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THE SECOND LAW OF THERMODYNAMICS 

 20.1. IDENTIFY: For a heat engine, H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: 2200 J.W =  C 4300 J.Q =  

EXECUTE: (a) H C 6500 J.Q W Q= + =  

(b) 2200 J 0.34 34%.
6500 J

e = = =  

EVALUATE: Since the engine operates on a cycle, the net Q equal the net W. But to calculate the efficiency we 
use the heat energy input, H.Q  

 20.2. IDENTIFY: For a heat engine, H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: H 9000 J.Q =  C 6400 J.Q =  
EXECUTE: (a) 9000 J 6400 J 2600 J.W = − =  

(b) 
H

2600 J 0.29 29%.
9000 J

We
Q

= = = =  

EVALUATE: Since the engine operates on a cycle, the net Q equal the net W. But to calculate the efficiency we 
use the heat energy input, H.Q  

 20.3. IDENTIFY and SET UP: The problem deals with a heat engine. 3700 WW = +  and H 16,100 J.Q = +  Use 
Eq.(20.4) to calculate the efficiency e and Eq.(20.2) to calculate C .Q  Power / .W t=  

EXECUTE: (a) 
H

work output 3700 J 0.23 23%.
heat energy input 16,100 J

We
Q

= = = = =  

(b) H CW Q Q Q= = −  

Heat discarded is C H 16,100 J 3700 J 12,400 J.Q Q W= − = − =  

(c) HQ  is supplied by burning fuel; H cQ mL=  where cL  is the heat of combustion. 

H
4

c

16,100 J 0.350 g.
4.60 10  J/g

Qm
L

= = =
×

 

(d) 3700 JW =  per cycle 
In 1.00 st =  the engine goes through 60.0 cycles. 

/ 60.0(3700 J)/1.00 s 222 kWP W t= = =  
5(2.22 10  W)(1 hp/746 W) 298 hpP = × =  

EVALUATE: C 12,400 J.Q = −  In one cycle tot C H 3700 J.Q Q Q= + =  This equals totW  for one cycle. 

 20.4. IDENTIFY: H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: For 1.00 s, 3180 10  J.W = ×  

EXECUTE: (a) 
3

5
H

180 10  J 6.43 10  J.
0.280

WQ
e

×
= = = ×  

(b) 5 5 5
C H 6.43 10  J 1.80 10  J 4.63 10  J.Q Q W= − = × − × = ×  

EVALUATE: Of the 56.43 10  J× of heat energy supplied to the engine each second, 51.80 10  J× is converted to 
mechanical work and the remaining 54.63 10  J× is discarded into the low temperature reservoir. 
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 20.5. IDENTIFY: H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  Dividing by t gives equivalent equations for the rate of 

heat flows and power output. 
SET UP: / 330 MW.W t =  H / 1300 MW.Q t =  

EXECUTE: (a) 
H H

/ 330 MW 0.25 25%.
/ 1300 MW

W W te
Q Q t

= = = = =  

(b) C HQ Q W= − so C H/ / / 1300 MW 330 MW 970 MW.Q t Q t W t= − = − =  
EVALUATE: The equations for e and W have the same form when written in terms of power output and rate of 
heat flow. 

 20.6. IDENTIFY: Apply 1

11 .e
rγ −= −  C

H

1 .
Q

e
Q

= −  

SET UP: In part (b), H 10,000 J.Q =  The heat discarded is C .Q  

EXECUTE: (a) 0.40

11 0.594 59.4%.
9.50

e = − = =  

(b) C H (1 ) (10,000 J)(1 0.594) 4060 J.Q Q e= − = − =  

EVALUATE: The work output of the engine is H C 10,000 J 4060 J 5940 JW Q Q= − = − =  

 20.7. IDENTIFY: 1

11 .e
rγ −= −  

SET UP: 1.40γ = and 0.650.e =  

EXECUTE: 1

1 1 0.350.e
rγ − = − =  0.40 1

0.350
r =  and 13.8.r =  

EVALUATE: e increases when r increases. 
 20.8. IDENTIFY: 11 γe r −= −  

SET UP: r is the compression ratio. 
EXECUTE: (a) 0.401 (8.8) 0.581,e −= − =  which rounds to 58%. 

(b) 0.401 (9.6) 0.595e −= − =  an increase of 1.4%. 
EVALUATE: An increase in r gives an increase in e. 

 20.9. IDENTIFY and SET UP: For the refrigerator 2.10K =  and 4
C 3.4 10  J.Q = + ×  Use Eq.(20.9) to calculate W  and 

then Eq.(20.2) to calculate H.Q  
(a) EXECUTE: Performance coefficient C /K Q W=  (Eq.20.9) 

4 4
C / 3.40 10  J/2.10 1.62 10  JW Q K= = × = ×  

(b) SET UP: The operation of the device is illustrated in Figure 20.9 

 

EXECUTE: 
C HW Q Q= +  

H CQ W Q= −  
4 4 4

H 1.62 10  J 3.40 10  J 5.02 10  JQ = − × − × = − ×  
(negative because heat goes out of the system) 

Figure 20.9  
EVALUATE H C .Q W Q= +  The heat HQ  delivered to the high temperature reservoir is greater than the heat 
taken in from the low temperature reservoir. 

20.10. IDENTIFY: CQK
W

= and H C .Q Q W= +  

SET UP: The heat removed from the room is CQ and the heat delivered to the hot outside is H .Q  
4(850 J/s)(60.0 s) 5.10 10  J.W = = ×  

EXECUTE: (a) 4 5
C (2.9)(5.10 10  J) 1.48 10  JQ K W= = × = ×  

(b) 5 4 5
H C 1.48 10  J 5.10 10  J 1.99 10  J.Q Q W= + = × + × = ×  

EVALUATE: (c) H C ,Q Q W= +  so H C .Q Q>  
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20.11. IDENTIFY and SET UP: Apply Eq.(20.2) to the cycle and calculate W  and then / .P W t=  Section 20.4 shows 
that EER (3.413) .K=  
(a) The operation of the device is illustrated in Figure 20.11. 

 

EXECUTE: 
4

C 9.80 10  JQ = + ×  
5

H 1.44 10  JQ = − ×  

Figure 20.11  
4 5 4

C H 9.80 10  J 1.44 10  J 4.60 10  JW Q Q= + = + × − × = − ×  
4/ 4.60 10  J/60.0 s 767 WP W t= = − × = −  

(b) EER (3.413)K=  
4 4

C / 9.80 10  J/4.60 10  J 2.13K Q W= = × × =  
EER (3.413)(2.13) 7.27= =  
EVALUATE: W negative means power is consumed, not produced, by the device. 

H C .Q W Q= +  

20.12. IDENTIFY: H C .Q Q W= +  C .
Q

K
W

=  

SET UP: For water, w 4190 J/kg Kc = ⋅  and 5
f 3.34 10  J/kg.L = ×  For ice, ice 2010 J/kg K.c = ⋅  

EXECUTE: (a) ice ice f w w.Q mc T mL mc T= Δ − + Δ  
5 5(1.80 kg)([2010 J/kg K][ 5.0 C ] 3.34 10  J/kg [4190 J/kg K][ 25.0 C ]) 8.08 10  JQ = ⋅ − − × + ⋅ − = − ×° °

58.08 10  J.Q = − ×  Q is negative for the water since heat is removed from it. 

(b) 5
C 8.08 10  J.Q = ×  

5
C 58.08 10  J 3.37 10  J.

2.40
Q

W
K

×
= = = ×  

(c) 5 5 6
H 8.08 10  J 3.37 10  J 1.14 10  J.Q = × + × = ×  

EVALUATE: For this device, C 0Q >  and H 0.Q <  More heat is rejected to the room than is removed from the 
water. 

20.13. IDENTIFY: Use Eq.(20.2) to calculate .W  Since it is a Carnot device we can use Eq.(20.13) to relate the heat 
flows out of the reservoirs. The reservoir temperatures can be used in Eq.(20.14) to calculate e. 
(a) SET UP: The operation of the device is sketched in Figure 20.13. 

 

EXECUTE:  
C HW Q Q= +  
335 J 550 J 215 JW = − + =  

Figure 20.13  

(b) For a Carnot cycle, C C

H H

Q T
Q T

=  (Eq.20.13) 

C
C H

H

335 J620 K 378 K
550 J

Q
T T

Q
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(c) C H(Carnot) 1 / 1 378 K/620 K 0.390 39.0%e T T= − = − = =  
EVALUATE: We could use the underlying definition of e (Eq.20.4): 

H/ (215 J)/(550 J) 39%,e W Q= = =  which checks. 
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20.14. IDENTIFY: H C .W Q Q= −  C 0,Q <  H 0.Q >  
H

.We
Q

=  For a Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 300 K,T =  H 520 K.T =  3
H 6.45 10  J.Q = ×  

EXECUTE: (a) 3 3C
C H

H

300 K(6.45 10  J) 3.72 10  J.
520 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 3 3 3
H C 6.45 10  J 3.72 10  J 2.73 10  JW Q Q= − = × − × = ×  

(c) 
3

3
H

2.73 10  J 0.423 42.3%.
6.45 10  J

We
Q

×
= = = =

×
 

EVALUATE: We can verify that C H1 /e T T= −  also gives 42.3%.e =  

20.15. IDENTIFY: 
H

We
Q

= for any engine. For the Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 20.0 C 273.15 K 293.15 KT = + =°  

EXECUTE: (a) 
4

4
H

2.5 10  J 4.24 10  J
0.59

WQ
e

×
= = = ×  

(b) H CW Q Q= +  so 4 4 4
C H 2.5 10  J 4.24 10  J 1.74 10  J.Q W Q= − = × − × = − ×  

4
H

H C 4
C

4.24 10  J(293.15 K) 714 K 441 C.
1.74 10  J

QT T
Q

⎛ ⎞×
= − = − = =⎜ ⎟− ×⎝ ⎠

°  

EVALUATE: For a heat engine, 0,W >  H 0Q > and C 0.Q <  
20.16. IDENTIFY and SET UP: The device is a Carnot refrigerator. 

We can use Eqs.(20.2) and (20.13). 
(a) The operation of the device is sketched in Figure 20.16. 

 

H 24.0 C 297 KT = ° =  

C 0.0 C 273 KT = ° =  

Figure 20.16  
The amount of heat taken out of the water to make the liquid solid→  phase change is 

3 7
f (85.0 kg)(334 10  J/kg) 2.84 10  J.Q mL= − = − × = − ×  This amount of heat must go into the working substance of 

the refrigerator, so 7
C 2.84 10  J.Q = + ×  For Carnot cycle C H C H/ /Q Q T T=  

EXECUTE: 7 7
H C H C( / ) 2.84 10  J(297 K/273 K) 3.09 10  JQ Q T T= = × = ×  

(b) 7 7 6
C H 2.84 10  J 3.09 10  J 2.5 10  JW Q Q= + = + × − × = − ×  

EVALUATE: W is negative because this much energy must be supplied to the refrigerator rather than obtained 
from it. Note that in Eq.(20.13) we must use Kelvin temperatures. 

20.17. IDENTIFY: H C .Q W Q= +  H 0,Q <  C 0.Q >  C .
Q

K
W

=  For a Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 270 K,T =  H 320 K.T =  C 415 J.Q =  

EXECUTE: (a) H
H C

C

320 K (415 J) 492 J.
270 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) For one cycle, H C 492 J 415 J 77 J.W Q Q= − = − =  (165)(77 J) 212 W.
60 s

P = =  

(c) C 415 J 5.4.
77 J

Q
K

W
= = =  

EVALUATE: The amount of heat energy HQ delivered to the high-temperature reservoir is greater than the 

amount of heat energy CQ  removed from the low-temperature reservoir. 
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20.18. IDENTIFY: .H CW Q Q= −  For a Carnot cycle, C C

H H

,Q T
Q T

= −  where the temperatures must be in kelvins. 

SET UP: 10.0 C 263.15 K,− =°  25.0 C 298.15 K,=°  0.0 C 273.15 K=°  and 25.0 C 248.15 K.− =°  
EXECUTE: (a) The heat is discarded at a higher temperature, and a refrigerator is required. H C H C( / )Q Q T T=  

and 3
C H C| | = | | (( ) 1) (5.00 10  J)((298.15 K 263.15 K ) 1) 665 J.W Q T T − = × − =  

(b) Again, the device is a refrigerator, and 3| | = (5.00 10  J)((273.15 K / 263.15 K) 1) 190 J.W × − =  
(c) The device is an engine; the heat is taken from the hot reservoir, and the work done by the engine is 

3| | = (5.00 10  J)(1 (248.15 K 263.15 K)) 285 J.W × − =  
EVALUATE: For a refrigerator work must be supplied to the device. For a heat engine, there is mechanical work 
output from the device. 

20.19. IDENTIFY: The theoretical maximum performance coefficient is C
Carnot

H C

.TK
T T

=
−

 C .
Q

K
W

=  CQ is the heat 

removed from the water to convert it to ice. For the water, w f .Q mc T mL= Δ +  

SET UP: C 5.0 C 268 K.T = − =°  H 20.0 C 293 K.T = =°  w 4190 J/kg Kc = ⋅ and 3
f 334 10  J/kg.L = ×  

EXECUTE: (a) In one year the freezer operates (5 h/day)(365 days) 1825 h.=  
730 kWh 0.400 kW 400 W.
1825 h

P = = =  

(b) Carnot
268 K =10.7

293 K 268 K
K =

−
 

(c) 6(400 W)(3600 s) 1.44 10  J.W Pt= = = ×  7
C 1.54 10  J.Q K W= = ×  w fQ mc T mL= Δ + gives 

7
C

3
w f

1.54 10  J 36.9 kg.
(4190 J/kg K)(20.0 K) 334 10  J/kg

Q
m

c T L
×

= = =
Δ + ⋅ + ×

 

EVALUATE: For any actual device, Carnot ,K K<  CQ is less than we calculated and the freezer makes less ice in 
one hour than the mass we calculated in part (c). 

20.20. IDENTIFY: The total work that must be done is tot .W mg y= Δ  H C .W Q Q= −  H 0,Q >  0W >  and C 0.Q <  For a 

Carnot cycle, C C

H H

,Q T
Q T

= −  

SET UP: C 373 K,T =  H 773 K.T =  H 250 J.Q =  

EXECUTE: C
C H

H

373 K(250 J) 121 J.
773 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 250 J 121 J 129 J.W = − =  This is the work done in 

one cycle. 2 5
tot (500 kg)(9.80 m/s )(100 m) 4.90 10  J.W = = ×  The number of cycles required is 

5
3tot 4.90 10  J 3.80 10  cycles.

129 J/cycle
W
W

×
= = ×  

EVALUATE: In C C

H H

,Q T
Q T

= −  the temperatures must be in kelvins. 

20.21. IDENTIFY: C

H H

1 .W Qe
Q Q

= = −  For a Carnot cycle, C C

H H

Q T
Q T

= − and C

H

1 .Te
T

= −  

SET UP: H 800 K.T =  C 3000 J.Q = −  
EXECUTE: For a heat engine, ( ) ( )H C / 1 ( 3000 J) 1 0.600 7500 J,Q Q e= − − = − − − =  and then 

H (0.600)(7500 J) 4500 J.W eQ= = =  
EVALUATE: This does not make use of the given value of H.T  If HT  is used, 
then ( ) ( )( )C H 1 800 K 1 0.600 320 KT T e= − = − = H C H Cand / ,Q Q T T= − which gives the same result. 

20.22. IDENTIFY: C H.W Q Q= +  For a Carnot cycle, C C

H H

.Q T
Q T

= −  For the ice to liquid water phase transition, f .Q mL=  

SET UP: For water, 3
f 334 10  J/kgL = ×  
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EXECUTE: ( )( )3 4
C f 0.0400 kg 334 10  J/kg 1.336 10  J.Q mL= − = − × = − ×  C C

H H

Q T
Q T

= − gives 

( ) ( ) ( ) ( )4 4
H H C C 1.336 10  J 373.15 K 273.15 K 1.825 10  J.Q T T Q= − = − − × = + ×⎡ ⎤⎣ ⎦  3

C H 4.89 10  J.W Q Q= + = ×  

EVALUATE: For a heat engine, CQ is negative and HQ is positive. The heat that comes out of the engine 
( 0)Q < goes into the ice ( 0Q > ). 

20.23. IDENTIFY: The power output is .WP
t

=  The theoretical maximum efficiency is C
Carnot

H

1 .Te
T

= −  
H

.We
Q

=  

SET UP: 4
H 1.50 10  J.Q = ×  C 350 K.T =  H 650 K.T =  1 hp 746 W.=  

EXECUTE: C
Carnot

H

350 K1 1 0.4615.
650 K

Te
T

= − = − =  4 3
H (0.4615)(1.50 10  J) 6.923 10  J;W eQ= = × = ×  this is the 

work output in one cycle. 
3

4(240)(6.923 10  J) 2.77 10  W 37.1 hp.
60.0 s

WP
t

×
= = = × =  

EVALUATE: We could also use C C

H H

Q T
Q T

= − to calculate 4 3C
C H

H

350 K (1.50 10  J) 8.08 10  J.
650 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then 3
C H 6.92 10  J,W Q Q= + = ×  the same as previously calculated. 

20.24. IDENTIFY and SET UP: C
Carnot

H

1 .Te
T

= −  C
Carnot

H C

.TK
T T

=
−

 

EXECUTE: (a) C H (1 ).T T e= −  H

H H

(1 ) 1 .
(1 )

T e eK
T T e e

− −
= =

− −
 

EVALUATE: (b) When 1,e→  0.K →  When 0,e→  .K → ∞  
1e→  when C H .Q Q<<  CQ  is small in this limit. That is good for an engine since CQ  is wasted. But it is bad 

for a refrigerator since CQ  is what is useful. 0e→  when C HQ Q→  and W  is very small. That is bad for an 
engine but good for a refrigerator. 

20.25. IDENTIFY: QS
T

Δ = for each object, where T must be in kelvins. The temperature of each object remains constant. 

SET UP: For water, 5
f 3.34 10  J/kg.L = ×  

EXECUTE: (a) The heat flow into the ice is 5 5
f (0.350 kg)(3.34 10  J/kg) 1.17 10  J.Q mL= = × = ×  The heat flow 

occurs at 273 K,T =  so 
51.17 10  J 429 J/K.

273 K
QS
T

×
Δ = = =  Q is positive and SΔ  is positive. 

(b) 51.17 10  JQ = − ×  flows out of the heat source, at 298 K.T =  
51.17 10  J 393 J/K.

298 K
QS
T

− ×
Δ = = = −  Q is 

negative and SΔ  is negative. 
(c) tot 429 J/K ( 393 J/K) 36 J/K.SΔ = + − = +  
EVALUATE: For the total isolated system, 0SΔ >  and the process is irreversible. 

20.26. IDENTIFY: Apply system 0Q = to calculate the final temperature. .Q mc T= Δ  Example 20.6 shows that 

2 1ln( / )S mc T TΔ = when an object undergoes a temperature change. 
SET UP: For water 4190 J/kg K.c = ⋅  Boiling water has 100.0 C 373 K.T = =°  
EXECUTE: (a) The heat transfer between 100 C°  water and 30 C° water occurs over a finite temperature 
difference and the process is irreversible. 
(b) 2 2(270 kg) ( 30.0 C) (5.00 kg) ( 100 C) 0.c T c T− + − =° °  2 31.27 C 304.42 K.T = =°  

(c) 304.42 K 304.42 K(270 kg)(4190 J/kg K)ln (5.00 kg)(4190 J/kg K)ln .
303.15 K 373.15 K

S ⎛ ⎞ ⎛ ⎞Δ = ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

4730 J/K ( 4265 J/K) 470 J/K.SΔ = + − = +  
EVALUATE: system 0,SΔ >  as it should for an irreversible process. 

20.27. IDENTIFY: Both the ice and the room are at a constant temperature, so .QS
T

Δ =  For the melting phase transition, 

f .Q mL=  Conservation of energy requires that the quantity of heat that goes into the ice is the amount of heat that 
comes out of the room. 
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SET UP: For ice, 3
f 334 10  J/kg.L = ×  When heat flows into an object, 0,Q >  and when heat flows out of an 

object, 0.Q <  
EXECUTE: (a) Irreversible because heat will not spontaneously flow out of 15 kg of water into a warm room to 
freeze the water. 

(b) 
3 3

f f
ice room

ice room

(15.0 kg)(334 10  J/kg) (15.0 kg)(334 10  J/kg) .
273 K 293 K

mL mLS S S
T T

− × − ×
Δ = Δ + Δ = + = +  1250 J/K.SΔ = +  

EVALUATE: This result is consistent with the answer in (a) because 0SΔ > for irreversible processes. 
20.28. IDENTIFY: Q mc T= Δ for the water. Example 20.6 shows that 2 1ln( / )S mc T TΔ = when an object undergoes a 

temperature change. /S Q TΔ = for an isothermal process. 
SET UP: For water, 4190 J/kg K.c = ⋅  85.0 C 358.2 K.=°  20.0 C 293.2 K.=°  

EXECUTE: (a) 2

1

293.2 Kln (0.250 kg)(4190 J/kg K)ln 210 J/K.
358.2 K

TS mc
T

⎛ ⎞ ⎛ ⎞Δ = = ⋅ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 Heat comes out of the 

water and its entropy decreases. 
(b) 4(0.250 kg)(4190 J/kg K)( 65.0 K) 6.81 10  J.Q mc T= Δ = ⋅ − = − ×  The amount of heat that goes into the air is 

46.81 10  J.+ ×  For the air, 
46.81 10  J 232 J/K.

293.1 K
QS
T

+ ×
Δ = = = +  system 210 J/K 232 J/K 22 J/K.SΔ = − + = +  

EVALUATE: system 0SΔ > and the process is irreversible. 

20.29. IDENTIFY: The process is at constant temperature, so .QS
T

Δ =  .U Q WΔ = −  

SET UP: For an isothermal process of an ideal gas, 0UΔ =  and .Q W=  For a compression, 0VΔ <  and 0.W <  

EXECUTE: 1850 J.Q W= = −  1850 J 6.31 J/K.
293 K

S −
Δ = = −  

EVALUATE: The entropy change of the gas is negative. Heat must be removed from the gas during the 
compression to keep its temperature constant and therefore the gas is not an isolated system. 

20.30. IDENTIFY and SET UP: The initial and final states are at the same temperature, at the normal boiling point of 
4.216 K. Calculate the entropy change for the irreversible process by considering a reversible isothermal process 
that connects the same two states, since SΔ  is path independent and depends only on the initial and final states. 
For the reversible isothermal process we can use Eq.(20.18). 
The heat flow for the helium is v ,Q mL= −  negative since in condensation heat flows out of the helium. The heat of 

vaporization vL  is given in Table 17.4 and is 3
v 20.9 10  J/kg.L = ×  

EXECUTE: 3
v (0.130 kg)(20.9 10  J/kg) 2717 JQ mL= − = − × = −  

/ 2717 J/4.216 K 644 J/K.S Q TΔ = = − = −  
EVALUATE: The system we considered is the 0.130 kg of helium; SΔ  is the entropy change of the helium. This 
is not an isolated system since heat must flow out of it into some other material. Our result that 0SΔ <  doesn�t 
violate the 2nd law since it is not an isolated system. The material that receives the heat that flows out of the 
helium would have a positive entropy change and the total entropy change would be positive. 

20.31. IDENTIFY: Each phase transition occurs at constant temperature and .QS
T

Δ =  v.Q mL=  

SET UP: For vaporization of water, 3
v 2256 10  J/kg.L = ×  

EXECUTE: (a) 
3

3v (1.00 kg)(2256 10  J/kg) 6.05 10  J/K.(373.15 K)
mLQS T T

×Δ = = = = ×  Note that this is the change of 

entropy of the water as it changes to steam. 
(b) The magnitude of the entropy change is roughly five times the value found in Example 20.5. 
EVALUATE: Water is less ordered (more random) than ice, but water is far less random than steam; a 
consideration of the density changes indicates why this should be so. 

20.32. IDENTIFY: The phase transition occurs at constant temperature and .QS
T

Δ =  v.Q mL=  The mass of one mole is 

the molecular mass M. 
SET UP: For water, 3

v 2256 10  J/kg.L = ×  For 2N ,  328.0 10  kg/mol,M −= ×  the boiling point is 77.34 K and 
3

v 201 10  J/kg.L = ×  For silver (Ag), 3107.9 10  kg/mol,M −= ×  the boiling point is 2466 K and 3
v 2336 10  J/kg.L = ×  

For mercury (Hg), 3200.6 10  kg/mol,M −= ×  the boiling point is 630 K and 3
v 272 10  J/kg.L = ×  
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EXECUTE: (a) 
3 3

v (18.0 10 kg)(2256 10 J kg) 109 J K.
(373.15 K)

Q mLS
T T

−× ×
Δ = = = =  

(b) 
3 3

2
(28.0 10  kg)(201 10  J kg)N : 72.8 J K.

(77.34 K)

−× ×
=  

3 3(107.9 10  kg)(2336 10  J/kg)Ag: 102.2 J/K.
(2466 K)

−× ×
=  

3 3(200.6 10  kg)(272 10  J/kg)Hg: 86.6 J/K
(630 K)

−× ×
=  

(c) The results are the same order or magnitude, all around 100 J/K.  
EVALUATE: The entropy change is a measure of the increase in randomness when a certain number (one mole) 
goes from the liquid to the vapor state. The entropy per particle for any substance in a vapor state is expected to be 
roughly the same, and since the randomness is much higher in the vapor state (see Exercise 20.31), the entropy 
change per molecule is roughly the same for these substances. 

20.33. IDENTIFY: During the phase transition the gallium is at a constant temperature equal to the melting point of 
gallium. Your hand is at a constant temperature of 98.6 F 37.0 C 310.1 K.= =° °  Heat fQ mL= flows out of your 

hand and into the gallium. For heat flow at constant temperature, .QS
T

Δ =  

SET UP: For gallium, 4
f 8.04 10  J/kgL = × and the melting point is 29.8 C 303.0 K.=°  

EXECUTE: 3 4 3
f (25.0 10  kg)(8.04 10  J/kg) 2.01 10  J.Q mL −= = × × = ×  For your hand, 

32.01 10  J 6.48 J/K.
310.1 K

QS
T

− ×
Δ = = = −  Heat flows out of your hand, Q is negative, and SΔ is negative. For the 

gallium, .
303.0 K
QSΔ =  The temperature of the gallium is less than that of your hand and Q  is the same, so the 

magnitude of the entropy change of the gallium is greater than the magnitude of the entropy change of your hand. 
EVALUATE: For the gallium, 0,SΔ >  so system 0SΔ >  and the process is irreversible. 

20.34. IDENTIFY: Apply Eq.(20.23) and follow the procedure used in Example 20.11. 
SET UP: After the partition is punctured each molecule has equal probability of being on each side of the box. 
The probability of two independent events occurring simultaneously is the product of the probabilities of each 
separate event. 
EXECUTE: (a) On the average, each half of the box will contain half of each type of molecule, 250 of nitrogen 
and 50 of oxygen. 
(b) See Example 20.11. The total change in entropy is 

23 21
1 2 1 2ln(2) ln(2) ( )  ln(2) (600)(1.381 10 J K) ln(2) 5.74 10 J K.S kN kN N N k − −Δ = + = + = × = ×  

(c) The probability is 500 100 600 181(1/2) (1/2) (1/2) 2.4 10 ,−× = = ×  and is not likely to happen. The numerical result for 
part (c) above may not be obtained directly on some standard calculators. For such calculators, the result may be 
found by taking the log base ten of 0.5 and multiplying by 600, then adding 181 and then finding 10 to the power 
of the sum. The result is then 181 0.87 18110 10 2.4 10 .− −× = ×  
EVALUATE: The contents of the box constitutes an isolated system. 0SΔ >  and the process is irreversible. 

20.35. (a) IDENTIFY and SET UP: The velocity distribution of Eq.(18.32) depends only on T, so in an isothermal process 
it does not change. 
(b) EXECUTE: Calculate the change in the number of available microscopic states and apply Eq.(20.23). 
Following the reasoning of Example 20.11, the number of possible positions available to each molecule is altered 
by a factor of 3 (becomes larger). Hence the number of microscopic states the gas occupies at volume 3V is 

2 1(3) ,Nw w=  where N is the number of molecules and 1w  is the number of possible microscopic states at the start 
of the process, where the volume is V. Then, by Eq.(20.23), 

2 1 Aln( / ) ln(3) ln(3) ln(3) ln(3)NS k w w k Nk nN k nRΔ = = = = =  
(2.00 mol)(8.3145 J/mol K)ln(3) 18.3 J/KSΔ = ⋅ = +  

(c) IDENTIFY and SET UP: For an isothermal reversible process / .S Q TΔ =  
EXECUTE: Calculate W and then use the first law to calculate Q. 

0TΔ =  implies 0,UΔ =  since system is an ideal gas. 
Then by ,U Q WΔ = −  .Q W=  

For an isothermal process, 2 2

1 1
2 1 ( / ) ln( / )

V V

V V
W p dV nRT V dV nRT V V= = =∫ ∫  

Thus 2 1ln( / )Q nRT V V=  and 2 1/ ln( / )S Q T nR V VΔ = =  

1 1(2.00 mol)(8.3145 J/mol K)ln(3 / ) 18.3 J/KS V VΔ = ⋅ = +  
EVALUATE: This is the same result as obtained in part (b). 
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20.36. IDENTIFY: Example 20.8 shows that for a free expansion, 2 1ln( / ).S nR V VΔ =  

SET UP: 3 3
1 2.40 L 2.40 10  mV −= = ×  

EXECUTE: 
3

3 3

425 m(0.100 mol)(8.314 J/mol K)ln 10.0 J/K
2.40 10  m  

S −

⎛ ⎞
Δ = ⋅ =⎜ ⎟×⎝ ⎠

 

EVALUATE: system 0SΔ > and the free expansion is irreversible. 

20.37. IDENTIFY: C
Carnot

H

1 .Te
T

= −  H C.W Q Q= +  
H

.We
Q

=  

SET UP: ;pV nRT=  the 300 K isotherm lies below the 400 K isotherm in the pV-diagram. 

EXECUTE: (a) Carnot
400 K1 0.200 20.0%.
500 K

e = − = =  

(b) H
2000 J 10,000 J.
0.200

WQ
e

= = =  C H 10,000 J 2000 J 8000 J.Q Q W= − = − =  

(c) The 500 K and 400 K isotherms and the Carnot cycle operating between those isotherms are sketched in 
Figure 20.37. 
(d) The 300 K isotherm and the Carnot cycle operating between the 500 K and 300 K isotherms are also sketched 
in Figure 20.37. 
(e) The cycle with C 300 KT = encloses more area than the cycle with C 400 K.T =  
(f) Less work is done on the gas during the compression at lower temperature, so less heat is ejected to keep the 
internal energy and temperature constant. 
EVALUATE: For C 300 K,T =  Carnot 0.400.e =  H (0.400)(10,000 J) 4000 J.W eQ= = =  C 6000 J.Q =  

 
Figure 20.37 

20.38. IDENTIFY: C H.W Q Q= +  Since it is a Carnot cycle, C C

H H

.Q T
Q T

= −  The heat required to melt the ice is f .Q mL=  

SET UP: For water, 3
f 334 10  J/kg.L = ×  H 0,Q >  C 0.Q <  C f .Q mL= −  H 527 C 800.15 K.T = =°  

EXECUTE: (a) H 400 J,  300 J.Q W= + = +  C H 100 J.Q W Q= − = −  

[ ]C H C H( ) (800.15 K) ( 100 J) (400 J) 200 K 73 CT T Q Q= − = − − = + = − °  

(b) The total CQ required is ( )( )3 6
f 10.0 kg 334 10  J kg 3.34 10  J.mL− = − × = − ×  CQ for one cycle is 100 J,−  so 

the number of cycles required is 
6

43.34 10  J 3.34 10  cycles.
100 J cycle

− ×
= ×

−
 

EVALUATE: The results depend only on the maximum temperature of the gas, not on the number of moles or the 
maximum pressure. 

20.39. IDENTIFY: C
Carnot

H

1 ,Te
T

= −  where CT and HT must be in kelvins. 

SET UP: C 90.0 C 183 K.T = − =°  

EXECUTE: (a) C
H .

1
TT
e

=
−

 For 0.400,e =  H
183 K 305 K.

1 0.400
T = =

−
 For 0.450,e =  H

183 K 333 K.
1 0.450

T = =
−

 HT  

must be increased 28 K 28 C= °.  
(b) C H(1 ) (1 0.450)(305 K) 168 K.T e T= − = − =  CT must be decreased 15 K 15 C= °.  
EVALUATE: A Kelvin degree is the same size as a Celsius degree, so a temperature change TΔ has the same 
numerical value whether it is expressed in K or in C°.  
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20.40. IDENTIFY: Use the ideal gas law to calculate p and V for each state. Use the first law and specific expressions for 
Q, W, and UΔ  for each process. Use Eq.(20.4) to calculate e. HQ  is the net heat flow into the gas. 
SET UP: 1.40γ =  

/( 1) 20.79 J/mol K;VC R γ= − = ⋅  29.10 J/mol K.p VC C R= + = ⋅  The cycle is sketched in Figure 20.40. 

 

1 300 KT =  

2 600 KT =  

3 492 KT =  

Figure 20.40  
EXECUTE: (a) point 1 

5
1 1.00 atm 1.013 10  Pap = = ×  (given); ;pV nRT=  

3 31
1 5

1

(0.350 mol)(8.3145 J/mol K)(300 K) 8.62 10  m
1.013 10  Pa

nRTV
p

−⋅
= = = ×

×
 

point 2 
process 1 2→  at constant volume so 3 3

2 1 8.62 10  mV V −= = ×  
pV nRT=  and n, R, V constant implies 1 1 2 2/ /p T p T=  

5
2 1 2 1( / ) (1.00 atm)(600 K/300 K) 2.00 atm 2.03 10 Pap p T T= = = = ×  

point 3 
Consider the process 3 1,→  since it is simpler than 2 3.→  
Process 3 1→  is at constant pressure so 5

3 1 1.00 atm 1.013 10  Pap p= = = ×  
pV nRT=  and n, R, p constant implies 1 1 3 3/ /V T V T=  

3 3 3 3
3 1 3 1( / ) (8.62 10  m )(492 K/300 K) 14.1 10  mV V T T − −= = × = ×  

(b) process 1 2→  
constant volume ( 0)VΔ =  

(0.350 mol)(20.79 J/mol K)(600 K 300 K) 2180 JVQ nC T= Δ = ⋅ − =  
0VΔ =  and 0.W =  Then 2180 JU Q WΔ = − =  

process 2 3→  
Adiabatic means 0.Q =  

VU nC TΔ = Δ  (any process), so 
(0.350 mol)(20.79 J/mol K)(492 K 600 K) 780 JUΔ = ⋅ − = −  

Then U Q WΔ = −  gives 780 J.W Q U= − Δ = +  (It is correct for W to be positive since VΔ  is positive.) 
process 3 1→  
For constant pressure 

5 3 3 3 3(1.013 10  Pa)(8.62 10  m 14.1 10  m ) 560 JW p V − −= Δ = × × − × = −  
or (0.350 mol)(8.3145 J/mol K)(300 K 492 K) 560 J,W nR T= Δ = ⋅ − = −  which checks. (It is correct for W to be 
negative, since VΔ  is negative for this process.) 

(0.350 mol)(29.10 J/mol K)(300 K 492 K) 1960 JpQ nC T= Δ = ⋅ − = −  
1960 J ( 560 K) 1400 JU Q WΔ = − = − − − = −  

or (0.350 mol)(20.79 J/mol K)(300 K 492 K) 1400 J,VU nC TΔ = Δ = ⋅ − = −  which checks 
(c) net 1 2 2 3 3 1 0 780 J 560 J 220 JW W W W→ → →= + + = + − = +  
(d) net 1 2 2 3 3 1 2180 J 0 1960 J 220 JQ Q Q Q→ → →= + + = + − = +  

(e) 
H

work output 220 J 0.101 10.1%.
heat energy input 2180 J

We
Q

= = = = =  

C H(Carnot) 1 / 1 300 K/600 K 0.500.e T T= − = − =  
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EVALUATE: For a cycle 0,UΔ =  so by U Q WΔ = −  it must be that net netQ W=  for a cycle. We can also check 
that net 0:UΔ =  net 1 2 2 3 3 1 2180 J 1050 J 1130 J 0U U U U→ → →Δ = Δ + Δ + Δ = − − =  

(Carnot),e e<  as it must. 
20.41. IDENTIFY: ,pV nRT=  so pV is constant when T is constant. Use the appropriate expression to calculate Q and 

W for each process in the cycle. 
H

.We
Q

=  

SET UP: For an ideal diatomic gas, 5
2VC R=  and 7

2 .pC R=  

EXECUTE: (a) 32.0 10  J.a ap V = ×  32.0 10  J.b bp V = ×  pV nRT= so a a b bp V p V= says .a bT T=  
(b) For an isothermal process, 2 1ln( / ).Q W nRT V V= =  ab is a compression, with ,b aV V<  so 0Q < and heat is 

rejected. bc is at constant pressure, so .p
p

C
Q nC T p V

R
= Δ = Δ  VΔ is positive, so 0Q > and heat is absorbed. cd is 

at constant volume, so .V
V

CQ nC T V p
R

= Δ = Δ  pΔ is negative, so 0Q < and heat is rejected. 

(c) 
32.0 10  J 241 K.

(1.00)(8.314 J/mol K)
a a

a
p VT
nR

×
= = =

⋅
 241 K.b b
b a

p VT T
nR

= = =  

34.0 10  J 481 K.
(1.00)(8.314 J/mol K)

c c
c

p VT
nR

×
= = =

⋅
 

(d) 
3

3
3

0.0050 mln (1.00 mol)(8.314 J/mol K)(241 K)ln 1.39 10  J.
0.010 m

b
ab

a

VQ nRT
V

⎛ ⎞ ⎛ ⎞
= = ⋅ = − ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

37
2(1.00)( )(8.314 J/mol K)(241 K) 7.01 10  J.bc pQ nC T= Δ = ⋅ = ×  

35
2(1.00)( )(8.314 J/mol K)( 241 K) 5.01 10  J.ca VQ nC T= Δ = ⋅ − = − ×  net 610 J.ab bc caQ Q Q Q= + + =  

net net 610 J.W Q= =  

(e) 3
H

610 J 0.087 8.7%
7.01 10  J

We
Q

= = = =
×

 

EVALUATE: We can calculate W for each process in the cycle. 31.39 10  J.ab abW Q= = − ×  
5 3 3(4.0 10  Pa)(0.0050 m ) 2.00 10  J.bcW p V= Δ = × = ×  0.caW =  net 610 J,ab bc caW W W W= + + =  which does equal 

net .Q  
20.42. (a) IDENTIFY and SET UP: Combine Eqs.(20.13) and (20.2) to eliminate CQ  and obtain an expression for HQ  in 

terms of W, C ,T  and H.T  
1.00 J,W =  C 268.15 K,T =  H 290.15 KT =  

For the heat pump C 0Q >  and H 0Q <  

EXECUTE: C H;W Q Q= +  combining this with C C

H H

Q T
Q T

= −  gives H
C H

1.00 J 13.2 J
1 / 1 (268.15/ 290.15)
WQ
T T

= = =
− −

 

(b) Electrical energy is converted directly into heat, so an electrical energy input of 13.2 J would be required. 

(c) EVALUATE: From part (a), H
C H

.
1 /
WQ
T T

=
−

 HQ  decreases as CT  decreases. The heat pump is less efficient as 

the temperature difference through which the heat has to be �pumped� increases. In an engine, heat flows from HT  
to CT  and work is extracted. The engine is more efficient the larger the temperature difference through which the 
heat flows. 

20.43. IDENTIFY: b cT T= and is equal to the maximum temperature. Use the ideal gas law to calculate .aT  Apply the 

appropriate expression to calculate Q for each process. 
H

.We
Q

=  0UΔ =  for a complete cycle and for an 

isothermal process of an ideal gas. 
SET UP: For helium, 3 / 2VC R= and 5 / 2.pC R=  The maximum efficiency is for a Carnot cycle, and 

Carnot C H1 / .e T T= −  
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EXECUTE: (a) in .ab bcQ Q Q= +  out .caQ Q=  max 327 C 600 K.b cT T T= = = ° =  
1 (600 K) 200 K.
3

a a b b a
a b

a b b

p V p V pT T
T T p

= → = = =

3
5

(2 moles)(8.31 J/mol K)(600 K) 0.0332 m .
3.0 10  Pa

b
b b b b

b

nRTp V nRT V
p

⋅
= → = = =

×
 

3 33(0.0332 m ) 0.0997 m .
1

b b c c b
c b a

b c c

p V p V pV V V
T T p

⎛ ⎞= → = = = =⎜ ⎟
⎝ ⎠

 

( ) 33(2 mol) 8.31 J/mol K (400 K) 9.97 10  J
2ab V abQ nC T ⎛ ⎞= Δ = ⋅ = ×⎜ ⎟

⎝ ⎠
 

ln  ln 3.
c c b c

bc bc b bb b
b

nRT VQ W pdV dV nRT nRT
V V

= = = = =∫ ∫  

( ) 4(2.00 mol) 8.31 J/mol K (600 K)ln 3 1.10 10  J.bcQ = ⋅ = ×  4
in 2.10 10  J.ab bcQ Q Q= + = ×  

( ) 4
out

5(2.00 mol) 8.31 J/mol K (400 K) 1.66 10  J.
2ca p caQ Q nC T ⎛ ⎞= = Δ = ⋅ = ×⎜ ⎟

⎝ ⎠
 

(b) 4 4 3
in out0 2.10 10  J 1.66 10  J 4.4 10  J.Q U W W W Q Q= Δ + = + → = − = × − × = ×  

3

in 4

4.4 10  J 0.21 21%.
2.10 10  J

e W Q ×
= = = =

×
 

(c) C
max Carnot

H

200 K1 1 0.67 67%600 K
Te e
T

= = − = − = =  

EVALUATE: The thermal efficiency of this cycle is about one-third of the efficiency of a Carnot cycle that 
operates between the same two temperatures. 

20.44. IDENTIFY: For a Carnot engine, C C

H H

.Q T
Q T

= −  C
Carnot

H

1 .Te
T

= −  H C .W Q Q= −  H 0,Q >  C 0.Q <  .pV nRT=  

SET UP: The work done by the engine each cycle is ,mg yΔ  with 15.0 kgm = and 2.00 m.yΔ =  H 773 K.T =  

H 500 J.Q =  
EXECUTE: (a) The pV diagram is sketched in Figure 20.44. 
(b) 2(15.0 kg)(9.80 m/s )(2.00 m) 294 J.W mg y= Δ = =  C H 500 J 294 J 206 J,Q Q W= − = − =  and C 206 J.Q = −  

C
C H

H

206 J(773 K) 318 K 45 C.
500 J

QT T
Q

⎛ ⎞ −⎛ ⎞= − = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

°  

(c) C

H

318 K1 1 0.589 58.9%.
773 K

Te
T

= − = − = =  

(d) C 206 J.Q =  
(e) The maximum pressure is for state a. This is also where the volume is a minimum, so 

3 35.00 L 5.00 10  m .aV
−= = ×  H 773 K.aT T= =  6

3 3

(2.00 mol)(8.315 J/mol K)(773 K) 2.57 10  Pa.
5.00 10  m

a
a

a

nRTp
V −

⋅
= = = ×

×
 

EVALUATE: We can verify that 
H

We
Q

= gives the same value for e as calculated in part (c). 

 
Figure 20.44 
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20.45. IDENTIFY: max Carnot C H1 / .e e T T= = −  
H H

/ .
/

W W te
Q Q t

= =  H CW Q Q= +  so C H .W Q Q
t t t

= +  For a temperature change 

.Q mc T= Δ  

SET UP: H 300.15 K,T =  C 279.15 K.T =  For water, 31000 kg/m ,ρ =  so a mass of 1 kg has a volume of 1 L. For 
water, 4190 J/kg K.c = ⋅  

EXECUTE: (a) 279.15 K1 7.0%.300.15 Ke = − =  

(b) H out 210 kW 3.0 MW.0.070
Q P
t e

= = =  C H 3.0 MW 210 kW 2.8 MW.Q Q W
t t t

= − = − =  

(c) 
6

C 5 5/ (2.8 10  W) (3600 s h) 6 10  kg h 6 10  L h.
(4190 J kg K) (4 K)

Q tm
t c T

×
= = = × = ×

Δ ⋅
 

EVALUATE: The efficiency is small since CT and HT don�t differ greatly. 
20.46. IDENTIFY: Use Eq.(20.4) to calculate e. 

SET UP: The cycle is sketched in Figure 20.46. 

 

5 / 2VC R=  
for an ideal gas 7 / 2p VC C R R= + =  

Figure 20.46  
SET UP: Calculate Q and W for each process. 

process 1 2→  
0VΔ =  implies 0W =  
0VΔ =  implies 2 1( )V VQ nC T nC T T= Δ = −  

But pV nRT=  and V constant says 1 1pV nRT=  and 2 2.p V nRT=  
Thus 2 1 2 1( ) ( );p p V nR T T− = −  V p nR TΔ = Δ  (true when V is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / ) (2 ) ( / ) .V V V V VQ nC T nC V p nR C R V p C R V p p C R p V= Δ = Δ = Δ = − =  0;Q >  heat is absorbed by 
the gas.) 

process 2 3→  

0pΔ =  so 3 2 0 0 0 0 0( ) 2 (2 ) 2W p V p V V p V V p V= Δ = − = − =  (W is positive since V increases.) 
0pΔ =  implies 2 1( )p pQ nC T nC T T= Δ = −  

But pV nRT=  and p constant says 1 1pV nRT=  and 2 2.pV nRT=  
Thus 2 1 2 1( ) ( );p V V nR T T− = −  p V nR TΔ = Δ  (true when p is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / )2 (2 ) ( / )2 .p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − =  ( 0;Q >  heat is absorbed by 
the gas.) 

process 3 4→  
0VΔ =  implies 0W =  
0VΔ =  so 

0 0 0 0 0( / ) ( / )(2 )( 2 ) 2( / )V V V VQ nC T nC V p nR C R V p p C R p V= Δ = Δ = − = −  
( 0Q <  so heat is rejected by the gas.) 

process 4 1→  

0pΔ =  so 1 4 0 0 0 0 0( ) ( 2 )W p V p V V p V V p V= Δ = − = − = −  (W is negative since V decreases) 
0pΔ =  so 0 0 0 0 0( / ) ( / ) ( / ) ( 2 ) ( / )p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − = −  ( 0Q <  so heat is 

rejected by the gas.) 
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total work performed by the gas during the cycle: 
tot 1 2 2 3 3 4 4 1 0 0 0 0 0 00 2 0W W W W W p V p V p V→ → → →= + + + = + + − =  

(Note that totW  equals the area enclosed by the cycle in the pV-diagram.) 

total heat absorbed by the gas during the cycle H( ):Q  
Heat is absorbed in processes 1 2→  and 2 3.→  

H 1 2 2 3 0 0 0 0 0 0

2
2 p V pV C C CCQ Q Q p V p V p V

R R R→ →

+⎛ ⎞
= + = + = ⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so H 0 0 0 0
2( ) 3 2 .V V VC C R C RQ p V p V
R R

+ + +⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

total heat rejected by the gas during the cycle C( ):Q  
Heat is rejected in processes 3 4→  and 4 1.→  

C 3 4 4 1 0 0 0 0 0 0

2
2 p V pV C C CCQ Q Q p V p V p V
R R R→ →

+⎛ ⎞
= + = − − = −⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so C 0 0 0 0
2 ( ) 3 .V V VC C R C RQ p V p V

R R
+ + +⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
 

efficiency 

( )
0 0

H 0 0

2 .
[3 2 ]/ ( ) 3 2 3(5 /2) 2 19V V

W p V R Re
Q C R R p V C R R R

= = = = =
+ + +

 

0.105 10.5%e = =  

EVALUATE: As a check on the calculations note that C H 0 0 0 0 0 0
3 3 2 ,V VC R C RQ Q p V p V p V W
R R
+ +⎛ ⎞ ⎛ ⎞+ = − + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

as it should. 

20.47. IDENTIFY: Use .pV nRT=  Apply the expressions for Q and W that apply to each type of process. 
H

.We
Q

=  

SET UP: For 2O ,  20.85 J/mol KVC = ⋅  and 29.17 J/mol K.pC = ⋅  

EXECUTE: (a) 1 2.00 atm,p =  1 4.00 L,V =  1 300 K.T =  

2 2.00 atm.p =  1 2

1 2

.V V
T T

=  2
2 1

1

450 K (4.00 L) 6.00 L.
300 K

TV V
T

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 6.00 L.V =  2 3

2 3

.p p
T T

=  3
3 2

2

250 K (2.00 atm) 1.11 atm
450 K

Tp p
T

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

4 4.00 L.V =  3 3 4 4.p V p V=  3
4 3

4

6.00 L(1.11 atm) 1.67 atm.
4.00 L

Vp p
V

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

These processes are shown in Figure 20.47. 

(b) 1 1

1

(2.00 atm)(4.00 L) 0.325 mol
(0.08206 L atm/mol K)(300 K)

pVn
RT

= = =
⋅ ⋅

 

process 1 2:→  (0.325 mol)(8.315 J/mol K)(150 K) 405 J.W p V nR T= Δ = Δ = ⋅ =  
(0.325 mol)(29.17 J/mol K)(150 K) 1422 J.pQ nC T= Δ = ⋅ =  

process 2 3:→  0.W =  (0.325 mol)(20.85 J/mol K)( 200 K) 1355 J.VQ nC T= Δ = ⋅ − = −  

process 3 4:→  0UΔ =  and 4
3

3

4.00 Lln (0.325 mol)(8.315 J/mol K)(250 K)ln 274 J.
6.00 L

VQ W nRT
V

⎛ ⎞ ⎛ ⎞= = = ⋅ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

process 4 1:→  0.W =  (0.325 mol)(20.85 J/mol K)(50 K) 339 J.VQ nC T= Δ = ⋅ =  
(c) 405 J 274 J 131 JW = − =  

(d) 
H

131 J 0.0744 7.44%.
1422 J 339 J

We
Q

= = = =
+

 

C
Carnot

H

250 K1 1 0.444 44.4%;
450 K

Te
T

= − = − = =  Carnote  is much larger. 
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EVALUATE: tot 1422 J ( 1355 J) ( 274 J) 339 J 132 J.Q = + + − + − + =  This is equal to tot ,W  apart from a slight 
difference due to rounding. For a cycle, tot tot ,W Q=  since 0.UΔ =  

 
Figure 20.47 

20.48. IDENTIFY and SET UP: For the constant pressure processes ab and cd calculate W and use the first law to 
calculate Q. Calculate totQ  and use that tot totW Q=  for a cycle. The coefficient of performance is given by 
Eq.(20.9); CQ  is the net heat that goes into the system. The cycle is sketched in Figure 20.48. 

 
Figure 20.48 

EXECUTE: (a) process c d→  
3 3 51657 10  J 1005 10  J 6.52 10  Jd cU U UΔ = − = × − × = ×  

d

c

V

V
W pdV p V= = Δ∫  (since is a constant pressure process) 

3 3 3 4(363 10  Pa)(0.4513 m 0.2202 m ) 8.39 10  JW = × − = + ×  (positive since process is an expansion) 

U Q WΔ = −  so 5 4 56.52 10  J 8.39 10  J 7.36 10  J.Q U W= Δ + = × + × = ×  
(Q positive so heat goes into the coolant) 

(b) process a b→  
3 3 51171 10  J 1969 10  J 7.98 10  Jb aU U UΔ = − = × − × = − ×  

3 3 3 5(2305 10  Pa)(0.00946 m 0.0682 m ) 1.35 10  JW p V= Δ = × − = − ×  
(negative since 0VΔ <  for the process) 

5 5 57.98 10  J 1.35 10  J 9.33 10  JQ U W= Δ + = − × − × = − ×  
(negative so heat comes out of coolant). 
(c) The coolant cannot be treated as an ideal gas, so we can�t calculate W for the adiabatic processes. But 0UΔ =  
(for cycle) so net net .W Q=  

0Q =  for the two adiabatic processes, so 5 5 5
net 7.36 10  J 9.33 10  J 1.97 10  Jcd abQ Q Q= + = × − × = − ×  

Thus 5
net 1.97 10  JW = − ×  (negative since work is done on the coolant, the working substance). 

(d) 5 5
C / ( 7.36 10  J) /( 1.97 10  J) 3.74.K Q W= = + × + × =  

EVALUATE: net 0W <  when the cycle is taken in the counterclockwise direction, as is the case here. 
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20.49. IDENTIFY: Use U Q WΔ = − and the appropriate expressions for Q, W and UΔ for each type of process. 

pV nRT= relates TΔ to p and V values. 
H

,We
Q

=  where HQ is the heat that enters the gas during the cycle. 

SET UP: For a monatomic ideal gas, 5 3
2 2and C .P VC R R= =  

(a) ab: The temperature changes by the same factor as the volume, and so 
5 3 5( ) (2.5)(3.00 10 Pa)(0.300 m ) 2.25 10 J.P

P a a b
CQ nC T p V V
R

= Δ = − = × = ×  

The work p VΔ is the same except for the factor of 55
2 ,  so  0.90 10  J.W = ×  

51.35 10  J.U Q WΔ = − = ×  
bc: The temperature now changes in proportion to the pressure change, and 

3 5 3 5
2 ( ) (1.5)( 2.00 10  Pa)(0.800 m ) 2.40 10  J,c b bQ p p V= − = − × = − ×  and the work is zero 

5( 0). 2.40 10  J.V U Q WΔ = Δ = − = − ×  
ca: The easiest way to do this is to find the work done first; W will be the negative of area in the p-V plane 
bounded by the line representing the process ca and the verticals from points a and c. The area of this trapezoid is 

5 5 3 3 41
2 (3.00 10  Pa 1.00 10  Pa)(0.800 m 0.500 m ) 6.00 10  J× + × − = ×  and so the work is 50.60 10  J.− ×  UΔ  must 

be 51.05 10  J (since 0U× Δ =  for the cycle, anticipating part (b)), and so Q must be 50.45 10  J.U WΔ + = ×  

(b) See above; 50.30 10  J,  0.Q W U= = × Δ =  

(c) The heat added, during process ab and ca, is 2.25 5 510  J 0.45 10  J× + ×  52.70 10  J= × and the efficiency is 
5

5
H

0.30 10 0.111 11.1%.
2.70 10

We
Q

×= = = =
×

 

EVALUATE: For any cycle, 0UΔ =  and .Q W=  
20.50. IDENTIFY: Use the appropriate expressions for Q, W and UΔ for each process. H/e W Q= and Carnot C H1 / .e T T= −  

SET UP: For this cycle, H 2T T= and C 1T T=  
EXECUTE: (a) ab: For the isothermal process, 0TΔ =  and 0.UΔ =  

1 1 1 ln( ) ln(1/ ) ln( )b aW nRT V V nRT r nRT r= = = −  and 1 ln( ).Q W nRT r= = −  
bc: For the isochoric process, 0VΔ =  and 0.W =  2 1( ).V VQ U nC T nC T T= Δ = Δ = −  
cd: As in the process ab, 20 and ln( ).U W Q nRT rΔ = = =  
da: As in process bc, 0 and 0;V WΔ = =  1 2( ).VU Q nC T TΔ = = −  
(b) The values of Q for the processes are the negatives of each other. 
(c) The net work for one cycle is net 2 1( )ln( ),W nR T T r= − and the heat added (neglecting the heat exchanged during 
the isochoric expansion and compression, as mentioned in part (b)) is cd 2 ln( ),Q nRT r=  and the efficiency is 

net
1 21 ( ).

cd

We T T
Q

= = −  This is the same as the efficiency of a Carnot-cycle engine operating between the two 

temperatures. 
EVALUATE: For a Carnot cycle two steps in the cycle are isothermal and two are adiabatic and all the heat flow 
occurs in the isothermal processes. For the Stirling cycle all the heat flow is also in the isothermal steps, since the 
net heat flow in the two constant volume steps is zero. 

20.51. IDENTIFY: The efficiency of the composite engine is 1 2
12

H1

,W We
Q
+

=  where H1Q  is the heat input to the first engine 

and 1W and 2W are the work outputs of the two engines. For any heat engine, C H ,W Q Q= +  and for a Carnot engine, 

low low

high high

,Q T
Q T

= −  where lowQ and highQ are the heat flows at the two reservoirs that have temperatures lowT and high .T  

SET UP: high,2 low,1.Q Q= −  low,1 ,T T ′=  high,1 H ,T T=  low,2 CT T=  and high,2 .T T ′=  

EXECUTE: high,1 low,1 high,2 low,21 2
12

H1 high,1

.
Q Q Q QW We

Q Q
+ + ++

= =  Since high,2 low,1,Q Q= −  this reduces to low,2
12

high,1

1 .
Q

e
Q

= +  

low,2 low,1C C C
low,2 high,2 low,1 high,1 high,1

high,2 high,1 H

.
T TT T T TQ Q Q Q Q
T T T T T T

⎛ ⎞ ⎛ ⎞′
= − = = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠

 This gives C
12

H

1 .Te
T

= −  The efficiency of 

the composite system is the same as that of the original engine. 
EVALUATE: The overall efficiency is independent of the value of the intermediate temperature .T ′  
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20.52. IDENTIFY: 
H

.We
Q

=  41 day 8.64 10  s.= ×  For the river water, ,Q mc T= Δ  where the heat that goes into the water 

is the heat CQ rejected by the engine. The density of water is 31000 kg/m .  When an object undergoes a 
temperature change, 2 1ln( / ).S mc T TΔ =  
SET UP: 18.0 C 291.1 K.=°  18.5 C 291.6 K.=°  

EXECUTE: (a) H
WQ
e

= so 3W
H

1000 MW 2.50 10  MW.
0.40

PP
e

= = = ×  

(b) The heat input in one day is 9 4 14(2.50 10  W)(8.64 10  s) 2.16 10  J.× × = ×  The mass of coal used per day is 
14

6
7

2.16 10  J 8.15 10  kg.
2.65 10  J/kg

×
= ×

×
 

(c) H C .Q W Q= +  C H .Q Q W= −  3 3
C H W 2.50 10  MW 1000 MW 1.50 10  MW.P P P= − = × − = ×  

(d) The heat input to the river is 91.50 10  J/s.×  Q mc T= Δ and 0.5 CTΔ = °  gives 
9

51.50 10  J 7.16 10  kg.
(4190 J/kg K)(0.5 K)

Qm
c T

×
= = = ×

Δ ⋅
 3716 m .mV

ρ
= =  The river flow rate must be 3716 m /s.  

(e) In one second, 57.16 10  kg× of water goes from 291.1 K to 291.6 K. 

5 62

1

291.6 Kln (7.16 10  kg)(4190 J/kg K)ln 5.1 10  J/K.
291.1 K

TS mc
T

⎛ ⎞ ⎛ ⎞Δ = = × ⋅ = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: The entropy of the river increases because heat flows into it. The mass of coal used per second is huge. 
20.53. (a) IDENTIFY and SET UP: Calcualte e from Eq.(20.6), CQ  from Eq.(20.4) and then W from Eq.(20.2). 

EXECUTE: 0.41 1/( ) 1 1/(10.6 ) 0.6111e rγ −1= − = − =  

H C H( ) /e Q Q Q= +  and we are given H 200 J;Q =  calculate C.Q  

C H( 1) (0.6111 1)(200 J) 78 JQ e Q= − = − = −  (negative since corresponds to heat leaving) 
Then C H 78 J 200 J 122 J.W Q Q= + = − + =  (Positive, in agreement with Fig. 20.6.) 
EVALUATE: H,Q  0,W >  and C 0Q <  for an engine cycle. 
(b) IDENTIFY and SET UP: The stoke times the bore equals the change in volume. The initial volume is the final 
volume V times the compression ratio r. Combining these two expressions gives an equation for V. For each 
cylinder of area 2( / 2)A dπ=  the piston moves 0.864 m and the volume changes from rV to V, as shown in 
Figure 20.53a. 

 

1l A rV=  

2l A V=   
and 

3
1 2 86.4 10  ml l −− = ×  

Figure 20.53a  
EXECUTE: 1 2l A l A rV V− = −  and 1 2( ) ( 1)l l A r V− = −  

3 3 2
5 31 2( ) (86.4 10  m) (41.25 10  m) 4.811 10  m

1 10.6 1
l l AV
r

π− −
−− × ×

= = = ×
− −

 

At point a the volume is 5 3 4 310.6(4.811 10  m ) 5.10 10  m .rV − −= × = ×  
(c) IDENTIFY and SET UP: The processes in the Otto cycle are either constant volume or adiabatic. Use the HQ  
that is given to calculate TΔ  for process bc. Use Eq.(19.22) and pV nRT=  to relate p, V and T for the adiabatic 
processes ab and cd. 
EXECUTE: point a: 300 K,aT =  48.50 10  Pa,ap = ×  and 4 35.10 10  maV

−= ×  

point b: 5 3/ 4.81 10  m .b aV V r −= = ×  Process a b→  is adiabatic, so 1 1.a a b bT V TVγ γ− −=  
1 1( )a bT rV TVγ γ− −=  

1 0.4300 K(10.6) 771 Kb aT T rγ −= = =  
pV nRT=  so / constant,pV T nR= =  so / /a a a b b bp V T p V T=  

4 6( / )( / ) (8.50 10  Pa)( / )(771 K/300 K) 2.32 10  Pab a a b b ap p V V T T rV V= = × = ×  
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point c: Process b c→  is at constant volume, so 5 34.81 10  mc bV V −= = ×  

H ( ).V V c bQ nC T nC T T= Δ = −  The problem specifies H 200 J;Q =  use to calculate .cT  First use the p, V, T values at 
point a to calculate the number of moles n. 

4 4 3(8.50 10  Pa)(5.10 10  m ) 0.01738 mol
(8.3145 J/mol K)(300 K)

pVn
RT

−× ×
= = =

⋅
 

Then H 200 J 561.3 K,
(0.01738 mol)(20.5 J/mol K)c b

V

QT T
nC

− = = =
⋅

 and 561.3 K 771 K 561 K 1332 Kc bT T= + = + =  

/ / constantp T nR V= =  so / /b b c cp T p T=  
6 6( / ) (2.32 10  Pa)(1332 K/771 K) 4.01 10  Pac b c bp p T T= = × = ×  

point d: 4 35.10 10  md aV V −= = ×  

process c d→  is adiabatic, so 1 1
d d c cT V TVγ γ− −=  

1 1( )d cT rV TVγ γ− −=  
1 0.4/ 1332 K/10.6 518 Kd cT T rγ −= = =  

/ /c c c d d dp V T p V T=  
6 5( / )( / ) (4.01 10  Pa)( / )(518 K/1332 K) 1.47 10 Pad c c d d cp p V V T T V rV= = × = ×  

EVALUATE: Can look at process d a→  as a check. 
C ( ) (0.01738 mol)(20.5 J/mol K)(300 K 518 K) 78 J,V a dQ nC T T= − = ⋅ − = −  which agrees with part (a). The cycle 

is sketched in Figure 20.53b. 

 
Figure 20.53b 

(d) IDENTIFY and SET UP: The Carnot efficiency is given by Eq.(20.14). HT  is the highest temperature reached 
in the cycle and CT  is the lowest. 
EXECUTE: From part (a) the efficiency of this Otto cycle is 0.611 61.1%.e = =  
The efficiency of a Carnot cycle operating between 1332 K and 300 K is 

C H(Carnot) 1 / 1 300 K /1332 K 0.775 77.5%,e T T= − = − = =  which is larger. 
EVALUATE: The 2nd law requires that (Carnot),e e≤  and our result obeys this law. 

20.54. IDENTIFY: C .
Q

K
W

=  H C .Q Q W= +  The heat flows for the inside and outside air occur at constant T, so 

/ .S Q TΔ =  
SET UP: 21.0 C 294.1 K.=°  35.0 C 308.1 K.=°  
EXECUTE: (a) C .Q K W=  3

C W (2.80)(800 W) 2.24 10  W.P KP= = = ×  

(b) 3 3
H C W 2.24 10  W 800 W 3.04 10  W.P P P= + = × + = ×  

(c) In 1 h 3600 s,=  7
H H 1.094 10  J.Q P t= = ×  

7
4H

out
H

1.094 10  J 3.55 10  J/K.
308.1 K

QS
T

×
Δ = = = ×  
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(d) 6
C C 8.064 10  J.Q P t= = ×  Heat CQ is removed from the inside air. 

6
4C

in
C

8.064 10  J 2.74 10  J/K.
294.1 K

QS
T

− − ×
Δ = = = − ×  3

net out in 8.1 10  J/K.S S SΔ = Δ + Δ = ×  

EVALUATE: The increase in the entropy of the outside air is greater than the entropy decrease of the air in the 
room. 

20.55. IDENTIFY and SET UP: Use Eq.(20.13) for an infinitesimal heat flow HdQ  from the hot reservoir and use that 
expression with Eq.(20.19) to relate H ,SΔ  the entropy change of the hot reservoir, to CQ  

(a) EXECUTE: Consider an infinitesimal heat flow HdQ  that occurs when the temperature of the hot reservoir is :T ′  

C C H( / )dQ T T dQ′= −  

H
C C

dQdQ T
T

= −
′∫ ∫  

H
C C C H

dQQ T T S
T

= = Δ
′∫  

(b) The 1.00 kg of water (the high-temperature reservoir) goes from 373 K to 273 K. 
5

H (1.00 kg)(4190 J/kg K)(100 K) 4.19 10  JQ mc T= Δ = ⋅ = ×  

H 2 1ln( / ) (1.00 kg)(4190 J/kg K)ln(273/373) 1308 J/KS mc T TΔ = = ⋅ = −  

The result of part (a) gives 5
C (273 K)(1308 J/K) 3.57 10  JQ = = ×  

CQ  comes out of the engine, so 5
C 3.57 10  JQ = − ×  

Then 5 5 4
C H 3.57 10  J 4.19 10  J 6.2 10  J.W Q Q= + = − × + × = ×  

(c) 2.00 kg of water goes from 323 K to 273 K 
5

H (2.00 kg)(4190 J/kg K)(50 K) 4.19 10  JQ mc T= − Δ = ⋅ = ×  
3

H 2 1ln( / ) (2.00 kg)(4190 J/kg K)ln(272/323) 1.41 10  J/KS mc T TΔ = = ⋅ = − ×  
5

C C H 3.85 10  JQ T S= − Δ = − ×  
4

C H 3.4 10  JW Q Q= + = ×  
(d) EVALUATE: More work can be extracted from 1.00 kg of water at 373 K than from 2.00 kg of water at 323 K 
even though the energy that comes out of the water as it cools to 273 K is the same in both cases. The energy in the 
323 K water is less available for conversion into mechanical work. 

20.56. IDENTIFY: The maximum power that can be extracted is the total kinetic energy K of the mass of air that passes 
over the turbine blades in time t. 
SET UP: The volume of a cylinder of diameter d and length L is 2( / 4) .d Lπ  Kinetic energy is 21

2 .mv  

EXECUTE: (a) The cylinder described contains a mass of air 2( 4m ρ πd )L,=  and so the total kinetic energy is 
2 2( 8K ρ π )d Lv .=  This mass of air will pass by the turbine in a time ,t L v=  and so the maximum power is 

2 3( 8) .KP ρ π d v
t

= =  Numerically, the product 3 3 5
air ( 8 0.5 kg m 0.5 W s m .ρ π ) ≈ = ⋅  This completes the proof. 

(b) 
1/ 31/ 3 6

2 3 5 2

(3.2 10  W) (0.25) 14 m s 50 km h.
(0.5 W s m )(97 m)

P ev
kd

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
 

(c) Wind speeds tend to be higher in mountain passes. 
EVALUATE: The maximum power is proportional to 3,v  so increases rapidly with increase in wind speed. 

20.57. IDENTIFY: For a Carnot device, C C

H H

.T Q
T Q

= −  H C.W Q Q= +  

SET UP: C 1000 J.Q =  10.0 C 283.1 K.=°  35.0 C 308.1 K.=°  15.0 C 288.1 K.=°  

EXECUTE: (a) 3H
H C

C

308.1 K (1000 J) 1.088 10  J.
283.1 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 31000 J ( 1.088 10  J) 88 J.W = + − × = −  

(b) Now 3
H

288.1 K (1000 J) 1.018 10  J.
283.1 K

Q ⎛ ⎞= − = − ×⎜ ⎟
⎝ ⎠

 31000 J ( 1.018 10  J) 18 J.W = + − × = −  

(c) The pV-diagrams for the two Carnot cycles are sketched in Figure 20.57. 
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EVALUATE: More work must be done to move the heat energy through a greater temperature difference. 

 
Figure 20.57 

20.58. IDENTIFY and SET UP: First use the methods of Chapter 17 to calculate the final temperature T of the system. 
EXECUTE: 0.600 kg of water (cools from 45.0°C to T ) 

5(0.600 kg)(4190 J/kg K)( 45.0 C) (2514 J/K) 1.1313 10  JQ mc T T T= Δ = ⋅ − ° = − ×  
0.0500 kg of ice (warms to 0°C, melts, and water warms from 0°C to T ) 

ice f water(0 C ( 15.0 C)) ( 0 C)Q mc mL mc T= ° − − ° + + − °  
30.0500 kg (2100 J/kg K)(15.0 C) 334 10  J/kg (4190 J/kg K)( 0 C)Q T⎡ ⎤= ⋅ ° + × + ⋅ − °⎣ ⎦  

4 41575 J 1.67 10  J (209.5 J/K) 1.828 10  J (209.5 J/K)Q T T= + × + = × +  

system 0Q =  gives 5 4(2514 J/K) 1.1313 10  J 1.828 10  J (209.5 J/K) 0T T− × + × + =  
3 4(2.724 10  J/K) 9.485 10  JT× = ×  

4 3(9.485 10  J)/(2.724 10  J/K) 34.83 C 308 KT = × × = ° =  
EVALUATE: The final temperature must lie between �15.0°C and 45.0°C. A final temperature of 34.8°C is 
consistent with only liquid water being present at equilibrium. 
IDENTIFY and SET UP: Now we can calculate the entropy changes. Use /S Q TΔ =  for phase changes and the 
method of Example 20.6 to calculate SΔ  for temperature changes. 
EXECUTE: ice: The process takes ice at �15°C and produces water at 34.8°C. Calculate SΔ  for a reversible process 
between these two states, in which heat is added very slowly. SΔ  is path independent, so SΔ  for a reversible process 
is the same as SΔ  for the actual (irreversible) process as long as the initial and final states are the same. 

2

1
/ ,S dQ TΔ = ∫  where T must be in kelvins 

For a temperature change dQ mcdT=  so 2

1
2 1( / ) ln( / ).

T

T
S mc T dT mc T TΔ = =∫  

For a phase change, since it occurs at constant T, 
2

1
/ / / .S dQ T Q T mL TΔ = = = ±∫  

Therefore ice ice f waterln(273 K/258 K) / 273 K ln(308 K/273 K)S mc mL mcΔ = + +  
3

ice (0.0500 kg)[(2100 J/kg K)ln(273 K/258 K) (334 10  J/kg)/273 KSΔ = ⋅ + × + (4190 J/kg K)ln(308 K/273 K)]⋅  

ice 5.93 J/K 61.17 J/K 25.27 J/K 92.4 J/KSΔ = + + =  
water: water 2 1ln( / ) (0.600 kg)(4190 J/kg K)ln(308 K/318 K) 80.3 J/KS mc T TΔ = = ⋅ = −  
For the system, ice water 92.4 J/K 80.3 J/K 12 J/KS S SΔ = Δ + Δ = − = +  
EVALUATE: Our calculation gives 0,SΔ >  as it must for an irreversible process of an isolated system. 

20.59. IDENTIFY: Apply Eq.(20.19). From the derivation of Eq. (20.6), 1γ
b aT r T−=  and 1 .γ

c dT r T−=  
SET UP: For a constant volume process, .VdQ nC dT=  
EXECUTE: (a) For a constant-volume process for an ideal gas, where the temperature changes from T1 to T2, 

2

1

2

1

ln .
T

V VT

dT TS nC nC
T T

⎛ ⎞
Δ = = ⎜ ⎟

⎝ ⎠
∫  The entropy changes are ln( )V c bnC T T  and ln( ).V a dnC T T  

(b) The total entropy change for one cycle is the sum of the entropy changes found in part (a); the other 
processes in the cycle are adiabatic, with 0Q =  and 0.SΔ = The total is then 

ln ln ln .c a c a
V V V

b d b d

T T T TS nC nC nC
T T T T

⎛ ⎞
Δ = + = ⎜ ⎟

⎝ ⎠
 

1

1 1.c a d a

b d d a

T T r T T
T T r T T

γ

γ

−

−= =  ln(1) 0,=  so 0.SΔ =  

(c) The system is not isolated, and a zero change of entropy for an irreversible system is certainly possible. 
EVALUATE: In an irreversible process for an isolated system, 0.SΔ >  But the entropy change for some of the 
components of the system can be negative or zero. 
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20.60. IDENTIFY: For a reversible isothermal process, .QS
T

Δ =  For a reversible adiabatic process, 0Q = and 0.SΔ =  

The Carnot cycle consists of two reversible isothermal processes and two reversible adiabatic processes. 
SET UP: Use the results for the Stirling cycle from Problem 20.50. 
EXECUTE: (a) The graph is given in Figure 20.60. 

(b) For a reversible process, ,  and so ,  anddQdS dQ T dST= =  ,Q dQ T dS= =∫ ∫  which is the area under the curve 

in the TS plane. 
(c) HQ  is the area under the rectangle bounded by the horizontal part of the rectangle at HT and the verticals. C| |Q  
is the area bounded by the horizontal part of the rectangle at CT and the verticals. The net work is then H C| |,Q Q−  
the area bounded by the rectangle that represents the process. The ratio of the areas is the ratio of the lengths of the 

vertical sides of the respective rectangles, and the efficiency is H C

H H

.W T Te
Q T

−
= =  

(d) As explained in Problem 20.50, the substance that mediates the heat exchange during the isochoric expansion 
and compression does not leave the system, and the diagram is the same as in part (a). As found in that problem, 
the ideal efficiency is the same as for a Carnot-cycle engine. 
EVALUATE: The derivation of eCarnot using the concept of entropy is much simpler than the derivation in 
Section 20.6, but yields the same result. 

 
Figure 20.60 

20.61. IDENTIFY: The temperatures of the ice-water mixture and of the boiling water are constant, so .QS
T

Δ =  The heat 

flow for the melting phase transition of the ice is f .Q mL= +  
SET UP: For water, 5

f 3.34 10  J/kg.L = ×  
EXECUTE: (a) The heat that goes into the ice-water mixture is 

5 4
f (0.160 kg)(3.34 10  J/kg) 5.34 10  J.Q mL= = × = ×  This is same amount of heat leaves the boiling water, so 

45.34 10  J 143 J/K.
373 K

QS
T

− ×
Δ = = = −  

(b) 
45.34 10  J 196 J/K

273 K
QS
T

×
Δ = = = +  

(c) For any segment of the rod, the net heat flow is zero, so 0.SΔ =  
(d) tot 143 J/K 196 J/K 53 J/K.SΔ = − + = +  
EVALUATE: The heat flow is irreversible, since the system is isolated and the total entropy change is positive. 

20.62. IDENTIFY: Use the expression derived in Example 20.6 for the entropy change in a temperature change. 
SET UP: For water, 4190 J/kg K.c = ⋅  20 C 293.15 K,=°  65 C 338.15 K=°  and 120 C 393.15 K.=°  
EXECUTE: (a) 3

2 1 ln( ) (250 10  kg)(4190 J kg K)ln(338.15 K 293.15 K) 150 J K.S mc T T −Δ = = × ⋅ =  

(b) 
3

element

(250 10  kg)(4190 J kg K)(338.15 K 293.15 K) 120 J/K.
393.15 K

mc TS
T

−− Δ − × ⋅ −
Δ = = = −  

(c) The sum of the result of parts (a) and (b) is system 30 J/K.SΔ =  
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EVALUATE: (d) Heating a liquid is not reversible. Whatever the energy source for the heating element, heat is 
being delivered at a higher temperature than that of the water, and the entropy loss of the source will be less in 
magnitude than the entropy gain of the water. The net entropy change is positive. 

20.63. IDENTIFY: Use the expression derived in Example 20.6 for the entropy change in a temperature change. For the 
value of T for which SΔ is a maximum, ( ) / 0.d S dTΔ =  
SET UP: The heat flow for a temperature change is Q mc T= Δ  
EXECUTE: (a) As in Example 20.10, the entropy change of the first object is 1 1 1ln( )m c T T  and that of the second 
is 2 2 2ln( ),m c T T′  and so the net entropy change is as given. Neglecting heat transfer to the surroundings, 

1 2 1 1 1 2 2 20,  ( ) ( ) 0,Q Q m c T T m c T T′+ = − + − = which is the given expression. 
(b) Solving the energy-conservation relation for T ′ and substituting into the expression for SΔ gives 

1 1 1
1 1 2 2

1 2 2 2 2

ln 1n 1 .T m c T TS m c m c
T m c T T

⎛ ⎞⎛ ⎞ ⎛ ⎞
Δ = + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 Differentiating with respect to T and setting the derivative equal to 

0 gives 1 1 2 2 1 1 2 2 2

1
1 1 2 2

2 2

( )( )( 1 )0 .
1 ( )

m c m c m c m c T
T T Tm c m c

T T

−
= +

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 This may be solved for 1 1 1 2 2 2

1 1 2 2

.mcT m c TT
m c m c

+
=

+
 Using this value for T 

in the conservation of energy expression in part (a) and solving for T ′  gives 1 1 1 2 2 2

1 1 2 2

.m cT m c TT
m c m c

+′ =
+

 Therefore, 

T T ′= when SΔ is a maximum. 
EVALUATE: (c) The final state of the system will be that for which no further entropy change is possible. If 

,T T ′<  it is possible for the temperatures to approach each other while increasing the total entropy, but when 
,T T ′=  no further spontaneous heat exchange is possible. 

20.64. IDENTIFY: Calculate CQ and HQ in terms of p and V at each point. Use the ideal gas law and the pressure-volume 

relation for adiabatic processes for an ideal gas. C

H

1 .
Q

e
Q

= −  

SET UP: For an ideal gas, ,p VC C R= +  and taking air to be diatomic, 7 5 7
2 2 5,   and .p VC R C R γ= = =  

EXECUTE: Referring to Figure 20.7 in the textbook, 7 7
H 2 2( ) ( ).c b c c b bQ n R T T p V p V= − = −  Similarly, 

5
C 2 ( ).a a d dQ n R p V p V= −  What needs to be done is to find the relations between the product of the pressure and the 

volume at the four points. For an ideal gas, c c b b

c b

p V p V
T T

=  so .c
c c a a

a

Tp V p V
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 For a compression ratio r, and given 

that for the Diesel cycle the process ab is adiabatic, 
1

1.
γ

γa
b b a a a a

b

Vp V p V p V r
V

−

−⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 Similarly, 

1

.c
d d c c

a

Vp V p V
V

γ −
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Note that the last result uses the fact that process da is isochoric, and ;   also,  d a c bV V p p= =  (process bc is isobaric), 

and so .c
c b

a

TV V
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Then, 

1

1

γγ
c c b b a a c a a a c

γ
a b a a b b a b b b a

V T V T T V T T V V T r
V T V T T V T TV V T

γ

−−

−

⎛ ⎞⎛ ⎞
= ⋅ = ⋅ ⋅ = ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Combining the above results, 
2

.γ γc
d d a a

a

Tp V p V r
T

γ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Substitution of the above results into Eq. (20.4) gives 

1

2 1
51 .
7

γ

c

a

c

a

T r
T

e
T r
T

γ γ

γ

−

−

⎡ ⎤⎛ ⎞
⎢ ⎥−⎜ ⎟
⎢ ⎥⎝ ⎠= − ⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

(b) 
0.56

0.40

1 (5.002) 11 ,
1.4 (3.167)

re
r

−⎡ ⎤−
= − ⎢ ⎥−⎣ ⎦

where 3.167 and 1.40c

a

T
T

γ= =  have been used. Substitution of 21.0r =  yields 

0.708 70.8%.e = =  
EVALUATE: The efficiency for an Otto cycle with 21.0r = and 1.40γ = is 1 0.401 1 (21.0) 70.4%.e r γ− −= − = − =  
This is very close to the value for the Diesel cycle. 


