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ELECTRIC POTENTIAL 

 23.1. IDENTIFY: Apply Eq.(23.2) to calculate the work. The electric potential energy of a pair of point charges is given 
by Eq.(23.9). 
SET UP: Let the initial position of 2q  be point a and the final position be point b, as shown in Figure 23.1. 

 

0.150 mar =  

2 2(0.250 m) (0.250 m)br = +  

0.3536 mbr =  

Figure 23.1  
EXECUTE: a b a bW U U→ = −  

 
6 6

9 21 2

0

1 ( 2.40 10  C)( 4.30 10  C)(8.988 10  N m / C )
4 0.150 ma

a

q qU
rπ

− −
2 + × − ×

= = × ⋅
P

 

 0.6184 JaU = −  

 
6 6

9 21 2

0

1 ( 2.40 10  C)( 4.30 10  C)(8.988 10  N m / C )
4 0.3536 mb

b

q qU
rπ

− −
2 + × − ×

= = × ⋅
P

 

 0.2623 JbU = −  

0.6184 J ( 0.2623 J) 0.356 Ja b a bW U U→ = − = − − − = −  

EVALUATE: The attractive force on 2q  is toward the origin, so it does negative work on q2 when q2 moves to 
larger r. 

 23.2. IDENTIFY: Apply .a b a bW U U→ = −  

SET UP: 85.4 10  J.aU −= + ×  Solve for .bU  

EXECUTE: 81.9 10  J .a b a bW U U−
→ = − × = −  8 8 81.9 10  J ( 5.4 10  J) 7.3 10  J.b a a bU U W − − −

→= − = × − − × = ×  
EVALUATE: When the electric force does negative work the electrical potential energy increases. 

 23.3. IDENTIFY: The work needed to assemble the nucleus is the sum of the electrical potential energies of the protons 
in the nucleus, relative to infinity. 
SET UP: The total potential energy is the scalar sum of all the individual potential energies, where each potential 
energy is 0 0(1/ 4 )( / ).U qq rπ= P Each charge is e and the charges are equidistant from each other, so the total 

potential energy is 
2 2 2 2

0 0

1 3 .
4 4

e e e eU
r r r rπ π

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠P P
  

EXECUTE: Adding the potential energies gives 
2 19 2 9 2 2

13
15

0

3 3(1.60 10  C) (9.00 10  N m /C ) 3.46 10  J 2.16 MeV
4 2.00 10  m

eU
rπ

−
−

−

× × ⋅
= = = × =

×P
 

EVALUATE: This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is quite a 
lot of energy. 
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 23.4. IDENTIFY: The work required is the change in electrical potential energy. The protons gain speed after being 
released because their potential energy is converted into kinetic energy.  
(a) SET UP: Using the potential energy of a pair of point charges relative to infinity, 0 0(1/ 4 )( / ).U qq rπ= P we have 

2 2

2 1
0 2 1

1 .
4

e eW U U U
r rπ

⎛ ⎞
= Δ = − = −⎜ ⎟

⎝ ⎠P
 

EXECUTE: Factoring out the e2 and substituting numbers gives  

( )( )29 2 2 19 14
15 15

1 19.00 10 N m /C 1.60 10  C 7.68 10  J
3.00 10  m 2.00 10  m

W − −
− −

⎛ ⎞= × ⋅ × − = ×⎜ ⎟× ×⎝ ⎠
 

(b) SET UP: The protons have equal momentum, and since they have equal masses, they will have equal speeds 

and hence equal kinetic energy. 2 2
1 2

12 2 .
2

U K K K mv mv⎛ ⎞Δ = + = = =⎜ ⎟
⎝ ⎠

 

EXECUTE: Solving for v gives 
14

27

7.68 10  J
1.67 10  kg

Uv
m

−

−

Δ ×
= =

×
 = 6.78 × 106 m/s 

EVALUATE: The potential energy may seem small (compared to macroscopic energies), but it is enough to give 
each proton a speed of nearly 7 million m/s. 

 23.5. (a) IDENTIFY: Use conservation of energy: 

othera a b bK U W K U+ + = +  

U for the pair of point charges is given by Eq.(23.9). 
SET UP:  

 

Let point a be where q2 is 0.800 m from 
q1 and point b be where q2 is 0.400 m 
from q1, as shown in Figure 23.5a. 

Figure 23.5a  

EXECUTE: Only the electric force does work, so other 0W =  and 1 2

0

1 .
4

q qU
rπ

=
P

 

2 3 21 1
2 2 (1.50 10  kg)(22.0 m/s) 0.3630 Ja aK mv −= = × =  

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.2454 J
4 0.800 ma

a

q qU
rπ

− −− × − ×
= = × ⋅ = +

P
 

21
2b bK mv=  

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.4907 J
4 0.400 mb

b

q qU
rπ

− −− × − ×
= = × ⋅ = +

P
 

The conservation of energy equation then gives ( )b a a bK K U U= + −  
21

2 0.3630 J (0.2454 J 0.4907 J) 0.1177 Jbmv = + + − =  

3

2(0.1177 J) 12.5 m/s
1.50 10  kgbv −= =

×
 

EVALUATE: The potential energy increases when the two positively charged spheres get closer together, so the 
kinetic energy and speed decrease. 
(b) IDENTIFY: Let point c be where q2 has its speed momentarily reduced to zero. Apply conservation of energy to 
points a and c: other .a a c cK U W K U+ + = +  
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SET UP: Points a and c are shown in Figure 23.5b. 

 

EXECUTE: 0.3630 JaK = +  (from part (a)) 
0.2454 JaU = +  (from part (a)) 

Figure 23.5b  
0cK =  (at distance of closest approach the speed is zero) 

1 2

0

1
4c

c

q qU
rπ

=
P

 

Thus conservation of energy a a cK U U+ =  gives 1 2

0

1 0.3630 J 0.2454 J 0.6084 J
4 c

q q
rπ

= + + =
P

 

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.323 m.
4 0.6084 J 0.6084 Jc

q qr
π

− −− × − ×
= = × ⋅ =

+P
 

EVALUATE: U →∞  as 0r →  so q2 will stop no matter what its initial speed is. 

 23.6. IDENTIFY: Apply 1 2q qU k
r

=  and solve for r. 

SET UP: 6
1 7.2 10  Cq −= − × , 6

2 2.3 10  Cq −= + ×   

EXECUTE: 
9 2 2 6 6

1 2 (8.99 10  N m /C )( 7.20 10  C)( 2.30 10  C) 0.372 m
0.400 J

kq qr
U

− −× ⋅ − × + ×
= = =

−
 

EVALUATE: The potential energy U is a scalar and can take positive and negative values. 
 23.7. (a) IDENTIFY and SET UP: U is given by Eq.(23.9). 

EXECUTE: 
0

1
4

qqU
rεπ
′

=  

6 6
9 2 2 ( 4.60 10  C)( 1.20 10  C)(8.988 10  N m /C ) 0.198 J

0.250 m
U

− −+ × + ×
= × ⋅ = +  

EVALUATE: The two charges are both of the same sign so their electric potential energy is positive. 
(b) IDENTIFY: Use conservation of energy: othera a b bK U W K U+ + = +  
SET UP: Let point a be where q is released and point b be at its final position, as shown in Figure 23.7. 

 

EXECUTE: 0aK =  (released from rest) 
0.198 JaU = +  (from part (a)) 

21
2b bK mv=  

Figure 23.7  

Only the electric force does work, so other 0W =  and 
0

1 .
4

qQU
rπ

=
P

 

(i) 0.500 mbr =  
6 6

9 2 2

0

1 ( 4.60 10  C)( 1.20 10  C)(8.988 10  N m /C ) 0.0992 J
4 0.500 mb

qQU
rπ

− −+ × + ×
= = × ⋅ = +

P
 

Then othera a b bK U W K U+ + = +  gives b a bK U U= −  and 21
2 b a bmv U U= −  and 

4

2( ) 2( 0.198 J 0.0992 J) 26.6 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
 

(ii) 5.00 mbr =  br is now ten times larger than in (i) so bU  is ten times smaller: 0.0992 J /10 0.00992 J.bU = + = +  

4

2( ) 2( 0.198 J 0.00992 J) 36.7 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
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(iii) 50.0 mbr =  

br  is now ten times larger than in (ii) so Ub is ten times smaller: 

0.00992 J/10 0.000992 J.bU = + = +  

4

2( ) 2( 0.198 J 0.000992 J) 37.5 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
 

EVALUATE: The force between the two charges is repulsive and provides an acceleration to q. This causes the 
speed of q to increase as it moves away from Q. 

 23.8. IDENTIFY: Call the three charges 1, 2 and 3. 12 13 23U U U U= + +  
SET UP: 12 23 13U U U= =  because the charges are equal and each pair of charges has the same separation, 0.500 m. 

EXECUTE: 
2 6 23 3 (1.2 10  C) 0.078 J.

0.500 m 0.500 m
kq kU

−×
= = =  

EVALUATE: When the three charges are brought in from infinity to the corners of the triangle, the repulsive 
electrical forces between each pair of charges do negative work and electrical potential energy is stored. 

 23.9. IDENTIFY: 1 2 1 3 2 3

12 13 23

q q q q q qU k
r r r

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

SET UP: In part (a), 12 0.200 mr = , 23 0.100 mr = and 13 0.100 m.r =  In part (b) let particle 3 have coordinate x, so 

12 0.200 mr = , 13r x= and 23 0.200 .r x= −  

EXECUTE: (a) 7(4.00 nC)( 3.00 nC) (4.00 nC)(2.00 nC) ( 3.00 nC)(2.00 nC) 3.60 10  J
(0.200 m) (0.100 m) (0.100 m)

U k −⎛ ⎞− −
= + + = ×⎜ ⎟

⎝ ⎠
 

(b) If 0U = , then 1 2 1 3 2 3

12 12

0 .q q q q q qk
r x r x

⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

 Solving for x we find: 

28 60 60 60 26 1.6 0 0.074 m, 0.360 m.
0.2

x x x
x x

= − + − ⇒ − + = ⇒ =
−

 Therefore, 0.074 mx = since it is the only 

value between the two charges. 
EVALUATE: 13U  is positive and both 23U and 12U  are negative. If 0U = , then 13 23 12 .U U U= +  For 

0.074 mx = , 7
13 9.7 10  JU −= + × , 7

23 4.3 10  JU −= − × and 7
12 5.4 10  J.U −= − ×  It is true that 0U =  at this x. 

23.10. IDENTIFY: The work done on the alpha particle is equal to the difference in its potential energy when it is moved 
from the midpoint of the square to the midpoint of one of the sides.  
SET UP: We apply the formula .a b a bW U U→ = −  In this case, a is the center of the square and b is the midpoint of 
one of the sides. Therefore center side center side.W U U→ = −  
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a single 
alpha-electron pair. At the center of the square, the alpha particle is a distance r1 = 50  nm  from each electron. At 
the midpoint of the side, the alpha is a distance r2 = 5.00 nm from the two nearest electrons and a distance r2 = 

125 nm  from the two most distant electrons. Using the formula for the potential energy (relative to infinity) of 
two point charges, 0 0(1/ 4 )( / ),U qq rπ= P the total work is 

center side center sideW U U→ = −  = 
0 1 0 2 0 3

1 1 14 2 2
4 4 4

e e eq q q q q q
r r r
α α α

π π π
⎛ ⎞

− +⎜ ⎟
⎝ ⎠P P P

 

Substituting qe = e and qα = 2e and simplifying gives 

2
center side

0 1 2 3

1 2 1 14
4

W e
r r rπ→

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦P
 

EXECUTE: Substituting the numerical values into the equation for the work gives 

( )219 212 1 14 1.60 10  C 6.08 10  J
5.00 nm50 m 125 nm

W − −⎡ ⎤⎛ ⎞= − × − + = ×⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

??? 

EVALUATE: Since the work is positive, the system has more potential energy with the alpha particle at the center 
of the square than it does with it at the midpoint of a side.  
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23.11. IDENTIFY: Apply Eq.(23.2). The net work to bring the charges in from infinity is equal to the change in potential 
energy. The total potential energy is the sum of the potential energies of each pair of charges, calculated from 
Eq.(23.9). 
SET UP: Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the corners of the 
triangle, as shown in Figure 23.11. 

 

Let qc be the third, unknown charge. 

Figure 23.11  

EXECUTE: 2 1( )W U U U= −Δ = − −  

1 0U =  

2
2

0

1 ( 2 )
4ab ac bc cU U U U q qq

dπ
= + + = +

P
 

Want 0,W = so 2 1( )W U U= − −  gives 20 U= −  

2

0

10 ( 2 )
4 cq qq

dπ
= +

P
 

2 2 0cq qq+ =  and /2.cq q= −  
EVALUATE: The potential energy for the two charges q is positive and for each q with qc it is negative. There are 
two of the q, qc terms so must have .cq q<  

23.12. IDENTIFY: Use conservation of energy a a b bU K U K+ = +  to find the distance of closest approach .br  The 

maximum force is at the distance of closest approach, 1 2
2 .

b

q q
F k

r
=   

SET UP: 0.bK =  Initially the two protons are far apart, so 0.aU =  A proton has mass 271.67 10  kg−×  and charge 
191.60 10  C.q e −= + = + ×  

EXECUTE: .a bK U=  2 1 21
22( ) .a

b

q qmv k
r

=  
2

2
a

b

emv k
r

=  and 

2 9 2 2 19 2
13

2 27 6 2

(8.99 10  N m /C )(1.60 10  C) 1.38 10  m.
(1.67 10  kg)(1.00 10  m/s)b

a

ker
mv

−
−

−

× ⋅ ×
= = = ×

× ×
 

2 19 2
9 2 2

2 13 2

(1.60 10  C)(8.99 10  N m /C ) 0.012 N.
(1.38 10  C)b

eF k
r

−

−

×
= = × ⋅ =

×
 

EVALUATE: The acceleration /a F m= of each proton produced by this force is extremely large. 

23.13. IDENTIFY: E points from high potential to low potential. 
0

.a b
a b

W V V
q
→ = −  

SET UP: The force on a positive test charge is in the direction of .E  
EXECUTE: V decreases in the eastward direction. A is east of B, so .B AV V>  C is east of A, so .C AV V<  The force 
on a positive test charge is east, so no work is done on it by the electric force when it moves due south (the force and 
displacement are perpendicular), and .D AV V=  
EVALUATE: The electric potential is constant in a direction perpendicular to the electric field. 

23.14. IDENTIFY: 
0

.a b
a b

W V V
q
→ = −  For a point charge, .kqV

r
=  

SET UP: Each vacant corner is the same distance, 0.200 m, from each point charge. 
EXECUTE: Taking the origin at the center of the square, the symmetry means that the potential is the same at the 
two corners not occupied by the 5.00 Cμ+  charges. This means that no net work is done is moving from one corner 
to the other. 
EVALUATE: If the charge 0q moves along a diagonal of the square, the electrical force does positive work for part 
of the path and negative work for another part of the path, but the net work done is zero. 
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23.15. IDENTIFY and SET UP: Apply conservation of energy to points A and B. 
EXECUTE: A A B BK U K U+ = +  

,U qV=  so A A B BK qV K qV+ = +  
6( ) 0.00250 J ( 5.00 10  C)(200 V 800 V) 0.00550 JB A A BK K q V V −= + − = + − × − =  

2 / 7.42 m/sB Bv K m= =  
EVALUATE: It is faster at B; a negative charge gains speed when it moves to higher potential. 

23.16. IDENTIFY: The work-energy theorem says .a b b aW K K→ = −  .a b
a b

W V V
q
→ = −   

SET UP: Point a is the starting and point b is the ending point. Since the field is uniform, 
cos cos .a bW Fs E q sφ φ→ = =  The field is to the left so the force on the positive charge is to the left. The particle 

moves to the left so 0φ = ° and the work a bW → is positive. 

EXECUTE: (a) 6 61.50 10  J 0 1.50 10  Ja b b aW K K − −
→ = − = × − = ×  

(b) 
6

9

1.50 10  J 357 V.
4.20 10  C

a b
a b

WV V
q

−
→

−

×
− = = =

×
 Point a is at higher potential than point b. 

(c) a bE q s W →= , so 3
2

357 V 5.95 10  V/m.
6.00 10  m

a b a bW V VE
q s s
→

−

−
= = = = ×

×
 

EVALUATE: A positive charge gains kinetic energy when it moves to lower potential; .b aV V<  

23.17. IDENTIFY: Apply the equation that precedes Eq.(23.17): .
b

a b a
W q d→ ′= ⋅∫ E l  

SET UP: Use coordinates where y+ is upward and x+  is to the right. Then ˆEE = j  with 44.00 10  N/C.E = ×  
(a) The path is sketched in Figure 23.17a. 

 
Figure 23.17a 

EXECUTE: ˆ ˆ( ) ( ) 0d E dx⋅ = ⋅ =E l j i  so 0.
b

a b a
W q d→ ′= ⋅ =∫ E l  

EVALUATE: The electric force on the positive charge is upward (in the direction of the electric field) and does no 
work for a horizontal displacement of the charge. 
(b) SET UP: The path is sketched in Figure 23.17b. 

 

ˆd  dyl = j  

Figure 23.17b 

EXECUTE: ˆ ˆ( ) ( )d E dy Edy⋅ = ⋅ =E l j j  

( )
b b

a b b aa a
W q d q E dy q E y y→ ′ ′ ′= ⋅ = = −∫ ∫E l  

0.670 m,b ay y− = +  positive since the displacement is upward and we have taken y+  to be upward. 
9 4 4( ) ( 28.0 10  C)(4.00 10  N/C)( 0.670 m) 7.50 10  J.a b b aW q E y y − −

→ ′= − = + × × + = + ×  

EVALUATE: The electric force on the positive charge is upward so it does positive work for an upward 
displacement of the charge. 
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(c) SET UP: The path is sketched in Figure 23.17c. 

 

0ay =  
sin (2.60 m)sin 45 1.838 mby r θ= − = − ° = −  

The vertical component of the 2.60 m 
displacement is 1.838 m downward. 

Figure 23.17c  

EXECUTE: ˆ ˆd dx dyl = i + j  (The displacement has both horizontal and vertical components.) 
ˆ ˆ ˆ( ) ( )d E dx dy Edy⋅ = ⋅ =E l j i + j  (Only the vertical component of the displacement contributes to the work.) 

( )
b b

a b b aa a
W q d q E dy q E y y→ ′ ′ ′= ⋅ = = −∫ ∫E l  

9 4 3( ) ( 28.0 10 C)(4.00 10  N/C)( 1.838 m) 2.06 10  J.a b b aW q E y y − −
→ ′= − = + × × − = − ×  

EVALUATE: The electric force on the positive charge is upward so it does negative work for a displacement of the 
charge that has a downward component. 

23.18. IDENTIFY: Apply .a a b bK U K U+ = +  
SET UP: Let 1 3.00 nCq = +  and 2 2.00 nC.q = +  At point a, 1 2 0.250 ma ar r= = . At point b, 1 0.100 mbr = and 

2 0.400 mbr = . The electron has q e= − and 31
e 9.11 10  kgm −= × . 0aK =  since the electron is released from rest. 

EXECUTE: 21 2 1 2
e

1 2 1 2

1
2 b

a a b b

keq keq keq keq m v
r r r r

− − = − − + . 

9 9
19 17(3.00 10 C) (2.00 10 C)( 1.60 10 C) 2.88 10 J

0.250 m 0.250 ma a aE K U k
− −

− −⎛ ⎞× ×
= + = − × + = − ×⎜ ⎟

⎝ ⎠
. 

9 9
19 2 17 2

e e
(3.00 10 C) (2.00 10 C 1 1( 1.60 10 C) 5.04 10 J

0.100 m 0.400 m 2 2b b b b bE K U k m v m v
− −

− −⎛ ⎞× ×
= + = − × + + = − × +⎜ ⎟

⎝ ⎠
 

Setting a bE E= gives 17 17 6
31

2 (5.04 10 J 2.88 10 J) 6.89 10 m s.
9.11 10 kgbv − −

−= × − × = ×
×

 

EVALUATE: 1 2 180 V.a a aV V V= + =  1 2 315 V.b b bV V V= + =  b aV V> . The negatively charged electron gains kinetic 
energy when it moves to higher potential. 

23.19. IDENTIFY and SET UP: For a point charge kqV
r

= . Solve for r. 

EXECUTE: (a) 
9 2 2 11

3(8.99 10  N m /C )(2.50 10  C) 2.50 10  m 2.50 mm
90.0 V

kqr
V

−
−× ⋅ ×

= = = × =  

(b) constantVr kq= = so 1 1 2 2V r V r= . 1
2 1

2

90.0 V(2.50 mm) 7.50 mm
30.0 V

Vr r
V
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

EVALUATE: The potential of a positive charge is positive and decreases as the distance from the point charge 
increases. 

23.20. IDENTIFY: The total potential is the scalar sum of the individual potentials, but the net electric field is the vector 
sum of the two fields. 
SET UP: The net potential can only be zero if one charge is positive and the other is negative, since it is a scalar. 
The electric field can only be zero if the two fields point in opposite directions.  
EXECUTE: (a) (i) Since both charges have the same sign, there are no points for which the potential is zero. 
(ii) The two electric fields are in opposite directions only between the two charges, and midway between them the 
fields have equal magnitudes. So E = 0 midway between the charges, but V is never zero. 
(b) (i) The two potentials have equal magnitude but opposite sign midway between the charges, so V = 0 midway 
between the charges, but E ≠ 0 there since the fields point in the same direction. 
(ii) Between the two charges, the fields point in the same direction, so E cannot be zero there. In the other two 
regions, the field due to the nearer charge is always greater than the field due to the more distant charge, so they 
cannot cancel. Hence E is not zero anywhere. 
EVALUATE: It does not follow that the electric field is zero where the potential is zero, or that the potential is zero 
where the electric field is zero. 
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23.21. IDENTIFY: 
0

1
4

i

i i

qV
rπ

= ∑P  

SET UP: The locations of the changes and points A and B are sketched in Figure 23.21. 

 
Figure 23.21 

EXECUTE: (a) 1 2

0 1 2

1
4A

A A

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠P
 

9 9
9 2 2 2.40 10  C 6.50 10  C(8.988 10  N m /C ) 737 V

0.050 m 0.050 mAV
− −⎛ ⎞+ × − ×

= × ⋅ + = −⎜ ⎟
⎝ ⎠

 

(b) 1 2

0 1 2

1
4B

B B

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠P
 

9 9
9 2 2 2.40 10  C 6.50 10  C(8.988 10  N m /C ) 704 V

0.080 m 0.060 mBV
− −⎛ ⎞+ × − ×

= × ⋅ + = −⎜ ⎟
⎝ ⎠

 

(c) IDENTIFY and SET UP: Use Eq.(23.13) and the results of parts (a) and (b) to calculate W. 
EXECUTE: 9 8( ) (2.50 10  C)( 704 V ( 737 V)) 8.2 10  JB A B AW q V V − −

→ ′= − = × − − − = + ×  
EVALUATE: The electric force does positive work on the positive charge when it moves from higher potential 
(point B) to lower potential (point A). 

23.22. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.22a. 2 2r a x= + . 

 
Figure 23.22a 

EXECUTE: (b) 0
0

12 .
4

qV
aπ

=
P

 

(c) 
2 2

0 0

1 1( ) 2 2
4 4

q qV x
r a xπ π

= =
+P P
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(d) The graph of V versus x is sketched in Figure 23.22b. 

 
Figure 23.22b 

EVALUATE: (e) When 
0

1 2,  ,
4

qx a V
xπ

>> =
P

just like a point charge of charge 2 .q+  At distances from the charges 

much greater than their separation, the two charges act like a single point charge. 

23.23. IDENTIFY:  For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.23. 

EXECUTE: (b) ( ) 0.kq k qV
r r

−
= + =  

(c) The potential along the x-axis is always zero, so a graph would be flat. 
(d) If the two charges are interchanged, then the results of (b) and (c) still hold. The potential is zero. 
EVALUATE: The potential is zero at any point on the x-axis because any point on the x-axis is equidistant from the 
two charges. 

 
Figure 23.23 

23.24. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: Consider the distances from the point on the y-axis to each charge for the three regions a y a− ≤ ≤  
(between the two charges), y a> (above both charges) and y a< − (below both charges). 

EXECUTE: (a) 
2 2

2| | : .
( ) ( )

kq kq kqyy a V
a y a y y a

< = − =
+ − −

 
2 2

2:
( )

kq kq kqay a V
a y y a y a

−
> = − =

+ − −
. 

2 2

2 :
( ) ( )

kq kq kqay a V
a y y a y a
−

< − = − =
+ − + −

. 

A general expression valid for any y is 
| | | |

q qV k
y a y a

⎛ ⎞−
= +⎜ ⎟− +⎝ ⎠

. 

(b) The graph of V versus y is sketched in Figure 23.24. 

(c) 
2 2 2

2 2: .kqa kqay a V
y a y
− −

>> = ≈
−

 

(d) If the charges are interchanged, then the potential is of the opposite sign. 
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EVALUATE: 0V =  at 0y = . V →+∞ as the positive charge is approached and V →−∞ as the negative charge is 
approached. 

 
Figure 23.24 

23.25. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.25a. 

 
Figure 23.25a 

(b) 
2 ( ): .

( )
kq kq kq x ax a V
x x a x x a

− +
> = − =

− −
 2 (3 )0 : .

( )
kq kq kq x ax a V
x a x x x a

−
< < = − =

− −
 

2 ( )0 : .
( )

kq kq kq x ax V
x x a x x a

− +
< = + =

− −
 A general expression valid for any y is 2

| | | |
q qV k x x a

⎛ ⎞= −⎜ ⎟−⎝ ⎠
. 

(c) The potential is zero at and /3.x a a= −  
(d) The graph of V versus x is sketched in Figure 23.25b. 

 
Figure 23.25b 

EVALUATE: (e) For 2: ,kqx kqx a V
x x

− −
>> ≈ =  which is the same as the potential of a point charge –q. Far from 

the two charges they appear to be a point charge with a charge that is the algebraic sum of their two charges. 
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23.26. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: The distance of a point with coordinate y from the positive charge is y  and the distance from the 

negative charge is 2 2r a y= + . 

EXECUTE: (a) 
2 2

2 1 2 .
| | | |
kq kqV kq
y r y a y

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟+⎝ ⎠

 

(b) 
2 2

2 2 20, when 3 .
4 3

a y aV y y a y+
= = ⇒ = ⇒ = ±  

(c) The graph of V versus y is sketched in Figure 23.26. V →∞  as the positive charge at the origin is approached. 

EVALUATE: (d) 1 2: ,kqy a V kq
y y y

⎛ ⎞
>> ≈ − = −⎜ ⎟

⎝ ⎠
which is the potential of a point charge q− . Far from the two 

charges they appear to be a point charge with a charge that is the algebraic sum of their two charges. 

 
Figure 23.26 

23.27. IDENTIFY: a a b bK qV K qV+ = + . 
SET UP: Let point a be at the cathode and let point b be at the anode. 0aK = . 295 Vb aV V− = . An electron has 

q e= − and 319.11 10  kgm −= × . 

EXECUTE: 19 17( ) (1.60 10  C)( 295 V) 4.72 10 Jb a bK q V V − −= − = − × − = × . 21
2b bK mv= , so 

17
7

31

2(4.72 10 J) 1.01 10 m s.
9.11 10 kgbv

−

−

×
= = ×

×
 

EVALUATE: The negatively charged electron gains kinetic energy when it moves to higher potential. 

23.28. IDENTIFY: For a point charge, 2

k q
E

r
=  and kqV

r
= .  

SET UP: The electric field is directed toward a negative charge and away from a positive charge. 

EXECUTE: (a) 0V >  so 0q > . 
2

2

/
/

V kq r kq r r
E k q r r kq

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 4.98 V 0.415 m
12.0 V/m

r = = . 

(b) 10
9 2 2

(0.415 m)(4.98 V) 2.30 10  C
8.99 10  N m /C

rVq
k

−= = = ×
× ⋅

 

(c) 0q > , so the electric field is directed away from the charge. 
EVALUATE: The ratio of V to E due to a point charge increases as the distance r from the charge increases, because 
E falls off as 21/r and V falls off as 1/r . 

23.29. (a) IDENTIFY and SET UP: The direction of E  is always from high potential to low potential so point b is at 
higher potential. 
(b) Apply Eq.(23.17) to relate b aV V−  to E. 

EXECUTE: ( ).
b b

b a b aa a
V V d Edx E x x− = − ⋅ = = −∫ ∫E l  

240 V 800 V/m
0.90 m 0.60 m

b a

b a

V VE
x x
− +

= = =
− −
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(c) 6 5( ) ( 0.200 10  C)( 240 V) 4.80 10  J.b a b aW q V V − −
→ = − = − × + = − ×  

EVALUATE: The electric force does negative work on a negative charge when the negative charge moves from 
high potential (point b) to low potential (point a). 

23.30. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. For a point charge, 
2

k q
E

r
= . The net electric field is the vector sum of the electric fields of the two 

charges. 
SET UP: E produced by a point charge is directed away from the point charge if it is positive and toward the 
charge if it is negative. 
EXECUTE: (a) 2 0,Q QV V V= + >  so V is zero nowhere except for infinitely far from the charges. The fields can 
cancel only between the charges, because only there are the fields of the two charges in opposite directions. Consider a 

point a distance x from Q and d x− from 2Q, as shown in Figure 23.30a. 2 2
2 2 2

(2 ) ( ) 2
( )Q Q

kQ k QE E d x x
x d x

= → = → − =
−

. 

.
1 2

dx =
+

 The other root, ,
1 2

dx =
−

does not lie between the charges. 

(b) V can be zero in 2 places, A and B, as shown in Figure 23.30b. Point A is a distance x from Q−  and d x−  from 

2Q. B is a distance y from Q−  and d y+ from 2Q. ( ) (2 ):  0 3k Q k QAt A x d
x d x
−

+ = → =
−

. 

( ) (2 ):  0k Q k QAt B y d
y d y
−

+ = → =
+

. 

The two electric fields are in opposite directions to the left of Q−  or to the right of 2Q in Figure 23.30c. But for the 
magnitudes to be equal, the point must be closer to the charge with smaller magnitude of charge. This can be the 

case only in the region to the left of Q− . 2Q QE E= gives 2 2

(2 )
( )

kQ k Q
x d x

=
+

 and 
12

dx =
−

. 

EVALUATE:  (d) E and V are not zero at the same places. E is a vector and V is a scalar. E is proportional to 21/r  
and V is proportional to 1/r . E is related to the force on a test charge and VΔ is related to the work done on a test 
charge when it moves from one point to another. 

  
Figure 23.30 

23.31. IDENTIFY and SET UP: Apply conservation of energy, Eq.(23.3). Use Eq.(23.12) to express U in terms of V. 
(a) EXECUTE: 1 1 2 2K qV K qV+ = +  

1 2 2 1( ) ;q V V K K− = −     191.602 10  Cq −= − ×  
2 181

1 e 12 4.099 10  J;K m v −= = ×     2 171
2 e 22 2.915 10  JK m v −= = ×  

2 1
1 2 156 VK KV V

q
−

− = = −  

EVALUATE: The electron gains kinetic energy when it moves to higher potential. 
(b) EXECUTE: Now 17

1 22.915 10  J, 0K K−= × =  

2 1
1 2 182 VK KV V

q
−

− = = +  

EVALUATE: The electron loses kinetic energy when it moves to lower potential. 
23.32. IDENTIFY and SET UP: Expressions for the electric potential inside and outside a solid conducting sphere are 

derived in Example 23.8. 

EXECUTE: (a) This is outside the sphere, so 
9(3.50 10 C) 65.6 V.

0.480 m
kq kV
r

−×
= = =  

(b) This is at the surface of the sphere, so 
9(3.50 10 C) 131 V

0.240 m
kV

−×
= = . 

(c) This is inside the sphere. The potential has the same value as at the surface, 131 V. 
EVALUATE: All points of a conductor are at the same potential. 
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23.33. (a) IDENTIFY and SET UP: The electric field on the ring’s axis is calculated in Example 21.10. The force on the 
electron exerted by this field is given by Eq.(21.3). 
EXECUTE: When the electron is on either side of the center of the ring, the ring exerts an attractive force directed 
toward the center of the ring. This restoring force produces oscillatory motion of the electron along the axis of the 
ring, with amplitude 30.0 cm. The force on the electron is not of the form F kx= −  so the oscillatory motion is not 
simple harmonic motion. 
(b) IDENTIFY: Apply conservation of energy to the motion of the electron. 
SET UP: a a b bK U K U+ = +  with a at the initial position of the electron and b at the center of the ring. From 

Example 23.11, 
2 2

0

1 ,
4

QV
x Rπ

=
+P

 where R is the radius of the ring. 

EXECUTE: 30.0 cm, 0.a bx x= =  

0aK =  (released from rest), 21
2bK mv=  

Thus 21
2 a bmv U U= −  

And U qV eV= = −  so 2 ( ) .b ae V Vv
m
−

=  

9
9 2 2

2 2 2 2
0

1 24.0 10  C(8.988 10  N m / C )
4 (0.300 m) (0.150 m)

a

a

QV
x Rπ

−×
= = × ⋅

+ +P
 

643 VaV =  
9

9 2 2

2 2
0

1 24.0 10  C(8.988 10  N m / C ) 1438 V
4 0.150 mb

b

QV
x Rπ

−×
= = × ⋅ =

+P
 

19
7

31

2 ( ) 2(1.602 10  C)(1438 V 643 V) 1.67 10  m/s
9.109 10  kg

b ae V Vv
m

−

−

− × −
= = = ×

×
 

EVALUATE: The positively charged ring attracts the negatively charged electron and accelerates it. The electron 
has its maximum speed at this point. When the electron moves past the center of the ring the force on it is opposite 
to its motion and it slows down. 

23.34. IDENTIFY: Example 23.10 shows that for a line of charge, 
0

ln( / )
2a b b aV V r rλ
π

− =
P

. Apply conservation of energy 

to the motion of the proton. 
SET UP: Let point a be 18.0 cm from the line and let point b be at the distance of closest approach, where 0bK = . 

EXECUTE: (a) 2 27 3 2 211 1
2 2 (1.67 10  kg)(1.50 10  m/s) 1.88 10  JaK mv − −= = × × = × . 

(b) a a b bK qV K qV+ = + . 
21

19

1.88 10  J 0.01175 V
1.60 10  C

b a
a b

K KV V
q

−

−

− − ×
− = = = −

×
. 02ln( / ) ( 0.01175 V)b ar r π

λ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

P . 

0 0
12

2 ( 0.01175 V) 2 (0.01175 V)exp (0.180 m)exp 0.158 m
5.00 10 C/mb ar r π π

λ −

⎛ ⎞−⎛ ⎞= = − =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

P P . 

EVALUATE: The potential increases with decreasing distance from the line of charge. As the positively charged 
proton approaches the line of charge it gains electrical potential energy and loses kinetic energy. 

23.35. IDENTIFY: The voltmeter measures the potential difference between the two points. We must relate this quantity to 
the linear charge density on the wire. 

SET UP: For a very long (infinite) wire, the potential difference between two points is ( )
0

ln /
2 b aV r rλ
π

Δ =
P

.  

EXECUTE: (a) Solving for λ gives 

( ) ( )
0

9 2 2

( )2 575  V
3.50 cmln / 18 10  N m /C ln
2.50 cm

b a

V
r r
πλ Δ

= =
⎛ ⎞× ⋅ ⎜ ⎟
⎝ ⎠

P  = 9.49 × 10-8 C/m 

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than it was 
over the 1.00-cm distance in part (a). 
(c) The potential difference is zero because both probes are at the same distance from the wire, and hence at the 
same potential. 
EVALUATE: Since a voltmeter measures potential difference, we are actually given ΔV, even though that is not 
stated explicitly in the problem. We must also be careful when using the formula for the potential difference because 
each r is the distance from the center of the cylinder, not from the surface. 
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23.36. IDENTIFY: The voltmeter reads the potential difference between the two points where the probes are placed. 
Therefore we must relate the potential difference to the distances of these points from the center of the cylinder. For 
points outside the cylinder, its electric field behaves like that of a line of charge. 

SET UP: Using ( )
0

ln /
2 b aV r rλ
π

Δ =
P

 and solving for rb, we have 02 /V
b ar r e π λΔ= P .  

EXECUTE: The exponent is 
9 2 2

9

1 (175 V)
2 9.00 10  N m /C 0.648

15.0 10  C/m−

⎛ ⎞
⎜ ⎟× × ⋅⎝ ⎠ =

×
, which gives  

rb = (2.50 cm) e0.648 = 4.78 cm. 
The distance above the surface is 4.78 cm – 2.50 cm = 2.28 cm. 
EVALUATE: Since a voltmeter measures potential difference, we are actually given ΔV, even though that is not 
stated explicitly in the problem. We must also be careful when using the formula for the potential difference because 
each r is the distance from the center of the cylinder, not from the surface. 

23.37. IDENTIFY: For points outside the cylinder, its electric field behaves like that of a line of charge. Since a voltmeter 
reads potential difference, that is what we need to calculate. 

SET UP: The potential difference is ( )
0

ln /
2 b aV r rλ
π

Δ =
P

. 

EXECUTE: (a) Substituting numbers gives  

( )
0

ln /
2 b aV r rλ
π

Δ =
P

 = ( )( )6 9 2 2 10.0 cm8.50 10  C/m 2 9.00 10  N m /C ln
6.00 cm

− ⎛ ⎞× × × ⋅ ⎜ ⎟
⎝ ⎠

  

VΔ = 7.82 × 104 V = 78,200 V = 78.2 kV 
(b) E = 0 inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero. 
EVALUATE: Caution! The fact that the voltmeter reads zero in part (b) does not mean that V = 0 inside the 
cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.  

23.38. IDENTIFY: The work required is equal to the change in the electrical potential energy of the charge-ring system. 
We need only look at the beginning and ending points, since the potential difference is independent of path for a 
conservative field. 

SET UP: (a) W = ( )center
0

1 0
4

QU q V q V V q
aπε∞

⎛ ⎞
Δ = Δ = − = −⎜ ⎟

⎝ ⎠
  

EXECUTE: Substituting numbers gives 
ΔU = (3.00 × 10-6 C)(9.00 × 109 N ⋅ m2/C2)(5.00 × 10–6 C)/(0.0400 m) = 3.38 J 

(b) We can take any path since the potential is independent of path. 
(c) SET UP: The net force is away from the ring, so the ball will accelerate away. Energy conservation gives 

21
0 max 2 .U K mv= =  

EXECUTE: Solving for v gives 

02 2(3.38 J)
0.00150 kg

Uv
m

= =  = 67.1 m/s 

EVALUATE: Direct calculation of the work from the electric field would be extremely difficult, and we would need 
to know the path followed by the charge. But, since the electric field is conservative, we can bypass all this 
calculation just by looking at the end points (infinity and the center of the ring) using the potential. 

23.39. IDENTIFY: The electric field is zero everywhere except between the plates, and in this region it is uniform and 
points from the positive to the negative plate (to the left in Figure 23.32).  
SET UP: Since the field is uniform between the plates, the potential increases linearly as we go from left to right 
starting at b. 
EXECUTE: Since the potential is taken to be zero at the left surface of the negative plate (a in Figure 23.32), it is 
zero everywhere to the left of b. It increases linearly from b to c, and remains constant (since E = 0) past c. The 
graph is sketched in Figure 23.39.  
EVALUATE: When the electric field is zero, the potential remains constant but not necessarily zero (as to the right 
of c). When the electric field is constant, the potential is linear. 

 
Figure 23.39 
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23.40. IDENTIFY and SET UP: For oppositely charged parallel plates, 0/E σ= P between the plates and the potential 
difference between the plates is V Ed= . 

EXECUTE: (a) 
9 2

0 0

47.0 10 C m 5310 N C.E σ −×
= = =
P P

 

(b) (5310 N/C)(0.0220 m) 117 V.V Ed= = =  
(c) The electric field stays the same if the separation of the plates doubles. The potential difference between the 
plates doubles. 
EVALUATE: The electric field of an infinite sheet of charge is uniform, independent of distance from the sheet. 
The force on a test charge between the two plates is constant because the electric field is constant. The potential 
difference is the work per unit charge on a test charge when it moves from one plate to the other. When the distance 
doubles the work, which is force times distance, doubles and the potential difference doubles. 

23.41. IDENTIFY and SET UP: Use the result of Example 23.9 to relate the electric field between the plates to the potential 
difference between them and their separation. The force this field exerts on the particle is given by Eq.(21.3). Use 
the equation that precedes Eq.(23.17) to calculate the work. 

EXECUTE: (a) From Example 23.9, 360 V 8000 V/m
0.0450 m

abVE
d

= = =  

(b) 9 5(2.40 10  C)(8000 V/m) 1.92 10  NF q E − −= = × = + ×  
(c) The electric field between the plates is shown in Figure 23.41. 

 
Figure 23.41 

The plate with positive charge (plate a) is at higher potential. The electric field is directed from high potential 
toward low potential (or, E  is from + charge toward −  charge), so E  points from a to b. Hence the force that E  
exerts on the positive charge is from a to b, so it does positive work. 

,
b

a
W d Fd= ⋅ =∫ F l  where d is the separation between the plates. 

5 7(1.92 10  N)(0.0450 m) 8.64 10  JW Fd − −= = × = + ×  
(d) 360 Va bV V− = +  (plate a is at higher potential) 

9 7( ) (2.40 10  C)( 360 V) 8.64 10  J.b a b aU U U q V V − −Δ = − = − = × − = − ×  
EVALUATE: We see that ( ) .a b b a a bW U U U U→ = − − = −  

23.42. IDENTIFY: The electric field is zero inside the sphere, so the potential is constant there. Thus the potential at the 
center must be the same as at the surface, where it is equivalent to that of a point-charge.  
SET UP: At the surface, and hence also at the center of the sphere, the field is that of a point-charge, 

0/(4 ).E Q Rπ= P  
EXECUTE: (a) Solving for Q and substituting the numbers gives 

04Q RVπ= =P (0.125 m)(1500 V)/(9.00 × 109 N ⋅ m2/C2) = 2.08 × 10-8 C = 20.8 nC 

(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the center, 
1.50 kV. 
EVALUATE: The electric field inside the sphere is zero, so the potential is constant but is not zero. 

23.43. IDENTIFY and SET UP: Consider the electric field outside and inside the shell and use that to deduce the potential. 
EXECUTE: (a) The electric field outside the shell is the same as for a point charge at the center of the shell, so the 
potential outside the shell is the same as for a point charge: 

04
qV

rπ
=

P
 for .r R>  

The electric field is zero inside the shell, so no work is done on a test charge as it moves inside the shell and all 

points inside the shell are at the same potential as the surface of the shell:
04

qV
Rπ

=
P

 for .r R≤  

(b) kqV
R

=  so (0.15 m)( 1200 V) 20 nCRVq
k k

−
= = = −  

(c) EVALUATE: No, the amount of charge on the sphere is very small. Since U qV=  the total amount of electric 

energy stored on the balloon is only 5(20 nC)(1200 V) 2.4 10  J.−= ×  
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23.44. IDENTIFY: Example 23.8 shows that the potential of a solid conducting sphere is the same at every point inside the 
sphere and is equal to its value 0/ 2V q Rπ= P  at the surface. Use the given value of E to find q. 
SET UP: For negative charge the electric field is directed toward the charge. 
For points outside this spherical charge distribution the field is the same as if all the charge were concentrated at the 
center. 

EXECUTE: 2
04

qE
rπ

=
P

and 
2

2 8
0 9 2 2

(3800 N/C)(0.200 m)4 1.69 10  C
8.99 10 N m /C

q Erπ −= = = ×
× ⋅

P . 

Since the field is directed inward, the charge must be negative. The potential of a point charge, taking ∞  as zero, is 
9 2 2 8

0

(8.99 10 N m /C )( 1.69 10  C) 760 V
4 0.200 m

qV
rπ

−× ⋅ − ×
= = = −

P
at the surface of the sphere. Since the charge all resides 

on the surface of a conductor, the field inside the sphere due to this symmetrical distribution is zero. No work is 
therefore done in moving a test charge from just inside the surface to the center, and the potential at the center must 
also be 760 V.−  
EVALUATE: Inside the sphere the electric field is zero and the potential is constant. 

23.45. IDENTIFY: Example 23.9 shows that ( )V y Ey= , where y is the distance from the negatively charged plate, whose 
potential is zero. The electric field between the plates is uniform and perpendicular to the plates. 
SET UP: V increases toward the positively charged plate. E is directed from the positively charged plated toward 
the negatively charged plate. 

EXECUTE: (a) 4480 V 2.82 10  V/m
0.0170 m

VE
d

= = = ×  and Vy
E

= . 0V =  at 0y = , 120 VV = at 0.43 cmy = , 

240 VV = at 0.85 cmy = , 360 VV = at 1.28 cmy = and 480 VV = at 1.70 cmy = . The equipotential surfaces 
are sketched in Figure 23.45. The surfaces are planes parallel to the plates. 
(b) The electric field lines are also shown in Figure 23.45. The field lines are perpendicular to the plates and the 
equipotential lines are parallel to the plates, so the electric field lines and the equipotential lines are mutually 
perpendicular. 
EVALUATE: Only differences in potential have physical significance. Letting 0V =  at the negative plate is a 
choice we are free to make. 

 
Figure 23.45 

23.46. IDENTIFY: By the definition of electric potential, if a positive charge gains potential along a path, then the 
potential along that path must have increased. The electric field produced by a very large sheet of charge is uniform 
and is independent of the distance from the sheet. 
(a) SET UP: No matter what the reference point, we must do work on a positive charge to move it away from the 
negative sheet. 
EXECUTE: Since we must do work on the positive charge, it gains potential energy, so the potential increases. 

(b) SET UP: Since the electric field is uniform and is equal to σ /2ε0, we have 
02

V Ed dσ
Δ = =

P
.  

EXECUTE: Solving for d gives 

( )12 2 2
0

9 2

2 8.85 10  C /N m (1.00 V)2
6.00 10  C/m

Vd
σ

−

−

× ⋅Δ
= =

×
P  = 0.00295 m = 2.95 mm 

EVALUATE: Since the spacing of the equipotential surfaces (d = 2.95 mm) is independent of the distance from the 
sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart. 
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 23.47 IDENTIFY and SET UP: Use Eq.(23.19) to calculate the components of .E  
EXECUTE: 2V Axy Bx Cy= − +  

(a) 2x
VE Ay Bx
x

∂
= − = − +

∂
 

VEy Ax C
y

∂
= − = − −

∂
 

0z
VE
z

∂
= − =

∂
 

(b) 0E =  requires that  0.x y zE E E= = =  

0zE =  everywhere. 
0yE =  at  / .x C A= −  

And xE  is also equal zero for this x, any value of z, and 22 / (2 / )( / ) 2 / .y Bx A B A C A BC A= = − = −  
EVALUATE: V doesn’t depend on z so 0zE =  everywhere. 

23.48. IDENTIFY: Apply Eq.(21.19). 

SET UP: Eq.(21.7) says 
2

0

1 ˆ
4

q
rπ

=E r
P

 is the electric field due to a point charge q. 

EXECUTE: (a) 
2 2 2 3 2 32 2 2

.
( )x

V kQ kQx kQxE
x x x y z rx y z

⎛ ⎞∂ ∂ ⎜ ⎟= − = − = =
⎜ ⎟∂ ∂ + ++ +⎝ ⎠

 

Similarly, 
3 3 and .y z

kQy kQzE E
r r

= =  

(b) From part (a), 
2 2

ˆ ˆ ˆ
ˆ,kQ x y z kQE

r r r r r
⎛ ⎞

= + + =⎜ ⎟⎜ ⎟
⎝ ⎠

i j k r  which agrees with Equation (21.7). 

EVALUATE: V is a scalar. E is a vector and has components. 

23.49. IDENTIFY and SET UP: For a solid metal sphere or for a spherical shell, kqV
r

=  outside the sphere and kqV
R

=  at 

all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, VE
r

∂
= −

∂
. 

EXECUTE: (a) (i) ar r< : This region is inside both spheres. 1 1

a b a b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
. 

(ii) a br r r< < : This region is outside the inner shell and inside the outer shell. 1 1 .
b b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

(iii) br r> : This region is outside both spheres and 0V =  since outside a sphere the potential is the same as for point 
charge. Therefore the potential is the same as for two oppositely charged point charges at the same location. These 
potentials cancel. 

(b) 
0

1
4a

a b

q qV
r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
 and 0bV = , so 

0

1 1 1
4ab

a b

V q
r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
. 

(c) Between the spheres a br r r< <  and 1 1

b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

2 2
0 0

1 1 1 1 .
4 4 1 1

ab

b

a b

V q q VE
r r r r r r

r r
π π

⎛ ⎞∂ ∂
= − = − − = + =⎜ ⎟∂ ∂ ⎛ ⎞⎝ ⎠ −⎜ ⎟

⎝ ⎠

P P
 

(d) From Equation (23.23): 0,E =  since V is constant (zero) outside the spheres. 
(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is 

0 0 0

1 1 1 ( ) .
4 4 4

q Q q QV
r r rπ π π

−
= − =

P P P
 All potentials inside the outer shell are just shifted by an amount 

0

1 .
4 b

QV
rπ

= −
P

 Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not change. 

However, now that the potential does vary outside the spheres, there is an electric field there: 

2 21 ( )V kq kQ kq Q kE q Q
r r r r r q r

⎛ ⎞∂ ∂ −⎛ ⎞= − = − + = − = −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
. 

EVALUATE: In part (a) the potential is greater than zero for all br r< . 



23-18 Chapter 23 

23.50. IDENTIFY: Exercise 23.49 shows that 1 1

a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 for ar r< , 1 1

b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 for a br r r< <  and 

1 1
ab

a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

SET UP: 2

kqE
r

= , radially outward, for a br r r≤ ≤  

EXECUTE: (a) 1 1 500 Vab
a b

V kq
r r

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 gives 10500 V 7.62 10 C

1 1
0.012 m 0.096 m

q
k

−= = ×
⎛ ⎞

−⎜ ⎟
⎝ ⎠

. 

(b) 0bV =  so 500 VaV = . The inner metal sphere is an equipotential with 500 VV = . 1 1

a

V
r r kq
= + . 400 VV = at 

1.45 cmr = , 300 VV = at 1.85 cmr = , 200 VV = at 2.53 cmr = , 100 VV = at 4.00 cmr = , 0V = at 
9.60 cmr = . The equipotential surfaces are sketched in Figure 23.50. 

EVALUATE:  (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so the field 
lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at smaller r, where the 
electric field is largest. 

 
Figure 23.50 

23.51. IDENTIFY: Outside the cylinder it is equivalent to a line of charge at its center. 
SET UP: The difference in potential between the surface of the cylinder (a distance R from the central axis) and a 

general point a distance r from the central axis is given by 
0

ln( / )
2

V r Rλ
π

Δ =
P

.  

EXECUTE: (a) The potential difference depends only on r, and not direction. Therefore all points at the same value 
of r will be at the same potential. Thus the equipotential surfaces are cylinders coaxial with the given cylinder. 

(b) Solving 
0

ln( / )
2

V r Rλ
π

Δ =
P

 for r, gives 02 / Vr Re π λΔ= P .  

For 10 V, the exponent is (10 V)/[(2 × 9.00 × 109 N · m2/C2)(1.50 × 10–9 C/m)] = 0.370, which gives r = (2.00 cm) 
e0.370 = 2.90 cm. Likewise, the other radii are 4.20 cm (for 20 V) and 6.08 cm (for 30 V). 
(c) Δr1 = 2.90 cm – 2.00 cm = 0.90 cm; Δr2 = 4.20 cm – 2.90 cm = 1.30 cm; Δr3 = 6.08 cm – 4.20 cm = 1.88 cm 
EVALUATE: As we can see, Δr increases, so the surfaces get farther apart. This is very different from a sheet of 
charge, where the surfaces are equally spaced planes. 

23.52. IDENTIFY: The electric field is the negative gradient of the potential. 

SET UP: x
VE
x

∂
= −

∂
, so Ex is the negative slope of the graph of V as a function of x. 

EXECUTE: The graph is sketched in Figure 23.52. Up to a, V is constant, so Ex = 0. From a to b, V is linear with a 
positive slope, so Ex is a negative constant. Past b, the V-x graph has a decreasing positive slope which approaches 
zero, so Ex is negative and approaches zero. 
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EVALUATE: Notice that an increasing potential does not necessarily mean that the electric field is increasing. 

 
Figure 23.52 

23.53. (a) IDENTIFY: Apply the work-energy theorem, Eq.(6.6). 
SET UP: Points a and b are shown in Figure 23.53a. 

 
Figure 23.53a 

EXECUTE: 5
tot 4.35 10  Jb a bW K K K K −= Δ = − = = ×  

The electric force EF  and the additional force F  both do work, so that tot .
EF FW W W= +  

5 5 5 
tot 4.35 10 J 6.50 10 J 2.15 10 J

EF FW W W − − −= − = × − × = − ×  

EVALUATE: The forces on the charged particle are shown in Figure 23.53b. 

 
Figure 23.53b 

The electric force is to the left (in the direction of the electric field since the particle has positive charge). The 
displacement is to the right, so the electric force does negative work. The additional force F is in the direction of the 
displacement, so it does positive work. 
(b) IDENTIFY and SET UP: For the work done by the electric force, ( )a b a bW q V V→ = −  

EXECUTE: 
5

3
9

2.15 10  J 2.83 10  V.
7.60 10  C

a b
a b

WV V
q

−
→

−

− ×
− = = = − ×

×
 

EVALUATE: The starting point (point a) is at 32.83 10  V×  lower potential than the ending point (point b). We 
know that  b aV V>  because the electric field always points from high potential toward low potential. 
(c) IDENTIFY: Calculate E from a bV V−  and the separation d between the two points. 
SET UP: Since the electric field is uniform and directed opposite to the displacement ,a b EW F d qEd→ = − = −  where 

8.00 cmd =  is the displacement of the particle. 

EXECUTE: 
3

42.83 10  V 3.54 10  V/m.
0.0800 m

a b a bW V VE
qd d
→ − − ×

= − = − = = ×  

EVALUATE: In part (a), totW  is the total work done by both forces. In parts (b) and (c) a bW →  is the work done just 
by the electric force. 

23.54. IDENTIFY: The electric force between the electron and proton is attractive and has magnitude 
2

2

keF
r

= . For 

circular motion the acceleration is 2
rad /a v r= . 

2eU k
r

= − . 

SET UP: 191.60 10  Ce −= × . 191 eV 1.60 10  J−= × . 

EXECUTE: (a) 
2 2

2

mv ke
r r

=  and 
2kev

mr
= . 

(b) 
2

21 1 1
2 2 2

keK mv U
r

= = = −  
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(c) 
2 19 2

18
11

1 1 1 (1.60 10 C) 2.17 10 J 13.6 eV
2 2 2 5.29 10 m

ke kE K U U
r

−
−

−

×
= + = = − = − = − × = −

×
. 

EVALUATE: The total energy is negative, so the electron is bound to the proton. Work must be done on the 
electron to take it far from the proton. 

23.55. IDENTIFY  and SET UP: Calculate the components of E  from Eq.(23.19). Eq.(21.3) gives F  from E.  
EXECUTE: (a) 4 / 3V Cx=  

4 / 3 3 4 / 3 4 4 / 3/ 240 V /(13.0 10  m) 7.85 10  V/mC V x −= = × = ×  

(b) 1/ 3 5 4 / 3 1/ 34 (1.05 10  V/m )
3x

VE Cx x
x

∂
= − = − = − ×

∂
 

The minus sign means that xE  is in the x− -direction, which says that E  points from the positive anode toward the 
negative cathode. 
(c) qF = E  so 1/34

3x xF eE eCx= − =  

Halfway between the electrodes means 36.50 10  m.x −= ×  
19 4 4 / 3 3 1/ 3 154

3 (1.602 10  C)(7.85 10  V/m )(6.50 10  m) 3.13 10  NxF − − −= × × × = ×  

xF  is positive, so the force is directed toward the positive anode. 

EVALUATE: V depends only on x, so 0. y zE E= =  E  is directed from high potential (anode) to low potential 
(cathode). The electron has negative charge, so the force on it is directed opposite to the electric field. 

23.56. IDENTIFY: At each point (a and b), the potential is the sum of the potentials due to both spheres. The voltmeter 
reads the difference between these two potentials. The spheres behave like a point-charges since the meter is 
connected to the surface of each one. 
SET UP: (a) Call a the point on the surface of one sphere and b the point on the surface of the other sphere, call r 
the radius of each sphere, and call d the center-to-center distance between the spheres. The potential difference Vab 
between points a and b is then 

Vb – Va = 
0

1
4ab

q q q qV
r d r r d rπ

⎡− − ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦P
 = 

0

2 1 1
4

q
d r rπε

⎛ ⎞−⎜ ⎟−⎝ ⎠
 

EXECUTE: Substituting the numbers gives 

Vb – Va = ( )9 2 2 1 12(175 µC) 9.00 10  N m /C
0.750 m 0.250 m

⎛ ⎞× ⋅ −⎜ ⎟
⎝ ⎠

 = –8.40 × 106 V 

The meter reads 8.40 MV. 
(b) Since Vb – Va is negative, Va > Vb, so point a is at the higher potential.  
EVALUATE: An easy way to see that the potential at a is higher than the potential at b is that it would take positive 
work to move a positive test charge from b to a since this charge would be attracted by the negative sphere and 
repelled by the positive sphere. 

23.57. IDENTIFY: 1 2kq qU
r

=  

SET UP: Eight charges means there are 8(8 1) / 2 28− = pairs. There are 12 pairs of q and q− separated by d, 12 

pairs of equal charges separated by 2d and 4 pairs of q and q− separated by 3d . 

EXECUTE: (a) 
2

2 2
0

12 12 4 12 1 11 1.46 /
2 3 2 3 3

kqU kq q d
d dd d

π⎛ ⎞ ⎛ ⎞= − + − = − − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P  

EVALUATE: (b) The fact that the electric potential energy is less than zero means that it is energetically favorable 
for the crystal ions to be together. 

23.58. IDENTIFY: For two small spheres, 1 2kq qU
r

= . For part (b) apply conservation of energy. 

SET UP: Let 1 2.00 Cq μ= and 2 3.50 Cq μ= − . Let 0.250 mar = and br →∞ . 

EXECUTE: (a) 
9 2 2 6 6(8.99 10  N m /C )(2.00 10  C)( 3.50 10  C) 0.252 J

0.250 m
U

− −× ⋅ × − ×
= = −  

(b) 0bK = . 0bU = . 0.252 JaU = − . a a b bK U K U+ = +  gives 0.252 JaK = . 21
2a aK mv= , so 

3

2 2(0.252 J) 18.3 m/s
1.50 10  kg

a
a

Kv
m −= = =

×
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EVALUATE: As the sphere moves away, the attractive electrical force exerted by the other sphere does negative 
work and removes all the kinetic energy it initially had. Note that it doesn’t matter which sphere is held fixed and 
which is shot away; the answer to part (b) is unaffected. 

23.59. (a) IDENTIFY: Use Eq.(23.10) for the electron and each proton. 
SET UP: The positions of the particles are shown in Figure 23.59a. 

 
10 10(1.07 10  m) / 2 0.535 10  mr − −= × = ×  

Figure 23.59a  

EXECUTE: The potential energy of interaction of the electron with each proton is 
2

0

1 ( ) ,
4

eU
rπ
−

=
P

 so the total potential energy is 

2 9 2 2 19 2
18

10
0

2 2(8.988 10  N m /C )(1.60 10  C) 8.60 10  J
4 0.535 10  m

eU
rπ

−
−

−

× ⋅ ×
= − = − = − ×

×P
 

18 198.60 10  J(1 eV/1.602 10  J) 53.7 eVU − −= − × × = −  

EVALUATE: The electron and proton have charges of opposite signs, so the potential energy of the system is 
negative. 
(b) IDENTIFY  and SET UP: The positions of the protons and points a and b are shown in Figure 23.59b. 

 

2 2
b ar r d= +  

100.535 10  mar r −= = ×  

Figure 23.59b  

Apply othera a b bK U W K U+ + = +  with point a midway between the protons and point b where the electron 
instantaneously has 0v =  (at its maximum displacement d from point a). 
EXECUTE: Only the Coulomb force does work, so other 0.W =  

188.60 10  JaU −= − ×  (from part (a)) 
2 31 6 2 181 1

2 2 (9.109 10  kg)(1.50 10  m/s) 1.025 10  JaK mv − −= = × × = ×  
0bK =  

22 /b bU ke r= −  

Then 18 18 181.025 10  J 8.60 10  J 7.575 10  J.b a a bU K U K − − −= + − = × − × = − ×  
2 9 2 2 19 2

11
18

2 2(8.988 10  N m /C )(1.60 10  C) 6.075 10  m
7.575 10  Jb

b

ker
U

−
−

−

× ⋅ ×
= − = − = ×

− ×
 

Then 2 2 11 2 11 2 11(6.075 10  m) (5.35 10  m) 2.88 10  m.b ad r r − − −= − = × − × = ×  
EVALUATE: The force on the electron pulls it back toward the midpoint. The transverse distance the electron 
moves is about 0.27 times the separation of the protons. 

23.60. IDENTIFY: Apply 0xF =∑  and 0yF =∑  to the sphere. The electric force on the sphere is eF qE= . The 
potential difference between the plates is V Ed= . 
SET UP: The free-body diagram for the sphere is given in Figure 23.56. 
EXECUTE: cosT mgθ = and esinT Fθ =  gives 23tan (1.50 10 kg)(9.80 m s )tan(30 ) 0.0085 NeF mg θ −= = × ° = . 

e
VqF Eq
d

= =  and 6

(0.0085 N)(0.0500 m) 47.8 V.
8.90 10 C

FdV
q −= = =

×
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EVALUATE: / 956 V/mE V d= = . 0/E σ= P and 9 2
0 8.46 10  C/mEσ −= = ×P . 

 
Figure 23.60 

23.61. (a) IDENTIFY: The potential at any point is the sum of the potentials due to each of the two charged conductors. 
SET UP: From Example 23.10, for a conducting cylinder with charge per unit length λ  the potential outside the 
cylinder is given by 0 0( /2 )ln( / )V r rλ π= P  where r is the distance from the cylinder axis and 0r  is the distance from 
the axis for which we take 0.V =  Inside the cylinder the potential has the same value as on the cylinder surface. The 
electric field is the same for a solid conducting cylinder or for a hollow conducting tube so this expression for V 
applies to both. This problem says to take 0 .r b=  
EXECUTE: For the hollow tube of radius b and charge per unit length :λ−  outside 0( /2 )ln( / );V b rλ π= − P  inside 

0V =  since 0V =  at .r b=  
For the metal cylinder of radius a and charge per unit length :λ  
outside 0( /2 )ln( / ),V b rλ π= P  inside 0( /2 )ln( / ),V b aλ π= P  the value at .r a=  
(i) ;r a< inside both 0( /2 )ln( / )V b aλ π= P  
(ii) ;a r b< <  outside cylinder, inside tube 0( /2 )ln( / )V b rλ π= P  
(iii) ;r b>  outside both the potentials are equal in magnitude and opposite in sign so 0.V =  
(b) For 0,  ( /2 )ln( / ).ar a V b aλ π= = P  
For ,  0.br b V= =  
Thus 0( /2 )ln( / ).ab a bV V V b aλ π= − = P  
(c) IDENTIFY  and SET UP: Use Eq.(23.23) to calculate E. 

EXECUTE: 2
0 0

1ln .
2 2 ln( / )

abV b r b VE
r r r b r b a r

λ λ
π π

∂ ∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠P P
 

(d) The electric field between the cylinders is due only to the inner cylinder, so abV  is not changed, 

0( /2 )ln( / ).abV b aλ π= P  
EVALUATE: The electric field is not uniform between the cylinders, so ( ).abV E b a≠ −  

23.62. IDENTIFY: The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives 1( )
ln( / )

abVE r
b a r

= . 

SET UP: 6145 10  ma −= × , 0.0180 mb = . 

EXECUTE: 1
ln( )

abVE
b a r

=  and 4 6ln ( (2.00 10 N C)(ln (0.018 m 145 10 m))0.012 m 1157 V.abV E b/a)r −= = × × =  

EVALUATE: The electric field at any r is directly proportional to the potential difference between the wire and the 
cylinder. 

23.63. IDENTIFY  and SET UP: Use Eq.(21.3) to calculate F  and then mF = a  gives a.  
EXECUTE: (a) E q=F E.  Since q e= −  is negative EF  and E  are in opposite directions; E  is upward so EF  is 
downward. The magnitude of EF  is  

19 3 16(1.602 10  C)(1.10 10  N/C) 1.76 10  N.EF q E eE − −= = = × × = ×  

(b) Calculate the acceleration of the electron produced by the electric force: 
16

14 2
31

1.76 10  N 1.93 10  m/s
9.109 10  kg

Fa
m

−

−

×
= = = ×

×
 

EVALUATE: This is much larger than 29.80 m/s ,g =  so the gravity force on the electron can be neglected. EF  is 
downward, so a  is downward. 
(c) IDENTIFY  and SET UP: The acceleration is constant and downward, so the motion is like that of a projectile. 
Use the horizontal motion to find the time and then use the time to find the vertical displacement. 
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EXECUTE: x-component 
6

0 6.50 10  m/s;xv = ×  0;xa =  0 0.060 m;x x− =  ?t =  
21

0 0 2x xx x v t a t− = +  and the xa  term is zero, so 

90
6

0

0.060 m 9.231 10  s
6.50 10  m/sx

x xt
v

−−
= = = ×

×
 

y-component 
0 0;yv =  14 21.93 10  m/s ;ya = ×  99.231 10  m/s;t −= ×  0 ?y y− =  

21
0 0 2y yy y v t a t− = +  

14 2 9 21
0 2 (1.93 10  m/s )(9.231 10  s) 0.00822 m 0.822 cmy y −− = × × = =  

(d) The velocity and its components as the electron leaves the plates are sketched in Figure 23.63. 

 

6
0 6.50 10  m/sx xv v= = ×  (since 0xa = ) 

0y y yv v a t= +  
14 2 90 (1.93 10  m/s )(9.231 10  s)yv −= + × ×  

61.782 10  m/syv = ×  
Figure 23.63  

6

6

1.782 10  m/stan 0.2742
6.50 10  m/s

y

x

v
v

α ×
= = =

×
 so 15.3 .α = °  

EVALUATE: The greater the electric field or the smaller the initial speed the greater the downward deflection. 
(e) IDENTIFY  and SET UP: Consider the motion of the electron after it leaves the region between the plates. 
Outside the plates there is no electric field, so 0.a =  (Gravity can still be neglected since the electron is traveling at 
such high speed and the times are small.) Use the horizontal motion to find the time it takes the electron to travel 
0.120 m horizontally to the screen. From this time find the distance downward that the electron travels. 
EXECUTE: x-component 

6
0 6.50 10  m/s;xv = ×  0;xa =  0 0.120 m;x x− =  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is term is zero, so  

80
6

0

0.120 m 1.846 10  s
6.50 10  m/sx

x xt
v

−−
= = = ×

×
 

y-component 
6

0 1.782 10  m/syv = ×  (from part (b)); 0;ya =  81.846 10  m/s;t −= ×  0 ?y y− =  
2 6 81

0 0 2 (1.782 10  m/s)(1.846 10  s) 0.0329 m 3.29 cmy yy y v t a t −− = + = × × = =  
EVALUATE: The electron travels downward a distance 0.822 cm while it is between the plates and a distance 
3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is 
0.822 cm 3.29 cm 4.11 cm.+ =  
The horizontal distance between the plates is half the horizontal distance the electron travels after it leaves the 
plates. And the vertical velocity of the electron increases as it travels between the plates, so it makes sense for it to 
have greater downward displacement during the motion after it leaves the plates. 

23.64. IDENTIFY: The charge on the plates and the electric field between them depend on the potential difference across the 
plates. Since we do not know the numerical potential, we shall call this potential V and find the answers in terms of V. 

(a) SET UP: For two parallel plates, the potential difference between them is 
0 0

QdV Ed d
A

σ
= = =

P P
.  

EXECUTE: Solving for Q gives 

0 /Q AV d= =P (8.85 × 10–12 C2/N ⋅ m2)(0.030 m)2V/(0.0050 m)  

Q = 1.59V × 10–12 C = 1.59V pC, when V is in volts. 
(b) E = V/d = V/(0.0050 m) = 200V V/m, with V in volts. 
(c) SET UP: Energy conservation gives 21

2 .mv eV=  
EXECUTE: Solving for v gives 

( )19
5 1/ 2

31

2 1.60 10  C2 5.93 10  m/s
9.11 10  kg

VeVv V
m

−

−

×
= = = ×

×
, with V in volts 

EVALUATE: Typical voltages in student laboratory work run up to around 25 V, so the charge on the plates is typically 
about around 40 pC, the electric field is about 5000 V/m, and the electron speed would be about 3 million m/s. 
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23.65. (a) IDENTIFY  and SET UP: Problem 23.61 derived that 1 ,
ln( / )

abVE
b a r

=  where a is the radius of the inner cylinder 

(wire) and b is the radius of the outer hollow cylinder. The potential difference between the two cylinders is .abV  
Use this expression to calculate E at the specified r. 
EXECUTE: Midway between the wire and the cylinder wall is at a radius of 

6( )/2 (90.0 10  m 0.140 m)/2 0.07004 m.r a b −= + = × + =  
3

4
6

1 50.0 10  V 9.71 10  V/m
ln( / ) ln(0.140 m /90.0 10  m)(0.07004 m)

abVE
b a r −

×
= = = ×

×
 

(b) IDENTIFY and SET UP: The electric force is given by Eq.(21.3). Set this equal to ten times the weight of the 
particle and solve for ,q the magnitude of the charge on the particle. 

EXECUTE: 10EF mg=  

10q E mg=  and 
9 2

11
4

10 10(30.0 10  kg)(9.80 m/s ) 3.03 10  C
9.71 10  V/m

mgq
E

−
−×

= = = ×
×

 

EVALUATE: It requires only this modest net charge for the electric force to be much larger than the weight. 
23.66. (a) IDENTIFY: Calculate the potential due to each thin ring and integrate over the disk to find the potential. V is a 

scalar so no components are involved. 
SET UP: Consider a thin ring of radius y and width dy. The ring has area 2 y dyπ  so the charge on the ring is 

(2 ).dq y dyσ π=  
EXECUTE: The result of Example 23.11 then says that the potential due to this thin ring at the point on the axis at a 
distance x from the ring is 

2 2 2 2
0 0

1 2
4 4

dq y dydV
x y x y

πσ
π π

= =
+ +P P

 

2 2 2 2

2 20 00 0 0

( )
2 2 2

RR y dyV dV x y x R x
x y

σ σ σ⎡ ⎤= = = + = + −⎣ ⎦+
∫ ∫P P P

 

EVALUATE: For x R  this result should reduce to the potential of a point charge with 2.Q Rσπ=  

2 2 2 2 1/ 2 2 2(1 / ) (1 /2 )x R x R x x R x+ = + ≈ +  so 2 2 2/2x R x R x+ − ≈  

Then 
2 2

0 0 0

,
2 2 4 4

R R QV
x x x

σ σπ
π π

≈ = =
P P P

 as expected. 

(b) IDENTIFY  and SET UP: Use Eq.(23.19) to calculate .xE  

EXECUTE: 
2 2 2 2

0 0

1 11 .
2 2x

V x xE
x xx R x R

σ σ⎛ ⎞ ⎛ ⎞∂
= − = − − = −⎜ ⎟ ⎜ ⎟

∂ + +⎝ ⎠ ⎝ ⎠P P
 

EVALUATE: Our result agrees with Eq.(21.11) in Example 21.12. 

23.67. (a) IDENTIFY: Use 
b

a b a
V V d− = ⋅∫ E l.  

SET UP: From Problem 22.48, 2
0

( )
2

rE r
R

λ
π

=
P

 for r R≤  (inside the cylindrical charge distribution) and 

0

( )
2

rE r
r

λ
π

=
P

 for .r R≥  Let 0V =  at r R=  (at the surface of the cylinder). 

EXECUTE: r R>  
Take point a to be at R and point b to be at r, where .r R>  Let d dl = r.  E  and dr  are both radially outward, so 

.d E dr⋅ =E r  Thus .
r

R r R
V V E dr− = ∫  Then 0RV =  gives .

r

r R
V E dr= −∫  In this interval 0( ),  ( ) /2 ,r R E r rλ π> = P  so 

0 0 0

ln .
2 2 2

r r

r R R

dr rV dr
r r R

λ λ λ
π π π

⎛ ⎞= − = − = − ⎜ ⎟
⎝ ⎠∫ ∫P P P

 

EVALUATE: This expression gives 0rV =  when r R=  and the potential decreases (becomes a negative number of 
larger magnitude) with increasing distance from the cylinder. 
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EXECUTE: r R<  

Take point a at r, where ,r R< and point b at R. d Edr⋅ =E r  as before. Thus .
R

r R r
V V Edr− = ∫  Then 0RV =  gives 

.
R

r r
V Edr= ∫  In this interval ( ),r R<  2

0( ) / 2 ,E r r Rλ π= P  so 

2 2

2 2 2
0 0 0

.
2 2 2 2 2

R R

r r r

R rV dr rdr
R R R

λ λ λ
π π π

⎛ ⎞
= = = −⎜ ⎟

⎝ ⎠
∫ ∫P P P

 

2

0

1 .
4r

rV
R

λ
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠P
 

EVALUATE: This expression also gives 0rV =  when .r R=  The potential is 0/ 4λ πP  at 0r =  and decreases with 
increasing r. 
(b) EXECUTE: Graphs of V and E as functions of r are sketched in Figure 23.67. 

 
Figure 23.67 

EVALUATE: E at any r is the negative of the slope of ( )V r  at that r (Eq.23.23). 
23.68. IDENTIFY: The alpha particles start out with kinetic energy and wind up with electrical potential energy at closest 

approach to the nucleus. 
SET UP: (a) The energy of the system is conserved, with 0 0(1/ 4 )( / )U qq rπ= P  being the electric potential energy. 
With the charge of the alpha particle being 2e and that of the gold nucleus being Ze, we have 

2
2

0

1 1 2
2 4

Zemv
Rπ

=
P

 

EXECUTE: Solving for v and using Z = 79 for gold gives 

2

0

1 4
4

Zev
mRπ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠P
 = 

( ) ( )
( )( )

29 2 2 19

27 15

9.00 10  N m /C (4)(79) 1.60 10  C

6.7 10  kg 5.6 10  m

−

− −

× ⋅ ×

× ×
 = 4.4 × 107 m/s 

We have neglected any relativistic effects. 
(b) Outside the atom, it is neutral. Inside the atom, we can model the 79 electrons as a uniform spherical shell, which 
produces no electric field inside of itself, so the only electric field is that of the nucleus. 
EVALUATE: Neglecting relativistic effects was not such a good idea since the speed in part (a) is over 10% the 
speed of light. Modeling 79 electrons as a uniform spherical shell is reasonable, but we would not want to do this 
with small atoms. 

23.69. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l . 

SET UP: From Example 21.10, we have: 2 2 3 / 2
0

1
4 ( )x

QxE
x aπ

=
+P

. xd E dx⋅ =E l . Let a = ∞  so 0aV = . 

EXECUTE: 
2 2

1/ 2
2 2 3/ 2 2 2

0 0 0

1
4 ( ) 4 4

u x ax

u

Q x Q QV dx u
x a x aπ π π

= +

−

∞ =∞

′
′= − = =

′ + +
∫P P P

. 

EVALUATE: Our result agrees with Eq.(23.16) in Example 23.11. 
23.70. IDENTIFY: Divide the rod into infinitesimal segments with charge dq. The potential dV due to the segment is 

0

1
4

dqdV
rπ

=
P

. Integrate over the rod to find the total potential. 

SET UP: dq dlλ= , with /Q aλ π= and dl a dθ= . 

EXECUTE: 
0 0 0 0

1 1 1 1
4 4 4 4

dq dl Q dl Q ddV
r a a a a

λ θ
π π π π π π

= = = =
P P P P

. 
0 00

1 1
4 4

Q d QV
a a

π θ
π π π

= =∫P P
. 
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EVALUATE: All the charge of the ring is the same distance a from the center of curvature. 
23.71. IDENTIFY: We must integrate to find the total energy because the energy to bring in more charge depends on the 

charge already present. 
SET UP: If ρ is the uniform volume charge density, the charge of a spherical shell or radius r and thickness dr is dq 
= ρ 4πr2 dr, and ρ = Q/(4/3 πR3). The charge already present in a sphere of radius r is q = ρ(4/3 πr3). The energy to 
bring the charge dq to the surface of the charge q is Vdq, where V is the potential due to q, which is 0/ 4 .q rπP  
EXECUTE: The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the tiny 
increments of energy. 

( )
3

2
2

0
0 0 0

4
3 13  4

4 4 5 4
R

rq QU Vdq dq r dr
r r R

ρ π
ρ π

π π π
⎛ ⎞

= = = = ⎜ ⎟
⎝ ⎠

∫ ∫ ∫P P P
 

where we have substituted ρ = Q/(4/3 πR3) and simplified the result. 
EVALUATE: For a point-charge, R → 0 so U → ∞, which means that a point-charge should have infinite self-
energy. This suggests that either point-charges are impossible, or that our present treatment of physics is not 
adequate at the extremely small scale, or both. 

23.72. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l . The electric field is radially outward, so d E dr⋅E l = . 

SET UP: Let a = ∞ , so 0aV = . 

EXECUTE: From Example 22.9, we have the following. For 2: kQr R E
r

> =  and 2

r dr kQV kQ
r r∞

′
= − =

′∫ . 

For 3: kQrr R E
R

< =  and 
2 2

2
3 3 3 2

1 3
2 2 2 2

rR r r

RR R

kQ kQ kQ kQ kQ kQ kQr kQ rV d d r dr r
R R R R R R R R R∞

⎡ ⎤
′ ′ ′ ′ ′= − ⋅ − ⋅ = − = − = + − = −⎢ ⎥

⎣ ⎦
∫ ∫ ∫E r E r . 

(b) The graphs of V and E versus r are sketched in Figure 23.72. 
EVALUATE: For r R< the potential depends on the electric field in the region r to ∞ . 

 
Figure 23.72 

23.73. IDENTIFY: Problem 23.70 shows that 2 2

0

(3 )
8r

QV r R
Rπ

= −
P

 for r R≤  and 
04r

QV
rπ

=
P

 for r R≥ . 

SET UP: 0
0 0

3 ,
8 4R

Q QV V
R Rπ π

= =
P P

 

EXECUTE: (a) 0
08R

QV V
Rπ

− =
P

 

(b) If 0Q > , V is higher at the center. If 0Q < , V is higher at the surface. 

EVALUATE: For 0Q > the electric field is radially outward, E is directed toward lower potential, so V is higher at 
the center. If 0Q < , the electric field is directed radially inward and V is higher at the surface. 

23.74. IDENTIFY: For r c< , 0E = and the potential is constant. For r c> , E is the same as for a point charge and kqV
r

= . 

SET UP: 0V∞ =  
EXECUTE: (a) Points , , anda b c  are all at the same potential, so 0a b b c a cV V V V V V− = − = − = . 

29 2 6
6(8.99 10 N m C )(150 10 C) 2.25 10 V

0.60 mc
kqV V
R

−

∞

× ⋅ ×
− = = = ×  

(b) They are all at the same potential. 
(c) Only cV V∞−  would change; it would be 62.25 10 V.− ×  
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EVALUATE: The voltmeter reads the potential difference between the two points to which it is connected. 
23.75. IDENTIFY  and SET UP: Apply /rF dU dr= − and Newton's third law. 

EXECUTE: (a) The electrical potential energy for a spherical shell with uniform surface charge density and a point 
charge q  outside the shell is the same as if the shell is replaced by a point charge at its center. Since ,rF dU dr= −  
this means the force the shell exerts on the point charge is the same as if the shell were replaced by a point charge at 
its center. But by Newton’s 3rd law, the force q  exerts on the shell is the same as if the shell were a point charge. But 
q  can be replaced by a spherical shell with uniform surface charge and the force is the same, so the force between the 
shells is the same as if they were both replaced by point charges at their centers. And since the force is the same as for 
point charges, the electrical potential energy for the pair of spheres is the same as for a pair of point charges. 
(b) The potential for solid insulating spheres with uniform charge density is the same outside of the sphere as for a 
spherical shell, so the same result holds. 
(c) The result doesn’t hold for conducting spheres or shells because when two charged conductors are brought close 
together, the forces between them causes the charges to redistribute and the charges are no longer distributed 
uniformly over the surfaces. 

EVALUATE: For the insulating shells or spheres, 1 2
2

q q
F k

r
=  and 1 2kq qU

r
= , where 1q and 2q are the charges of 

the objects and r is the distance between their centers. 
23.76. IDENTIFY: Apply Newton's second law to calculate the acceleration. Apply conservation of energy and 

conservation of momentum to the motions of the spheres. 

SET UP: Problem 23.75 shows that 1 2
2

q q
F k

r
=  and 1 2kq qU

r
= , where 1q and 2q are the charges of the objects and 

r is the distance between their centers. 
EXECUTE: Maximum speed occurs when the spheres are very far apart.  Energy conservation gives 

2 21 2
50 50 150 150

1 1
2 2

kq q m v m v
r

= + . Momentum conservation gives 50 50 150 150 50 150and 3m v m v v v= = . 0.50 m.r =  Solve for 50v  

and 150v : 50 15012.7 m s,  4.24 m sv v= = . Maximum acceleration occurs just after spheres are released. F ma∑ =  

gives 1 2
150 1502

kq q m a
r

= . 
9 2 2 5 5

1502

(9 10 N m C )(10 C)(3 10 C) (0.15 kg)
(0.50 m)

a
− −× ⋅ ×

= . 2
150 72.0 m sa = and 

2
50 1503 216 m sa a= = . 

EVALUATE: The more massive sphere has a smaller acceleration and a smaller final speed. 
23.77. IDENTIFY: Use Eq.(23.17) to calculate .abV  

SET UP: From Problem 22.43, for 2R r R≤ ≤  (between the sphere and the shell) 2
0/ 4E Q rπ= P  

Take a at R and b at 2R. 

EXECUTE: 
2

2 2

2
0 0 0

1 1 1
4 4 4 2

R
R R

ab a b R R
R

Q dr Q QV V V Edr
r r R Rπ π π

⎡ ⎤ ⎛ ⎞= − = = = − = −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫ ∫P P P
 

08ab
QV

Rπ
=

P
 

EVALUATE: The electric field is radially outward and points in the direction of decreasing potential, so the sphere 
is at higher potential than the shell. 

23.78. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l  

SET UP: E is radially outward, so d E dr⋅E l = . Problem 22.42 shows that ( ) 0E r = for r a≤ , 2( ) /E r kq r=  for 
a r b< < , ( ) 0E r = for b r c< < and 2( ) /E r kq r= for r c> . 

EXECUTE: (a) At 2:  .
c

c
kq kqr c V dr
r c∞

= = − =∫  

(b) At :  0
c b

b
c

kq kqr b V d d
c c∞

= = − ⋅ − ⋅ = − =∫ ∫E r E r . 

(c) At 2

1 1 1:  
c b a a

a
c b b

kq drr a V d d d kq kq
c r c b a∞

⎡ ⎤= = − ⋅ − ⋅ − ⋅ = − = − +⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫E r E r E r  

(d) At 0
1 1 10 :  r V kq
c b a
⎡ ⎤= = − +⎢ ⎥⎣ ⎦

 since it is inside a metal sphere, and thus at the same potential as its surface. 

EVALUATE: The potential difference between the two conductors is 1 1
a bV V kq

a b
⎡ ⎤− = −⎢ ⎥⎣ ⎦

. 
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23.79. IDENTIFY: Slice the rod into thin slices and use Eq.(23.14) to calculate the potential due to each slice. Integrate 
over the length of the rod to find the total potential at each point. 
(a) SET UP: An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.79a. 

 
Figure 23.79a 

Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes x′  and y′  so 
as not to confuse them with the distance x given in the problem. 
EXECUTE: Slice the charged rod up into thin slices of width .dx′  Each slice has charge ( / )dQ Q dx a′=  and a 
distance r x a x′= + −  from point P. The potential at P due to the small slice dQ is  

0 0

1 1 .
4 4

dQ Q dxdV
r a x a xπ π

′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟′+ −⎝ ⎠ ⎝ ⎠P P
 

Compute the total V at P due to the entire rod by integrating dV over the length of the rod ( 0x′ =  to ) :x a′ =  

00
0 0 0

[ ln( )] ln .
4 ( ) 4 4

a aQ dx Q Q x aV dV x a x
a x a x a a xπ π π

′ +⎛ ⎞′= = = − + − = ⎜ ⎟′+ − ⎝ ⎠∫ ∫P P P
 

EVALUATE: As 
0

,  ln 0.
4

Q xx V
a xπ

⎛ ⎞→∞ → =⎜ ⎟
⎝ ⎠P

 

(b) SET UP: An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.79b. 

 
Figure 23.79b 

( / )dQ Q a dx′=  as in part (a) 

Each slice dQ is a distance 2 2( )r y a x′= + −  from point R. 
EXECUTE: The potential dV at R due to the small slice dQ is  

2 2
0 0

1 1 .
4 4 ( )

dQ Q dxdV
r a y a xπ π

′⎛ ⎞= =⎜ ⎟
⎝ ⎠ ′+ −P P

 

2 20
0

.
4 ( )

aQ dxV dV
a y a xπ

′
= =

′+ −∫ ∫P
 

In the integral make the change of variable ;  u a x du dx′ ′= − = −  
00 2 2

2 2
0 0

ln( )
4 4a a

Q du QV u y u
a ay uπ π

⎡ ⎤= − = − + +⎣ ⎦+∫P P
 

2 2
2 2

0 0

[ln ln( )] ln .
4 4

a a yQ QV y a y a
a a yπ π

⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟= − − + + =
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦P P

 

(The expression for the integral was found in appendix B.) 

EVALUATE: As 
0

,  ln 0.
4

Q yy V
a yπ

⎛ ⎞
→∞ → =⎜ ⎟

⎝ ⎠P
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(c) SET UP: part (a): 
0 0

ln ln 1 .
4 4

Q x a Q aV
a x a xπ π

+⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠P P

 

From Appendix B, 2ln(1 ) / 2 . . . ,u u u+ = − so 2 2ln(1 / ) / / 2a x a x a x+ = −  and this becomes /a x  when x is large. 

EXECUTE: Thus 
0 0

.
4 4

Q a QV
a x aπ π
⎛ ⎞→ =⎜ ⎟
⎝ ⎠P P

 For large x, V becomes the potential of a point charge. 

part (b): 
2 2 2

2
0 0

ln ln 1 .
4 4

a a yQ Q a aV
a y a y yπ π

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟= = + +
⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦P P

 

From Appendix B, 2 2 2 2 1/ 2 2 21 / (1 / ) 1 / 2a y a y a y+ = + = + +…  

Thus 2 2 2 2/ 1 / 1 / / 2 1 / .a y a y a y a y a y+ + → + + + → +…  And then using ln(1 )u u+ ≈  gives 

0 0 0

ln(1 / ) .
4 4 4

Q Q a QV a y
a a y yπ π π

⎛ ⎞
→ + → =⎜ ⎟

⎝ ⎠P P P
 

EVALUATE: For large y, V becomes the potential of a point charge. 

23.80. IDENTIFY: The potential at the surface of a uniformly charged sphere is kQV
R

= . 

SET UP: For a sphere, 34
3

V Rπ= . When the raindrops merge, the total charge and volume is conserved. 

EXECUTE: (a) 
12

4

( 1.20 10 C) 16.6 V
6.50 10 m

kQ kV
R

−

−

− ×
= = = −

×
. 

(b) The volume doubles, so the radius increases by the cube root of two: 43
new 2 8.19 10 mR R −= = × and the new 

charge is 12
new 2 2.40 10 C.Q Q −= = − ×  The new potential is 

12
new

new 4
new

( 2.40 10 C) 26.4 V
8.19 10 m

kQ kV
R

−

−

− ×
= = = −

×
. 

EVALUATE: The charge doubles but the radius also increases and the potential at the surface increases by only a 

factor of 2 / 3
1/ 3

2 2
2

= . 

23.81. (a) IDENTIFY  and SET UP: The potential at the surface of a charged conducting sphere is given by Example 23.8: 

0

1 .
4

qV
Rπ

=
P

 For spheres A and B this gives 

04
A

A
A

QV
Rπ

=
P

 and 
0

.
4

B
B

B

QV
Rπ

=
P

 

EXECUTE: A BV V=  gives 0 0/ 4 / 4A A B BQ R Q Rπ π=P P  and / / .B A B AQ Q R R=  And then 3A BR R=  implies 
/ 1/3.B AQ Q =  

(b) IDENTIFY  and SET UP: The electric field at the surface of a charged conducting sphere is given in 
Example 22.5: 

2
0

1 .
4

q
E

Rπ
=

P
 

EXECUTE: For spheres A and B this gives 

2
04
A

A
A

Q
E

Rπ
=

P
 and 2

0

.
4

B
B

B

Q
E

Rπ
=

P
 

2
2 20

2
0

4 / ( / ) (1/3)(3) 3.
4

BB A
B A A B

A B A

QE R Q Q R R
E R Q

π
π

⎛ ⎞⎛ ⎞
= = = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

P
P

 

EVALUATE: The sphere with the larger radius needs more net charge to produce the same potential. We can write 
/E V R=  for a sphere, so with equal potentials the sphere with the smaller R has the larger V. 

23.82. IDENTIFY: Apply conservation of energy, a a b bK U K U+ = + . 
SET UP: Assume the particles initially are far apart, so 0aU = , The alpha particle has zero speed at the distance of 

closest approach, so 0bK = . 191 eV 1.60 10  J−= × . The alpha particle has charge 2e+ and the lead nucleus has 
charge 82e+ . 
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EXECUTE: Set the alpha particle’s kinetic energy equal to its potential energy: a bK U=  gives 

(2 )(82 )11.0 MeV k e e
r

=  and 
19 2

14
6 19

(164)(1.60 10 C) 2.15 10 m
(11.0 10 eV)(1.60 10 J eV)

kr
−

−
−

×
= = ×

× ×
. 

EVALUATE: The calculation assumes that at the distance of closest approach the alpha particle is outside the radius 
of the lead nucleus. 

23.83. IDENTIFY  and SET UP: The potential at the surface is given by Example 23.8 and the electric field at the surface is 
given by Example 22.5. The charge initially on sphere 1 spreads between the two spheres such as to bring them to 
the same potential. 

EXECUTE: (a) 1
1 2

0 1

1 ,
4

QE
Rπ

=
P

 1
1 1 1

0 1

1
4

QV R E
Rπ

= =
P

 

(b) Two conditions must be met: 
1) Let q1and q2 be the final potentials of each sphere. Then 1 2 1q q Q+ =  (charge conservation) 
2) Let V1 and V2 be the final potentials of each sphere. All points of a conductor are at the same potential, so 1 2.V V=  

1 2V V=  requires that 1 2

0 1 0 2

1 1
4 4

q q
R Rπ π

=
P P

 and then 1 1 2 2/ /q R q R=  

1 2 2 1 1 1 1( )q R q R Q q R= = −  

This gives 1 1 1 2 1( /[ ])q R R R Q= +  and 2 1 1 1 1 1 2 1 2 1 2(1 /[ ]) ( /[ ])q Q q Q R R R Q R R R= − = − + = +  

(c) 1 1
1

0 1 0 1 2

1
4 4 ( )

q QV
R R Rπ π

= =
+P P

 and 2 1
2

0 2 0 1 2

1 ,
4 4 ( )

q QV
R R Rπ π

= =
+P P

 which equals 1V  as it should. 

(d) 1 1
1

1 0 1 1 2

.
4 ( )

V QE
R R R Rπ

= =
+P

 2 1
2

2 0 2 1 2

.
4 ( )

V QE
R R R Rπ

= =
+P

 

EVALUATE: Part (a) says 2 1 2 1( / ).q q R R=  The sphere with the larger radius needs more charge to produce the 
same potential at its surface. When 1 2,R R=  1 2 1 / 2.q q Q= =  The sphere with the larger radius has the smaller 
electric field at its surface. 

23.84. IDENTIFY: Apply 
b

a b a
V V d− = ⋅∫ E l  

SET UP: From Problem 22.57, for r R≥ , 2

kQE
r

= . For r R≤ , 
3 4

2 3 44 3kQ r rE
r R R

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
. 

EXECUTE: (a) 2 2:  
rkQ kQ kQr R E V dr

r r r∞

′≥ = ⇒ = − =
′∫ , which is the potential of a point charge. 

(b) 
3 4

2 3 4:  4 3kQ r rr R E
r R R

⎡ ⎤
≤ = −⎢ ⎥

⎣ ⎦
 and 

2 2 3 3 3 2

2 2 3 3 3 21 2 2 2 2
R r

R

kQ r R r R kQ r rV Edr Edr
R R R R R R R R∞

⎡ ⎤ ⎡ ⎤
′ ′= − − = − + + − = − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫ . 

EVALUATE: At r R= , kQV
R

= . At 0r = , 2kQV
R

= . The electric field is radially outward and V increases as r 

decreases. 
23.85. IDENTIFY: Apply conservation of energy: i fE E= . 

SET UP: In the collision the initial kinetic energy of the two particles is converted into potential energy at the 
distance of closest approach. 
EXECUTE: (a) The two protons must approach to a distance of p2r , where pr is the radius of a proton. 

i fE E= gives 
2

2
p

p

12
2 2

kem v
r

⎡ ⎤ =⎢ ⎥⎣ ⎦
and 

19 2
6

15 27

(1.60 10 C) 7.58 10 m s
2(1.2 10 m)(1.67 10 kg)

kv
−

− −

×
= = ×

× ×
. 

(b) For a helium-helium collision, the charges and masses change from (a) and 
19 2

6
15 27

(2(1.60 10 C)) 7.26 10 m s.
(3.5 10 m)(2.99)(1.67 10 kg)

kv
−

− −

×
= = ×

× ×
 

(c) 
23

2 2
kT mvK = = . 

2 27 6 2
p 9

p 23

(1.67 10 kg)(7.58 10 m s) 2.3 10 K
3 3(1.38 10 J K)

m v
T

k

−

−

× ×
= = = ×

×
. 

2 27 6 2
9H

He 23

(2.99)(1.67 10 kg)(7.26 10 m s) 6.4 10  K
3 3(1.38 10 J K)

em vT
k

−

−

× ×
= = = ×

×
. 
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(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that there are 
always a certain percentage with a speed greater than the average speed, and these particles can undergo the 
necessary reactions in the sun’s core. 
EVALUATE: The kinetic energies required for fusion correspond to very high temperatures. 

23.86. IDENTIFY  and SET UP: Apply Eq.(23.20). 
0

a b
a b

W V V
q
→ = − and 

b

a b a
V V d− = ⋅∫ E l . 

EXECUTE: (a) ˆ ˆ ˆ ˆ ˆ ˆ2 6 2V V V Ax Ay Az
x y z

∂ ∂ ∂
− − − − + −
∂ ∂ ∂

E = i j k = i j k  

(b) A charge is moved in along the z -axis. The work done is given by 
0 0

0 0
2
0

ˆ ( 2 ) ( )
z z

W q dz q Az dz Aq z= ⋅ = − = +∫ ∫E k . 

Therefore, 
5

2
2 6 2
0

6.00 10 J 640 V m
(1.5 10 C)(0.250 m)

a bWA
qz

−
→

−

×
= = =

×
. 

(c) 2 ˆ ˆ(0,0,0.250) 2(640 V m )(0.250 m) (320 V m)− −E = k = k . 

(d) In every plane parallel to the -plane,xz y  is constant, so 2 2( , , )V x y z Ax Az C= + − , where 23 .C Ay=  

2 2 2V Cx z R
A
+

+ = = , which is the equation for a circle since R  is constant as long as we have constant potential on 

those planes. 

(e) 1280 VV =  and 2.00 my = , so 
2 2

2 2 2
2

1280 V 3(640 V m )(2.00 m) 14.0 m
640 V m

x z +
+ = =  and the radius of the circle 

is 3.74 m.  

EVALUATE: In any plane parallel to the xz-plane, E projected onto the plane is radial and hence perpendicular to 
the equipotential circles. 

23.87. IDENTIFY: Apply conservation of energy to the motion of the daughter nuclei. 
SET UP: Problem 23.73 shows that the electrical potential energy of the two nuclei is the same as if all their charge 
was concentrated at their centers. 
EXECUTE: (a) The two daughter nuclei have half the volume of the original uranium nucleus, so their radii are 

smaller by a factor of the cube root of 2: 
15

15
3

7.4 10 m 5.9 10 m.
2

r
−

−×
= = ×  

(b) 
2 2 19 2

11
14

(46 ) (46) (1.60 10 C) 4.14 10 J
2 1.18 10 m

k e kU
r

−
−

−

×
= = = ×

×
. 2U K= , where K is the final kinetic energy of each 

nucleus. 11 112 (4.14 10 J) 2 2.07 10 JK U − −= = × = × . 

(c) If we have 10.0 kg of uranium, then the number of nuclei is 25
27

10.0 kg 2.55 10 nuclei
(236 u)(1.66 10 kg u)

n −= = ×
×

. 

And each releases energy U, so 25 11 15(2.55 10 )(4.14 10 J) 1.06 10 J 253 kilotons of TNTE nU −= = × × = × = . 
(d) We could call an atomic bomb an “electric” bomb since the electric potential energy provides the kinetic energy 
of the particles. 
EVALUATE: This simple model considers only the electrical force between the daughter nuclei and neglects the 
nuclear force. 

23.88. IDENTIFY  and SET UP: In part (a) apply VE
r

∂
= −

∂
. In part (b) apply Gauss's law. 

EXECUTE: (a) For r a≤ , 
2 2 2

0 0
2 3 2

0 0

6 6
18 3

V a r r a r rE
r a a a a

ρ ρ⎡ ⎤ ⎡ ⎤∂
= − = − − + = −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦P P

. For r a≥ , 0VE
r

∂
= − =

∂
. E has 

only a radial component because V depends only on r. 

(b) For r a≤ , Gauss's law gives 
2

2 20
2

0 0

4 4
3

r
r

Q a r rE r r
a a

ρπ π
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦P P

and 

2
2 20

2
0 0

( 2 )4 ( 2 ) 4 ( 2 )
3

r dr
r dr

Q a r dr r rdrE r rdr r rdr
a a

ρπ π+
+

⎡ ⎤+ +
+ = = − +⎢ ⎥

⎣ ⎦P P
. Therefore, 

2 2
0

2 2
0 0 0

( )4 4 2 2 2 1
3

r dr rQ Q r r dr a r dr r r
a a a a

ρ π ρ π+ − ⎡ ⎤= ≈ − + − +⎢ ⎥⎣ ⎦P P P
 and 0

0
4 4( ) 3 1

3 3
r rr

a a
ρρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 
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(c) For r a≥ , ( ) 0rρ = , so the total charge enclosed will be given by 
3 4

2 2 3
0 00

0 0

4 14 ( ) 4 4 0
3 3 3

aa
a r rQ r r dr r dr r

a a
π ρ πρ πρ

⎡ ⎤ ⎡ ⎤
= = − = − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫ . 

EVALUATE: Apply Gauss's law to a sphere of radius r R> . The result of part (c) says that encl 0Q = , so 0E = . 
This agrees with the result we calculated in part (a). 

23.89. IDENTIFY: Angular momentum and energy must be conserved. 
SET UP: At the distance of closest approach the speed is not zero. E K U= + . 1 2q e= , 2 82q e= . 

EXECUTE: 1 2 2mv b mv r= . 1 2E E=  gives 2 1 2
1 2

2

1
2

kq qE mv
r

= + . 12
1 11 MeV 1.76 10 JE −= = × . 2r is the distance of 

closest approach. Substituting in for 2 1
2

bv v
r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 we find 

2
1 2

1 1 2
2 2

b kq qE E
r r

= + . 

2 2
1 2 1 2 2 1( ) ( ) 0E r kq q r E b− − = . For 1210 mb −= , 12

2 1.01 10 mr −= × . For 1310 mb −= , 13
2 1.11 10 mr −= × . And for 

1410 mb −= , 14
2 2.54 10 mr −= × . 

EVALUATE: As b decreases the collision is closer to being head-on and the distance of closest approach decreases. 
Problem 23.82 shows that the distance of closest approach is 142.15 10  m−× when 0b = . 

23.90. IDENTIFY: Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length of the 

cylinder to find the total potential. The electric field is along the axis of the tube and is given by VE
x

∂
= −

∂
. 

SET UP: Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the slice be at 
coordinate z along the x-axis, relative to the center of the tube. 
EXECUTE: (a) For an infinitesimal slice of the finite cylinder, we have the potential 

2 2 2 2( ) ( )
k dQ kQ dzdV

Lx z R x z R
= =

− + − +
. Integrating gives 

2 2

2 2 2 2
2 2

 where
( )

L L x

L L x

kQ dz kQ duV u x z
L Lx z R u R

−

− − −

= = = −
− + +∫ ∫ . Therefore, 

2 2

2 2

( 2 ) ( 2 )
ln

( 2 ) 2

L x R L xkQV
L L x R L x

⎡ ⎤− + + −
= ⎢ ⎥

⎢ ⎥+ + − −⎣ ⎦
 on the cylinder axis. 

(b) For L R<< , 
2 2 2 2

2 2 2 2

( 2 ) 2 2ln ln
( 2 ) 2 2

L x R L xkQ kQ x xL R L xV
L LL x R L x x xL R L x

⎡ ⎤ ⎡ ⎤− + + − − + + −
≈ ⎢ ⎥ ≈ ⎢ ⎥

⎢ ⎥+ + − − + + − −⎢ ⎥⎣ ⎦⎣ ⎦
. 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 ( ) ( 2 ) 1 2( ) ( 2 )ln ln .
1 ( ) ( 2 ) 1 2( ) ( 2 )

xL R x L x R xkQ kQ xL R x L x R xV
L LxL R x L x R x xL R x L x R x

⎡ ⎤ ⎡ ⎤− + + − + − + + − +
≈ ⎢ ⎥ = ⎢ ⎥

⎢ ⎥+ + + − − + + + + − − +⎢ ⎥⎣ ⎦⎣ ⎦
 

2 2

2 2 2 2 2 2

1 2ln ln 1 ln 1
1 2 2 2

kQ L R x kQ L LV
L LL R x R x R x

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤+ +
≈ = + − −⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− + + +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

. 

2 2 2 2

2
2

kQ L kQV
L x R x R

≈ =
+ +

, which is the same as for a ring. 

(c) 
( )2 2 2 2

2 2 2 2

2 ( 2 ) 4 ( 2 ) 4

( 2 ) 4 ( 2 ) 4
x

kQ L x R L x RVE
x L x R L x R

− + − + +∂
= − =

∂ − + + +
 

EVALUATE: For L R<<  the expression for xE reduces to that for a ring of charge, as given in Example 23.14. 
23.91. IDENTIFY: When the oil drop is at rest, the upward force q E from the electric field equals the downward weight 

of the drop. When the drop is falling at its terminal speed, the upward viscous force equals the downward weight of 
the drop. 

SET UP: The volume of the drop is related to its radius r by 34
3

V rπ= . 

EXECUTE: (a) 
3

g
4

3
rF mg gπ ρ= = . e ABF q E q V d= = . e gF F=  gives 

34
3 AB

r gdq
V

π ρ
= . 
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(b) 
3

t
4 6

3
r g rvπ ρ πη=  gives t9

2
vr
g

η
ρ

= . Using this result to replace r in the expression in part (a) gives 

3 3 3
t t4 9 18

3 2 2AB AB

gd v d vq
V g V g

π ρ η ηπ
ρ ρ

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
. 

(c) 
3 5 2 3 3 3

19
3 2

10 m (1.81 10 N s m ) (1.00 10 m 39.3 s)18 4.80 10 C 3
9.16 V 2(824 kg m )(9.80 m s )

q eπ
− − −

−× ⋅ ×
= = × = . The drop has acquired three 

excess electrons. 
5 2 3

7
3 2

9(1.81 10 N s m )(1.00 10 m 39.3 s) 5.07 10 m 0.507 m
2(824 kg m )(9.80 m s )

r μ
− −

−× ⋅ ×
= = × = . 

EVALUATE: The weight of the drop is 
3

154 4.4 10  N
3
r gπ ρ −⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

. The density of air at room temperature is 

31.2 kg/m , so the buoyancy force is 18
air 6.4 10  NVgρ −= ×  and can be neglected. 

23.92. IDENTIFY: 1 1 2 2
cm

1 2

m v m vv
m m

+
=

+
 

SET UP: 1 2E K K U= + + , where 1 2kq qU
r

= . 

EXECUTE: (a) 
5 5

cm 5 5

(6 10 kg)(400m s) (3 10 kg)(1300 m s) 700 m s
6.0 10 kg 3.0 10 kg

v
− −

− −

× + ×
= =

× + ×
 

(b) 2 2 21 2
rel 1 1 2 2 1 2 cm

1 1 1 ( )
2 2 2

kq qE m v m v m m v
r

= + + − + . After expanding the center of mass velocity and collecting like 

terms 2 2 21 2 1 2 1 2
rel 1 2 1 2 1 2

1 2

1 1[ 2 ] ( )
2 2

m m kq q kq qE v v v v v v
m m r r

μ= + − + = − +
+

. 

(c) 
6 6

5 2
rel

1 (2.0 10 C)( 5.0 10 C)(2.0 10 kg)(900 m s) 1.9 J
2 0.0090 m

kE
− −

− × − ×
= × + = −  

(d) Since the energy is less than zero, the system is “bound.” 

(e) The maximum separation is when the velocity is zero: 1 21.9 J kq q
r

− =  gives 

6 6(2.0 10 C)( 5.0 10 C) 0.047 m
1.9 J

kr
− −× − ×

= =
−

. 

(f) Now using 1 400 m sv = and 2 1800 m sv = , we find rel 9.6 JE = + . The particles do escape, and the final relative 

velocity is rel
1 2 5

2 2(9.6 J) 980 m s
2.0 10 kg

Ev v
μ −− = = =

×
. 

EVALUATE: For an isolated system the velocity of the center of mass is constant and the system must retain the 
kinetic energy associated with the motion of the center of mass. 





 

 


