =E  
EVALUATE: An induced emf of this magnitude is easily detected. 

32.50. IDENTIFY: The nodal planes are one-half wavelength apart. 
SET UP: The nodal planes of B are at x = λ/4, 3λ/4, 5λ/4, �, which are λ/2 apart. 
EXECUTE: (a) The wavelength is λ = c / f  = (3.000 × 108 m/s)/(110.0 × 106 Hz) = 2.727 m. So the nodal planes 
are at (2.727 m)/2 = 1.364 m apart. 
(b) For the nodal planes of E, we have λn = 2L/n, so L = nλ/2 = (8)(2.727 m)/2 = 10.91 m 
EVALUATE: Because radiowaves have long wavelengths, the distances involved are easily measurable using 
ordinary metersticks. 

32.51. IDENTIFY and SET UP: Find the force on you due to the momentum carried off by the light. Express this force in 
terms of the radiated power of the flashlight. Use this force to calculate your acceleration and use a constant 
acceleration equation to find the time. 
(a) EXECUTE: rad rad av/  and  gives / /p I c F p A F IA c P c= = = =  

8 9 2
av/ /( ) (200 W)/[(150 kg)(3.00 10  m/s)] 4.44 10 m/sxa F m P mc −= = = × = ×  

Then 21
0 0 2x xx x v t a t− = +  gives 9 2 4

02( )/ 2(16.0 m)/(4.44 10  m/s ) 8.49 10  s 23.6 hxt x x a −= − = × = × =  
EVALUATE: The radiation force is very small. In the calculation we have ignored any other forces on you. 
(b) You could throw the flashlight in the direction away from the ship. By conservation of linear momentum you 
would move toward the ship with the same magnitude of momentum as you gave the flashlight. 

32.52. IDENTIFY: avP IA= and 21
0 max2 .I cE= P  max maxE cB=  

SET UP: The power carried by the current i is P Vi= . 

EXECUTE: 2av 1
02

PI cE
A

= = P and 
5

4av
max 2 8

0 0 0

2 2 2(5.00 10  V)(1000 A) 6.14 10  V m.
(100 m ) (3.00 10  m s)

P ViE
A c A c

×
= = = = ×

×P P P
 

4
4max

max 8

6.14 10 V m 2.05 10 T.
3.00 10 m s

EB
c

−×
= = = ×

×
 

EVALUATE: 
5

6 2
2

(5.00 10  V)(1000 A)/ 5.00 10  W/m
100 m

I Vi A ×
= = = × . This is a very intense beam spread over a 

large area. 
32.53. IDENTIFY: The orbiting satellite obeys Newton�s second law of motion. The intensity of the electromagnetic 

waves it transmits obeys the inverse-square distance law, and the intensity of the waves depends on the amplitude 
of the electric and magnetic fields. 
SET UP: Newton�s second law applied to the satellite gives mv2/R = GmM/r2, where M is the mass of the Earth 
and m is the mass of the satellite. The intensity I of the wave is I = Sav = 1

02 P cEmax
2, and by definition, I = Pav /A. 

EXECUTE: (a) The period of the orbit is 12 hr. Applying Newton�s 2nd law to the satellite gives mv2/R = GmM/r2, 

which gives ( )2

2

2 /m r T GmM
r r
π

= . Solving for r, we get 

( )( )( )
1/ 321/ 3 11 2 2 242

7
2 2

6.67 10  N m /kg 5.97 10  kg 12 3600 s
2.66 10  m

4 4
GMTr
π π

−⎡ ⎤× ⋅ × ×⎛ ⎞ ⎢ ⎥= = = ×⎜ ⎟
⎝ ⎠ ⎣ ⎦

 

The height above the surface is h = 2.66 × 107 m � 6.38 × 106 m = 2.02 × 107 m. The satellite only radiates its 
energy to the lower hemisphere, so the area is 1/2 that of a sphere. Thus, from the definition of intensity, the 
intensity at the ground is 

I = Pav /A = Pav /(2πh2) = (25.0 W)/[2π(2.02 × 107 m)2] = 9.75 × 1510−  W/m2 

(b) I = Sav = 1
02 P cEmax

2, so 
15 2

6
max 12 2 2 8

0

2 2(9.75 10  W/m ) 2.71 10  N/C
(8.85 10  C /N m )(3.00 10  m/s)

IE
c

−
−

−

×
= = = ×

× ⋅ ×P
 

6 8 15
max max/ (2.71 10  N/C)/(3.00 10  m/s) 9.03 10  TB E c − −= = × × = ×  

7 8/ (2.02 10  m)/(3.00 10  m/s) 0.0673 st d c= = × × =  
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(c) Pav = I /c = (9.75×10�15 W/m2)/(3.00×108 m/s) = 3.25×10 � 2 3  Pa 
(d) λ = c / f  = (3.00×108 m/s)/(1575.42×106 Hz) = 0.190 m 
EVALUATE: The fields and pressures due to these waves are very small compared to typical laboratory quantities. 

32.54. IDENTIFY: For a totally reflective surface the radiation pressure is 2 .I
c

 Find the force due to this pressure and 

express the force in terms of the power output P of the sun. The gravitational force of the sun is sun
g 2 .mMF G

r
=  

SET UP: The mass of the sum is 30
sun 1.99 10  kg.M = ×  11 2 26.67 10  N m /kg .G −= × ⋅  

EXECUTE: (a) The sail should be reflective, to produce the maximum radiation pressure. 

(b) rad
2IF A
c

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where A is the area of the sail. 24
PI
rπ

= , where r is the distance of the sail from the sun. 

rad 2 2

2
4 2

A P PAF
c r r cπ π

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. rad gF F=  so sun
2 22

PA mMG
r c rπ

= . 

8 11 2 2 30
sun

26

2 2 (3.00 10  m/s)(6.67 10  N m /kg )(10,000 kg)(1.99 10  kg)
3.9 10  W

cGmMA
P

π π −× × ⋅ ×
= =

×
. 

6 2 26.42 10  m 6.42 kmA = × = . 
(c) Both the gravitational force and the radiation pressure are inversely proportional to the square of the distance 
from the sun, so this distance divides out when we set rad g.F F=  
EVALUATE: A very large sail is needed, just to overcome the gravitational pull of the sun. 

32.55. IDENTIFY and SET UP: The gravitational force is given by Eq.(12.2). Express the mass of the particle in terms of 
its density and volume. The radiation pressure is given by Eq.(32.32); relate the power output L of the sun to the 
intensity at a distance r. The radiation force is the pressure times the cross sectional area of the particle. 

EXECUTE: (a) The gravitational force is g 2 .mMF G
r

=  The mass of the dust particle is 34
3 .m V Rρ ρ π= =  Thus 

3

g 2

4 .
3

G MRF
r

ρ π
=  

(b) For a totally absorbing surface rad .Ip
c

=  If L is the power output of the sun, the intensity of the solar radiation 

a distance r from the sun is 2 .
4

LI
rπ

=  Thus rad 2 .
4

Lp
crπ

=  The force radF  that corresponds to radp  is in the 

direction of propagation of the radiation, so rad rad ,F p A⊥=  where 2A Rπ⊥ =  is the component of area of the particle 

perpendicular to the radiation direction. Thus 
2

2
rad 2 2( ) .

4 4
L LRF R
cr cr

π
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) radgF F=  
3 2

2 2

4
3 4

G MR LR
r cr

ρ π
=  

4 3 and 
3 4 16

G M L LR R
c c G M

ρ π
ρ π

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

26

8 3 11 2 2 30

3(3.9 10  W)
16(2.998 10  m/s)(3000 kg/m )(6.673 10  N m /  kg ) (1.99 10  kg)

R
π−

×
=

× × ⋅ ×
 

71.9 10  m 0.19 m.R μ−= × =  

EVALUATE: The gravitational force and the radiation force both have a 2r−  dependence on the distance from the 
sun, so this distance divides out in the calculation of R. 

(d) 
2 2

rad
rad2 3

g

3 3 . 
4 4 16

F LR r L F
F cr G mR c G MRρ π ρ π

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is proportional to 2R  and gF  is proportional to 3,R  so this 

ratio is proportional to 1/R. If 0.20 mR μ<  then rad gF F>  and the radiation force will drive the particles out of the 
solar system. 

32.56. IDENTIFY: The electron has acceleration 
2va

R
= . 

SET UP: 191 eV 1.60 10  C−= × . An electron has 191.60 10  Cq e −= = × . 
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EXECUTE: For the electron in the classical hydrogen atom, its acceleration is 
2 2 191

22 22
31 111

2

2(13.6 eV)(1.60 10 J eV) 9.03 10 m/s .
(9.11 10 kg)(5.29 10 m)

v mva
R mR

−

− −

×
= = = = ×

× ×
 Then using the formula for the rate of energy 

emission given in Problem 32.57: 
2 2 19 2 22 2 2

8 11
3 8 3

0 0

(1.60 10  C) (9.03 10  m s ) 4.64 10  J s 2.89 10  eV s.
6 6 (3.00 10  m s)

dE q a
dt cπ π

−
−× ×

= = = × = ×
×P P

 This large value of dE
dt

 

would mean that the electron would almost immediately lose all its energy! 
EVALUATE: The classical physics result in Problem 32.57 must not apply to electrons in atoms. 

32.57. IDENTIFY: The orbiting particle has acceleration 
2

.va
R

=  

SET UP: 21
2K mv= . An electron has mass 31

e 9.11 10  kgm −= ×  and a proton has mass 27
p 1.67 10  kgm −= × . 

EXECUTE: (a) 
22 2 2 2

3 2 2 3
0

C (m s ) N m J W .
6 (C N m )(m s) s s
q a dE

c dtπ
⎡ ⎤ ⋅ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎣ ⎦P

 

(b) For a proton moving in a circle, the acceleration is 
2 2 6 191

2152
271

2

2(6.00 10 eV) (1.6 10 J eV) 1.53 10 m s .
(1.67 10 kg) (0.75 m)

v mva
R mR

−

−

× ×
= = = = ×

×
The rate at which it emits energy because of 

its acceleration is 
2 2 19 2 15 2 2

23 5
3 8 3

0 0

(1.6 10  C) (1.53 10  m s ) 1.33 10  J s 8.32 10  eV s.
6 6 (3.0 10  m s)

dE q a
dt cπ π

−
− −× ×

= = = × = ×
×P P

 

Therefore, the fraction of its energy that it radiates every second is 
5

11
6

( )(1s) 8.32 10 eV 1.39 10 .
6.00 10 eV

dE dt
E

−
−×

= = ×
×

 

(c) Carry out the same calculations as in part (b), but now for an electron at the same speed and radius. That means 
the electron�s acceleration is the same as the proton, and thus so is the rate at which it emits energy, since they also 
have the same charge. However, the electron�s initial energy differs from the proton�s by the ratio of their masses: 

31
6e

e p 27
p

(9.11 10 kg)(6.00 10 eV) 3273 eV.
(1.67 10 kg)

mE E
m

−

−

×
= = × =

×
 Therefore, the fraction of its energy that it radiates every 

second is 
5

8( )(1s) 8.32 10 eV 2.54 10 .
3273 eV

dE dt
E

−
−×

= = ×  

EVALUATE: The proton has speed 
6 19

7
27

p

2 2(6.0 10  eV)(1.60 10  J/eV) 3.39 10  m/s
1.67 10  kg

Ev
m

−

−

× ×
= = = ×

×
. The electron 

has the same speed and kinetic energy 3.27 keV. The particles in the accelerator radiate at a much smaller rate than 
the electron in Problem 32.56 does, because in the accelerator the orbit radius is very much larger than in the atom, 
so the acceleration is much less. 

32.58. IDENTIFY and SET UP: Follow the steps specified in the problem. 
EXECUTE: (a) C

max C( , ) e sin ( ).k x
yE x t E k x tω−= −  

C C
max C C max C C( )e sin( ) ( )e cos( )y k x k xE

E k k x t E k k x t
x

ω ω− −∂
= − − + + −

∂
 

C C

2
2 2

max C C max C C2 ( )e sin( ) ( )e cos( )y k x k xE
E k k x t E k k x t

x
ω ω− −∂

= + − + − −
∂

 

 C C2 2
max C C max C C( )e cos( ) ( )e sin( )k x k xE k k x t E k k x tω ω− −+ − − + − − . 

C

2
2

max C C2 2 e cos( )y k xE
E k k x t

x
ω−∂

= − −
∂

. C
max Ce cos( ).y k xE

E k x t
t

ω ω−∂
= −

∂
 

Setting 
2

2
y yE E

x t
μ
ρ

∂ ∂
=

∂ ∂
 gives C C2

max C C max C2 e cos( ) e cos( )k x k xE k k x t E k x tω ω ω− −− = − . This will only be true if 

2
C2k μ

ω ρ
= , or C .

2
k ωμ

ρ
=  

(b) The energy in the wave is dissipated by the 2i R  heating of the conductor. 

(c) 
8

0 5
C 6

C 0

1 2 2(1.72 10 m)1,  6.60 10 m.
2 (1.0 10 Hz)

y
y

E
E k x x

e k
ρ

ωμ π μ

−
−× Ω⋅

= ⇒ = = = = = ×
×

 

EVALUATE: The lower the frequency of the waves, the greater is the distance they can penetrate into a conductor. 
A dielectric (insulator) has a much larger resistivity and these waves can penetrate a greater distance in these 
materials. 



 

 


