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THERMAL PROPERTIES OF MATTER 

 18.1. (a) IDENTIFY: We are asked about a single state of the system. 
SET UP: Use Eq.(18.2) to calculate the number of moles and then apply the ideal-gas equation. 

EXECUTE: tot
3

0.225 kg 56.2 mol
4.00 10  kg/mol

mn
M −= = =

×
 

(b) pV nRT=  implies /p nRT V=  
T must be in kelvins; (18 273) K 291 KT = + =  

6
3 3

(56.2 mol)(8.3145 J/mol K)(291 K) 6.80 10  Pa
20.0 10  m

p −

⋅
= = ×

×
 

6 5(6.80 10  Pa)(1.00 atm/1.013 10  Pa) 67.1 atmp = × × =  
EVALUATE: Example 18.1 shows that 1.0 mol of an ideal gas is about this volume at STP. Since there are 
56.2 moles the pressure is about 60 times greater than 1 atm. 

 18.2. IDENTIFY: pV nRT= . 
SET UP: 1 41.0 C 314 KT = =° . 0.08206 L atm/mol KR = ⋅ ⋅ . 

EXECUTE: n, R constant so pV nR
T

=  is constant. 1 1 2 2

1 2

p V p V
T T

= . 

32 2
2 1

1 1

(314 K)(2)(2) 1.256 10  K 983 Cp VT T
p V

⎛ ⎞⎛ ⎞
= = = × =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
° . 

(b) (1.30 atm)(2.60 L) 0.131 mol
(0.08206 L atm/mol K)(314 K)

pVn
RT

= = =
⋅ ⋅

. tot (0.131 mol)(4.00 g/mol) 0.524 gm nM= = = . 

EVALUATE: T is directly proportional to p and to V, so when p and V are each doubled the Kelvin temperature 
increases by a factor of 4. 

 18.3. IDENTIFY: pV nRT= . 
SET UP: T is constant. 

EXECUTE: nRT is constant so 1 1 2 2pV p V= . 
3

1
2 1 3

2

0.110 m(3.40 atm) 0.959 atm
0.390 m

Vp p
V
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: For T constant, p decreases. 
 18.4. IDENTIFY: .pV nRT=  

SET UP: 1 20.0 C 293 KT = =° . 

EXECUTE: (a) n, R, and V are constant. constantp nR
T V
= = . 1 2

1 2

p p
T T
= . 

2
2 1

1

1.00 atm(293 K) 97.7 K 175 C
3.00 atm

pT T
p

⎛ ⎞ ⎛ ⎞= = = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

° . 

(b) 2 1.00 atmp = , 2 3.00 LV = . 3 3.00 atmp = . n, R, and T are constant so  constantpV nRT= = . 2 2 3 3p V p V= . 

2
3 2

3

1.00 atm(3.00 L) 1.00 L
3.00 atm

pV V
p

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: The final volume is one-third the initial volume. The initial and final pressures are the same, but the 
final temperature is one-third the initial temperature. 
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 18.5. IDENTIFY: pV nRT=  

SET UP: Assume a room size of 20 ft 20 ft 10 ft× × . 3 34000 ft 113 mV = = . Assume a temperature of 
20 C 293 KT = =°  and a pressure of 51.01 10  Pap = × . 3 6 31 m 10  cm= . 

EXECUTE: (a) 
5 3

3(1.01 10  Pa)(113 m ) 4.68 10  mol
(8.315 J/mol K)(293 K)

pVn
RT

×
= = = ×

⋅
. 

3 23 27
A (4.68 10  mol)(6.022 10  molecules/mol) 3 10  moleculesN nN= = × × = × . 

(b) 
27

25 3 19 3
3

3 10  molecules 3 10  molecules/m 3 10  molecules/cm
113 m

N
V

×
= = × = ×  

EVALUATE: The solution doesn't rely on the assumption that air is all 2N . 
 18.6. IDENTIFY: pV nRT= and the mass of the gas is totm nM= . 

SET UP: The temperature is 22.0 C 295.15K.T = ° =  The average molar mass of air is 328.8 10 kg molM −= × . 

For helium 34.00 10 kg molM −= × . 

EXECUTE: (a) 
3

3
tot

(1.00 atm)(0.900 L)(28.8 10  kg/mol) 1.07 10  kg.
(0.08206 L atm/mol K)(295.15 K)

pVm nM M
RT

−
−×

= = = = ×
⋅ ⋅

 

(b) 
3

4
tot

(1.00 atm)(0.900 L)(4.00 10  kg/mol) 1.49 10  kg.
(0.08206 L atm/mol K)(295.15 K)

pVm nM M
RT

−
−×

= = = = ×
⋅ ⋅

 

EVALUATE: 
A

N pVn
N RT

= =  says that in each case the balloon contains the same number of molecules. The mass 

is greater for air since the mass of one molecule is greater than for helium. 
 18.7. IDENTIFY: We are asked to compare two states. Use the ideal gas law to obtain 2T  in terms of 1T  and ratios of 

pressures and volumes of the gas in the two states. 
SET UP: pV nRT=  and n, R constant implies / constantpV T nR= =  and 1 1 1 2 2 2/ /pV T p V T=  
EXECUTE: 1 (27 273) K 300 KT = + =  

5
1 1.01 10  Pap = ×  

6 5 6
2 2.72 10  Pa 1.01 10  Pa 2.82 10  Pap = × + × = ×  (in the ideal gas equation the pressures must be absolute, not 

gauge, pressures) 
6 3

2 2
2 1 5 3

1 1

2.82 10  Pa 46.2 cm300 K 776 K
1.01 10  Pa 499 cm

p VT T
p V

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞×
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

2 (776 273) C 503 CT = − ° = °  

EVALUATE: The units cancel in the 2 1/V V  volume ratio, so it was not necessary to convert the volumes in 3cm  

to 3m .  It was essential, however, to use T in kelvins. 
 18.8. IDENTIFY: pV nRT= and m nM= . 

SET UP: We must use absolute pressure in pV nRT= . 5
1 4.01 10  Pap = × , 5

2 2.81 10  Pap = × . 1 310 KT = , 

2 295 KT = . 

EXECUTE: (a) 
5 3

1 1
1

1

(4.01 10  Pa)(0.075 m ) 11.7 mol
(8.315 J/mol K)(310 K)

pVn
RT

×
= = =

⋅
. (11.7 mol)(32.0 g/mol) 374 gm nM= = = . 

(b) 
5 3

2 2
2

2

(2.81 10  Pa)(0.075 m ) 8.59 mol
(8.315 J/mol K)(295 K)

p Vn
RT

×
= = =

⋅
. 275 gm = . 

The mass that has leaked out is 374 g 275 g 99 g− = . 
EVALUATE: In the ideal gas law we must use absolute pressure, expressed in Pa, and T must be in kelvins. 

 18.9. IDENTIFY: pV nRT= . 
SET UP: 1 300 KT = , 2 430 KT = . 

EXECUTE: (a) n, R are constant so constantpV nR
T

= = . 1 1 2 2

1 2

p V p V
T T

= . 

3
5 51 2

2 1 3
2 1

0.750 m 430 K(1.50 10  Pa) 3.36 10  Pa
0.480 m 300 K

V Tp p
V T
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. 

EVALUATE: In pV nRT= , T must be in kelvins, even if we use a ratio of temperatures. 
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18.10. IDENTIFY: Use the ideal-gas equation to calculate the number of moles, n. The mass totalm of the gas is 

total .m nM=  

SET UP: The volume of the cylinder is 2 ,V r lπ=  where 0.450 mr = and 1.50 m.l =  22.0 C 293.15 K.°T = =  
51 atm 1.013 10  Pa.= ×  332.0 10  kg/mol.M −= ×  8.314 J/mol K.R = ⋅  

EXECUTE: (a) pV nRT= gives 
5 2(21.0 atm)(1.013 10  Pa/atm) (0.450 m) (1.50 m) 827 mol.

(8.314 J/mol K)(295.15 K)
pVn
RT

π×
= = =

⋅
 

(b) 3
total (827 mol)(32.0 10  kg/mol) 26.5 kgm −= × =  

EVALUATE: In the ideal-gas law, T must be in kelvins. Since we used R in units of J/mol K⋅ we had to express p 
in units of Pa and V in units of 3m .  

18.11. IDENTIFY: We are asked to compare two states. Use the ideal-gas law to obtain 1V  in terms of 2V  and the ratio of 
the temperatures in the two states. 
SET UP: pV nRT=  and n, R, p are constant so / / constantV T nR p= =  and 1 1 2 2/ /V T V T=  
EXECUTE: 1 (19 273) K 292 KT = + =  (T must be in kelvins) 

2 1 2 1( / ) (0.600 L)(77.3 K/292 K) 0.159 LV V T T= = =  
EVALUATE: p is constant so the ideal-gas equation says that a decrease in T means a decrease in V. 

18.12. IDENTIFY: Apply pV nRT= and the van der Waals equation (Eq.18.7) to calculate p. 

SET UP: 3 6 3400 cm 400 10  m .−= ×  8.314 J/mol K.R = ⋅  
EXECUTE: (a) The ideal gas law gives 67.28 10  Pap nRT V= = ×  while Eq.(18.7) gives 65.87 10  Pa.×  
(b) The van der Waals equation, which accounts for the attraction between molecules, gives a pressure that is 20% 
lower. 
(c) The ideal gas law gives 57.28 10  Pa.p = ×  Eq.(18.7) gives 57.13 10  Pa,p = ×  for a 2.1% difference. 
EVALUATE: (d) As n V decreases, the formulas and the numerical values for the two equations approach each 
other. 

18.13. IDENTIFY: .pV nRT=  
SET UP: T is constant. 
EXECUTE: n, R, T are constant, so = constant.pV nRT=  1 1 2 2.pV p V=  

1
2 1

2

6.00 L(1.00 atm) 1.05 atm.
5.70 L

Vp p
V
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: For constant T, when V decreases, p increases. Since the volumes enter as a ratio we don't have to 
convert from L to 3m .  

18.14. IDENTIFY: .pV nRT=  
SET UP: 1 277 K.T =  2 296 K.T =  Assume the number of moles of gas in the bubble remains constant. 

EXECUTE: (a) n, R are constant so constant.pV nR
T

= =  1 1 2 2

1 2

p V p V
T T

=  and 

2 1 2

1 2 1

3.50 atm 296 K 3.74.
1.00 atm 277 K

V p T
V p T

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) This increase in volume of air in the lungs would be dangerous. 
EVALUATE: The large decrease in pressure results in a large increase in volume. 

18.15. IDENTIFY: We are asked to compare two states. First use pV nRT=  to calculate 1.p  Then use it to obtain 2T  in 
terms of 1T  and the ratio of pressures in the two states. 
(a) SET UP: .pV nRT=  Find the initial pressure 1:p  

EXECUTE: 61
1 3 3

(11.0 mol)(8.3145 J/mol K)((23.0 273.13)K) 8.737 10  Pa
3.10 10  m

nRTp
V −

⋅ +
= = = ×

×
 

SET UP: 5 7
2 100 atm(1.013 10  Pa/1 atm) 1.013 10  Pap = × = ×  

/ / constant,p T nR V= =  so 1 1 2 2/ /p T p T=  

EXECUTE: 
7

2
2 1

1

1.013 10  Pa(296.15 K) 343.4 K 70.2 C
8.737 10  Pa

pT T
p 6

⎛ ⎞ ⎛ ⎞×
= = = = °⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

(b) EVALUATE: The coefficient of volume expansion for a gas is much larger than for a solid, so the expansion 
of the tank is negligible. 
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18.16. IDENTIFY: F pA= and pV nRT=  
SET UP: For a cube, / .V A L=  
EXECUTE: (a) The force of any side of the cube is ( ) ( ) ,F pA nRT V A nRT L= = =  since the ratio of area to 
volume is / 1/ .A V L=  For 20.0 C 293.15 K,°T = =  

4(3 mol) (8.3145 J mol K) (293.15 K)  3.66 10  N.
0.200 m

nRTF
L

⋅
= = = ×  

(b) For 100.00 C  373.15 K,T = ° =  

4(3 mol)(8.3145 J mol K)(373.15 K) 4.65 10  N.
0.200 m

nRTF
L

⋅
= = = ×  

EVALUATE: When the temperature increases while the volume is kept constant, the pressure increases and 
therefore the force increases. The force increases by the factor 2 1/ .T T  

18.17. IDENTIFY: Example 18.4 assumes a temperature of 0 C° at all altitudes and neglects the variation of g with 

elevation. With these approximations, /
0 .Mgy RTp p e−=  

SET UP: ln( ) .xe x− = −  For air, 328.8 10  kg/mol.M −= ×  

EXECUTE: We want y for 00.90p p= so /0.90 Mgy RTe−= and ln(0.90) 850 m.RTy
Mg

= − =  

EVALUATE: This is a commonly occurring elevation, so our calculation shows that 10% variations in 
atmospheric pressure occur at many locations. 

18.18. IDENTIFY: From Example 18.4, the pressure at elevation y above sea level is /
0 .Mgy RTp p e−=  

SET UP: The average molar mass of air is 328.8 10  kg/mol.M −= ×  

EXECUTE: At an altitude of 100 m, 
3 2

1 (28.8 10  kg mol)(9.80 m s )(100 m) 0.01243,
(8.3145 J mol K)(273.15 K)

Mgy
RT

−×
= =

⋅
 and the percent 

decrease in pressure is 0.01243
01 1 0.0124 1.24%.p p e−− = − = =  At an altitude of 1000 m, 2 0.1243Mgy RT =  and 

the percent decrease in pressure is 0.12431 0.117 11.7%.e−− = =  
EVALUATE: These answers differ by a factor of (11.7%) (1.24%) 9.44,= which is less than 10 because the 
variation of pressure with altitude is exponential rather than linear. 

18.19. IDENTIFY: 0
Myg RTp p e−= from Example 18.4. Eq.(18.5) says ( )p ρ M RT.=  Example 18.4 assumes a constant 

273 K,  so  and T p ρ= are directly proportional and we can write 0 .Mgy RTρ ρ e−=  

SET UP: From Example 18.4, 1.10Mgy
RT

=  when 8863 m.y =  

EXECUTE: For 100 m,y =  0.0124,Mgy
RT

=  so 0.0124
0 00.988 .eρ ρ ρ−= =  The density at sea level is 1.2% larger 

than the density at 100 m.  

EVALUATE: The pressure decreases with altitude. tot ,mpV RT
M

=  so when the pressure decreases and T is 

constant the volume of a given mass of gas increases and the density decreases. 
18.20. IDENTIFY: /

0
Mgy RTp p e−= from Example 18.4 gives the variation of air pressure with altitude. The density ρ  

of the air is ,pM
RT

ρ =  so ρ is proportional to the pressure p. Let 0ρ be the density at the surface, where the 

pressure is 0.p  

SET UP: From Example 18.4, 
3 2

4 1(28.8 10  kg/mol)(9.80 m/s ) 1.244 10  m .
(8.314 J/mol K)(273 K)

Mg
RT

−
− −×

= = ×
⋅

 

EXECUTE: 
4 1 3(1.244 10  m )(1.00 10  m)

0 00.883 .p p e p
− −− × ×= =  constant,M

p RT
ρ
= =  so 0

0p p
ρ ρ
= and 0 0

0

0.883 .p
p

ρ ρ ρ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

The density at an altitude of 1.00 km is 88.3% of its value at the surface. 
EVALUATE: If the temperature is assumed to be constant, then the decrease in pressure with increase in altitude 
corresponds to a decrease in density. 
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18.21. IDENTIFY: Use Eq.(18.5) and solve for p. 
SET UP: /pM RTρ =  and /p RT Mρ=  

( 56.5 273.15) K 216.6 KT = − + =  

For air 328.8 10  kg/molM −= ×  (Example 18.3) 

EXECUTE: 
3

4
3

(8.3145 J/mol K)(216.6 K)(0.364 kg/m ) 2.28 10  Pa
28.8 10  kg/mol

p −

⋅
= = ×

×
 

EVALUATE: The pressure is about one-fifth the pressure at sea-level. 
18.22. IDENTIFY: The molar mass is AM N m= , where m is the mass of one molecule. 

SET UP: 23
A 6.02 10  molecules/molN = × . 

EXECUTE: 23 21
A (6.02 10 molecules mol)(1.41 10 kg molecule) 849 kg/mol.M N m −= = × × =  

EVALUATE: For a carbon atom, 312 10  kg/molM −= × . If this molecule is mostly carbon, so the average mass of 

its atoms is the mass of carbon, the molecule would contain 3

849 kg/mol 71,000 atoms
12 10  kg/mol− =
×

. 

18.23. IDENTIFY: The mass totm is related to the number of moles n by totm nM= . Mass is related to volume by 
/m Vρ = . 

SET UP: For gold, 196.97 g/molM = and 3 319.3 10  kg/mρ = × . The volume of a sphere of radius r is 34
3V rπ= . 

EXECUTE: (a) tot (3.00 mol)(196.97 g/mol) 590.9 g.m nM= = =  The value of this mass of gold is 
(590.9 g)($14.75/ g) $8720= . 

(b) 5 3
3 3

0.5909 kg 3.06 10  m
19.3 10  kg/m

mV
ρ

−= = = ×
×

. 34
3V rπ= gives 

1/ 31/ 3 5 33 3[3.06 10  m ] 0.0194 m 1.94 cm
4 4
Vr
π π

−⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. The diameter is 2 3.88 cmr = . 

EVALUATE: The mass and volume are directly proportional to the number of moles. 
18.24. IDENTIFY: Use pV nRT= to calculate the number of moles and then the number of molecules would be 

AN nN= . 

SET UP: 51 atm 1.013 10  Pa= × . 3 6 31.00 cm 1.00 10  m−= × . 23
A 6.022 10  molecules/molN = × . 

EXECUTE: (a) 
14 5 6 3

18(9.00 10  atm)(1.013 10  Pa/atm)(1.00 10  m ) 3.655 10  mol
(8.314 J/mol K)(300.0 K)

pVn
RT

− −
−× × ×

= = = ×
⋅

. 

18 23 6
A (3.655 10  mol)(6.022 10  molecules/mol) 2.20 10  moleculesN nN −= = × × = × . 

(b) ApVNN
RT

=  so A  constantN VN
p RT
= = and 1 2

1 2

N N
p p
= . 

6 192
2 1 14

1

1.00 atm(2.20 10  molecules) 2.44 10  molecules
9.00 10  atm

pN N
p −

⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
. 

EVALUATE: The number of molecules in a given volume is directly proportional to the pressure. Even at the very 
low pressure in part (a) the number of molecules in 31.00 cm is very large. 

18.25. IDENTIFY: We are asked about a single state of the system. 
SET UP: Use the ideal-gas law. Write n in terms of the number of molecules N. 
(a) EXECUTE: ,pV nRT=  A/n N N=  so A( / )pV N N RT=  

A

N Rp T
V N

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

12
6 3 23

80 molecules 8.3145 J/mol K (7500 K) 8.28 10  Pa
1 10  m 6.022 10  molecules/mol

p −
−

⋅⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠
 

178.2 10  atm.p −= ×  This is much lower than the laboratory pressure of 131 10  atm−×  in Exercise 18.24. 
(b) EVALUATE: The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little force on 
an object passing through it. 
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18.26. IDENTIFY: pV nRT NkT= =  

SET UP: At STP, 273 KT = , 51.01 10  Pap = × . 96 10  moleculesN = × . 

EXECUTE:. 
9 23

16 3
5

(6 10  molecules)(1.381 10  J/molecule K)(273 K) 2.24 10  m
1.01 10  Pa

NkTV
p

−
−× × ⋅

= = = ×
×

. 

3L V= so 1/ 3 66.1 10  mL V −= = × . 
EVALUATE: This is a small cube. 

18.27. IDENTIFY: 
A

m Nn
M N

= =  

SET UP: 23
A 6.022 10  molecules/molN = × . For water, 318 10  kg/molM −= × . 

EXECUTE:. 3

1.00 kg 55.6 mol
18 10  kg/mol

mn
M −= = =

×
. 

23 25
A (55.6 mol)(6.022 10  molecules/mol) 3.35 10  moleculesN nN= = × = × . 

EVALUATE: Note that we converted M to kg/mol. 

18.28. IDENTIFY: Use pV nRT= and 
A

Nn
N

= with 1N = to calculate the volume V occupied by 1 molecule. The length 

l of the side of the cube with volume V is given by 3V l= . 
SET UP: 27 C 300 K.T = =°  51.00 atm 1.013 10  Pa.p = = ×  8.314 J/mol K.R = ⋅  23

A 6.022 10  molecules/mol.N = ×  

The diameter of a typical molecule is about 1010  m.−  90.3 nm 0.3 10  m.−= ×  

EXECUTE: (a) pV nRT= and 
A

Nn
N

= gives 

26 3
23 5

A

(1.00)(8.314 J/mol K)(300 K) 4.09 10  m .
(6.022 10  molecules/mol)(1.013 10  Pa)

NRTV
N p

−⋅
= = = ×

× ×
 1/ 3 93.45 10  ml V −= = × . 

(b) The distance in part (a) is about 10 times the diameter of a typical molecule. 
(c) The spacing is about 10 times the spacing of atoms in solids. 
EVALUATE: There is space between molecules in a gas whereas in a solid the atoms are closely packed together. 

18.29. (a) IDENTIFY and SET UP: Use the density and the mass of 5.00 mol to calculate the volume. /m Vρ =  implies 
/ ,V m ρ=  where tot ,m m=  the mass of 5.00 mol of water. 

EXECUTE: 3
tot (5.00 mol)(18.0 10  kg/mol) 0.0900 kgm nM −= = × =  

Then 5 3
3

0.0900 kg 9.00 10  m
1000 kg/m

mV
ρ

−= = = ×  

(b) One mole contains 23
A 6.022 10  molecules,N = ×  so the volume occupied by one molecule is 

5 3
29 3

23

9.00 10  m / mol 2.989 10  m / molecule
(5.00 mol)(6.022 10  molecules/mol)

−
−×

= ×
×

 

3,V a=  where a is the length of each side of the cube occupied by a molecule. 3 29 32.989 10  m ,a −= ×  so 
103.1 10  m.a −= ×  

(c) EVALUATE: Atoms and molecules are on the order of 1010  m−  in diameter, in agreement with the above 
estimates. 

18.30. IDENTIFY: 3
av 2K kT= . rms

3RTv
M

= . 

SET UP: Ne 20.180 g/molM = , Kr 83.80 g/molM =  and Rn 222 g/molM = . 
EXECUTE: (a) 3

av 2K kT=  depends only on the temperature so it is the same for each species of atom in the 
mixture. 

(b) rms,Ne Kr

rms,Kr Ne

83.80 g/mol 2.04
20.18 g/mol

v M
v M

= = = . rms,Ne Rn

rms,Rn Ne

222 g/mol 3.32
20.18 g/mol

v M
v M

= = = . 

rms,Kr Rn

rms,Rn Kr

222 g/mol 1.63
83.80 g/mol

v M
v M

= = = . 

EVALUATE: The average kinetic energies are the same. The gas atoms with smaller mass have larger rmsv . 
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18.31. IDENTIFY and SET UP: rms
3RTv
M

= . 

EXECUTE: (a) rmsv is different for the two different isotopes, so the 235 isotope diffuses more rapidly. 

(b) rms,235 238

rms,238 235

0.352 kg/mol 1.004
0.349 kg/mol

v M
v M

= = = . 

EVALUATE: The rmsv values each depend on T but their ratio is independent of T. 

18.32. IDENTIFY and SET UP: With the multiplicity of each score denoted by in , the average score is 1
150 i in x⎛ ⎞∑⎜ ⎟
⎝ ⎠

 and 

the rms score is 
1/ 2

21
150 i in x⎡ ⎤⎛ ⎞∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

EXECUTE: (a) 54.6 
(b) 61.1 
EVALUATE: The rms score is higher than the average score since the rms calculation gives more weight to the 
higher scores. 

18.33. IDENTIFY: tot

A

N mpV nRT RT RT
N M

= = = . 

SET UP: We known that  and that .A B A BV V T T= >  
EXECUTE: (a) /p nRT V= ; we don�t know n for each box, so either pressure could be higher. 

(b) 
A

NpV RT
N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

so ApVNN
RT

= , where AN  is Avogadro�s number. We don�t know how the pressures compare, 

so either N could be larger. 
(c) ( )totpV m M RT= . We don�t know the mass of the gas in each box, so they could contain the same gas or 
different gases. 
(d) ( )2 31

2 2av
m v kT= . A BT T>  and the average kinetic energy per molecule depends only on T, so the statement 

must be true. 
(e) rms 3v kT m= . We don�t know anything about the masses of the atoms of the gas in each box, so either set of 
molecules could have a larger rmsv . 
EVALUATE: Only statement (d) must be true. We need more information in order to determine whether the other 
statements are true or false. 

18.34. IDENTIFY: Use pV nRT= to solve for V. 
SET UP: Use 0.08206 L atm/mol KR = ⋅ ⋅ . 273.15 KT = . 

EXECUTE: (a) (1.00 mol)(0.08206 L atm/mol K)(273.15 K) 22.4 L
1.00 atm

nRTV
p

⋅ ⋅
= = =  

(b)  constantpV nRT= = , so 1 1 2 2pV p V= . 1
2 1

2

1.00 atm (22.4 L) 0.243 L
92 atm

pV V
p

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: For constant T, the volume of 1.00 mol is inversely proportional to the pressure. 

18.35. IDENTIFY: rms
3kTv
m

=  

SET UP: The mass of a deuteron is 27 27 27
p n 1.673 10  kg 1.675 10  kg 3.35 10  kgm m m − − −= + = × + × = × . 

83.00 10  m/sc = × . 231.381 10  J/molecule Kk −= × ⋅ . 

EXECUTE: (a) 
23 6

6
rms 27

3(1.381 10  J/molecule K)(300 10  K) 1.93 10  m/s
3.35 10  kg

v
−

−

× ⋅ ×
= = ×

×
. 3rms 6.43 10v

c
−= × . 

(b) 
27

2 7 2 10
rms 23

3.35 10  kg( ) (3.0 10  m/s) 7.3 10  K
3 3(1.381 10  J/molecule K)
mT v
k

−

−

⎛ ⎞×⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠ ⎝ ⎠
. 

EVALUATE: Even at very high temperatures and for this light nucleus, rmsv is a small fraction of the speed of 
light. 
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18.36. IDENTIFY: rms
3RTv
M

= , where T is in kelvins. pV nRT= gives n p
V RT
= . 

SET UP: 8.314 J/mol KR = ⋅ . 344.0 10  kg/molM −= × . 

EXECUTE: (a) For 0.0 C 273.15 KT = =° , rms 3

3(8.314 J/mol K)(273.15 K) 393 m/s
44.0 10  kg/mol

v −

⋅
= =

×
. For 

100.0 C 173 KT = − =° , rms 313 m/sv = . The range of speeds is 393 m/s to 313 m/s. 

(b) For 273.15 KT = , 3650 Pa 0.286 mol/m
(8.314 J/mol K)(273.15 K)

n
V
= =

⋅
. For 173.15 KT = , 30.452 mol/mn

V
= . 

The range of densities is 30.286 mol/m to 30.452 mol/m . 
EVALUATE: When the temperature decreases the rms speed decreases and the density increases. 

18.37. IDENTIFY and SET UP: Apply the analysis of Section 18.3. 
EXECUTE: (a) 2 23 213 31

av2 2 2( ) (1.38 10  J/molecule K)(300 K) 6.21 10  Jm v kT − −= = × ⋅ = ×  

(b) We need the mass m of one atom: 
3

26
23

A

32.0 10  kg/mol 5.314 10  kg/molecule
6.022 10  molecules/mol

Mm
N

−
−×

= = = ×
×

 

Then 2 211
av2 ( ) 6.21 10  Jm v −= ×  (from part (a)) gives 

21 21
2 5 2 2

av 26

2(6.21 10  J) 2(6.21 10  J)( ) 2.34 10  m /s
5.314 10  kg

v
m

− −

−

× ×
= = = ×

×
 

(c) 2 4 2 2
rms rms( ) 2.34 10  m /s 484 m/sv v= = × =  

(d) 26 23
rms (5.314 10  kg)(484 m/s) 2.57 10  kg m/sp mv − −= = × = × ⋅  

(e) Time between collisions with one wall is 4

rms

0.20 m 0.20 m 4.13 10  s
484 m/s

t
v

−= = = ×  

In a collision v!  changes direction, so 23 23
rms2 2(2.57 10  kg m/s) 5.14 10  kg m/sp mv − −Δ = = × ⋅ = × ⋅  

dpF
dt

=  so 
23

19
av 4

5.14 10  kg m/s 1.24 10  N
4.13 10  s

pF
t

−
−

−

Δ × ⋅
= = = ×
Δ ×

 

(f )  19 2 17pressure / 1.24 10  N/(0.10 m) 1.24 10  PaF A − −= = × = ×  (due to one atom) 

(g) 5pressure 1 atm 1.013 10  Pa= = ×  

Number of atoms needed is 5 17 211.013 10  Pa/(1.24 10  Pa/atom) 8.17 10  atoms−× × = ×  

(h) pV NkT=  (Eq.18.18), so 
5 3

22
23

(1.013 10  Pa)(0.10 m) 2.45 10  atoms
(1.381 10  J/molecule K)(300 K)

pVN
kT −

×
= = = ×

× ⋅
 

(i) From the factor of 1
3  in 2 21

av av3( ) ( ) .xv v=  
EVALUATE: This Exercise shows that the pressure exerted by a gas arises from collisions of the molecules of the 
gas with the walls. 

18.38. IDENTIFY: Apply Eq.(18.22) and calculate λ  
SET UP: 51 atm 1.013 10  Pa= × , so 83.55 10  Pap −= × . 102.0 10  mr −= ×  and 231.38 10  J/Kk −= × . 

EXECUTE: 
23

5
2 10 2 8

(1.38 10  J/K)(300 K) 1.5 10  m
4 2 4 2(2.0 10  m) (3.55 10  Pa)

kT
r

λ
π ρ π

−

− −

×
= = = ×

× ×
 

EVALUATE: At this very low pressure the mean free path is very large. If 484 m/sv = , as in Example 18.8, then 

mean 330 st
v
λ

= = . Collisions are infrequent. 

18.39. IDENTIFY and SET UP: Use equal rmsv  to relate T and M for the two gases. rms 3 /v RT M=  (Eq.18.19), so 
2
rms /3 / ,v R T M=  where T must be in kelvins. Same rmsv  so same /T M  for the two gases and 

2 2 2 2N N H H/ / .T M T M=  

EXECUTE: 2

2 2

2

N 3
N H

H

28.014 g/mol((20 273) K) 4.071 10  K
2.016 g/mol

M
T T

M

⎛ ⎞ ⎛ ⎞
= = + = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

2N (4071 273) C 3800 CT = − ° = °  

EVALUATE: A 2N  molecule has more mass so 2N  gas must be at a higher temperature to have the same rms.v  
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18.40. IDENTIFY: rms
3kTv
m

= . 

SET UP: 231.381 10  J/molecule K.k −= × ⋅  

EXECUTE: (a) 
23

3
rms 16

3(1.381 10  J/molecule K)(300 K) 6.44 10  m/s 6.44 mm/s
3.00 10  kg

v
−

−
−

× ⋅
= = × =

×
 

EVALUATE: (b) No. The rms speed depends on the average kinetic energy of the particles. At this T, H2 
molecules would have larger vrms than the typical air molecules but would have the same average kinetic energy 
and the average kinetic energy of the smoke particles would be the same. 

18.41. IDENTIFY: Use Eq.(18.24), applied to a finite temperature change. 
SET UP: 5 /2VC R=  for a diatomic ideal gas and 3 /2VC R=  for a monatomic ideal gas. 
EXECUTE: (a) ( )5

2VQ nC T n R T= Δ = Δ  

( )5
2(2.5 mol) (8.3145 J/mol K)(30.0 K) 1560 JQ = ⋅ =  

(b) ( )3
2  VQ nC T n R T= Δ = Δ  

( )3
2(2.5 mol) (8.3145 J/mol K)(30.0 K) 935 JQ = ⋅ =  

EVALUATE: More heat is required for the diatomic gas; not all the heat that goes into the gas appears as 
translational kinetic energy, some goes into energy of the internal motion of the molecules (rotations). 

18.42. IDENTIFY: The heat Q added is related to the temperature increase TΔ by .VQ nC T= Δ  
SET UP: For 2H , 

2,H 20.42 J/mol KVC = ⋅ and for Ne (a monatomic gas), ,Ne 12.47 J/mol K.VC = ⋅  

EXECUTE: constantV
QC T
n

Δ = = , so 
2 2,H H ,Ne Ne.V VC T C TΔ = Δ  

2

2

,H
Ne H

,Ne

20.42 J/mol K (2.50 C ) 4.09 C
12.47 J/mol K

V

V

C
T T

C
⎛ ⎞ ⋅⎛ ⎞Δ = Δ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠

° °.  

EVALUATE: The same amount of heat causes a smaller temperature increase for 2H since some of the energy 
input goes into the internal degrees of freedom. 

18.43. IDENTIFY: C Mc= , where C is the molar heat capacity and c is the specific heat capacity. .mpV nRT RT
M

= =  

SET UP: 
2

3
N 2(14.007 g/mol) 28.014 10  kg/molM −= = × . For water, w 4190 J/kg Kc = ⋅ . For 2N , 

20.76 J/mol KVC = ⋅ . 

EXECUTE: (a) 
2N 3

20.76 J/mol K 741 J/kg K
28.014 10  kg/mol

Cc
M −

⋅
= = = ⋅

×
. 

2

w

N

5.65c
c

= ; wc  is over five time larger. 

(b) To warm the water, 4
w (1.00 kg)(4190 J/mol K)(10.0 K) 4.19 10  JQ mc T= Δ = ⋅ = × . For air, 

2

4

N

4.19 10  J 5.65 kg
(741 J/kg K)(10.0 K)

Qm
c T

×
= = =

Δ ⋅
. 3

3 5

(5.65 kg)(8.314 J/mol K)(293 K) 4.85 m
(28.014 10  kg/mol)(1.013 10  Pa)

mRTV
Mp −

⋅
= = =

× ×
. 

EVALUATE: c is smaller for 2N , so less heat is needed for 1.0 kg of 2N  than for 1.0 kg of water. 
18.44. (a) IDENTIFY and SET UP: 1

2 R  contribution to VC  for each degree of freedom. The molar heat capacity C is 
related to the specific heat capacity c by .C Mc=  
EXECUTE: ( )1

26 3 3(8.3145 J/mol K) 24.9 J/mol K.VC R R= = = ⋅ = ⋅  The specific heat capacity is 
3/ (24.9 J/mol K)/(18.0 10  kg/mol) 1380 J/kg K.V Vc C M −= = ⋅ × = ⋅  

(b) For water vapor the specific heat capacity is 2000 J/kg K.c = ⋅  The molar heat capacity is 
3(18.0 10  kg/mol)(2000 J/kg K) 36.0 J/mol K.C Mc −= = × ⋅ = ⋅  

EVALUATE: The difference is 36.0 J/mol K 24.9 J/mol K 11.1 J/mol K,⋅ − ⋅ = ⋅  which is about ( )1
22.7 ;R  the 

vibrational degrees of freedom make a significant contribution. 
18.45. IDENTIFY: 3VC R=  gives VC in units of J/mol K⋅ . The atomic mass M gives the mass of one mole. 

SET UP: For aluminum, 326.982 10  kg/mol.M −= ×  

EXECUTE: (a) 3 24.9 J/mol KVC R= = ⋅ . 3

24.9 J/mol K 923 J/kg K
26.982 10  kg/molVc −

⋅
= = ⋅

×
. 

(b) Table 17.3 gives 910 J/kg K.⋅  The value from Eq.(18.28) is too large by about 1.4%. 
EVALUATE: As shown in Figure 18.21 in the textbook, CV approaches the value 3R as the temperature increases. 
The values in Table 17.3 are at room temperature and therefore are somewhat smaller than 3R. 
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18.46. IDENTIFY: Table 18.2 gives the value of rms/v v for which 94.7% of the molecules have a smaller value of rms/v v . 

rms
3RTv
M

= . 

SET UP: For 2N , 328.0 10  kg/molM −= × . rms/ 1.60v v = . 

EXECUTE: rms
3 ,

1.60
v RTv

M
= =  so the temperature is 

2 3
2 4 2 2 2

2 2

(28.0 10  kg/mol) (4.385 10  K s /m ) .
3(1.60) 3(1.60) (8.3145 J/mol K)

MvT v v
R

−
−×

= = = × ⋅
⋅

 

(a) 4 2 2 2(4.385 10  K s /m )(1500 m/s) 987 KT −= × ⋅ =  
(b) 4 2 2 2(4.385 10 K s /m )(1000 m/s) 438 KT −= × ⋅ =  
(c) 4 2 2 2(4.385 10  K s /m )(500 m/s) 110 K.T −= × ⋅ =  
EVALUATE: As T decreases the distribution of molecular speeds shifts to lower values. 

18.47. IDENTIFY and SET UP: Make the substitution 21
2 mv=P in Eq.(18.32). 

EXECUTE: 
3/2 3/2

/ /2 8( ) 4 .
2 2

kT kTm π mf v π e e
πkT m m πkT

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P PP P  

EVALUATE: The shape of the distribution of molecular speeds versus the temperature is a function only of the 
kinetic energy of the molecules. 

18.48. IDENTIFY and SET UP: Eq.(18.33): 
3/2

/8( )
2

kTmf v e
m kT
π

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
PP  

At the maximum of ( ),f P  0.df
d

=
P

 

EXECUTE: 
3/2

/8 ( ) 0
2

kTdf m d e
d m kT d

π
π

−⎛ ⎞= =⎜ ⎟
⎝ ⎠

PP
P P

 

This requires that /( ) 0.kTd e
d

− =PP
P

 
/ /( / ) 0kT kTe kT e− −− =P PP  

/(1 / ) 0kTkT e−− =PP  
This requires that 1 / 0kT− =P  so ,kT=P  as was to be shown. And then since 21

2 ,mv=P  this gives 21
mp2 mv kT=  

and mp 2 / ,v kT m=  which is Eq.(18.34). 

EVALUATE: 3
rms mp2 .v v=  The average of 2v  weights larger v. 

18.49. IDENTIFY: Apply Eqs.(18.34) (18.35) and (18.36). 

SET UP: Note that A/
/ A

k R N R
m M N M
= = . 344.0 10  kg/molM −= × . 

EXECUTE: (a) 3 2
mp 2(8.3145 J/mol K)(300 K)/(44.0 10  kg/mol) 3.37 10  m/s.v −= ⋅ × = ×  

(b) 3 2
av 8(8.3145 J mol K)(300 K) ( (44.0 10 kg mol)) 3.80 10 m s.v π −= ⋅ × = ×  

(c) 3 2
rms 3(8.3145 J mol K)(300 K) (44.0 10 kg mol) 4.12 10 m s.v −= ⋅ × = ×  

EVALUATE: The average speed is greater than the most probable speed and the rms speed is greater than the 
average speed. 

18.50. IDENTIFY and SET UP: If the temperature at altitude y is below the freezing point only cirrus clouds can form. 
Use 0T T yα= −  to find the y that gives 0.0 C.T = °  

EXECUTE: 0 15.0 C 0.0 C 2.5 km
6.0 C /km

T Ty
α
− ° − °

= = =
°

 

EVALUATE: The solid-liquid phase transition occurs at 0 C°  only for 51.01 10  Pa.p = ×  Use the results of 
Example 18.4 to estimate the pressure at an altitude of 2.5 km. 

2 1( ) /
2 1

Mg y y RTp p e −=  

2 1( ) / 1.10(2500 m/8863 m) 0.310Mg y y RT− = =  (using the calculation in Example 18.4) 
Then 5 0.31 5

2 (1.01 10  Pa) 0.74 10  Pa.p e−= × = ×  
This pressure is well above the triple point pressure for water. Figure 18.21 shows that the fusion curve has large 
slope and it takes a large change in pressure to change the phase transition temperature very much. Using 0.0°C 
introduces little error. 
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18.51. IDENTIFY: Refer to the phase diagram in Figure 18.24 in the textbook. 
SET UP: For water the triple-point pressure is 610 Pa and the critical-point pressure is 72.212 10  Pa× . 
EXECUTE: (a) To observe a solid to liquid (melting) phase transition the pressure must be greater than the triple-
point pressure, so 1 610 Pap = . For 1p p<  the solid to vapor (sublimation) phase transition is observed. 
(b) No liquid to vapor (boiling) phase transition is observed if the pressure is greater than the critical-point pressure. 

7
2 2.212 10  Pap = × . For 1 2p p p< <  the sequence of phase transitions are solid to liquid and then liquid to vapor. 

EVALUATE: Normal atmospheric pressure is approximately 51.0 10  Pa× , so the solid to liquid to vapor sequence 
of phase transitions is normally observed when the material is water. 

18.52. IDENTIFY: Refer to Figure 18.24 in the textbook. 
SET UP: The triple-point temperature for water is 273.16 K 0.01 C= ° . 
EXECUTE: The temperature is less than the triple-point temperature so the solid and vapor phases are in 
equilibrium. The box contains ice and water vapor but no liquid water. 
EVALUATE: The fusion curve terminates at the triple point. 

18.53. IDENTIFY: Figure 18.24 in the textbook shows that there is no liquid phase below the triple point pressure. 
SET UP: Table 18.3 gives the triple point pressure to be 610 Pa for water and 55.17 10  Pa× for CO2. 
EXECUTE: The atmospheric pressure is below the triple point pressure of water, and there can be no liquid water 
on Mars. The same holds true for CO2. 
EVALUATE: On earth 5

atm 1 10  Pap = × , so on the surface of the earth there can be liquid water but not liquid CO2. 
18.54. IDENTIFY: 0 0V βV T V k pΔ = Δ − Δ  

SET UP: For steel, 5 13.6 10  Kβ − −= × and 12 16.25 10  Pak − −= × . 
EXECUTE: 5 1

0 (3.6 10  K )(11.0 L)(21 C ) 0.0083 LβV T − −Δ = × =° . 
12 7

o (6.25 10 Pa)(11 L) (2.1 10 Pa) 0.0014 LkV p −− Δ = × × = − . The total change in volume is 
0.0083 L 0.0014 L 0.0069 L.VΔ = − =  

(b) Yes; VΔ  is much less than the original volume of 11.0 L. 
EVALUATE: Even for a large pressure increase and a modest temperature increase, the magnitude of the volume 
change due to the temperature increase is much larger than that due to the pressure increase. 

18.55. IDENTIFY: We are asked to compare two states. Use the ideal-gas law to obtain m2 in terms of m1 and the ratio of 
pressures in the two states. Apply Eq.(18.4) to the initial state to calculate m1. 
SET UP: pV nRT=  can be written ( / )pV m M RT=  
T, V, M, R are all constant, so / / constant.p m RT MV= =  
So 1 1 2 2/ / ,p m p m=  where m is the mass of the gas in the tank. 

EXECUTE: 6 5 6
1 1.30 10  Pa 1.01 10  Pa 1.40 10  Pap = × + × = ×  

5 5 5
2 2.50 10  Pa 1.01 10  Pa 3.51 10  Pap = × + × = ×  

1 1 / ;m pVM RT=  2 2 3(1.00 m) (0.060 m) 0.01131 mV hA h rπ π= = = =  
6 3 3

1
(1.40 10  Pa)(0.01131 m )(44.1 10  kg/mol) 0.2845 kg

(8.3145 J/mol K)((22.0 273.15) K)
m

−× ×
= =

⋅ +
 

Then 
5

2
2 1 6

1

3.51 10  Pa(0.2845 kg) 0.0713 kg.
1.40 10  Pa)

pm m
p

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

2m  is the mass that remains in the tank. The mass that has been used is 

1 2 0.2848 kg 0.0713 kg 0.213 kg.m m− = − =  
EVALUATE: Note that we have to use absolute pressures. The absolute pressure decreases by a factor of four and 
the mass of gas in the tank decreases by a factor of four. 

18.56. IDENTIFY: Apply pV nRT= to the air inside the diving bell. The pressure p at depth y below the surface of the 
water is atmp p gyρ= + . 

SET UP: 51.013 10  Pap = × . 300.15 KT = at the surface and 280.15 KT ′ = at the depth of 13.0 m. 
EXECUTE: (a) The height h′  of the air column in the diving bell at this depth will be proportional to the volume, 
and hence inversely proportional to the pressure and proportional to the Kelvin temperature: 

atm

atm

p T p Th h h
p T p ρgy T

′ ′
′ = =

′ +
. 

5

5 3 2

(1.013 10  Pa) 280.15 K(2.30 m) 0.26 m
(1.013 10 Pa) (1030 kg m )(9.80 m s )(73.0 m) 300.15 K

h
⎛ ⎞×′ = =⎜ ⎟× + ⎝ ⎠

. 

The height of the water inside the diving bell is 2.04 mh h′− = . 
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(b) The necessary gauge pressure is the term ρgy  from the above calculation, 5
gauge 7.37 10  Pa.p = × . 

EVALUATE: The gauge pressure required in part (b) is about 7 atm. 

18.57. IDENTIFY: pV NkT= gives N p
V kT
= . 

SET UP: 51 atm 1.013 10  Pa= × . K C 273.15T T= + . 231.381 10  J/molecule Kk −= × ⋅ . 
EXECUTE: (a) C K 273.15 94 K 273.15 = 179 CT T= − = − − °  

(b) 
5

26 3
23

(1.5 atm)(1.013 10  Pa/atm) 1.2 10  molecules/m
(1.381 10  J/molecule K)(94 K)

N p
V kT −

×
= = = ×

× ⋅
 

(c) For the earth, 51.0 atm 1.013 10  Pap = = ×  and 22 C 295 KT = =° . 
5

25 3
23

(1.0 atm)(1.013 10  Pa/atm) 2.5 10  molecules/m
(1.381 10  J/molecule K)(295 K)

N
V −

×
= = ×

× ⋅
. The atmosphere of Titan is about five times 

denser than earth's atmosphere. 
EVALUATE: Though it is smaller than Earth and has weaker gravity at its surface, Titan can maintain a dense 
atmosphere because of the very low temperature of that atmosphere. 

18.58. IDENTIFY: For constant temperature, the variation of pressure with altitude is calculated in Example 18.4 to be 

/
0

Mgy RTp p e−= . rms
3RTv
M

= . 

SET UP: 2
Earth 9.80 m/sg = . 460 C 733 KT = =° . 344.0 g/mol 44.0 10  kg/molM −= = × . 

EXECUTE: (a) 
3 2 3(44.0 10  kg/mol)(0.894)(9.80 m/s )(1.00 10  m) 0.06326

(8.314 J/mol K)(733 K)
Mgy
RT

−× ×
= =

⋅
. 

/ 0.06326
0 (92 atm) 86 atmMgy RTp p e e− −= = = . The pressure is 86 Earth-atmospheres, or 0.94 Venus-atmospheres. 

(b) rms 3

3 3(8.314 J/mol K)(733 K) 645 m/s
44.0 10  kg/mol

RTv
M −

⋅
= = =

×
. rmsv has this value both at the surface and at an altitude 

of 1.00 km. 
EVALUATE: rmsv depends only on T and the molar mass of the gas. For Venus compared to earth, the surface 
temperature, in kelvins, is nearly a factor of three larger and the molecular mass of the gas in the atmosphere is 
only about 50% larger, so rmsv for the Venus atmosphere is larger than it is for the Earth's atmosphere. 

18.59. IDENTIFY: pV nRT=  
SET UP: In pV nRT= we must use the absolute pressure. 1 278 KT = . 1 2.72 atmp = . 2 318 KT = . 

EXECUTE: n, R constant, so constantpV nR
T

= = . 1 1 2 2

1 2

pV p V
T T

=  and 

3
1 2

2 1 3
2 1

0.0150 m 318 K(2.72 atm) 2.94 atm
0.0159 m 278 K

V Tp p
V T
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. The final gauge pressure is 

2.94 atm 1.02 atm 1.92 atm− = . 
EVALUATE: Since a ratio is used, pressure can be expressed in atm. But absolute pressures must be used. The 
ratio of gauge pressures is not equal to the ratio of absolute pressures. 

18.60. IDENTIFY: In part (a), apply pV nRT= to the ethane in the flask. The volume is constant once the stopcock is in 

place. In part (b) apply totmpV RT
M

= to the ethane at its final temperature and pressure. 

SET UP: 3 31.50 L 1.50 10  m−= × . 330.1 10  kg/molM −= × . Neglect the thermal expansion of the flask. 

EXECUTE: (a) 5 4
2 1 2 1( ) (1.013 10  Pa)(300 K 380 K) 8.00 10  Pa.p p T T= = × = ×  

(b) 
4 3 3

32
tot

2

(8.00 10  Pa)(1.50 10  m ) (30.1 10  kg mol) 1.45 g.
(8.3145 J mol K)(300 K)

p Vm M
RT

−
−⎛ ⎞ ⎛ ⎞× ×

= = × =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
 

EVALUATE: We could also calculate totm with 51.013 10  Pap = × and 380 KT = , and we would obtain the same 
result. Originally, before the system was warmed, the mass of ethane in the flask was 

5

4

1.013 10  Pa(1.45 g) 1.84 g
8.00 10  Pa

m
⎛ ⎞×

= =⎜ ⎟×⎝ ⎠
. 
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18.61. (a) IDENTIFY: Consider the gas in one cylinder. Calculate the volume to which this volume of gas expands when 
the pressure is decreased from 6 5 6(1.20 10  Pa 1.01 10  Pa) 1.30 10  Pa× + × = ×  to 51.01 10  Pa.× Apply the ideal-gas 
law to the two states of the system to obtain an expression for 2V  in terms of 1V  and the ratio of the pressures in the 
two states. 
SET UP: pV nRT=  
n, R, T constant implies constant,pV nRT= =  so 1 1 2 2.pV p V=  

EXECUTE: 
6

3 3
2 1 1 2 5

1.30 10  Pa( / ) (1.90 m ) 24.46 m
1.01 10  Pa

V V p p
⎛ ⎞×

= = =⎜ ⎟×⎝ ⎠
 

The number of cylinders required to fill a 3750 m  balloon is 3 3750 m / 24.46 m 30.7 cylinders.=  
EVALUATE: The ratio of the volume of the balloon to the volume of a cylinder is about 400. Fewer cylinders than 
this are required because of the large factor by which the gas is compressed in the cylinders. 
(b) IDENTIFY: The upward force on the balloon is given by Archimedes� principle (Chapter 14): weightB =  of 
air displaced by airballoon .Vgρ=  Apply Newton�s 2nd law to the balloon and solve for the weight of the load that 
can be supported. Use the ideal-gas equation to find the mass of the gas in the balloon. 
SET UP: The free-body diagram for the balloon is given in Figure 18.61. 

 

mgas is the mass of the gas that is inside 
the balloon; mL is the mass of the load 
that is supported by the balloon 
 
EXECUTE: y yF ma=∑  

L gas 0B m g m g− − =  

Figure 18.61  

air L gas 0Vg m g m gρ − − =  

L air gasm V mρ= −  

Calculate gas ,m  the mass of hydrogen that occupies 3750 m  at 15 C°  and 51.01 10  Pa.p = ×  

gas( / )pV nRT m M RT= =  gives 
5 3 3

gas
(1.01 10  Pa)(750 m )(2.02 10  kg/mol)/ 63.9 kg

(8.3145 J/mol K)(288 K)
m pVM RT

−× ×
= = =

⋅
 

Then 3 3
L (1.23 kg/m )(750 m ) 63.9 kg 859 kg,m = − =  and the weight that can be supported is 

2
L L (859 kg)(9.80 m/s ) 8420 N.w m g= = =  

(c) L air gasm V mρ= −  

gas / (63.9 kg)((4.00 g/mol)/(2.02 g/mol)) 126.5 kgm pVM RT= = =  (using the results of part (b)). 

Then 3 3
L (1.23 kg/m )(750 m ) 126.5 kg 796 kg.m = − =  

2
L L (796 kg)(9.80 m/s ) 7800 N.w m g= = =  

EVALUATE: A greater weight can be supported when hydrogen is used because its density is less. 
18.62. IDENTIFY: The upward force exerted by the gas on the piston must equal the piston's weight. Use pV nRT= to 

calculate the volume of the gas, and from this the height of the column of gas in the cylinder. 
SET UP: 2F pA p rπ= = , with 0.100 mr = and 51.00 atm 1.013 10  Pap = = × . For the cylinder, 2V r hπ= . 

EXECUTE: (a) 2p r mgπ = and 
2 5 2

2

(1.013 10  Pa) (0.100 m) 325 kg
9.80 m/s

p rm
g
π π×

= = = . 

(b) 2 3
5

(1.80 mol)(8.31 J/mol K)(293.15 K) 4.33 10  m
1.013 10  Pa

nRTV
p

−⋅
= − = ×

×
. 

2 3

2 2

4.33 10  m 1.38 m
(0.100 m)

Vh
rπ π

−×
= = = . 

EVALUATE: The calculation assumes a vacuum ( 0)p =  in the tank above the piston. 
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18.63. IDENTIFY: Apply Bernoulli�s equation to relate the efflux speed of water out the hose to the height of water in 
the tank and the pressure of the air above the water in the tank. Use the ideal-gas equation to relate the volume of 
the air in the tank to the pressure of the air. 
(a) SET UP: Points 1 and 2 are shown in Figure 18.63. 

 

5
1 4.20 10  Pap = ×  

5
2 air 1.00 10  Pap p= = ×  

large tank implies 1 0v ≈  

Figure 18.63  

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

21
2 1 2 1 22 ( )v p p g y yρ ρ= − + −  

2 1 2 1 2(2 / )( ) 2 ( )v p p g y yρ= − + −  

2 26.2 m/sv =  

(b) 3.00 mh =  
The volume of the air in the tank increases so its pressure decreases. constant,pV nRT= =  so 0 0pV p V=  0( p  is 
the pressure for 0 3.50 mh =  and p is the pressure for 3.00 m)h =  

0 0(4.00 m ) (4.00 m )p h A p h A− = −  

5 50
0

4.00 m 4.00 m 3.50 m(4.20 10  Pa) 2.10 10  Pa
4.00 m 4.00 m 3.00 m

hp p
h

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

Repeat the calculation of part (a), but now 5
1 2.10 10  Pap = ×  and 1 3.00 m.y =  

( )2 1 2 1 22 / ( ) 2 ( )v p p g y yρ= − + −  

2 16.1 m/sv =  

2.00 mh =  

5 50
0

4.00 m 4.00 m 3.50 m(4.20 10  Pa) 1.05 10  Pa
4.00 m 4.00 m 2.00 m

hp p
h

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

2 1 2 1 2(2 / )( ) 2 ( )v p p g y yρ= − + −  

2 5.44 m/sv =  

(c) 2 0v =  means 1 2 1 2(2 / )( ) 2 ( ) 0p p g y yρ − + − =  

1 2 1 2( )p p g y yρ− = − −  

1 2 1.00 my y h− = −  

5
0

0.50 m 0.50 m(4.20 10  Pa) .
4.00 m 4.00 m

p p
h h

⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 This is 1,p so 

5 5 2 30.50 m(4.20 10  Pa) 1.00 10  Pa (9.80 m/s )(1000 kg/m )(1.00 m )
4.00 m

h
h

⎛ ⎞× − × = −⎜ ⎟−⎝ ⎠
 

(210/(4.00 )) 100 9.80 9.80 ,h h− − = −  with h in meters. 
210 (4.00 )(109.8 9.80 )h h= − −  

29.80 149 229.2 0h h− + =  and 2 15.20 23.39 0h h− + =  

quadratic formula: ( )21
2 15.20 (15.20) 4(23.39) (7.60 5.86) mh = ± − = ±  

h must be less than 4.00 m, so the only acceptable value is 7.60 m 5.86 m 1.74 mh = − =  

EVALUATE: The flow stops when 1 2( )p g y yρ+ −  equals air pressure. For 1.74 m,h =  49.3 10  Pap = ×  and 
4

1 2( ) 0.7 10  Pa,g y yρ − = ×  so 5
1 2( ) 1.0 10  Pa,p g y yρ+ − = ×  which is air pressure. 
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18.64. IDENTIFY: Use the ideal gas law to find the number of moles of air taken in with each breath and from this 
calculate the number of oxygen molecules taken in. Then find the pressure at an elevation of 2000 m and repeat the 
calculation. 
SET UP: The number of molecules in a mole is 23

A 6.022 10  molecules/molN = × . 0.08206 L atm/mol KR = ⋅ ⋅ . 
Example 18.4 shows that the pressure variation with altitude y, when constant temperature is assumed, is 

/
0

Mgy RTp p e−= . For air, 328.8 10  kg/molM −= × . 

EXECUTE: (a) pV nRT= gives (1.00 atm)(0.50 L) 0.0208 mol
(0.08206 L atm/mol K)(293.15 K)

pVn
RT

= = =
⋅ ⋅

. 

23 21
A(0.210) (0.210)(0.0208 mol)(6.022 10  molecules/mol) 2.63 10  moleculesN nN= = × = × . 

(b) 
3 2(28.8 10  kg/mol)(9.80 m/s )(2000 m) 0.2316

(8.314 J/mol K)(293.15 K)
Mgy
RT

−×
= =

⋅
. / 0.2316

0 (1.00 atm) 0.793 atmMgy RTp p e e− −= = = .  

N is proportional to n, which is in turn proportional to p, so 
21 210.793 atm (2.63 10  molecules) 2.09 10  molecules

1.00 atm
N ⎛ ⎞= × = ×⎜ ⎟

⎝ ⎠
. 

(c) Less 2O is taken in with each breath at the higher altitude, so the person must take more breaths per minute. 
EVALUATE: A given volume of gas contains fewer molecules when the pressure is lowered and the temperature 
is kept constant. 

18.65. IDENTIFY and SET UP: Apply Eq.(18.2) to find n and then use Avogadro�s number to find the number of molecules. 
EXECUTE: Calculate the number of water molecules N. 

Number of moles: 3tot
3

50 kg 2.778 10  mol
18.0 10  kg/mol

mn
M −= = = ×

×
 

3 23 27
A (2.778 10  mol)(6.022 10  molecules/mol) 1.7 10  moleculesN nN= = × × = ×  

Each water molecule has three atoms, so the number of atoms is 27 273(1.7 10 ) 5.1 10  atoms× = ×  
EVALUATE: We could also use the masses in Example 18.5 to find the mass m of one 2H O  molecule: 

262.99 10  kg.m −= ×  Then 27
tot / 1.7 10  molecules,N m m= = ×  which checks. 

18.66. IDENTIFY: 
A

NpV nRT RT
N

= = . Deviations will be noticeable when the volume V of a molecule is on the order 

of 1% of the volume of gas that contains one molecule. 

SET UP: The volume of a sphere of radius r is 34
3

V rπ= . 

EXECUTE: The volume of gas per molecule is 
A

RT
N p , and the volume of a molecule is about 

10 3 29 3
0

4 (2.0 10 m) 3.4 10 m .
3

V π − −= × = ×  Denoting the ratio of these volumes as f, 

8
23 29 3

A 0

(8.3145 J mol K)(300 K) (1.2 10  Pa) .
(6.023 10  molecules mol)(3.4 10  m )

RTp f f f
N V −

⋅
= = = ×

× ×
 

�Noticeable deviations� is a subjective term, but f on the order of 1.0% gives a pressure of 610  Pa.  
EVALUATE: The forces between molecules also cause deviations from ideal-gas behavior. 

18.67. IDENTIFY: Eq.(18.16) says that the average translational kinetic energy of each molecule is equal to 3
2 kT . 

rms
3kTv
m

= . 

SET UP: 231.381 10  J/molecule Kk −= × ⋅ . 
EXECUTE: (a) 21

av2 ( )m v depends only on T and both gases have the same T, so both molecules have the same 

average translational kinetic energy. rmsv is proportional to 1/ 2m− , so the lighter molecules, A, have the greater rmsv . 
(b) The temperature of gas B would need to be raised. 

(c) rms constant
3

T v
m k
= = , so A B

A B

T T
m m

= . 
26

3
27

5.34 10  kg (283.15 K) 4.53 10  K 4250 C
3.34 10  kg

B
B A

A

mT T
m

−

−

⎛ ⎞ ⎛ ⎞×
= = = × =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

° . 

(d) B AT T> so the B molecules have greater translational kinetic energy per molecule. 

EVALUATE: In 2 31
av2 2( )m v kT= and rms

3kTv
m

= the temperature T must be in kelvins. 
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18.68. IDENTIFY: The equations derived in the subsection Collisions between Molecules in Section 18.3 can be applied 
to the bees. The average distance a bee travels between collisions is the mean free path, λ . The average time 

between collisions is the mean free time, meant . The number of collisions per second is 
mean

1dN
dt t

= . 

SET UP: 3 3(1.25 m) 1.95 mV = = . 20.750 10  mr −= × . 1.10 m/sv = . 2500N = . 

EXECUTE: (a) 
3

2 2 2

1.95 m 0.780 m 78.0 cm
4 2 4 2(0.750 10  m) (2500)

V
r N

λ
π π −

= = = =
×

 

(b) meanvtλ = , so mean
0.780 m 0.709 s
1.10 m/s

t
v
λ

= = = . 

(c) 
mean

1 1 1.41 collisions/s
0.709 s

dN
dt t

= = =  

EVALUATE: The calculation is valid only if the motion of each bee is random. 
18.69. IDENTIFY: Apply the iteration procedure that is described in the problem. 

SET UP: Let /x n V= . 400.15 KT = . 
EXECUTE: (a) Dividing both sides of Eq.(18.7) by the product RTV gives the result. 
(b) The algorithm described is best implemented on a programmable calculator or computer; for a calculator, the 
numerical procedure is an iteration of 

5
2 5(9.80 10 ) (0.448) 1 (4.29 10 ) .

(8.3145)(400.15) (8.3145)(400.15)
x x x−⎡ ⎤× ⎡ ⎤= + − ×⎢ ⎥ ⎣ ⎦

⎣ ⎦
 

Starting at 0x =  gives a fixed point at 23.03 10x = ×  after four iterations. The number density is 
2 33.03 10 mol m .×  

(c) The ideal-gas equation is the result after the first iteration, 3295mol m .  
EVALUATE: The van der Waals density is larger. The term corresponding to a represents the attraction of the 
molecules, and hence more molecules will be in a given volume for a given pressure. 

18.70. IDENTIFY: Calculate rmsv and use conservation of energy to relate the initial speed of the molecules rms( )v to the 
maximum height they reach. 
SET UP: 298.15 KT = . 328.0 10  kg/molM −= × . 

EXECUTE: rms 3

3 3(8.314 J/mol K)(298.15 K) 515 m/s
28.0 10  kg/mol

RTv
M −

⋅
= = =

×
. Conservation of energy gives 

21
rms2 mv mgy= and 

2 2
5rms

2

(515 m/s) 1.02 10  m 102 km
2 2(1.30 m/s )
vy

g
= = = × =  

EVALUATE: The result does not depend on the amount of gas in the canister. 
18.71. IDENTIFY: The mass of one molecule is the molar mass, M, divided by the number of molecules in a mole, AN . 

The average translational kinetic energy of a single molecule is 2 31
av2 2( )m v kT= . Use pV NkT= to calculate N, 

the number of molecules. 
SET UP: 231.381 10  J/molecule Kk −= × ⋅ . 328.0 10  kg/molM −= × . 295.15 KT = . The volume of the balloon is 

3 34
3 (0.250 m) 0.0654 mV π= = . 51.25 atm 1.27 10  Pap = = × . 

EXECUTE: (a) 
3

26
23

A

28.0 10  kg/mol 4.65 10  kg
6.022 10  molecules/mol

Mm
N

−
−×

= = = ×
×

 

(b) 2 23 213 31
av2 2 2( ) (1.381 10  J/molecule K)(295.15 K) 6.11 10  Jm v kT − −= = × ⋅ = ×  

(c) 
5 3

24
23

(1.27 10  Pa)(0.0654 m ) 2.04 10  molecules
(1.381 10  J/molecule K)(295.15 K)

pVN
kT −

×
= = = ×

× ⋅
 

(d) The total average translational kinetic energy is 
2 24 21 41

av2( ( ) ) (2.04 10  molecules)(6.11 10  J/molecule) 1.25 10  JN m v −= × × = × . 

EVALUATE: The number of moles is 
24

23
A

2.04 10  molecules 3.39 mol
6.022 10  molecules/mol

Nn
N

×
= = =

×
. 

43 3
tr 2 2 (3.39 mol)(8.314 J/mol K)(295.15 K) 1.25 10 JK nRT= = ⋅ = × , which agrees with our results in part (d). 
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18.72. IDENTIFY: U mgy= . The mass of one molecule is A/m M N= . 3
av 2K kT= . 

SET UP: Let 0y = at the surface of the earth and 400 mh = . 23
A 6.023 10  molecules/molN = × and 

231.38 10  J/Kk −= × . 15.0 C 288 K=° . 

EXECUTE: (a) 
3

2 22
23

28.0 10  kg/mol (9.80 m/s )(400 m) 1.82 10  J.
6.023 10  molecules/molA

MU mgh gh
N

−
−⎛ ⎞×

= = = = ×⎜ ⎟×⎝ ⎠
 

(b) Setting 
22

23

3 2 1.82 10  J,   8.80 K.
2 3 1.38 10  J/K

U kT T
−

−

⎛ ⎞×
= = =⎜ ⎟×⎝ ⎠

 

EVALUATE: (c) The average kinetic energy at 15.0 C° is much larger than the increase in gravitational potential 
energy, so it is energetically possible for a molecule to rise to this height. But Example 18.8 shows that the mean 
free path will be very much less than this and a molecule will undergo many collisions as it rises. These numerous 
collisions transfer kinetic energy between molecules and make it highly unlikely that a given molecule can have 
very much of its translational kinetic energy converted to gravitational potential energy. 

18.73. IDENTIFY and SET UP: At equilibrium ( ) 0.F r =  The work done to increase the separation from r2 to ∞  is 

2( ) ( ).U U r∞ −  
(a) EXECUTE: 12 6

0 0 0( ) ( / ) 2( / )U r U R r R r⎡ ⎤= −⎣ ⎦  

Eq.(13.26): 13 7
0 0 0 0( ) 12( / ) ( / ) ( / ) .F r U R R r R r⎡ ⎤= −⎣ ⎦  The graphs are given in Figure 18.73. 

 
Figure 18.73 

(b) equilibrium requires 0;F =  occurs at point 2.r  2r  is where U is a minimum (stable equilibrium). 

(c) 0U =  implies 12 6
0 0( / ) 2( / ) 0R r R r⎡ ⎤− =⎣ ⎦  

6
1 0( / ) 1/ 2r R =  and 1/ 6

1 0 /(2)r R=  

0F =  implies 13 7
0 0( / ) ( / ) 0R r R r⎡ ⎤− =⎣ ⎦  

6
2 0( / ) 1r R =  and 2 0r R=  

Then 1/ 6 1/ 6
1 2 0 0/ ( / 2 ) / 2r r R R −= =  

(d) otherW U= Δ  

At ,r →∞  0,U =  so 12 6
0 0 0 0 0 0 0( ) ( / ) 2( / )W U R U R R R R U⎡ ⎤= − = − − = +⎣ ⎦  

EVALUATE: The answer to part (d), 0 ,U  is the depth of the potential well shown in the graph of ( ).U r  
18.74. IDENTIFY: Use pV nRT= to calculate the number of moles, n. Then 3

tr 2K nRT= . The mass of the gas, totm , is 
given by totm nM= . 

SET UP: 3 35.00 L 5.00 10  m−= ×  

EXECUTE: (a) 
5 3 3(1.01 10  Pa)(5.00 10  m ) 0.2025 moles

(8.314 J/mol K)(300 K)
pVn
RT

−× ×
= = =

⋅
. 

3
tr 2 (0.2025 mol)(8.314 J/mol K)(300 K) 758 JK = ⋅ = . 

(b) 3 4
tot (0.2025 mol)(2.016 10  kg/mol) 4.08 10  kgm nM − −= = × = × . The kinetic energy due to the speed of the jet 

is 2 4 21 1
2 2 (4.08 10  kg)(300.0 m/s) 18.4 JK mv −= = × = . The total kinetic energy is 

tot tr 18.4 J 758 J 776 JK K K= + = + = . The percentage increase is 
tot

18.4 J100% 100% 2.37%
776 J

K
K

× = × = . 

(c) No. The temperature is associated with the random translational motion, and that hasn't changed. 
EVALUATE: Eq.(18.13) gives 5 3 33 3

tr 2 2 (1.01 10  Pa)(5.00 10  m ) 758 JK pV −= = × × = , which agrees with our result 

in part (a). 3
rms

3 1.93 10  m/sRTv
M

= = × . rmsv is a lot larger than the speed of the jet, so the percentage increase in 

the total kinetic energy, calculated in part (b), is small. 
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18.75. IDENTIFY and SET UP: Apply Eq.(18.19) for rms.v  The equation preceeding Eq.(18.12) relates rmsv  and rms( ) .xv  

EXECUTE: (a) rms 3 /v RT M=  

rms 3

3(8.3145 J/mol K)(300 K) 517 m/s
28.0 10  kg/mol

v −

⋅
= =

×
 

(b) 2 21
av av3( ) ( )xv v=  so ( ) ( ) ( )2 2

av av rms( ) 1/ 3 ( ) 1/ 3 1/ 3 (517 m/s) 298 m/sxv v v= = = =  

EVALUATE: The speed of sound is approximately equal to rms( )xv  since it is the motion along the direction of 
propagation of the wave that transmits the wave. 

18.76. IDENTIFY: rms
3kTv
m

=  

SET UP: 301.99 10  kgM = × , 86.96 10  mR = × and 11 2 26.673 10  N m /kgG −= × ⋅ . 

EXECUTE: (a) 
23

4
rms 27

3 3(1.38 10 J K) (5800 K) 1.20 10  m s.
(1.67 10 kg) 

kTv
m

−

−

×
= = = ×

×
 

(b) 
11 2 2 30

5
escape 8

2 2(6.673 10 N m kg ) (1.99 10 kg) 6.18 10  m s.
(6.96 10  m)

GMv
R

−× ⋅ ×
= = = ×

×
 

EVALUATE: (c) The escape speed is about 50 times the rms speed, and any of Figure 18.23 in the textbook, 
Eq.(18.32) or Table (18.2) will indicate that there is a negligibly small fraction of molecules with the escape speed. 

18.77. (a) IDENTIFY and SET UP: Apply conservation of energy 1 1 other 2 2 ,K U W K U+ + = +  where p / .U Gmm r= −  Let 
point 1 be at the surface of the planet, where the projectile is launched, and let point 2 be far from the earth. Just 
barely escapes says 2 0.v =  
EXECUTE: Only gravity does work says other 0.W =  

1 p p/ ;U Gmm R= −  2r →∞  so 2 0;U =  2 0v =  so 2 0.K =  

The conservation of energy equation becomes 1 p p/ 0K Gmm R− =  and 1 p p/ .K Gmm R=  

But 2
p p/g Gm R=  so p p p/Gm R R g=  and 1 p ,K mgR=  as was to be shown. 

EVALUATE: The greater pgR  is the more initial kinetic energy is required for escape. 

(b) IDENTIFY and SET UP: Set 1K  from part (a) equal to the average kinetic energy of a molecule as given by 

Eq.(18.16). 21
av p2 ( )m v mgR=  (from part (a)). But also, 2 31

av2 2( ) ,m v kT=  so 3
p 2mgR kT=  

EXECUTE: p2
3

mgR
T

k
=  

nitrogen 

2

3 23 26
N (28.0 10  kg/mol)/(6.022 10  molecules/mol) 4.65 10  kg/moleculem − −= × × = ×  

26 2 6
p 5

23

2 2(4.65 10  kg/molecule)(9.80 m/s )(6.38 10  m) 1.40 10  K
3 3(1.381 10  J/molecule K)

mgR
T

k

−

−

× ×
= = = ×

× ⋅
 

hydrogen 

2

3 23 27
H (2.02 10  kg/mol)/(6.022 10  molecules/mol) 3.354 10  kg/moleculem − −= × × = ×  

27 2 6
p 4

23

2 2(3.354 10  kg/molecule)(9.80 m/s )(6.38 10  m) 1.01 10  K
3 3(1.381 10  J/molecule K)

mgR
T

k

−

−

× ×
= = = ×

× ⋅
 

(c) p2
3

mgR
T

k
=  

nitrogen 
26 2 6

23

2(4.65 10  kg/molecule)(1.63 m/s )(1.74 10  m) 6730 K
3(1.381 10  J/molecule K)

T
−

−

× ×
= =

× ⋅
 

hydrogen 
27 2 6

23

2(3.354 10  kg/molecule)(1.63 m/s )(1.74 10  m) 459 K
3(1.381 10  J/molecule K)

T
−

−

× ×
= =

× ⋅
 

(d) EVALUATE: The �escape temperatures� are much less for the moon than for the earth. For the moon a larger 
fraction of the molecules at a given temperature will have speeds in the Maxwell-Boltzmann distribution larger 
than the escape speed. After the long time most of the molecules will have escaped from the moon. 
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18.78. IDENTIFY: rms
3RTv
M

= . 

SET UP: 
2

3
H 2.02 10  kg/molM −= × . 

2

3
O 32.0 10  kg/molM −= × . For Earth, 245.97 10  kgM = × and 

66.38 10  mR = × . For Jupiter, 271.90 10  kgM = × and 76.91 10  mR = × . For a sphere, 34
3

M V rρ ρ π= = . The 

escape speed is escape
2GMv

R
= . 

EXECUTE: (a) Jupiter: 3 3
rms 3(8.3145J mol K)(140K) (2.02 10 kg mol) 1.31 10 m sv −= ⋅ × = × . 

4
escape 6.06 10  m/sv = × . rms escape0.022v v= . 

Earth: 3 3
rms 3(8.3145J mol K)(220K) (2.02 10 kg mol) 1.65 10 m sv −= ⋅ × = × . 4

escape 1.12 10  m/sv = × . 

rms escape0.15v v= . 
(b) Escape from Jupiter is not likely for any molecule, while escape from earth is much more probable. 
(c) 3

rms 3(8.3145J mol K)(200K) (32.0 10 kg mol) 395m s.v −= ⋅ × =  The radius of the asteroid is 
1/ 3 5(3 4 ) 4.68 10 m,R M πρ= = ×  and the escape speed is escape 2 542m sv GM R= = . Over time the 2O  

molecules would essentially all escape and there can be no such atmosphere. 
EVALUATE: As Figure 18.23 in the textbook shows, there are some molecules in the velocity distribution that 
have speeds greater than rmsv . But as the speed increases above rmsv the number with speeds in that range 
decreases. 

18.79. IDENTIFY: rms
3kTv
m

= . The number of molecules in an object of mass m is A A
mN nN N
M

= = . 

SET UP: The volume of a sphere of radius r is 34
3

V rπ= . 

EXECUTE: (a) 
23

14
2 2
rms

3 3(1.381 10 J K)(300K) 1.24 10 kg.
(0.0010m s)

kTm
v

−
−×

= = = ×  

(b) 14 23 3
A (1.24 10 kg)(6.023 10 molecules mol) (18.0 10 kg mol)N mN M − −= = × × ×  

114.16 10 molecules.N = ×  

(c) The diameter is 
1/31/3 1/3 14

6
3

3 3 / 3(1.24 10  kg)2 2 2 2 2.95 10  m
4 4 4 (920 kg/m )
V mD r ρ
π π π

−
−⎛ ⎞×⎛ ⎞ ⎛ ⎞= = = = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 which is too small 

to see. 
EVALUATE: rmsv  decreases as m increases. 

18.80. IDENTIFY: For a simple harmonic oscillator, cosx A tω= and sinxv A tω ω= − , with /k mω = . 

SET UP: The average value of cos(2 )tω over one period is zero, so 2 2 1
av av 2(sin ) (cos )t tω ω= = . 

EXECUTE: cosx A tω= , sinxv A tω ω= − , 2 21
av av2 (cos )U kA tω= , 2 2 21

av av2 (sin )K m A tω ω= . Using 
2 2 1

av av 2(sin ) (cos )t tω ω= = and 2m kω = shows that av avK U= . 
EVALUATE: In general, at any given instant of time U K≠ . It is only the values averaged over one period that 
are equal. 

18.81. IDENTIFY: The equipartition principle says that each atom has an average kinetic energy of 1
2 kT for each degree 

of freedom. There is an equal average potential energy. 
SET UP: The atoms in a three-dimensional solid have three degrees of freedom and the atoms in a two-
dimensional solid have two degrees of freedom. 
EXECUTE: (a) In the same manner that Eq.(18.28) was obtained, the heat capacity of the two-dimensional solid 
would be 2 16.6 J/mol KR = ⋅ . 
(b) The heat capacity would behave qualitatively like those in Figure 18.21 in the textbook, and the heat capacity 
would decrease with decreasing temperature. 
EVALUATE: At very low temperatures the equipartition theorem doesn't apply. Most of the atoms remain in their 
lowest energy states because the next higher energy level is not accessible. 
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18.82. IDENTIFY: The equipartition principle says that each molecule has average kinetic energy of 1
2 kT for each degree 

of freedom. 22 ( / 2)I m L= , where L is the distance between the two atoms in the molecule. 21
rot 2K Iω= . 

2
rms av( )ω ω= . 

SET UP: The mass of one atom is 3 23 26
A/ (16.0 10  kg/mol) /(6.02 10  molecules/mol) 2.66 10  kg.m M N − −= = × × = ×  

EXECUTE: (a) The two degrees of freedom associated with the rotation for a diatomic molecule account for two-
fifths of the total kinetic energy, so 3

rot (1.00 mol)(8.3145 J mol K)(300 K) 2.49 10 JK nRT= = ⋅ = × . 

(b) 
3

2 -11 2 46 2
23

16.0 10 kg mol2 ( 2) 2  (6.05 10 m) 1.94 10 kg m
6.023 10 molecules mol

I m L
−

−⎛ ⎞×
= = × = × ⋅⎜ ⎟×⎝ ⎠

 

(c) Since the result in part (b) is for one mole, the rotational kinetic energy for one atom is rot A/K N and 
3

12rot A
rms 46 2 23

2 2(2.49 10  J) 6.52 10  rad s
(1.94 10  kg m )(6.023 10  molecules/mol)

K N
I

ω −

×
= = = ×

× ⋅ ×
. This is much larger 

than the typical value for a piece of rotating machinery. 

EVALUATE: The average rotational period, 
rms

2  radT π
ω

= , for molecules is very short. 

18.83. IDENTIFY: ( )1
2VC N R= , where N is the number of degrees of freedom. 

SET UP: There are three translational degrees of freedom. 
EXECUTE: For 2CO , 5N = and the contribution to VC other than from vibration is 5

2 20.79  J/mol KR = ⋅  and 
5
2 0.270 V VC R C− = . So 27% of VC is due to vibration. For both SO2 and H2S, 6N = and the contribution to CV 

other than from vibration is 6
2 24.94 J/mol KR = ⋅ . The respective fractions of CV from vibration are 21% and 3.9%. 

EVALUATE: The vibrational contribution is much less for 2H S . In 2H S  the vibrational energy steps are larger 

because the two hydrogen atoms have small mass and /k mω = . 
18.84. IDENTIFY: Evaluate the integral, as specified in the problem. 

SET UP: Use the integral formula given in Problem 18.85, with / 2m kTα = . 

EXECUTE: (a) 
2

3 2 3 2
2 / 2

0 0

1( ) 4 4 1
2 2 4( 2 ) 2

mv kTm m πf v dv π v e dv π
πkT πkT m kT m kT

∞ ∞
− ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫  

EVALUATE: (b) ( )f v dv  is the probability that a particle has speed between and ;v v dv+ the probability that the 
particle has some speed is unity, so the sum (integral) of ( )f v dv must be 1. 

18.85. IDENTIFY and SET UP: Evaluate the integral in Eq.(18.31) as specified in the problem. 

EXECUTE: 
2  2 3/ 2 4 / 2

 0  0
( ) 4 ( / 2 )  mv kTv f v dv m kT v e dvπ π

∞ ∞ −=∫ ∫  

The integral formula with 2n =  gives 
2 4 2

 0
(3/8 ) /avv e dv a aπ

∞ − =∫  

Apply with / 2 ,a m kT=  
 2 3 / 2 2

 0
( ) 4 ( /2 ) (3/8)(2 / ) 2 / (3/2)(2 / ) 3 /v f v dv m kT kT m kT m kT m kT mπ π π

∞
= = =∫  

EVALUATE: Equation (18.16) says 21
av2 ( ) 3 / 2,m v kT=  so 2

av( ) 3 / ,v kT m=  in agreement with our calculation. 
18.86. IDENTIFY: Follow the procedure specified in the problem. 

SET UP: If 2v x= , then 2dx vdv= . 

EXECUTE: 2
3 2

3 2

0 0

( ) 4 .
2

mv kTmvf v dv π v e dv
πkT

∞ ∞
−⎛ ⎞= ⎜ ⎟

⎝ ⎠∫ ∫  Making the suggested change of variable, 2 .v x=  2 ,vdv dx=  

3 (1/2)  ,v dv x dx=  and the integral becomes 
3/2 3/2 2

/ 2

0 0

2 2 2 8 ( ) 2   2
2 2

mx kTm m kT KT KTvf v dv π xe dx π
πkT πkT m m πmπ

∞ ∞
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫  

which is Eq. (18.35). 

EVALUATE: The integral 
0

( )vf v dv
∞

∫  is the definition of avv . 
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18.87. IDENTIFY: ( )f v dv  is the probability that a particle has a speed between v and v dv+ . Eq.(18.32) gives ( )f v . 

mpv is given by Eq.(18.34). 

SET UP: For 2O , the mass of one molecule is 26
A/ 5.32 10  kgm M N −= = × . 

EXECUTE: (a)  ( )f v dv  is the fraction of the particles that have speed in the range from v to v dv+ . The number 

of particles with speeds between   and v v dv+  is therefore ( )dN Nf v dv=  and ( ) .
v v

vN N f v dv
+Δ

Δ = ∫   

(b) Setting mp
2kTv v m= =  in ( )f v  gives 

3/2
1

mp
mp

2 4( ) 4 .
2

m kTf v π e
πkT m e πv

−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 For oxygen gas at 300 K, 

2
mp 3.95 10  m/sv = ×  and ( ) 0.0421.f v vΔ =  

(c) Increasing v  by a factor of 7 changes 2 48 21 by a factor of 7 ,  and ( ) 2.94 10 .f e f v v− −Δ = ×  

(d) Multiplying the temperature by a factor of 2 increases the most probable speed by a factor of 2,  and the 

answers are decreased by 212:  0.0297 and 2.08 10 .−×  
(e) Similarly, when the temperature is one-half what it was parts (b) and (c), the fractions increase by 

2  to 0.0595 21and 4.15 10 .−×  
EVALUATE: (f )  At lower temperatures, the distribution is more sharply peaked about the maximum (the most 
probable speed), as is shown in Figure 18.23a in the textbook. 

18.88. IDENTIFY: Apply the definition of relative humidity given in the problem. totmpV nRT RT
M

= = . 

SET UP: 318.0 10  kg/molM −= × . 

EXECUTE: (a) The pressure due to water vapor is 3 3(0.60)(2.34 10  Pa) 1.40 10  Pa.× = ×  

(b) 
3 3 3

tot
(18.0 10 kg mol)(1.40 10  Pa)(1.00 m ) 10 g

(8.3145 J mol K)(293.15 K)
MpVm
RT

−× ×
= = =

⋅
 

EVALUATE: The vapor pressure of water vapor at this temperature is much less than the total atmospheric 
pressure of 51.0 10  Pa× . 

18.89. IDENTIFY: The measurement gives the dew point. Relative humidity is defined in Problem 18.88. 

SET UP: partial pressure of water vapor at temperature relative humidity
vapor pressure of water at temperature 

T
T

=  

EXECUTE: The experiment shows that the dew point is 16.0 C,°  so the partial pressure of water vapor at 30.0 C°  
is equal to the vapor pressure at 16.0 C,°  which is 31.81 10  Pa.×  

Thus the relative 
3

3

1.81 10  Pahumidity 0.426 42.6%.
4.25 10  Pa

×
= = =

×
 

EVALUATE: The lower the dew point is compared to the air temperature, the smaller the relative humidity. 
18.90. IDENTIFY: Use the definition of relative humidity in Problem 18.88 and the vapor pressure table in 

Problem 18.89. 
SET UP: At 28.0 C°  the vapor pressure of water is 33.78 10  Pa× . 
EXECUTE: For a relative humidity of 35%, the partial pressure of water vapor is 

3 3(0.35)(3.78 10  Pa) 1.323 10  Pa.× = ×  This is close to the vapor pressure at 12 C,°  which would be at an altitude 
(30 C 12 C) (0.6 C 100 m) 3 km° − ° ° =  above the ground. For a relative humidity of 80%, the vapor pressure will be 
the same as the water pressure at around 24 C,°  corresponding to an altitude of about 1 km.  
EVALUATE: Clouds form at a lower height when the relative humidity at the surface is larger. 

18.91. IDENTIFY: Eq.(18.21) gives the mean free path λ . In Eq.(18.20) use rms
3RTv
M

= in place of v. 

pV nRT NkT= = . The escape speed is escape
2GMv

R
= . 

SET UP: For atomic hydrogen, 31.008 10  kg/molM −= × . 

EXECUTE: (a) From Eq.(18.21), 2 1 11 2 6 3 1 11(4 2 ( )) (4 2(5.0 10 m) (50 10 m )) 4.5 10 mπ r N V πλ − − − −= = × × = × . 

(b) 3
rms 3 / 3(8.3145 J mol K)(20 K) (1.008 10 kg mol) 703 m s,v RT M −= = ⋅ × =  and the time between 

collisions is then 11 8(4.5 10 m) (703 m s) 6.4 10 s,× = × about 20 yr. Collisions are not very important. 

(c) 6 3 23 14( ) (50/1.0 10 m )(1.381 10 J K)(20 K) 1.4 10 Pa.p N V kT − − −= = × × = ×  
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(d) 
3

2
escape

2 2 ( )(4 3) (8 3) ( )GM G Nm V πRv π G N V mR
R R

= = =  

11 2 2 6 3 27 15 2
escape (8 /3)(6.673 10  N m /kg )(50 10  m )(1.67 10  kg)(10 9.46 10  m)v π − − −= × ⋅ × × × ×  

escape 650 m s.v =  This is lower than rmsv and the cloud would tend to evaporate. 
(e) In equilibrium (clearly not thermal equilibrium), the pressures will be the same; from ,pV NkT=  

ISM ISM nebula nebula( ) ( )kT N V kT N V=  and the result follows. 
(f )  With the result of part (e), 

6 3
5nebula

ISM nebula 6 3 1
ISM

( ) 50 10  m(20 K) 2 10  K,
( ) (200 10  m )
V NT T
V N − −

⎛ ⎞ ⎛ ⎞×
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

more than three times the temperature of the sun. This indicates a high average kinetic energy, but the thinness of 
the ISM means that a ship would not burn up. 
EVALUATE: The temperature of a gas is determined by the average kinetic energy per atom of the gas. The 
energy density for the gas also depends on the number of atoms per unit volume, and this is very small for the ISM. 

18.92. IDENTIFY: Follow the procedure of Example 18.4, but use 0T T yα= − . 
SET UP: ln(1 )x x+ ≈  when x is very small. 

EXECUTE: (a) ,dp pM
dy RT= −  which in this case becomes 

0

dp Mg dy
p R T αy
= −

−
. This integrates to 

/

0
0 0 0

ln ln 1 ,   or  1
Mg R

p Mg αy αyp p
p Rα T T

α
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

(b) For sufficiently small 
0 0

,  ln(1 ) ,αy αyα T T− ≈ −  and this gives the expression derived in Example 18.4. 

(c) 
2(0.6 10  C /m)(8863 m)1 0.8154,
(288 K)

−⎛ ⎞× °
− =⎜ ⎟

⎝ ⎠

3 2

2

(28.8 10 )(9.80 m/s ) 5.6576
(8.3145 J/mol K)(0.6 10  C /m)

Mg
Rα

−

−

×
= =

⋅ × °
 and 

5.6576
0 (0.8154) 0.315 atm,p =  which is 0.95 of the result found in Example 18.4. 

EVALUATE: The pressure is calculated to decrease more rapidly with altitude when we assume that T also 
decreases with altitude. 

18.93. IDENTIFY and SET UP: The behavior of isotherms for a real gas above and below the critical point are shown in 
Figure 18.7 in the textbook. 
EXECUTE: (a) A positive slope P

V
∂
∂

 would mean that an increase in pressure causes an increase in volume, or 

that decreasing volume results in a decrease in pressure, which cannot be the case for any real gas. 
(b) See Figure 18.7 in the textbook. From part (a), p cannot have a positive slope along an isotherm, and so can 

have no extremes (maxima or minima) along an isotherm. When p
V
∂
∂

vanishes along an isotherm, the point on the 

curve in a -p V  diagram must be an inflection point, and 
2

2 0p
V
∂

=
∂

. 

(c) 
2

2

nRT anp
V nb V

= −
−

. 
2

2 3

2
( )

p nRT an
V V nb V
∂

= − +
∂ −

. 
2 2

2 3 4

2 6 .
( )

p nRT an
V V nb V
∂

= −
∂ −

 Setting the last two of these equal to 

zero gives 3 2 22 ( )V nRT an V nb= −  and 4 2 33 ( )V nRT an V nb= − . 
(d) Following the hint, (3 2)( ),V V nb= −  which is solved for c( ) 3 .V n b=  Substituting this into either of the last 
two expressions in part (c) gives c 8 27 .T a Rb=  

(e) c 2 2
c c

(8 / 27 ) .
( ) ( ) 2 9 27

RT a R a Rb a ap
V n b V n b b b

= − = − =
−

 

(f )  c
2

c c

(8 / 27 ) 8.
( ) ( / 27 )3 3
RT a b

p V n a b b
= =  

(g) 2 2 2H :3.28.  N :3.44.   H O : 4.35.  
EVALUATE: (h) While all are close to 8/3, the agreement is not good enough to be useful in predicting critical 
point data. The van der Waals equation models certain gases, and is not accurate for substances near critical points. 
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18.94. IDENTIFY and SET UP: For N particles, av
i

v
v

N
= ∑  and 

2

rms
iv

v
N

= ∑ . 

EXECUTE: (a) 1
av 1 22 ( )v v v= + , 2 2

rms 1 2
1
2

v v v= +  and 

2 2 2 2 2 2 2 2 2
rms av 1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1( ) ( 2 ) ( 2 ) ( )
2 4 4 4

v v v v v v v v v v v v v v− = + − + + = + − = −  

This shows that rms av ,v v≥  with equality holding if and only if the particles have the same speeds. 

(b) 2 2 2
rms rms av av

1 1( ), ( ),1 1v Nv u v Nv uN N
′ ′= + = +

+ +
 and the given forms follow immediately. 

(c) The algebra is similar to that in part (a); it helps somewhat to express 
2 2 2

av av av2

1 ( (( 1) 1) 2 (( 1) ) )
( 1)

v N N v Nv u N N u
N

′ = + − + + + −
+

. 

2 2 2 2 2
av av av av2

1( 2 )
1 ( 1) 1

N Nv v v v u u u
N N N

′ = + − + − +
+ + +

 

Then, 
2 2 2 2 2 2 2 2 2

rms av rms av av av rms av av2 2( ) ( 2 ) ( ) ( ) .
( 1) ( 1) 1 ( 1)

N N N Nv v v v v v u u v v v u
N N N N

′ ′− = − + − + = − + −
+ + + +

If rms av ,v v>  then 

this difference is necessarily positive, and rms av.v v′ ′>  
(d) The result has been shown for 1,N =  and it has been shown that validity for N implies validity for 1;N +  by 
induction, the result is true for all N. 
EVALUATE: rms avv v> because rmsv gives more weight to particles that have greater speed. 





 

 


