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ELECTROMAGNETIC INDUCTION 

 29.1. IDENTIFY: Altering the orientation of a coil relative to a magnetic field changes the magnetic flux through the 
coil. This change then induces an emf in the coil. 
SET UP: The flux through a coil of N turns is Φ = NBA cos φ, and by Faraday�s law the magnitude of the induced 
emf is E = dΦ/dt. 
EXECUTE: (a) ΔΦ = NBA = (50)(1.20 T)(0.250 m)(0.300 m) = 4.50 Wb 
(b) E = dΦ/dt = (4.50 Wb)/(0.222 s) = 20.3 V 
EVALUATE: This induced potential is certainly large enough to be easily detectable. 

 29.2. IDENTIFY: B

t
ΔΦ

=
Δ

E . cosB BA φΦ = . BΦ  is the flux through each turn of the coil. 

SET UP: i 0φ = °. f 90φ = °. 

EXECUTE: (a) 5 4 2 8
,i cos0 (6.0 10  T)(12 10  m )(1) 7.2 10  Wb.B BA − − −Φ = = × × = ×°  The total flux through the coil is 

8 5
,i (200)(7.2 10  Wb) 1.44 10  WbBN − −Φ = × = × . ,f cos90 0B BAΦ = =° . 

(b) 
5

4i f 1.44 10  Wb 3.6 10  V 0.36 mV
0.040 s

N N
t

−
−Φ − Φ ×

= = × =
Δ

=E . 

EVALUATE: The average induced emf depends on how rapidly the flux changes. 
 29.3. IDENTIFY and SET UP: Use Faraday�s law to calculate the average induced emf and apply Ohm�s law to the coil 

to calculate the average induced current and charge that flows. 

(a) EXECUTE: The magnitude of the average emf induced in the coil is av .BIN
t

ΔΦ
=

Δ
E  Initially, 

i cos .B BA BAφΦ = =  The final flux is zero, so f i
av .B B NBAN

t t
Φ −Φ

= =
Δ Δ

E  The average induced current is 

av .NBAI
R R t

= =
Δ

E
 The total charge that flows through the coil is .NBA NBAQ I t t

R t R
⎛ ⎞= Δ = Δ =⎜ ⎟Δ⎝ ⎠

 

EVALUATE: The charge that flows is proportional to the magnetic field but does not depend on the time .tΔ  
(b) The magnetic stripe consists of a pattern of magnetic fields. The pattern of charges that flow in the reader coil 
tell the card reader the magnetic field pattern and hence the digital information coded onto the card. 
(c) According to the result in part (a) the charge that flows depends only on the change in the magnetic flux and it 
does not depend on the rate at which this flux changes. 

 29.4. IDENTIFY and SET UP: Apply the result derived in Exercise 29.3: / .Q NBA R=  In the present exercise the flux 
changes from its maximum value of B BAΦ =  to zero, so this equation applies. R is the total resistance so here 

60.0 45.0 105.0 .R = Ω + Ω = Ω  

EXECUTE: 
5

4 2

(3.56 10  C)(105.0 ) says 0.0973 T.
120(3.20 10  m )

NBA QRQ B
R NA

−

−

× Ω
= = = =

×
 

EVALUATE: A field of this magnitude is easily produced. 
 29.5. IDENTIFY: Apply Faraday�s law. 

SET UP: Let +z be the positive direction for A
!

. Therefore, the initial flux is positive and the final flux is zero. 

EXECUTE: (a) and (b) 
2

3

0 (1.5 T) (0.120 m) 34 V.
2.0 10  s

B

t
π

−

ΔΦ −
= − = − = +

Δ ×
E  Since E is positive and A

!
is toward us, 

the induced current is counterclockwise. 
EVALUATE: The shorter the removal time, the larger the average induced emf. 
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 29.6. IDENTIFY: Apply Eq.(29.4). / .I R= E  
SET UP: / / .Bd dt AdB dtΦ =  

EXECUTE: (a) ( )5 4 4( ) (0.012 T/s) (3.00 10  T/s )BNd d dNA B NA t t
dt dt dt

−Φ
= = = + ×E  

( )4 4 3 4 3 3(0.012 T/s) (1.2 10  T/s ) 0.0302 V (3.02 10  V/s ) .NA t t− −= + × = + ×E   

(b) At 5.00 s,t =  4 3 30.0302 V (3.02 10  V/s )(5.00 s) 0.0680 V.−= + × =E  40.0680 V 1.13 10  A.
600 

I
R

−= = = ×
Ω

E  

EVALUATE: The rate of change of the flux is increasing in time, so the induced current is not constant but rather 
increases in time. 

 29.7. IDENTIFY: Calculate the flux through the loop and apply Faraday�s law. 
SET UP: To find the total flux integrate BdΦ  over the width of the loop. The magnetic field of a long straight 

wire, at distance r from the wire, is 0

2
IB
r

μ
π

= . The direction of B
!

is given by the right-hand rule. 

EXECUTE: (a) When 0

2
iB
r

μ
π

= , into the page. 

(b) 0 .
2B

id BdA Ldr
r

μ
π

Φ = =  

(c) 0 0 ln( / ).
2 2

b b

B Ba a

iL dr iLd b a
r

μ μ
π π

Φ = Φ = =∫ ∫  

(d) 0 ln( ) .
2

Bd L dib a
dt dt

μ
π

Φ
= =E  

(e) 70 (0.240 m) ln(0.360/0.120)(9.60 A/s) 5.06 10  V.
2

μ
π

−= = ×E  

EVALUATE: The induced emf is proportional to the rate at which the current in the long straight wire is changing 
 29.8. IDENTIFY: Apply Faraday�s law. 

SET UP: Let A
!

be upward in Figure 29.28 in the textbook. 

EXECUTE: (a) ind ( )Bd d B Adt dt ⊥
Φ

= =E  

( )1 1(0.057s ) 2 1 (0.057s )
ind sin60 sin 60 (1.4 T) ( )(sin60 )(1.4 T)(0.057 s )t tdB dA A e r e

dt dt
π

− −− − −= ° = ° = °E
1 12 1 (0.057s ) (0.057  s )

ind (0.75 m) (sin60 )(1.4 T)(0.057 s ) (0.12 V) .t te eπ
− −− − −= ° =E  

(b) 1 1
010 10 (0.12 V).= =E E  

1(0.057  s )1
10 (0.12 V) (0.12 V) .te

−−=  1ln(1/10) (0.057 s )t−= −  and 40.4 s.t =  

(c) B
!

 is in the direction of A
!

 so BΦ is positive. B is getting weaker, so the magnitude of the flux is decreasing 
and / 0.Bd dtΦ <  Faraday�s law therefore says 0.>E  Since 0,>E  the induced current must flow 
counterclockwise as viewed from above. 
EVALUATE: The flux changes because the magnitude of the magnetic field is changing. 

 29.9. IDENTIFY and SET UP: Use Faraday�s law to calculate the emf (magnitude and direction). The direction of the 
induced current is the same as the direction of the emf. The flux changes because the area of the loop is changing; 
relate dA/dt to dc/dt, where c is the circumference of the loop. 
(a) EXECUTE: 2 22  and  so /4c r A r A cπ π π= = =  

2( /4 )B BA B cπΦ = =  

2
Bd B dcc

dt dtπ
Φ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
E  

At 9.0 s, 1.650 m (9.0 s)(0.120 m/s) 0.570 mt c= = − =  
(0.500 T)(1/2 )(0.570 m)(0.120 m/s) 5.44 mVπ= =E  

(b) SET UP: The loop and magnetic field are sketched in Figure 29.9. 

Take into the page to be the 
positive direction for .A

!
 Then 

the magnetic flux is positive. 

Figure 29.9  
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EXECUTE: The positive flux is decreasing in magnitude; /Bd dtΦ  is negative and E  is positive. By the right-

hand rule, for A
!

 into the page, positive E  is clockwise. 
EVALUATE: Even though the circumference is changing at a constant rate, /dA dt  is not constant and E  is not 
constant. Flux ⊗ is decreasing so the flux of the induced current is ⊗ and this means that I is clockwise, which checks. 

29.10. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 
SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is / .d dt= ΦE  
EXECUTE: (a) and (c) The magnetic flux is constant, so the induced emf is zero. 
(b) The area inside the field is changing. If we let x be the length (along the 30.0-cm side) in the field, then  
A = (0.400 m)x. ΦB = BA = (0.400 m)x 

E = dΦ/dt = B d[(0.400 m)x]/dt = B(0.400 m)dx/dt = B(0.400 m)v 

E = (1.25 T)(0.400 m)(0.0200 m/s) = 0.0100 V 
EVALUATE: It is not a large flux that induces an emf, but rather a large rate of change of the flux. The induced 
emf in part (b) is small enough to be ignored in many instances. 

29.11. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 
SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is E = dΦ/dt. 
EXECUTE: (a) E = dΦ/dt = d[A(B0 + bx)]/dt = bA dx/dt = bAv 
(b) clockwise 
(c) Same answers except the current is counterclockwise. 
EVALUATE: Even though the coil remains within the magnetic field, the flux through it increases because the 
strength of the field is increasing. 

29.12. IDENTIFY: Use the results of Example 29.5. 

SET UP: max .NBAω=E  av max
2 .
π

=E E  2  rad/rev(440 rev/min) 46.1 rad/s.
60 s/min
πω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE: (a) 2
max (150)(0.060 T) (0.025 m) (46.1 rad/s) 0.814 VNBAω π= = =E  

(b) av max
2 2 (0.815 V) 0.519 V
π π

= = =E E  

EVALUATE: In max ,NBAω=E  ω must be in rad/s. 
29.13. IDENTIFY: Apply the results of Example 29.5. 

SET UP: max NBAω=E  

EXECUTE: 
2

max
2

2.40 10  V 10.4 rad/s
(120)(0.0750 T)(0.016 m)NBA

ω
−×

= = =
E  

EVALUATE: We may also express ω  as 99.3 rev/min or 1.66 rev/s . 
29.14. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 

SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is / .d dt= ΦE  
EXECUTE: The flux is constant in each case, so the induced emf is zero in all cases. 
EVALUATE: Even though the coil is moving within the magnetic field and has flux through it, this flux is not 
changing, so no emf is induced in the coil. 

29.15. IDENTIFY and SET UP: The field of the induced current is directed to oppose the change in flux. 
EXECUTE: (a) The field is into the page and is increasing so the flux is increasing. The field of the induced 
current is out of the page. To produce field out of the page the induced current is counterclockwise. 
(b) The field is into the page and is decreasing so the flux is decreasing. The field of the induced current is into the 
page. To produce field into the page the induced current is clockwise. 
(c) The field is constant so the flux is constant and there is no induced emf and no induced current. 
EVALUATE: The direction of the induced current depends on the direction of the external magnetic field and 
whether the flux due to this field is increasing or decreasing. 

29.16. IDENTIFY: By Lenz�s law, the induced current flows to oppose the flux change that caused it. 
SET UP and EXECUTE: The magnetic field is outward through the round coil and is decreasing, so the magnetic 
field due to the induced current must also point outward to oppose this decrease. Therefore the induced current is 
counterclockwise. 
EVALUATE: Careful! Lenz�s law does not say that the induced current flows to oppose the magnetic flux. Instead 
it says that the current flows to oppose the change in flux. 

29.17. IDENTIFY and SET UP: Apply Lenz's law, in the form that states that the flux of the induced current tends to 
oppose the change in flux. 
EXECUTE: (a) With the switch closed the magnetic field of coil A is to the right at the location of coil B. When 
the switch is opened the magnetic field of coil A goes away. Hence by Lenz's law the field of the current induced 
in coil B is to the right, to oppose the decrease in the flux in this direction. To produce magnetic field that is to the 
right the current in the circuit with coil B must flow through the resistor in the direction a to b. 
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(b) With the switch closed the magnetic field of coil A is to the right at the location of coil B. This field is stronger 
at points closer to coil A so when coil B is brought closer the flux through coil B increases. By Lenz's law the field 
of the induced current in coil B is to the left, to oppose the increase in flux to the right. To produce magnetic field 
that is to the left the current in the circuit with coil B must flow through the resistor in the direction b to a. 
(c) With the switch closed the magnetic field of coil A is to the right at the location of coil B. The current in the 
circuit that includes coil A increases when R is decreased and the magnetic field of coil A increases when the 
current through the coil increases. By Lenz's law the field of the induced current in coil B is to the left, to oppose 
the increase in flux to the right. To produce magnetic field that is to the left the current in the circuit with coil B 
must flow through the resistor in the direction b to a. 
EVALUATE: In parts (b) and (c) the change in the circuit causes the flux through circuit B to increase and in part 
(a) it causes the flux to decrease. Therefore, the direction of the induced current is the same in parts (b) and (c) and 
opposite in part (a). 

29.18. IDENTIFY: Apply Lenz�s law. 
SET UP: The field of the induced current is directed to oppose the change in flux in the primary circuit. 
EXECUTE: (a) The magnetic field in A is to the left and is increasing. The flux is increasing so the field due to the 
induced current in B is to the right. To produce magnetic field to the right, the induced current flows through R 
from right to left. 
(b) The magnetic field in A is to the right and is decreasing. The flux is decreasing so the field due to the induced 
current in B is to the right. To produce magnetic field to the right the induced current flows through R from right to 
left. 
(c) The magnetic field in A is to the right and is increasing. The flux is increasing so the field due to the induced 
current in B is to the left. To produce magnetic field to the left the induced current flows through R from left to right. 
EVALUATE: The direction of the induced current depends on the direction of the external magnetic field and 
whether the flux due to this field is increasing or decreasing. 

29.19. IDENTIFY and SET UP: Lenz's law requires that the flux of the induced current opposes the change in flux. 
EXECUTE: (a)  is BΦ "  and increasing so the flux indΦ  of the induced current is ⊗  and the induced current is 
clockwise. 
(b) The current reaches a constant value so BΦ  is constant. / 0Bd dtΦ =  and there is no induced current. 
(c)  is BΦ "  and decreasing, so ind is Φ "  and current is counterclockwise. 
EVALUATE: Only a change in flux produces an induced current. The induced current is in one direction when the 
current in the outer ring is increasing and is in the opposite direction when that current is decreasing. 

29.20. IDENTIFY: Use the results of Example 29.6. Use the three approaches specified in the problem for determining 
the direction of the induced current. /I R= E . 
SET UP: Let A

!
be directed into the figure, so a clockwise emf is positive. 

EXECUTE: (a) (5.0 m/s)(0.750 T)(1.50 m) 5.6 VvBl= = =E  
(b) (i) Let q be a positive charge in the moving bar, as shown in Figure 29.20a. The magnetic force on this charge is 

q ×F = v B
! !! , which points upward. This force pushes the current in a counterclockwise direction through the circuit. 

(ii) BΦ  is positive and is increasing in magnitude, so / 0Bd dtΦ > . Then by Faraday�s law 0<E and the emf and 
induced current are counterclockwise. 
(iii) The flux through the circuit is increasing, so the induced current must cause a magnetic field out of the paper 
to oppose this increase. Hence this current must flow in a counterclockwise sense, as shown in Figure 29.20b. 

(c) .RI=E  5.6 V 0.22 A.
25 

I
R

= = =
Ω

E  

EVALUATE: All three methods agree on the direction of the induced current. 

  
Figure 29.20 

29.21. IDENTIFY: A conductor moving in a magnetic field may have a potential difference induced across it, depending 
on how it is moving. 
SET UP: The induced emf is E = vBL sin φ, where φ is the angle between the velocity and the magnetic field.  
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EXECUTE: (a) E = vBL sin φ = (5.00 m/s)(0.450 T)(0.300 m)(sin 90°) = 0.675 V 
(b) The positive charges are moved to end b, so b is at the higher potential. 
(c) E = V/L = (0.675 V)/(0.300 m) = 2.25 V/m. The direction of E

!
is from, b to a.  

(d) The positive charge are pushed to b, so b has an excess of positive charge. 
(e) (i) If the rod has no appreciable thickness, L = 0, so the emf is zero. (ii) The emf is zero because no magnetic 
force acts on the charges in the rod since it moves parallel to the magnetic field. 
EVALUATE: The motional emf is large enough to have noticeable effects in some cases. 

29.22. IDENTIFY: The moving bar has a motional emf induced across its ends, so it causes a current to flow. 
SET UP: The induced potential is E = vBL and Ohm�s law is E = IR. 
EXECUTE: (a) E = vBL = (5.0 m/s)(0.750 T)(1.50 m) = 5.6 V 
(b) I = E /R = (5.6 V)/(25 Ω) = 0.23 A 
EVALUATE: Both the induced potential and the current are large enough to have noticeable effects. 

29.23. IDENTIFY: vBL=E  
SET UP: 25.00 10  m.L −= ×  1 mph 0.4470 m/s.=  

EXECUTE: 2

1.50 V 46.2 m/s 103 mph.
(0.650 T)(5.00 10  m)

v
BL −= = = =

×
E  

EVALUATE: This is a large speed and not practical. It is also difficult to produce a 5.00 cm wide region of 0.650 T 
magnetic field. 

29.24. IDENTIFY: .vBL=E  
SET UP: 1 mph 0.4470 m/s= . 41 G 10  T−= . 

EXECUTE: (a) 40.4470 m/s(180 mph) (0.50 10  T)(1.5 m) 6.0 mV.
1 mph

−⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
E  This is much too small to be 

noticeable. 

(b) 40.4470 m/s(565 mph) (0.50 10  T)(64.4 m) 0.813 mV.
1 mph

−⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
E  This is too small to be noticeable. 

EVALUATE: Even though the speeds and values of L are large, the earth�s field is small and motional emfs due to 
the earth�s field are not important in these situations. 

29.25. IDENTIFY and SET UP: .vBL=E  Use Lenz's law to determine the direction of the induced current. The force extF  
required to maintain constant speed is equal and opposite to the force IF  that the magnetic field exerts on the rod 
because of the current in the rod. 
EXECUTE: (a) (7.50 m/s)(0.800 T)(0.500 m) 3.00 VvBL= = =E  
(b) B
!

is into the page. The flux increases as the bar moves to the right, so the magnetic field of the induced current 
is out of the page inside the circuit. To produce magnetic field in this direction the induced current must be 
counterclockwise, so from b to a in the rod. 

(c) 3.00 V 2.00 A.
1.50 

I
R

= = =
Ω

E  sin (2.00 A)(0.500 m)(0.800 T)sin90 0.800 NIF ILB φ= = =° . IF
!

 is to the left. To 

keep the bar moving to the right at constant speed an external force with magnitude ext 0.800 NF =  and directed to 
the right must be applied to the bar. 
(d) The rate at which work is done by the force extF is ext (0.800 N)(7.50 m/s) 6.00 W.F v = =  The rate at which 
thermal energy is developed in the circuit is 2 (2.00 A)(1.50 ) 6.00 W.I R = Ω =  These two rates are equal, as is 
required by conservation of energy. 
EVALUATE: The force on the rod due to the induced current is directed to oppose the motion of the rod. This 
agrees with Lenz�s law. 

29.26. IDENTIFY: Use Faraday�s law to calculate the induced emf. Ohm�s law applied to the loop gives I. Use 
Eq.(27.19) to calculate the force exerted on each side of the loop. 
SET UP: The loop before it starts to enter the magnetic field region is sketched in Figure 29.26a. 

 

EXECUTE: For 3 /2 or 3 /2x L x L< − >  
the loop is completely outside the field 

region. 0,  and 0.B
B

d
dt
Φ

Φ = =  

Figure 29.26a  
Thus 0=E  and I = 0, so there is no force from the magnetic field and the external force F necessary to maintain 
constant velocity is zero. 
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SET UP: The loop when it is completely inside the field region is sketched in Figure 29.26b. 

 

EXECUTE: For /2 /2L x L− < <  
the loop is completely inside the 
field region and 2.B BLΦ =  

Figure 29.26b  

But 0 so 0 and 0.Bd I
dt
Φ

= = =E  There is no force IF = l B
!! !
×  from the magnetic field and the external force F 

necessary to maintain constant velocity is zero. 
SET UP: The loop as it enters the magnetic field region is sketched in Figure 29.26c. 

 

EXECUTE: For 3 /2 /2L x L− < < −  
the loop is entering the field region. 
Let x′  be the length of the loop 
that is within the field. 

Figure 29.26c  

Then  and .B
B

dBLx Blv
dt
Φ′Φ = =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Let A
!

 be directed into the plane of the figure. Then BΦ  is positive. The 

flux is positive and increasing in magnitude, so Bd
dt
Φ  is positive. Then by Faraday�s law E  is negative, and with 

our choice for direction of A
!

 a negative E  is counterclockwise. The current induced in the loop is 
counterclockwise. 
SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26d, for the situation where 
the loop is entering the field. 

 

EXECUTE: I I=F l B
!! !
×  gives that the 

force IF
!

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB

R R
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Figure 29.26d  

The external force F
!

 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 
IF
!

 so is to the right and has this same magnitude. 
SET UP: The loop as it leaves the magnetic field region is sketched in Figure 29.26e. 

 

EXECUTE: For /2 3 /2L x L< <  
the loop is leaving the field 
region. Let x′  be the length of 
the loop that is outside the field.  

Figure 29.26e  

Then ( ) and .B
B

dBL L x BLv
dt
Φ′Φ = − =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Again let A
!

be directed into the plane of the figure. Then BΦ  is positive 

and decreasing in magnitude, so Bd
dt
Φ  is negative. Then by Faraday�s law E  is positive, and with our choice for 

direction of A
!

 a positive E is clockwise. The current induced in the loop is clockwise. 
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SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26f, for the situation where 
the loop is leaving the field. 

 

EXECUTE: I I=F l B
!! !
×  gives that the 

force IF
!

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB
R R

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Figure 29.26f  
The external force F

!
 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 

IF
!

 so is to the right and has this same magnitude. 
(a) The graph of F versus x is given in Figure 29.26g. 

 
Figure 29.26g 

(b) The graph of the induced current I versus x is given in Figure 29.26h. 

 
Figure 29.26h 

EVALUATE: When the loop is either totally outside or totally inside the magnetic field region the flux isn�t 
changing, there is no induced current, and no external force is needed for the loop to maintain constant speed. 
When the loop is entering the field the external force required is directed so as to pull the loop in and when the 
loop is leaving the field the external force required is directed so as to pull the loop out of the field. These 
directions agree with Lenz�s law: the force on the induced current (opposite in direction to the required external 
force) is directed so as to oppose the loop entering or leaving the field. 

29.27. IDENTIFY: A bar moving in a magnetic field has an emf induced across its ends. 
SET UP: The induced potential is E = vBL sin φ. 
EXECUTE: Note that φ = 90° in all these cases because the bar moved perpendicular to the magnetic field. But the 
effective length of the bar, L sin θ, is different in each case. 
(a) E = vBL sin θ = (2.50 m/s)(1.20 T)(1.41 m) sin (37.0°) = 2.55 V, with a at the higher potential because positive 
charges are pushed toward that end. 
(b) Same as (a) except θ = 53.0°, giving 3.38 V, with a at the higher potential. 
(c) Zero, since the velocity is parallel to the magnetic field. 
(d) The bar must move perpendicular to its length, for which the emf is 4.23 V. For Vb > Va, it must move upward 
and to the left (toward the second quadrant) perpendicular to its length. 
EVALUATE: The orientation of the bar affects the potential induced across its ends. 

29.28. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field E at a distance r from the center of the solenoid. 
Away from the ends of the solenoid, 0B nIμ=  inside and B = 0 outside. 
(a) SET UP: The end view of the solenoid is sketched in Figure 29.28. 

 

Let R be the radius of the solenoid. 

Figure 29.28  

Apply Bdd
dt
Φ

⋅ −E l =
!!ú  to an integration path that is a circle of radius r, where r < R. We need to calculate just the 

magnitude of E so we can take absolute values. 
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EXECUTE:   (2 )d E rπ⋅ =E l
!!ú  

2 2,  B
B

d dBB r r
dt dt

π πΦ
Φ = − =  

2 implies (2 )Bd dBd E r r
dt dt

π πΦ
⋅ = − =E l
!!ú  

1
2

dBE r
dt

=  

0 0,  so dB dIB nI n
dt dt

μ μ= =  

Thus 7 1 41 1
02 2 (0.00500 m)(4 10  T m/A)(900 m )(60.0 A/s) 1.70 10  V/mdIE r n

dt
μ π − − −= = × ⋅ = ×  

(b) r = 0.0100 cm is still inside the solenoid so the expression in part (a) applies. 
7 1 41 1

02 2 (0.0100 m)(4 10  T m/A)(900 m )(60.0 A/s) 3.39 10  V/mdIE r n
dt

μ π − − −= = × ⋅ = ×  

EVALUATE: Inside the solenoid E is proportional to r, so E doubles when r doubles. 
29.29. IDENTIFY: Apply Eqs.(29.9) and (29.10). 

SET UP: Evaluate the integral if Eq.(29.10) for a path which is a circle of radius r and concentric with the 
solenoid. The magnetic field of the solenoid is confined to the region inside the solenoid, so ( ) 0B r = for r R>  

EXECUTE: (a) 2
1 .Bd dB dBA r

dt dt dt
πΦ

= =  

(b) 
2

1 1

1 1

1 .
2 2 2

Bd r dB r dBE
r dt r dt dt

π
π π

Φ
= = =  The direction of E

!
 is shown in Figure 29.29a. 

(c) All the flux is within r < R, so outside the solenoid 
2 2

2 2 2

1 .
2 2 2

Bd R dB R dBE
r dt r dt r dt

π
π π

Φ
= = =  

(d) The graph is sketched in Figure 29.29b. 

(e) At 2,r R=
2

2( /2) .
4

Bd dB R dBR
dt dt dt

ππΦ
= = =E  

(f) At r R= , 2 .Bd dBR
dt dt

πΦ
= =E  

(g) At 2r R= , 2 .Bd dBR
dt dt

πΦ
= =E  

EVALUATE: The emf is independent of the distance from the center of the cylinder at all points outside it. Even 
though the magnetic field is zero for ,r R>  the induced electric field is nonzero outside the solenoid and a nonzero 
emf is induced in a circular turn that has .r R>  

  
Figure 29.29 

29.30. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field E and use this E in Eq.(29.9) to calculate E  
between two points. 
(a) SET UP: Because of the axial symmetry and the absence of any electric charge, the field lines are concentric 
circles. 
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(b) See Figure 29.30. 

 

E
!

 is tangent to the ring. The direction 
of E
!

 (clockwise or counterclockwise) 
is the direction in which current will 
be induced in the ring. 

Figure 29.30  

EXECUTE: Use the sign convention for Faraday�s law to deduce this direction. Let A
!

 be into the paper. Then 

BΦ  is positive. B decreasing then means Bd
dt
Φ  is negative, so by ,  Bd

dt
Φ

= −E E  is positive and therefore 

clockwise. Thus E
!

 is clockwise around the ring. To calculate E apply Bdd
dt
Φ

⋅ −E l =
!!ú  to a circular path that 

coincides with the ring. 
(2 )d E rπ⋅E l =

!!ú  

2 2;  B
B

d dBB r r
dt dt

π πΦ
Φ = =  

2 31 1
2 2(2 )  and (0.100 m)(0.0350 T/s) 1.75 10  V/mdB dBE r r E r

dt dt
π π −= = = = ×  

(c) The induced emf has magnitude 3 3(2 ) (1.75 10  V/m)(2 )(0.100 m) 1.100 10  V.d E rπ π− −= ⋅ = × = ×E l =
!!

E ú  Then 
3

41.100 10  V 2.75 10  A.
4.00 

I
R

−
−×

= = = ×
Ω

E  

(d) Points a and b are separated by a distance around the ring of rπ  so 
3 4( ) (1.75 10  V/m)( )(0.100 m) 5.50 10  VE rπ π− −= = × = ×E  

(e) The ends are separated by a distance around the ring of 2 rπ  so 31.10 10  V−= ×E  as calculated in part (c). 
EVALUATE: The induced emf, calculated from Faraday�s law and used to calculate the induced current, is 
associated with the induced electric field integrated around the total circumference of the ring. 

29.31. IDENTIFY: Apply Eq.(29.1) with 0B niAμΦ = . 

SET UP: 2A rπ= , where 0.0110 mr = . In Eq.(29.11), 0.0350 mr = . 

EXECUTE: B
0 0( ) ( )d d d diBA niA nA

dt dt dt dt
μ μΦ

= = = =E  and (2 ).E rπ=E  Therefore, 
0

2 .di E r
dt nA

π
μ

=  

6

1 2
0

(8.00 10  V/m)2 (0.0350 m) 9.21 A/s.
(400 m ) (0.0110 m)

di
dt

π
μ π

−

−

×
= =  

EVALUATE: Outside the solenoid the induced electric field decreases with increasing distance from the axis of 
the solenoid. 

29.32. IDENTIFY: A changing magnetic flux through a coil induces an emf in that coil, which means that an electric 
field is induced in the material of the coil. 

SET UP: According to Faraday�s law, the induced electric field obeys the equation .BdE dl
dt
Φ

⋅ = −
!!ú  

EXECUTE: (a) For the magnitude of the induced electric field, Faraday�s law gives  
E2πr = d(Bπr2)/dt = πr2 dB/dt  

30.0225 m (0.250 T/s) = 2.81 10  V/m
2 2
r dBE

dt
−= = ×  

(b) The field points toward the south pole of the magnet and is decreasing, so the induced current is 
counterclockwise. 
EVALUATE: This is a very small electric field compared to most others found in laboratory equipment. 

29.33. IDENTIFY: Apply Faraday�s law in the form av
BN

t
ΔΦ

=
Δ

E . 

SET UP: The magnetic field of a large straight solenoid is 0B nIμ= inside the solenoid and zero outside. 

B BAΦ = , where A is 28.00 cm , the cross-sectional area of the long straight solenoid. 
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EXECUTE: f i
av

( ) .B oNA B B NA nIN
t t t

μΔΦ −
= = =

Δ Δ Δ
E  

4 2 1
40

av
(12)(8.00 10 m )(9000 m )(0.350 A) 9.50 10  V.

0.0400 s
μ − −

−×
= = ×E  

EVALUATE: An emf is induced in the second winding even though the magnetic field of the solenoid is zero at 
the location of the second winding. The changing magnetic field induces an electric field outside the solenoid and 
that induced electric field produces the emf. 

29.34. IDENTIFY: Apply Eq.(29.14). 
SET UP: 113.5 10  F/m−= ×P  

EXECUTE: 11 3 3 2
D (3.5 10  F/m)(24.0 10  V m/s ) .Edi t

dt
−Φ

= = × × ⋅P  6
D 21 10 Ai −= ×  gives 5.0 s.t =  

EVALUATE: Di depends on the rate at which EΦ is changing. 
29.35. IDENTIFY: Apply Eq.(29.14), where 0.K=P P  

SET UP: 3 4 3/ 4(8.76 10  V m/s )Ed dt tΦ = × ⋅ . 12
0 8.854 10  F/m.−= ×P  

EXECUTE: 
( )

12
11

3 4 3 3

12.9 10  A 2.07 10  F/m.
/ 4(8.76 10  V m/s )(26.1 10  s)

D

E

i
d dt

−
−

−

×
= = = ×

Φ × ⋅ ×
P  The dielectric constant is 

0
2.34.K = =PP  

EVALUATE: The larger the dielectric constant, the larger is the displacement current for a given / .Ed dtΦ  
29.36. IDENTIFY and SET UP: Eqs.(29.13) and (29.14) show that C Di i=  and also relate Di  to the rate of change of the 

electric field flux between the plates. Use this to calculate /dE dt  and apply the generalized form of Ampere�s law 
(Eq.29.15) to calculate B. 

(a) EXECUTE: 2D C
C D D 2 2

0.280 A 0.280 A,  so 55.7 A/m
(0.0400 m)

i ii i j
A A rπ π

= = = = = =  

(b) 
2

12D
D 0 12 2 2

0

55.7 A/m so 6.29 10  V/m s
8.854 10  C / N m

dE dE jj
dt dt −= = = = × ⋅

× ⋅
P

P
 

(c) SET UP: Apply Ampere�s law 0 C D encl( )d i iμ⋅ +B l =
!!ú  (Eq.(28.20)) to a circular path with radius r = 0.0200 m. 

An end view of the solenoid is given in Figure 29.36. 

 

By symmetry the magnetic 
field is tangent to the path 
and constant around it. 

Figure 29.36  

EXECUTE: Thus (2 ).d Bdl B dl B rπ⋅ = =∫B l =
!!ú ú  

C 0i =  (no conduction current flows through the air space between the plates) 

The displacement current enclosed by the path is 2
D .j rπ  

Thus 2
0 D(2 ) ( )B r j rπ μ π=  and 7 2 71 1

0 D2 2 (4 10  T m/A)(55.7 A/m )(0.0200 m) 7.00 10  TB j rμ π − −= = × ⋅ = ×  

(d) 1 1
0 D2 2. Now  is B j r rμ=  the value in (c), so B is 1

2  also: 7 71
2 (7.00 10  T) 3.50 10  TB − −= × = ×  

EVALUATE: The definition of displacement current allows the current to be continuous at the capacitor. The 
magnetic field between the plates is zero on the axis (r = 0) and increases as r increases. 

29.37. IDENTIFY: q CV= . For a parallel-plate capacitor, ,AC
d

=
P  where 0.K=P P  C / .i dq dt=  D .Ej

dt
= P  

SET UP: /E q A= P  so C/ / .dE dt i A= P  

EXECUTE: (a) 
4 2

100
3

(4.70) (3.00 10  m )(120 V) 5.99 10  C.
2.50 10  m

Aq CV V
d

−
−

−

×⎛ ⎞= = = = ×⎜ ⎟ ×⎝ ⎠

P P  
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(b) 3
C 6.00 10 A.dq i

dt
−= = ×  

(c) C C
D 0 C

0

,dE i ij K j
dt K A A

= = = =P P
P

 so 3
D C 6.00 10  A.i i −= = ×  

EVALUATE: D C,i i=  so Kirchhoff�s junction rule is satisfied where the wire connects to each capacitor plate. 
29.38. IDENTIFY and SET UP: Use C /i q t=  to calculate the charge q that the current has carried to the plates in time t. 

The two equations preceeding Eq.(24.2) relate q to the electric field E and the potential difference between the 
plates. The displacement current density is defined by Eq.(29.16). 
EXECUTE: (a) 3

C 1.80 10  Ai −= ×  
0 at 0q t= =  

The amount of charge brought to the plates by the charging current in time t is 
3 6 10

C (1.80 10  A)(0.500 10  s) 9.00 10  Cq i t − − −= = × × = ×  
10

5
12 2 2 4 2

0 0

9.00 10  C 2.03 10  V/m
(8.854 10  C / N m )(5.00 10  m )

qE
A

σ −

− −

×
= = = = ×

× ⋅ ×P P
 

5 3(2.03 10  V/m)(2.00 10  m) 406 VV Ed −= = × × =  
(b) 0/E q A= P  

3
11C

12 2 2 4 2
0 0

/ 1.80 10  A 4.07 10  V/m s
(8.854 10  C / N m )(5.00 10  m )

dE dq dt i
dt A A

−

− −

×
= = = = × ⋅

× ⋅ ×P P
 

Since Ci  is constant dE/dt does not vary in time. 

(c) D 0
dEj
dt

= P  (Eq.(29.16)), with P  replaced by 0P  since there is vacuum between the plates.) 

12 2 2 11 2
D (8.854 10  C / N m )(4.07 10  V/m s) 3.60 A/mj −= × ⋅ × ⋅ =  

2 4 2 3
D D D C(3.60 A/m )(5.00 10  m ) 1.80 10  A; i j A i i− −= = × = × =  

EVALUATE: C D.i i=  The constant conduction current means the charge q on the plates and the electric field 
between them both increase linearly with time and Di  is constant. 

29.39. IDENTIFY: Ohm�s law relates the current in the wire to the electric field in the wire. D .dEj
dt

= P  Use Eq.(29.15) to 

calculate the magnetic fields. 
SET UP: Ohm�s law says E Jρ= . Apply Ohm�s law to a circular path of radius r. 

EXECUTE: (a) 
8

6 2

(2.0 10  m)(16 A) 0.15 V/m.
2.1 10  m

IE J
A
ρρ

−

−

× Ω ⋅
= = = =

×
 

(b) 
8

6 2

2.0 10  m (4000 A/s) 38 V/m s.
2.1 10  m

dE d ρI ρ dI
dt dt A A dt

−

−

× Ω ⋅⎛ ⎞= = = = ⋅⎜ ⎟ ×⎝ ⎠
 

(c) 10 2
D 0 0 (38 V/m s) 3.4 10  A/m .dEj

dt
−= = ⋅ = ×P P  

(d) 10 2 6 2 16
D D (3.4 10  A/m )(2.1 10  m ) 7.14 10  A.i j A − − −= = × × = ×  Eq.(29.15) applied to a circular path of radius r 

gives 
16

210 D 0
D

(7.14 10  A) 2.38 10  T,
2 2 (0.060 m)

IB
r

μ μ
π π

−
−×

= = = ×  and this is a negligible contribution. 

50 C 0
C

(16 A) 5.33 10  T.
2 2 (0.060 m)

IB
r

μ μ
π π

−= = = ×  

EVALUATE: In this situation the displacement current is much less than the conduction current. 
29.40. IDENTIFY: Apply Ampere's law to a circular path of radius ,r R<  where R is the radius of the wire. 

SET UP: The path is shown in Figure 29.40. 

 

0 C 0
Edd I

dt
μ Φ⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

B l =
!!ú P  

Figure 29.40  



29-12 Chapter 29 

EXECUTE: There is no displacement current, so 0 Cd Iμ⋅B l =
!!ú  

The magnetic field inside the superconducting material is zero, so 0.d⋅B l =
!!ú  But then Ampere�s law says that 

C 0;I =  there can be no conduction current through the path. This same argument applies to any circular path with 
r < R, so all the current must be at the surface of the wire. 
EVALUATE: If the current were uniformly spread over the wire�s cross section, the magnetic field would be like 
that calculated in Example 28.9. 

29.41. IDENTIFY: A superconducting region has zero resistance. 
SET UP: If the superconducting and normal regions each lie along the length of the cylinder, they provide parallel 
conducting paths. 
EXECUTE: Unless some of the regions with resistance completely fill a cross-sectional area of a long type-II 
superconducting wire, there will still be no total resistance. The regions of no resistance provide the path for the 
current.  
EVALUATE: The situation here is like two resistors in parallel, where one has zero resistance and the other is non-
zero. The equivalent resistance is zero. 

29.42. IDENTIFY: Apply Eq.(28.29): 0 0 .μ= +B B M
! ! !

 
SET UP: For magnetic fields less than the critical field, there is no internal magnetic field. For fields greater than 
the critical field, B

!
is very nearly equal to 0.B

!
 

EXECUTE: (a) The external field is less than the critical field, so inside the superconductor 0B =
!

 and 
50

0 0

�(0.130 ) �(1.03 10  A/m) .T
μ μ

− − − ×
B iM = = = i
!!

 Outside the superconductor, 0
�(0.130 )TB = B = i

! !
and 0.M =

!
 

(b) The field is greater than the critical field and 0
�(0.260 T) ,=B = B i

! !
 both inside and outside the superconductor. 

EVALUATE: Below the critical field the external field is expelled from the superconducting material. 
29.43. IDENTIFY: Apply 0 0 .μ= +B B M

! ! !
 

SET UP: When the magnetic flux is expelled from the material the magnetic field B
!

 in the material is zero. 
When the material is completely normal, the magnetization is close to zero. 
EXECUTE: (a) When 0B

!
is just under c1B

!
 (threshold of superconducting phase), the magnetic field in the 

material must be zero, and 
3

4c1

0 0

�(55 10  T) �(4.38 10  A/m) .
μ μ

−×
− − − ×
B iM = = = i
!!

 

(b) When 0B
!

is just over c2B
!

 (threshold of normal phase), there is zero magnetization, and c2
�(15.0 T) .=B = B i

! !
 

EVALUATE: Between c1B and c2B there are filaments of normal phase material and there is magnetic field along 
these filaments. 

29.44. IDENTIFY and SET UP: Use Faraday�s law to calculate the magnitude of the induced emf and Lenz�s law to 
determine its direction. Apply Ohm�s law to calculate I. Use Eq.(25.10) to calculate the resistance of the coil. 
(a) EXECUTE: The angle φ  between the normal to the coil and the direction of B

!
 is 30.0 .°  

2( )( / ) and / .Bd N r dB dt I R
dt

πΦ
= = =E E  

For t < 0 and t > 1.00 s, dB/dt = 0 0=E  and 0.I =  
For 1.00 s, /0 t dB dt≤ ≤ = (0.120 T) sin tπ π  

2( ) (0.120 T)sin (0.9475 V)sinN r t tπ π π π= =E  

R for wire: 8 3
w 2 ;  1.72 10  m, 0.0150 10  mL LR r

A r
ρ ρ ρ

π
− −= = = × Ω ⋅ = ×  

2 (500)(2 )(0.0400 m) 125.7 mL Nc N rπ π= = = =  

w 3058 R = Ω  and the total resistance of the circuit is 3058 600 3658 R = Ω+ Ω = Ω  
/ (0.259 mA)sin .I R tπ= =E  The graph of I versus t is sketched in Figure 29.44a. 

 
Figure 29.44a 
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(b) The coil and the magnetic field are shown in Figure 29.44b. 

 

B increasing so is BΦ "  
and increasing. is BΦ ⊗  
so I is clockwise 

Figure 29.44b  
EVALUATE: The long length of small diameter wire used to make the coil has a rather large resistance, larger 
than the resistance of the 600-Ω resistor connected to it in the circuit. The flux has a cosine time dependence so the 
rate of change of flux and the current have a sine time dependence. There is no induced current for t < 0 or t > 1.00 s. 

29.45. IDENTIFY: Apply Faraday�s law and Lenz�s law. 

SET UP: For a discharging RC circuit, /0( ) t RCVi t e
R

−= , where 0V  is the initial voltage across the capacitor. The 

resistance of the small loop is (25)(0.600 m)(1.0 /m) 15.0 Ω = Ω. 

EXECUTE: (a) The large circuit is an RC circuit with a time constant of 6(10 )(20 10  F) 200 s.RCτ μ−= = Ω × =  Thus, 

the current as a function of time is ( ) / 200 s(100 V) /(10 ) ti e μ−= Ω . At 200 s,t μ=  we obtain 1(10 A)( ) 3.7 A.i e−= =  
(b) Assuming that only the long wire nearest the small loop produces an appreciable magnetic flux through the 

small loop and referring to the solution of Exercise 29.7 we obtain 0 0 ln 1 .
2 2

c a

B c

ib ib adr
r c

μ μ
π π

+ ⎛ ⎞Φ = = +⎜ ⎟
⎝ ⎠∫  Therefore, 

the emf induced in the small loop at 200 s ist μ=  0 ln 1 .
2

d μ b a di
dt π c dt
Φ ⎛ ⎞= − = − +⎜ ⎟

⎝ ⎠
E  

7 2

6

(4 10  Wb/A m )(0.200 m) 3.7 Aln(3.0) 0.81 mV.
2 200 10 s

π
π

−

−

× ⋅ ⎛ ⎞= − − = +⎜ ⎟×⎝ ⎠
E  Thus, the induced current in the small 

loop is 0.81 mV 54 A.15.0 i R μ′ = = =
Ω

E  

(c) The magnetic field from the large loop is directed out of the page within the small loop.The induced current 
will act to oppose the decrease in flux from the large loop. Thus, the induced current flows counterclockwise. 
EVALUATE: (d) Three of the wires in the large loop are too far away to make a significant contribution to the 
flux in the small loop�as can be seen by comparing the distance c  to the dimensions of the large loop. 

29.46. IDENTIFY: A changing magnetic field causes a changing flux through a coil and therefore induces an emf in the 
coil. 

SET UP: Faraday�s law says that the induced emf is Bd
dt
Φ

= −E  and the magnetic flux through a coil is defined 

as cosB BA φΦ = . 
EXECUTE: In this case, ,B BAΦ =  where A is constant. So the emf is proportional to the negative slope of the 
magnetic field. The result is shown in Figure 29.46. 
EVALUATE: It is the rate at which the magnetic field is changing, not the field�s magnitude, that determines the 
induced emf. When the field is constant, even though it may have a large value, the induced emf is zero. 

 
Figure 29.46 

29.47. IDENTIFY: Follow the steps specified in the problem. 
SET UP: Let the flux through the loop due to the current be positive. 

EXECUTE: (a) 20 0 .
2 2B

i i aBA a
a
μ μ ππΦ = = =  
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(b) 0 0

0

2
2 2

Bd d i a a di di RiR iR i
dt dt dt dt a

μ π μ π
μ π

Φ ⎛ ⎞= − = ⇒ − = − = ⇒ = −⎜ ⎟
⎝ ⎠

E  

(c) Solving 
0

2di Rdt
i aμ π
= −  for ( )i t yields 0(2 / )

0( ) .t R ai t i e μ π−=  

(d) We want 0(2 / )
0 0( ) (0.010) ,t R ai t i i e μ π−= =  so 0ln(0.010) (2 / )t R aμ π= −  and 

50 0 (0.50 m)ln(0.010) ln(0.010) 4.55 10  s.
2 2(0.10 )

at
R

μ π μ π −= − = − = ×
Ω

 

EVALUATE: (e) We can ignore the self-induced currents because it takes only a very short time for them to die 
out. 

29.48. IDENTIFY: A changing magnetic field causes a changing flux through a coil and therefore induces an emf in the 
coil. 

SET UP: Faraday�s law says that the induced emf is Bd
dt
Φ

= −E  and the magnetic flux through a coil is defined 

as cos .B BA φΦ =  
EXECUTE: In this case, ,B BAΦ =  where A is constant. So the emf is proportional to the negative slope of the 
magnetic field. The result is shown in Figure 29.48. 
EVALUATE: It is the rate at which the magnetic field is changing, not the field�s magnitude, that determines the 
induced emf. When the field is constant, even though it may have a large value, the induced emf is zero. 

 
Figure 29.48 

29.49. (a) IDENTIFY: (i) .Bd
dt
Φ

=E  The flux is changing because the magnitude of the magnetic field of the wire decreases 

with distance from the wire. Find the flux through a narrow strip of area and integrate over the loop to find the total flux. 
SET UP:  

 

Consider a narrow strip of width dx and a 
distance x from the long wire, as shown in 
Figure 29.49a. The magnetic field of the wire 
at the strip is 0 /2 .B I xμ π=  The flux through 
the strip is 0( /2 )( / )Bd Bb dx Ib dx xμ πΦ = =  

Figure 29.49a  

EXECUTE: The total flux through the loop is 0

2
r a

B B r

Ib dxd
x

μ
π

+⎛ ⎞Φ = Φ = ⎜ ⎟
⎝ ⎠∫ ∫  

0 ln
2B

Ib r a
r

μ
π

+⎛ ⎞ ⎛ ⎞Φ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
0

2
B Bd d dr Ib a v

dt dt dt r r a
μ
π
⎛ ⎞Φ Φ

= = −⎜ ⎟⎜ ⎟+⎝ ⎠
 

( )
0

2
Iabv

r r a
μ
π

=
+

E  

(ii) IDENTIFY: Bvl=E  for a bar of length l moving at speed v perpendicular to a magnetic field B. Calculate the 
induced emf in each side of the loop, and combine the emfs according to their polarity. 
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SET UP: The four segments of the loop are shown in Figure 29.49b. 

 

EXECUTE: The emf in each side 

of the loop is 0
1 ,

2
I vb
r

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

E  

0
2 ,

2 ( )
I vb

r r a
μ

π
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
E  2 4 0= =E E  

Figure 29.49b  
Both emfs 1 2 and E E  are directed toward the top of the loop so oppose each other. The net emf is 

0 0
1 2

1 1
2 2 ( )
Ivb Iabv

r r a r r a
μ μ
π π

⎛ ⎞= − = − =⎜ ⎟+ +⎝ ⎠
E E E  

This expression agrees with what was obtained in (i) using Faraday�s law. 
(b) (i) IDENTIFY and SET UP: The flux of the induced current opposes the change in flux. 
EXECUTE:  is .  is B⊗ Φ ⊗B

!
 and decreasing, so the flux indΦ  of the induced current is ⊗  and the current is 

clockwise. 
(ii) IDENTIFY and SET UP: Use the right-hand rule to find the force on the positive charges in each side of the 
loop. The forces on positive charges in segments 1 and 2 of the loop are shown in Figure 29.49c. 

 
Figure 29.49c 

EXECUTE: B is larger at segment 1 since it is closer to the long wire, so BF  is larger in segment 1 and the 
induced current in the loop is clockwise. This agrees with the direction deduced in (i) using Lenz�s law. 
(c) EVALUATE: When v = 0 the induced emf should be zero; the expression in part (a) gives this. When 0a →  
the flux goes to zero and the emf should approach zero; the expression in part (a) gives this. When r →∞  the 
magnetic field through the loop goes to zero and the emf should go to zero; the expression in part (a) gives this. 

29.50. IDENTIFY: Apply Faraday�s law. 
SET UP: For rotation about the y-axis the situation is the same as in Examples 29.4 and 29.5 and we can apply the 
results from those examples. 
EXECUTE: (a) Rotating about the y-axis: the flux is given by cosB BA φΦ =  and 

2
max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.Bd BA

dt
ω −Φ

= = = × =E  

(b) Rotating about the x-axis: B 0d
dt
Φ

= and 0.=E  

(c) Rotating about the z-axis: the flux is given by cosB BA φΦ =  and 
2

max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.Bd BA
dt

ω −Φ
= = = × =E  

EVALUATE: The maximum emf is the same if the loop is rotated about an edge parallel to the z-axis as it is when 
it is rotated about the z-axis. 

29.51. IDENTIFY: Apply the results of Example 29.4, so max N BAω=E for N loops. 
SET UP: For the minimum ω, let the rotating loop have an area equal to the area of the uniform magnetic field, 
so 2(0.100 m)A = . 

EXECUTE: 400N = , 1.5 TB = , 2(0.100 m)A = and max 120 V=E  gives 

max/ (20 rad/s)(1 rev/2  rad)(60 s/1 min) 190 rpm.NBAω π= = =E  
EVALUATE: In max ,BAω=E  ω  is in rad/s. 
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29.52. IDENTIFY: Apply the results of Example 29.4, generalized to N loops: max .N BAω=E  v rω= . 

SET UP: In the expression for max ,E  ω  must be in rad/s. 30 rpm 3.14 rad/s=  

EXECUTE: (a) Solving for A  we obtain 20
5

9.0 V 18 m .
(3.14 rad/s)(2000 turns)(8.0 10  T)

A
NBω −= = =

×
E  

(b) Assuming a point on the coil at maximum distance from the axis of rotation we have 
218 m (3.14 rad/s) 7.5 m s.Av rω

π π
ω= = = =  

EVALUATE: The device is not very feasible. The coil would need a rigid frame and the effects of air resistance 
would be appreciable. 

29.53. IDENTIFY: Apply Faraday�s law in the form av
BN

t
ΔΦ

= −
Δ

E  to calculate the average emf. Apply Lenz�s law to 

calculate the direction of the induced current. 
SET UP: B BAΦ = . The flux changes because the area of the loop changes. 

EXECUTE: (a) 
2 2

av
(0.0650/2 m)(0.950 T) 0.0126 V.

0.250 s
B A rB B

t t t
π πΔΦ Δ

= = = = =
Δ Δ Δ

E  

(b) Since the magnetic field is directed into the page and the magnitude of the flux through the loop is decreasing, 
the induced current must produce a field that goes into the page. Therefore the current flows from point a through 
the resistor to point b . 
EVALUATE: Faraday�s law can be used to find the direction of the induced current. Let A

!
 be into the page. Then 

BΦ is positive and decreasing in magnitude, so / 0.Bd dtΦ <  Therefore 0>E  and the induced current is clockwise 
around the loop. 

29.54. IDENTIFY: By Lenz�s law, the induced current flows to oppose the flux change that caused it. 
SET UP: When the switch is suddenly closed with an uncharged capacitor, the current in the outer circuit 
immediately increases from zero to its maximum value. As the capacitor gets charged, the current in the outer 
circuit gradually decreases to zero. 
EXECUTE: (a) (i) The current in the outer circuit is suddenly increasing and is in a counterclockwise direction. 
The magnetic field through the inner circuit is out of the paper and increasing. The magnetic flux through the inner 
circuit is increasing, so the induced current in the inner circuit is clockwise (a to b) to oppose the flux increase. (ii) 
The current in the outer circuit is still counterclockwise but is now decreasing, so the magnetic field through the 
inner circuit is out of the page but decreasing. The flux through the inner circuit is now decreasing, so the induced 
current is counterclockwise (b to a) to oppose the flux decrease. 
(b) The graph is sketched in Figure 29.54. 
EVALUATE: Even though the current in the outer circuit does not change direction, the current in the inner circuit 
does as the flux through it changes from increasing to decreasing. 

 
Figure 29.54 

29.55. IDENTIFY: Use Faraday�s law to calculate the induced emf and Ohm�s law to find the induced current. Use 
Eq.(27.19) to calculate the magnetic force IF  on the induced current. Use the net force IF F−  in Newton�s 2nd 
law to calculate the acceleration of the rod and use that to describe its motion. 
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(a) SET UP: The forces in the rod are shown in Figure 29.55a. 

 

EXECUTE: Bd BLv
dt
Φ

= =E  

BLvI
R

=  

Figure 29.55a  

Use Bd
dt
Φ

= −E  to find the direction of I: Let A
!

 be into the page. Then 0.BΦ >  The area of the circuit is 

increasing, so 0.Bd
dt
Φ

>  Then 0<E  and with our direction for A
!

 this means that E  and I are counterclockwise, 

as shown in the sketch. The force IF  on the rod due to the induced current is given by .I I=F l B
!! !
×  This gives IF

!
 

to the left with magnitude 2 2( / ) / .IF ILB BLv R LB B L v R= = =  Note that IF
!

 is directed to oppose the motion of the 
rod, as required by Lenz�s law. 
EVALUATE: The net force on the rod is ,IF F−  so its acceleration is 2 2( ) / ( / ) / .Ia F F m F B L v R m= − = −  The 
rod starts with v = 0 and a = F/m. As the speed v increases the acceleration a decreases. When a = 0 the rod has 
reached its terminal speed t .v  The graph of v versus t is sketched in Figure 29.55b. 

 

(Recall that a is the slope of the 
tangent to the v versus t curve.) 

Figure 29.55b  

(b) EXECUTE: 
2 2

t
t t 2 2

/ when 0 so 0 and .F B L v R RFv v a v
m B L

−
= = = =  

EVALUATE: A large F produces a large t .v  If B is larger, or R is smaller, the induced current is larger at a given v 
so IF  is larger and the terminal speed is less. 

29.56. IDENTIFY: Apply Newton�s 2nd law to the bar. The bar will experience a magnetic force due to the induced 
current in the loop. Use /a dv dt= to solve for v. At the terminal speed, 0a = .  
SET UP: The induced emf in the loop has a magnitude BLv . The induced emf is counterclockwise, so it opposes 
the voltage of the battery, .E  

EXECUTE: (a) The net current in the loop is .BLvI R
−= E  The acceleration of the bar is 

 sin(90 ) ( ) .ILB BLv LBFa m m mR
−= = =° E  To find ( )v t , set ( )BLv LBdv adt mR

−= = E  and solve for v  using the method 

of separation of variables: 

/ /3.1 s

0 0

2 2
(1 ) (10 m/s)(1 )

( )
v t B L t mR tdv LB dt v e e

BLv mR BL
− −= → = − = −

−∫ ∫
E

E  

The graph of v versus t is sketched in Figure 29.56. Note that the graph of this function is similar in appearance to 
that of a charging capacitor. 
(b) Just after the switch is closed, 0v = and / 2.4 A,I R= =E  2.88 NF ILB= =  and 2/ 3.2 m/s .a F m= =  

(c) When [12 V (1.5 T)(0.8 m)(2.0 m/s)](0.8 m)(1.5 T)2.0 m/s, 2.6 m/s .
(0.90 kg)(5.0 )

v a 2−
= = =

Ω
 

(d) Note that as the speed increases, the acceleration decreases. The speed will asymptotically approach the 
terminal speed 12 V 10 m/s,(1.5 T)(0.8 m)BL = =E  which makes the acceleration zero. 
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EVALUATE: The current in the circuit is counterclockwise and the magnetic force on the bar is to the right. The 
energy that appears as kinetic energy of the moving bar is supplied by the battery. 

 
Figure 29.56 

29.57. IDENTIFY: Apply .BvL=E  Use m∑F = a
! !  applied to the satellite motion to find the speed v  of the satellite.  

SET UP: The gravitational force on the satellite is E
g 2

mmF G
r

= , where m is the mass of the satellite and r is the 

radius of its orbit. 

EXECUTE: 58.0 10  T, 2.0 m.B L−= × =  
2

2
Emm vG m

r r
=  and 3

E400 10  mr R= × +  gives 3E 7.665 10  m/s.Gmv
r

= = ×  

Using this v in vBL=E  gives 5 3(8.0 10  T)(7.665 10  m/s)(2.0 m) 1.2 V.−= × × =E  
EVALUATE: The induced emf is large enough to be measured easily. 

29.58. IDENTIFY: The induced emf is ,BvL=E  where L is measured in a direction that is perpendicular to both the 
magnetic field and the velocity of the bar. 
SET UP: The magnetic force pushed positive charge toward the high potential end of the bullet. 
EXECUTE: (a) 5(8 10  T)(0.004 m)(300 m/s) 96 V.BLv μ−= = × =E  Since a positive charge moving to the east 
would be deflected upward, the top of the bullet will be at a higher potential. 
(b) For a bullet that travels south, v!  and B

!
 are along the same line, there is no magnetic force and the induced emf 

is zero. 
(c) If v!  is horizontal, the magnetic force on positive charges in the bullet is either upward or downward, 
perpendicular to the line between the front and back of the bullet. There is no emf induced between the front and 
back of the bullet. 
EVALUATE: Since the velocity of a bullet is always in the direction from the back to the front of the bullet, and 
since the magnetic force is perpendicular to the velocity, there is never an induced emf between the front and back 
of the bullet, no matter what the direction of the magnetic field is. 

29.59. IDENTIFY: Find the magnetic field at a distance r from the center of the wire. Divide the rectangle into narrow 
strips of width dr, find the flux through each strip and integrate to find the total flux. 
SET UP: Example 28.8 uses Ampere�s law to show that the magnetic field inside the wire, a distance r from the 
axis, is 2

0( ) 2 .B r Ir Rμ π=  
EXECUTE: Consider a small strip of length W and width dr that is a distance r from the axis of the wire, as shown 

in Figure 29.59. The flux through the strip is 0
2( )

2B
IWd B r W dr r dr
R

μ
π

Φ = = . The total flux through the rectangle is 

0 0
2 0

.
2 4

R

B B
IW IWd r dr
R

μ μ
π π

⎛ ⎞Φ = Φ = =⎜ ⎟
⎝ ⎠∫ ∫  

EVALUATE: Note that the result is independent of the radius R of the wire. 

 
Figure 29.59 
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29.60. IDENTIFY: Apply Faraday�s law to calculate the magnitude and direction of the induced emf. 
SET UP: Let A

!
 be directed out of the page in Figure 29.50 in the textbook. This means that counterclockwise emf 

is positive. 
EXECUTE: (a) 2 2 3

0 0 0 0(1 3( ) 2( ) ).B BA B πr t t t tΦ = = − +  

(b) 
2

2 2 3 20 0
0 0 0 0 0 0

0

(1 3( / ) 2( / ) ) ( 6( / ) 6( / ) ).Bd d B πrB πr t t t t t t t t
dt dt t
Φ

= − = − − + = − − +E  
22

0 0

0 0 0

6 .B πr t t
t t t

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

E  At 

35.0 10 s,t −= ×  
22 3 3

06 (0.0420 m) 5.0 10  s 5.0 10  s 0.0665 V.
0.010 s 0.010 s 0.010 s

B π − −⎛ ⎞⎛ ⎞ ⎛ ⎞× ×⎜ ⎟= − − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
E  E is positive so it is 

counterclockwise. 

(c) total 3
total

0.0665 V 12 10.2 .
3.0 10  A

I R r R r
R I −= ⇒ = + = ⇒ = − Ω = Ω

×
E E  

(d) Evaluating the emf at 21.21 10  st −= ×  and using the equations of part (b), 0.0676 V,= −E  and the current flows 
clockwise, from b to a through the resistor. 

(e) 0=E  when 
2

0 0

0 .t t
t t

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

0

1 t
t

=  and 0 0.010 s.t t= =  

EVALUATE: At 0,t t=  0B = . At 35.00 10  st −= × , B
!

 is in the �+k  direction and is decreasing in magnitude. Lenz�s 
law therefore says E  is counterclockwise. At 0.0121 st = , B

!
 is in the �+k  direction and is increasing in magnitude. 

Lenz�s law therefore says E  is clockwise. These results for the direction of E  agree with the results we obtained 
from Faraday�s law. 

29.61. (a) and (b) IDENTIFY and Set Up:  

 

The magnetic field of the wire is given by 
0

2
IB
r

μ
π

=  and varies along the length of the 

bar. At every point along the bar B
!

 has 
direction into the page. Divide the bar up into 
thin slices, as shown in Figure 29.61a. 

Figure 29.61a  
EXECUTE: The emf dE  induced in each slice is given by . d d= ⋅v B l v B

!! !! !E × ×  is directed toward the wire, so 
0 .

2
Id vB dr v dr
r

μ
π

⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

E  The total emf induced in the bar is 

[ ]0 0 0 ln( )
2 2 2

b d L d L d L
ba da d d

Iv Iv dr IvV d dr r
r r

μ μ μ
π π π

+ + +⎛ ⎞= = − = − = −⎜ ⎟
⎝ ⎠∫ ∫ ∫E  

0 0(ln( ) ln( ))  ln(1 / )
2 2ba

Iv IvV d L d L dμ μ
π π

= − + − = − +  

EVALUATE: The minus sign means that baV  is negative, point a is at higher potential than point b. (The force 
qF = v B

! !!
×  on positive charge carriers in the bar is towards a, so a is at higher potential.) The potential difference 

increases when I or v increase, or d decreases. 
(c) IDENTIFY: Use Faraday�s law to calculate the induced emf. 
SET UP: The wire and loop are sketched in Figure 29.61b. 

 

EXECUTE: As the loop moves 
to the right the magnetic flux 
through it doesn�t change. Thus 

0Bd
dt
Φ

= − =E  and I = 0. 

Figure 29.61b  
EVALUATE: This result can also be understood as follows. The induced emf in section ab puts point a at higher 
potential; the induced emf in section dc puts point d at higher potential. If you travel around the loop then these 
two induced emf�s sum to zero. There is no emf in the loop and hence no current. 
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29.62. IDENTIFY: ,vBL=E  where v is the component of velocity perpendicular to the field direction and perpendicular 
to the bar. 
SET UP: Wires A and C have a length of 0.500 m and wire D has a length of 22(0.500 m) 0.707 m.=  
EXECUTE: Wire A: v!  is parallel to ,B

!
 so the induced emf is zero.  

Wire C: v!  is perpendicular to .B
!

 The component of v! perpendicular to the bar is cos 45v °. 
(0.350 m/s)(cos45 )(0.120 T)(0.500 m) 0.0148 V.= =°E  

Wire D: v!  is perpendicular to .B
!

 The component of v!perpendicular to the bar is cos45v °. 
(0.350 m/s)(cos45 )(0.120 T)(0.707 m) 0.0210 V.= =°E  

EVALUATE: The induced emf depends on the angle between v!  and B
!

 and also on the angle between v!  and the bar. 
29.63. (a) IDENTIFY: Use the expression for motional emf to calculate the emf induced in the rod. 

SET UP: The rotating rod is shown in Figure 29.63a. 

 

The emf induced in a thin 
slice is .d d= ⋅v B l

!!!E ×  

Figure 29.63a  

EXECUTE: Assume that B
!

 is directed out of the page. Then v B
!!

×  is directed radially outward and 
,  so  dl dr d vB dr= ⋅v B l =

!!!
×  

 so  .v r d Br drω ω= =E  
The dE  for all the thin slices that make up the rod are in series so they add: 

2 21 1
2 20

(8.80 rad/s)(0.650 T)(0.240 m) 0.165 V
L

d Br dr BLω ω= = = = =∫ ∫E E  

EVALUATE: E  increases with 2,   or .B Lω  
(b) No current flows so there is no IR drop in potential. Thus the potential difference between the ends equals the 
emf of 0.165 V calculated in part (a). 
(c) SET UP: The rotating rod is shown in Figure 29.63b. 

 
Figure 29.63b 

EXECUTE: The emf between the center of the rod and each end is 21 1
2 4( / 2) (0.165 V) 0.0412 V,B Lω= = =E  

with the direction of the emf from the center of the rod toward each end. The emfs in each half of the rod thus 
oppose each other and there is no net emf between the ends of the rod. 
EVALUATE: ω  and B are the same as in part (a) but L of each half is 1

2 L  for the whole rod. E  is proportional to 
2 ,L  so is smaller by a factor of 1

4 .  
29.64. IDENTIFY: The power applied by the person in moving the bar equals the rate at which the electrical energy is 

dissipated in the resistance. 

SET UP: From Example 29.7, the power required to keep the bar moving at a constant velocity is 
2( )BLvP R= . 

EXECUTE: (a) 
22 [(0.25 T)(3.0 m)(2.0 m s)]( ) 0.090Ω.25 W

BLvR P= = =  

(b) For a 50 W power dissipation we would require that the resistance be decreased to half the previous value. 
(c) Using the resistance from part (a) and a bar length of 0.20 m, 

2 2( ) [(0.25 T)(0.20 m)(2.0 m s)] 0.11 W
0.090Ω

BLvP
R

= = = . 

EVALUATE: When the bar is moving to the right the magnetic force on the bar is to the left and an applied force 
directed to the right is required to maintain constant speed. When the bar is moving to the left the magnetic force 
on the bar is to the right and an applied force directed to the left is required to maintain constant speed. 
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29.65. (a) IDENTIFY: Use Faraday�s law to calculate the induced emf, Ohm�s law to calculate I, and Eq.(27.19) to 
calculate the force on the rod due to the induced current. 
SET UP: The force on the wire is shown in Figure 29.65. 

 

EXECUTE: When the wire has speed v 
the induced emf is Bva=E  and the 

induced current is / BvaI R
R

= =E  

Figure 29.65  

The induced current flows upward in the wire as shown, so the force IF = l B
!! !
×  exerted by the magnetic field on 

the induced current is to the left. F
!

 opposes the motion of the wire, as it must by Lenz�s law. The magnitude of 
the force is 2 2 / .F IaB B a v R= =  
(b) Apply m∑F a

! !
=  to the wire. Take +x to be toward the right and let the origin be at the location of the wire at 

t = 0, so 0 0.x =  

 says x x xF ma F ma= − =∑  
2 2

x
F B a va
m mR

= − = −  

Use this expression to solve for v(t): 
2 2 2 2

 and x
dv B a v dv B aa dt
dt mR v mR

= = − = −  

0

2 2

0

v t

v

dv B a dt
v mR
′

′= −
′∫ ∫  

2 2

0ln( )  ln( ) B a tv v
mR

− = −  

2 2
2 2

/
0

0

ln  and B a t mRv B a t v v e
v mR

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

Note: At 00,   and 0 when t v v v t= = → →∞  
Now solve for x(t): 

2 2 2 2/ /
0 0 so B a t mR B a t mRdxv v e dx v e dt

dt
− −= = =  

2 2 /
00 0

x t B a t mRdx v e dt−′ ′=∫ ∫  

( )2 2 2 2/ /0
0 2 2 2 20

1
t

B a t mR B a t mRmR mRvx v e e
B a B a

′− −⎛ ⎞ ⎡ ⎤= − = −⎜ ⎟⎣ ⎦⎝ ⎠
 

Comes to rest implies v = 0. This happens when .t →∞  
0

2 2 gives .mRvt x
B a

→∞ =  Thus this is the distance the wire travels before coming to rest. 

EVALUATE: The motion of the slide wire causes an induced emf and current. The magnetic force on the induced 
current opposes the motion of the wire and eventually brings it to rest. The force and acceleration depend on v and 
are constant. If the acceleration were constant, not changing from its initial value of 2 2

0 / ,xa B a v mR= −  then the 

stopping distance would be 2 2 2
0 0/ 2 / 2 .xx v a mRv B a= − =  The actual stopping distance is twice this. 

29.66. IDENTIFY: Since the bar is straight and the magnetic field is uniform, integrating d dε = × ⋅v B l
!!! along the length 

of the bar gives ( )= × ⋅v B L
! !!E  

SET UP: �(4.20 m/s)v = i! . � �(0.250 m)(cos36.9 sin36.9 ).+L = i j
!

° °  

EXECUTE: (a) ( )� � � �( ) (4.20 m/s) ((0.120 T) 0.220 T (0.0900 T) ) .= × ⋅ = × − − ⋅v B L i i j k L
! ! !!E  

( ) ( )( ) ( )� � � �0.378 V/m 0.924 V/m (0.250 m)(cos 36.9 sin36.9 ) .= ⋅ ° + °�j k i jE  

(0.378 V/m)(0.250 m)sin36.9 0.0567 V.= ° =E  
(b) The higher potential end is the end to which positive charges in the rod are pushed by the magnetic force. 
×v B
!! has a positive y-component, so the end of the rod marked + in Figure 29.66 is at higher potential. 
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EVALUATE: Since ×v B
!! has nonzero �j and �k components, and L

!
 has nonzero �i and �j  components, only the 

�k component of B
!

contributes to .E  In fact, (4.20 m/s)(0.0900 T)(0.250 m)sin36.9 0.0567 V.x z yv B L= = =°E  

 
Figure 29.66 

29.67. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field at each point and then use .qF = E
! !

 
SET UP:  

 

Apply Bdd
dt
Φ

−E l =
!!

⋅ú  to a concentric circle of 

radius r, as shown in Figure 29.67a. Take A
!

 to 
be into the page, in the direction of .B

!
 

Figure 29.67a  

EXECUTE: B increasing then gives 0,  so Bd d
dt
Φ

> E l
!!

⋅ú  is negative. This means that E is tangent to the circle in 

the counterclockwise direction, as shown in Figure 29.67b. 

 

(2 )d E rπ−E l =
!!

⋅ú  

2Bd dBr
dt dt

πΦ
=  

Figure 29.67b  

2 1
2(2 )  so dB dBE r r E r

dt dt
π π− = − =  

point a The induced electric field and the force on q are shown in Figure 29.67c. 

 

1
2

dBF qE qr
dt

= =  

F
!

 is to the left 
(F
!

 is in the same direction as E
!

 since 
q is positive.) 

Figure 29.67c  
point b The induced electric field and the force on q are shown in Figure 29.67d. 

 

1
2

dBF qE qr
dt

= =  

F
!

 is toward the top of the page. 

Figure 29.67d  
point c r = 0 here, so E = 0 and F = 0. 
EVALUATE: If there were a concentric conducting ring of radius r in the magnetic field region, Lenz�s law tells 
us that the increasing magnetic field would induce a counterclockwise current in the ring. This agrees with the 
direction of the force we calculated for the individual positive point charges. 

29.68. IDENTIFY: A bar moving in a magnetic field has an emf induced across its ends. The propeller acts as such a bar. 
SET UP: Different parts of the propeller are moving at different speeds, so we must integrate to get the total 
induced emf. The potential induced across an element of length dx is ,d vBdx=E  where B is uniform. 
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EXECUTE: (a) Call x the distance from the center to an element of length dx, and L the length of the propeller. 

The speed of dx is xω, giving .d vBdx x Bdxω= =E  
/ 2 2

0
/8.

L
x Bdx BLω ω= =∫E  

(b) The potential difference is zero since the potential is the same at both ends of the propeller. 

(c) ( )
3

4 4220 rev (2.0 m)2 0.50 10  T =5.8 10  V = 0.58 mV
60 s 8

π − −⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

E  

EVALUATE: A potential difference of about 1
2 mV  is not large enough to be concerned about in a propeller. 

29.69. IDENTIFY: Follow the steps specified in the problem. 
SET UP: The electric field region is sketched in Figure 29.69. 

EXECUTE: .Bdd
dt
Φ

⋅ = −E l
!!ú  If B

!
is constant then B 0,d

dt
Φ

=  so 0.d⋅ =E l
!!ú  0.ab cdabcda

d E L E L⋅ = − =∫ E l
!!

 But 

0cdE = , so 0.abE L = But since we assumed 0,abE ≠  this contradicts Faraday�s law. Thus, we can�t have a 
uniform electric field abruptly drop to zero in a region in which the magnetic field is constant. 
EVALUATE: If the magnetic field in the region is constant, then the integral d⋅E l

!!ú  must be zero. 

 
Figure 26.69 

29.70. IDENTIFY and SET UP: At the terminal speed t ,v  the upward force IF  exerted on the loop due to the induced 
current equals the downward force of gravity: .IF mg=  Use Eq.(29.6) to find the induced emf in the side of the 
loop that is totally within the magnetic field. There is no induced emf in the other sides of the loop. 
EXECUTE: 2 2,  /  and /IBvs I Bvs R F IsB B s v R= = = −E  

2 2
t

t 2 2 and B s v mgRmg v
R B s

= =  

2 2(4 ) ( / 2)m m mm V s d dρ ρ π ρ π= = =  

2 21
4

4 16R RL s sR
A d d
ρ ρ ρ

π π
= = =  

Using these expressions for m and R gives 2
t 16 /m Rv g Bρ ρ=  

EVALUATE: We know 38900 kg/mmρ =  (Table 14.1) and 81.72 10  mRρ
−= × Ω ⋅   

(Table 25.1). Taking B = 0.5 T gives t 9.6 cm/s.v =  
29.71. IDENTIFY: Follow the steps specified in the problem. 

SET UP: (a) The magnetic field region is sketched in Figure 29.71. 
EXECUTE: (b) 0d⋅ =B l

!!ú  (no currents in the region). Using the figure, let 0
�BB= i

!
 for 0y <  and 0B =  for 0.y >  

0ab cdabcde
d B L B L⋅ = − =∫ B l
!!

 but 0.  0, but 0.cd ab abB B L B= = ≠  This is a contradiction and violates Ampere�s Law. 

EVALUATE: We often describe a magnetic field as being confined to a region, but this result shows that the edges 
of such a region can't be sharp. 

 
Figure 29.71 
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29.72. IDENTIFY and SET UP: Apply Ohm�s law to the dielectric to relate the current in the dielectric to the charge on 
the plates. Use Eq.(25.1) for the current and obtain a differential equation for q(t). Integrate this equation to obtain 
q(t) and i(t). Use /E q A= P  and Eq.(29.16) to calculate D.j  
EXECUTE: (a) Apply Ohm�s law to the dielectric: The capacitor is sketched in Figure 29.72. 

 

( )( ) v ti t
R

=  

0( )( )  and q t Av t C K
C d

= =
P  

Figure 29.72  

0

( ) ( )dv t q t
K A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠P

 

The resistance R of the dielectric slab is / .R d Aρ=  Thus 
0 0

( ) ( ) ( )( ) .v t q t d A q ti t
R K A d Kρ ρ

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠P P
 But the current i(t) 

in the dielectric is related to the rate of change dq/dt of the charge q(t) on the plates by i(t) = �dq/dt (a positive i in the 
direction from the + to the � plate of the capacitor corresponds to a decrease in the charge). Using this in the above 

gives 
0

1 ( ).dq q t
dt Kρ

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠P
 

0

dq dt
q Kρ
= −

P
. Integrate both sides of this equation from t = 0, where q = 0,Q  to a later 

time t when the charge is q(t). 
0 0

0

1 .
q t

Q

dq dt
q Kρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫P

 0/
0

0 0

ln  and ( ) .t Kq t q t Q e
Q K

ρ

ρ
−⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

P

P
 Then 

0/0

0

( ) t Kdq Qi t e
dt K

ρ

ρ
−⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

P

P
 and 0/0

C
0

( ) .t Ki t Qj e
A AK

ρ

ρ
−⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

P

P
 The conduction current flows from the positive to 

the negative plate of the capacitor. 

(b) 
0

( ) ( )( ) q t q tE t
A K A

= =
P P

 

C
D 0 0 C

0

( ) / ( )( ) ( )dE dE dq t dt i tj t K K j t
dt dt K A A

= = = = − = −P P P
P

 

The minus sign means that D ( )j t  is directed from the negative to the positive plate. E
!

 is from + to � but dE/dt is 
negative (E decreases) so D ( )j t  is from � to +. 
EVALUATE: There is no conduction current to and from the plates so the concept of displacement current, with 

D C= −j j
! !

 in the dielectric, allows the current to be continuous at the capacitor. 
29.73. IDENTIFY: The conduction current density is related to the electric field by Ohm's law. The displacement current 

density is related to the rate of change of the electric field by Eq.(29.16). 
SET UP: 0/ cosdE dt E tω ω=  

EXECUTE: (a) 4 20
C

0.450 V/m(max) 1.96 10  A/m
2300 m

Ej
ρ

−= = = ×
Ω⋅

 

(b) 9 2
D 0 0 0 0 0 0

max

(max) 2 2 (120 Hz)(0.450 V/m) 3.00 10  A/mdEj E fE
dt

ω π π −⎛ ⎞= = = = = ×⎜ ⎟
⎝ ⎠

P P P P  

(c) If C Dj j= then 0
0 0

E Eω
ρ
= P and 7

0

1 4.91 10  rad/sω
ρ

= = ×
P

 

7
64.91 10 rad s 7.82 10  Hz.

2 2
f ω

π π
×

= = = ×  

EVALUATE: (d) The two current densities are out of phase by 90°  because one has a sine function and the other 
has a cosine, so the displacement current leads the conduction current by 90 .°  

29.74. IDENTIFY: A current is induced in the loop because of its motion and because of this current the magnetic field 
exerts a torque on the loop. 
SET UP: Each side of the loop has mass / 4m  and the center of mass of each side is at the center of each side. The 
flux through the loop is cosB BA φΦ = . 
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EXECUTE: (a) g cm mτ = ×∑r g! !!  summed over each leg. 

g sin(90 ) sin(90 ) ( ) sin(90 )
2 4 2 4 4
L m L m mg g L gτ φ φ φ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
° ° °  

g cos  (clockwise).
2

mgLτ φ=  

sinB IABτ φ= × =B
!!τ  (counterclockwise). 

cos sin sin .BA d BA d BAI
R R dt R dt R

φ ωφ φ φ= = = − =
E  The current is going counterclockwise looking to the �−k  direction. 

Therefore, 
2 2 2 4

2 2sin sin .B
B A B L

R R
ω ωτ φ φ= =  The net torque is 

2 4
2cos sin ,

2
mgL B L

R
ωτ φ φ= −  opposite to the 

direction of the rotation. 

(b) τ Iα= (I being the moment of inertia). About this axis 25 .
12

I mL=  Therefore, 

2 4 2 2
2 2

2

12 1 6 12cos sin cos sin .
5 2 5 5

mgL B L g B L
mL R L mR

ω ωα φ φ φ φ
⎡ ⎤

= − = −⎢ ⎥
⎣ ⎦

 

EVALUATE: (c) The magnetic torque slows down the fall (since it opposes the gravitational torque). 
(d) Some energy is lost through heat from the resistance of the loop. 

29.75. IDENTIFY: Apply Eq.(29.10). 
SET UP: Use an integration path that is a circle of radius r. By symmetry the induced electric field is tangent to 
this path and constant in magnitude at all points on the path. 
EXECUTE: (a) The induced electric field at these points is shown in Figure 29.75a. 
(b) To work out the amount of the electric field that is in the direction of the loop at a general position, we will use 

the geometry shown in Figure 29.75b. loop cosE E θ=  but cos .
2 2 ( /cos ) 2

E
r a a

θ
π π θ π

= = =
E E E  Therefore, 

2

loop
cos .
2

E
a
θ

π
=
E  But 

2
2

2 ,
cos

Bd dB dB a dBA r
dt dt dt dt

ππ
θ

Φ
= = = =E  so 

2

loop .
2 2

a dB a dBE
a dt dt

π
π

= =  This is exactly the value 

for a ring, obtained in Exercise 29.30, and has no dependence on the part of the loop we pick. 

(c) 
2 2

4(0.20 m) (0.0350 T/s) 7.37 10  A.
1.90 

A dB L dBI
R R dt R dt

−= = = = = ×
Ω

E  

(d) 
2

2 41 1 (0.20 m) (0.0350 T/s) 1.75 10  V.
8 8 8ab

dBL
dt

−= = = = ×E E  But there is potential drop 41.75 10  V,V IR −= = − ×  

so the potential difference is zero. 
EVALUATE: The magnitude of the induced emf between any two points equals the magnitudes of the potential 
drop due to the current through the resistance of that portion of the loop. 

  
Figure 29.75 

29.76. IDENTIFY: Apply Eq.(29.10). 
SET UP: Use an integration path that is a circle of radius r. By symmetry the induced electric field is tangent to 
this path and constant in magnitude at all points on the path. 
EXECUTE: (a) The induced emf at these points is shown in Figure 29.76. 
(b) The induced emf on the side ac is zero, because the electric field is always perpendicular to the line ac. 

(c) To calculate the total emf in the loop, 2 .Bd dB dBA L
dt dt dt
Φ

= = =E  2 3(0.20 m) (0.035 T/s) 1.40 10  V.−= = ×E  
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(d) 
3

41.40 10 V 7.37 10 A
1.90

I
R

−
−×

= = = ×
Ω

E  

(e) Since the loop is uniform, the resistance in length ac is one quarter of the total resistance. Therefore the 
potential difference between a and c is 4 4(7.37 10 A)(1.90 4) 3.50 10 Vac acV IR − −= = × Ω = × and the point a is at a 
higher potential since the current is flowing from a to c. 
EVALUATE: This loop has the same resistance as the loop in Challenge Problem 29.75 and the induced current is 
the same. 

 
Figure 29.76 

29.77. IDENTIFY: The motion of the bar produces an induced current and that results in a magnetic force on the bar. 
SET UP: BF

!
is perpendicular to B

!
, so is horizontal. The vertical component of the normal force equals cosmg φ , 

so the horizontal component of the normal force equals tanmg φ . 
EXECUTE: (a) As the bar starts to slide, the flux is decreasing, so the current flows to increase the flux, which 

means it flows from a to b. 
2 2 2

( cos ) cos .B
B

LB LB d LB dA LB vL BF iLB B vL
R R dt R dt R R

φ φΦ
= = = = = =E  At the terminal 

speed the horizontal forces balance, so 
2 2

tan costv L Bmg
R

φ φ=  and t 2 2

tan .
cos

Rmgv
L B

φ
φ

=  

(c) 1 1 cos tan( cos ) .Bd dA B vLB mgi B vL
R R dt R dt R R LB

φ φφΦ
= = = = = =
E  

(d) 
2 2 2

2
2 2

tan .Rm gP i R
L B

φ
= =  

(e) g 2 2

tancos(90 ) sin
cos

RmgP Fv mg
L B

φφ φ
φ

⎛ ⎞
= ° − = ⎜ ⎟

⎝ ⎠
 and 

2 2 2

g 2 2

tanRm gP
L B

φ
= . 

EVALUATE: The power in part (e) equals that in part (d), as is required by conservation of energy. 
29.78. IDENTIFY: Follow the steps indicated in the problem. 

SET UP: The primary assumption throughout the problem is that the square patch is small enough so that the 
velocity is constant over its whole area, that is, .v r dω ω= ≈  

EXECUTE: (a) clockwise, into page.Bω → → vBL dBLω= =E . .A dBAI
R L

ω
ρ ρ

= = =
E E  Since ×v B

!! points 

outward, A  is just the cross-sectional area .tL  Therefore, dBLtI ω
ρ

=  flowing radially outward since ×v B
!!  points 

outward. 

(b) ×= d F
! !!τ  and B I ILB× =F = L B

! ! !
 pointing counterclockwise. So 

2 2 2d B L tωτ
ρ

=  pointing out of the page (a 

counterclockwise torque opposing the clockwise rotation). 
(c) If counterclockwise and into page,Bω → → then I →  inward radially since ×v B

!!  points inward. 
τ → clockwise (again opposing the motion). If ω → counterclockwise and B → out of the page, then I → radially 
outward. τ → clockwise (opposing the motion) 
The magnitudes of andI τ  are the same as in part (a). 
EVALUATE: In each case the magnetic torque due to the induced current opposes the rotation of the disk, as is 
required by conservation of energy. 


