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DYNAMICS OF ROTATIONAL MOTION 

 10.1. IDENTIFY: Use Eq.(10.2) to calculate the magnitude of the torque and use the right-hand rule illustrated in 
Fig.(10.4) to calculate the torque direction. 
(a) SET UP: Consider Figure 10.1a. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin90l r φ= = °  

4.00 ml =  
(10.0 N)(4.00 m) 40.0 N mτ = = ⋅  

Figure 10.1a  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(b) SET UP: Consider Figure 10.1b. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin120l r φ= = °  

3.464 ml =  
(10.0 N)(3.464 m) 34.6 N mτ = = ⋅  

Figure 10.1b  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(c) SET UP: Consider Figure 10.1c. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin30l r φ= = °  

2.00 ml =  
(10.0 N)(2.00 m) 20.0 N mτ = = ⋅  

Figure 10.1c  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(d) SET UP: Consider Figure 10.1d. 

 

EXECUTE: Flτ =  
sin (2.00 m)sin 60 1.732 ml r φ= = ° =  

(10.0 N)(1.732 m) 17.3 N mτ = = ⋅  

Figure 10.1d  
This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector τ!  is directed into 
the plane of the figure. 
(e) SET UP: Consider Figure 10.1e. 

 

EXECUTE: Flτ =  
0r =  so 0l =  and 0τ =  

Figure 10.1e  
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(f) SET UP: Consider Figure 10.1f. 

 

EXECUTE: Flτ =  
sin ,l r φ=  180 ,φ = °  

so 0l =  and 0τ =  
Figure 10.1f  

EVALUATE: The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of the force 
passes through the axis. 

 10.2. IDENTIFY: Flτ =  with sinl r φ= . Add the two torques to calculate the net torque. 
SET UP: Let counterclockwise torques be positive. 
EXECUTE: 1 1 1 (8.00 N)(5.00 m) 40.0 N mFlτ = − = − = − ⋅ . 2 2 2 (12.0 N)(2.00 m)sin30.0 12.0 N mF lτ = + = = + ⋅° . 

1 2 28.0 N mτ τ τ= + = − ⋅∑ . The net torque is 28.0 N m⋅ , clockwise. 

EVALUATE: Even though 1 2F F< , the magnitude of 1τ  is greater than the magnitude of 2 ,τ  because 1F  has a 
larger moment arm. 

 10.3. IDENTIFY and SET UP: Use Eq.(10.2) to calculate the magnitude of each torque and use the right-hand rule 
(Fig.10.4) to determine the direction. Consider Figure 10.3 

 
Figure 10.3 

Let counterclockwise be the positive sense of rotation. 
EXECUTE: 2 2

1 2 3 (0.090 m) (0.090 m) 0.1273 mr r r= = = + =  

1 1 1Flτ = −  

1 1 1sin (0.1273 m)sin135 0.0900 ml r φ= = ° =  

1 (18.0 N)(0.0900 m) 1.62 N mτ = − = − ⋅  

1τ
!  is directed into paper 

2 2 2F lτ = +  

2 2 2sin (0.1273 m)sin135 0.0900 ml r φ= = ° =  

2 (26.0 N)(0.0900 m) 2.34 N mτ = + = + ⋅  

2τ
!  is directed out of paper 

3 3 3F lτ = +  

3 3 3sin (0.1273 m)sin90 0.1273 ml r φ= = ° =  

3 (14.0 N)(0.1273 m) 1.78 N mτ = + = + ⋅  

3τ
!  is directed out of paper 

1 2 3 1.62 N m 2.34 N m 1.78 N m 2.50 N mτ τ τ τ= + + = − ⋅ + ⋅ + ⋅ = ⋅∑  
EVALUATE: The net torque is positive, which means it tends to produce a counterclockwise rotation; the vector 
torque is directed out of the plane of the paper. In summing the torques it is important to include +  or −  signs to 
show direction. 

 10.4. IDENTIFY: Use sinFl rFτ φ= = to calculate the magnitude of each torque and use the right-hand rule to 
determine the direction of each torque. Add the torques to find the net torque. 
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SET UP: Let counterclockwise torques be positive. For the 11.9 N force ( 1F ), 0r = . For the 14.6 N force ( 2F ), 
0.350 mr = and 40.0φ = ° . For the 8.50 N force ( 3F ), 0.350 mr = and 90.0φ = °  

EXECUTE: 1 0τ = . 2 (14.6 N)(0.350 m)sin 40.0 3.285 N mτ = − = − ⋅° . 

3 (8.50 N)(0.350 m)sin90.0 2.975 N mτ = + = + ⋅° . 3.285 N m 2.975 N m 0.31 N mτ = − ⋅ + ⋅ = − ⋅∑ .The net torque 
is 0.31 N m⋅ and is clockwise. 
EVALUATE: If we treat the torques as vectors, 2τ

! is into the page and 3τ
! is out of the page. 

 10.5. IDENTIFY and SET UP: Calculate the torque using Eq.(10.3) and also determine the direction of the torque using 
the right-hand rule. 
(a) � �( 0.450 m) (0.150 m) ;= − +r i j!  � �( 5.00 N) (4.00 N) .= − +F i j

!
 The sketch is given in Figure 10.5. 

 
Figure 10.5 

EXECUTE: (b) When the fingers of your right hand curl from the direction of r!  into the direction of F
!

 (through 
the smaller of the two angles, angle )φ  your thumb points into the page (the direction of ,τ!  the -direction).z−  

(c) � � � �( 0.450 m) +(0.150 m) ( 5.00 N) (4.00 N)τ ⎡ ⎤ ⎡ ⎤= × = − × − +⎣ ⎦ ⎣ ⎦r F i j i j
!!!  

� � � � � � � �(2.25 N m) (1.80 N m) (0.750 N m) (0.600 N m)τ = + ⋅ × − ⋅ × − ⋅ × + ⋅ ×i i i j j i j j!  
� � � �× = × = 0i i j j  
� � �,×i j = k  � � �× = −j i k  

Thus � � �(1.80 N m) (0.750 N m)( ) ( 1.05 N m) .τ = − ⋅ − ⋅ − = − ⋅k k k!  
EVALUATE: The calculation gives that τ!  is in the -direction.z−  This agrees with what we got from the right-
hand rule. 

 10.6. IDENTIFY: Use sinFl rFτ φ= = for the magnitude of the torque and the right-hand rule for the direction. 
SET UP: In part (a), 0.250 mr = and 37φ = °  
EXECUTE: (a) (17.0 N)(0.250 m)sin37 2.56 N mτ = = ⋅° . The torque is counterclockwise. 
(b) The torque is maximum when 90φ = ° and the force is perpendicular to the wrench. This maximum torque is 
(17.0 N)(0.250 m) 4.25 N m= ⋅ . 
EVALUATE: If the force is directed along the handle then the torque is zero. The torque increases as the angle 
between the force and the handle increases. 

 10.7. IDENTIFY: Apply z zIτ α=∑ . 

SET UP: 0 0zω = . 2  rad/rev(400 rev/min) 41.9 rad/s
60 s/minz
πω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE: ( )20 41.9 rad/s2.50 kg m 13.1 N m.
8.00 s

z z
z zIα I

t
ω ωτ −

= = = ⋅ = ⋅  

EVALUATE: In z zIτ α= , zα must be in 2rad/s . 

 10.8. IDENTIFY: Use a constant acceleration equation to calculate zα and then apply z zIτ α=∑ . 

SET UP: 2 22
3 2 ,  where 8.40 kg, 2.00 kgI MR mR M m= + = = , so 20.600 kg mI = ⋅ . 

0 75.0 rpm 7.854 rad s;  50.0 rpm 5.236 rad s;  30.0 sz zω ω t= = = = = . 

EXECUTE: 
z

2
0  gives 0.08726 rad sz z zω ω α t α= + = − . 0.0524 N mz zτ Iα= = − ⋅  

EVALUATE: The torque is negative because its direction is opposite to the direction of rotation, which must be 
the case for the speed to decrease. 

 10.9. IDENTIFY: Use z zIτ α=∑ to calculate α . Use a constant angular acceleration kinematic equation to relate zα , 

zω and t. 

SET UP: For a solid uniform sphere and an axis through its center, 22
5I MR= . Let the direction the sphere is 

spinning be the positive sense of rotation. The moment arm for the friction force is 0.0150 ml = and the torque due 
to this force is negative. 
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EXECUTE: (a) 2
22

5

(0.0200 N)(0.0150 m) 14.8 rad/s
(0.225 kg)(0.0150 m)

z
z I

τα −
= = = −  

(b) 0 22.5 rad/sz zω ω− = − . 0z z ztω ω α= + gives 0
2

22.5 rad/s 1.52 s
14.8 rad/s

z z

z

t ω ω
α
− −

= = =
−

. 

EVALUATE: The fact that zα is negative means its direction is opposite to the direction of spin. The negative 

zα causes zω to decrease. 

10.10. IDENTIFY: Apply z zIτ α=∑ to the wheel. The acceleration a of a point on the cord and the angular acceleration 
α of the wheel are related by a Rα= . 
SET UP: Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and 21

2I MR= . 
The free-body diagram for the wheel is sketched in Figure 10.10a for a horizontal pull and in Figure 10.10b for a 
vertical pull. P is the pull on the cord and F is the force exerted on the wheel by the axle. 

EXECUTE: (a) 2
21

2

(40.0 N)(0.250 m) 34.8 rad/s
(9.20 kg)(0.250 m)

z
z I

τα = = = . 2 2(0.250 m)(34.8 rad/s ) 8.70 m/sa Rα= = = . 

(b) xF P= − , yF Mg= − . 2 2 2 2 2( ) (40.0 N) ([9.20 kg][9.80 m/s ]) 98.6 NF P Mg= + = + = . 
2(9.20 kg)(9.80 m/s )tan

40.0 N
y

x

F Mg
F P

φ = = = and 66.1φ = ° . The force exerted by the axle has magnitude 98.6 N and 

is directed at 66.1° above the horizontal, away from the direction of the pull on the cord. 
(c) The pull exerts the same torque as in part (a), so the answers to part (a) don�t change. In part (b), 
F P Mg+ = and 2(9.20 kg)(9.80 m/s ) 40.0 N 50.2 NF Mg P= − = − = . The force exerted by the axle has 
magnitude 50.2 N and is upward. 
EVALUATE: The weight of the wheel and the force exerted by the axle produce no torque because they act at the 
axle. 

  
Figure 10.10 

10.11. IDENTIFY: Use a constant angular acceleration equation to calculate zα and then apply z zIτ α=∑ to the motion 

of the cylinder. k kf nμ= . 

SET UP: ( )( )22 21 1
2 2 8.25 kg 0.0750 m 0.02320 kg mI mR= = = ⋅ . Let the direction the cylinder is rotating be 

positive. 0 0220 rpm 23.04 rad/s; 0;  5.25 rev 33.0 radz zω ω θ θ= = = − = = . 

EXECUTE: ( )2 2
0 02z z zω ω α θ θ= + − gives 28.046 rad/szα = − . k kz fτ τ f R μ nR∑ = = − = − . Then z zIτ α=∑ gives 

k zμ nR Iα− = and 
k

7.47 NzIαn
μ R

= = . 

EVALUATE: The friction torque is directed opposite to the direction of rotation and therefore produces an angular 
acceleration that slows the rotation. 

10.12. IDENTIFY: Apply m=∑F a
! ! to the stone and z zIτ α=∑ to the pulley. Use a constant acceleration equation to 

find a for the stone. 
SET UP: For the motion of the stone take y+  to be downward. The pulley has 21

2I MR= . a Rα= . 
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EXECUTE: (a) 21
0 0 2y yy y v t a t− = + gives ( )21

212.6 m 3.00 sya= and 22.80 m sya = . Then y yF ma=∑ applied 

to the stone gives mg T ma− = . z zIτ α=∑ applied to the pulley gives ( )2 21 1
2 2 /TR MR MR a Rα= = . 1

2T Ma= . 
Combining these two equations to eliminate T gives 

2

2 2

10.0 kg 2.80 m/s 2.00 kg
2 2 9.80 m/s 2.80 m/s
M aM

g a
⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

(b) ( )( )21 1 10.0 kg 2.80 m/s 14.0 N
2 2

T Ma= = =  

EVALUATE: The tension in the wire is less than the weight 19.6 Nmg = of the stone, because the stone has a 
downward acceleration. 

10.13. IDENTIFY: Use the kinematic information to solve for the angular acceleration of the grindstone. Assume that the 
grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply Eq.(10.7) to 
calculate the friction force and use k kf nμ=  to calculate k.μ  
SET UP: 0 850 rev/min(2  rad/1 rev)(1 min/60 s) 89.0 rad/szω π= =  

7.50 s;t =  0zω =  (comes to rest); ?zα =  
EXECUTE: 0z z ztω ω α= +  

20 89.0 rad/s 11.9 rad/s
7.50 szα

−
= = −  

SET UP: Apply z zIτ α=∑  to the grindstone. The free-body diagram is given in Figure 10.13. 

 
Figure 10.13 

The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and therefore zero 
torque. The only torque on the grindstone is that due to the friction force kf  exerted by the ax; for this force the 
moment arm is l R=  and the torque is negative. 
EXECUTE: k kz f R nRτ μ= − = −∑  

21
2I MR=  (solid disk, axis through center) 

Thus z zIτ α=∑  gives ( )21
k 2 znR MRμ α− =  

2

k
(50.0 kg)(0.260 m)( 11.9 rad/s ) 0.483

2 2(160 N)
zMR

n
αμ −

= − = − =  

EVALUATE: The friction torque is clockwise and slows down the counterclockwise rotation of the grindstone. 
10.14. IDENTIFY: Apply y yF ma=∑  to the bucket, with y+  downward. Apply z zIτ α=∑  to the cylinder, with the 

direction the cylinder rotates positive. 
SET UP: The free-body diagram for the bucket is given in Fig.10.14a and the free-body diagram for the cylinder 
is given in Fig.10.14b. 21

2I MR= . (bucket) (cylinder)a Rα=  

EXECUTE: (a) For the bucket, mg T ma− = . For the cylinder, z zIτ α=∑  gives 21
2TR MR α= . /a Rα =  then 

gives 1
2T Ma= . Combining these two equations gives 1

2mg Ma ma− =  and 

2 215.0 kg (9.80 m/s ) 7.00 m/s
/ 2 15.0 kg 6.0 kg

mga
m M

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

. 

2 2( ) (15.0 kg)(9.80 m/s 7.00 m/s ) 42.0 NT m g a= − = − = . 

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(7.00 m/s )(10.0 m) 11.8 m/syv = = . 

(c) 27.00 m/sya = , 0 0yv = , 0 10.0 my y− = . 21
0 0 2y yy y v t tα− = +  gives 0

2

2( ) 2(10.0 m) 1.69 s
7.00 m/sy

y yt
a
−

= = =  
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(d) y yF ma=∑ applied to the cylinder gives 0n T Mg− − =  and 
242.0 N (12.0 kg)(9.80 m/s ) 160 Nn T mg= + = + = . 

EVALUATE: The tension in the rope is less than the weight of the bucket, because the bucket has a downward 
acceleration. If the rope were cut, so the bucket would be in free-fall, the bucket would strike the water in 

2

2(10.0 m) 1.43 s
9.80 m/s

t = = and would have a final speed of 14.0 m/s. The presence of the cylinder slows the fall of  

the bucket. 

  
Figure 10.14 

10.15. IDENTIFY: Apply m=∑F a
! ! to each book and apply z zIτ α=∑ to the pulley. Use a constant acceleration 

equation to find the common acceleration of the books. 
SET UP: 1 2.00 kgm = , 2 3.00 kgm = . Let 1T be the tension in the part of the cord attached to 1m and 2T be the 
tension in the part of the cord attached to 2m . Let the -directionx+  be in the direction of the acceleration of each 
book. a Rα= . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = + gives 20

2 2

2( ) 2(1.20 m) 3.75 m/s
(0.800 s)x

x xa
t
−

= = = . 2
1 3.75 m/sa = so 

1 1 1 7.50 NT m a= = and ( )2 2 1 18.2 NT m g a= − = . 

(b) The torque on the pulley is ( )2 1 0.803 N m,T T R− = ⋅ and the angular acceleration is 
2 2

1 50 rad/s ,  so 0.016 kg m .a R Iα τ α= = = = ⋅  
EVALUATE: The tensions in the two parts of the cord must be different, so there will be a net torque on the 
pulley. 

10.16. IDENTIFY: Apply m∑F = a
! ! to each box and z zIτ α=∑ to the pulley. The magnitude a of the acceleration of 

each box is related to the magnitude of the angular acceleration α of the pulley by a Rα= . 
SET UP: The free-body diagrams for each object are shown in Figure 10.16a-c. For the pulley, 0.250 mR = and 

21
2I MR= . 1T and 2T are the tensions in the wire on either side of the pulley. 1 12.0 kgm = , 2 5.00 kgm = and 

2.00 kgM = . F
!

is the force that the axle exerts on the pulley. For the pulley, let clockwise rotation be positive. 

EXECUTE: (a) x xF ma=∑ for the 12.0 kg box gives 1 1T m a= . y yF ma=∑ for the 5.00 kg weight gives 

2 2 2m g T m a− = . z zIτ α=∑ for the pulley gives 21
2 1 2( ) ( )T T R MR α− = . a Rα= and 1

2 1 2T T Ma− = . Adding these 

three equations gives 1
2 1 2 2( )m g m m M a= + + and 

2 22
1

1 2 2

5.00 kg (9.80 m/s ) 2.72 m/s
12.0 kg 5.00 kg 1.00 kg

ma g
m m M

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

. Then 

2
1 1 (12.0 kg)(2.72 m/s ) 32.6 NT m a= = = . 2 2 2m g T m a− = gives 

2 2
2 2 ( ) (5.00 kg)(9.80 m/s 2.72 m/s ) 35.4 NT m g a= − = − = . The tension to the left of the pulley is 32.6 N and 

below the pulley it is 35.4 N. 
(b) 22.72 m/sa =  
(c) For the pulley, x xF ma=∑ gives 1 32.6 NxF T= = and y yF ma=∑ gives 

2
2 (2.00 kg)(9.80 m/s ) 35.4 N 55.0 NyF Mg T= + = + = . 
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EVALUATE: The equation 1
2 1 2 2( )m g m m M a= + + says that the external force 2m g must accelerate all three 

objects. 

 
 

 
Figure 10.16 

10.17. IDENTIFY: Apply z zIτ α=∑ to the post and m∑F = a
! ! to the hanging mass. The acceleration a! of the mass has 

the same magnitude as the tangential acceleration tana rα= of the point on the post where the string is attached; 
1.75 m 0.500 m 1.25 mr = − = . 

SET UP: The free-body diagrams for the post and mass are given in Figures 10.17a and b. The post has 
21

3I ML= , with 15.0 kgM = and 1.75 mL = . 

EXECUTE: (a) z zIτ α=∑ for the post gives ( )21
3Tr ML α= . a rα= so a

r
α = and 

2

23
MLT a

r
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. y yF ma=∑ for 

the mass gives mg T ma− = . These two equations give 2 2( /[3 ])mg m ML r a= + and 

2 2
2 2 2 2

5.00 kg (9.80 m/s ) 3.31 m/s
/[3 ] 5.00 kg [15.0 kg][1.75 m] /3[1.25 m]

ma g
m ML r

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

2
23.31 m/s 2.65 rad/s

1.25 m
a
r

α = = = . 

(b) No. As the post rotates and the point where the string is attached moves in an arc of a circle, the string is no 
longer perpendicular to the post. The torque due to this tension changes and the acceleration due to this torque is 
not constant. 
(c) From part (a), 23.31 m/sa = . The acceleration of the mass is not constant. It changes as α for the post changes. 
EVALUATE: At the instant the cable breaks the tension in the string is less than the weight of the mass because 
the mass accelerates downward and there is a net downward force on it. 

   
Figure 10.17 

10.18. IDENTIFY: Apply z zIτ α=∑ to the rod. 

SET UP: For the rod and axis at one end, 21
3I Ml= . 

EXECUTE: 21
3

3 .Fl F
I Ml Ml
τα = = =  

EVALUATE: Note that α decreases with the length of the rod, even though the torque increases. 
10.19. IDENTIFY: Since there is rolling without slipping, cmv Rω= . The kinetic energy is given by Eq.(10.8). The 

velocities of points on the rim of the hoop are as described in Figure 10.13 in chapter 10. 
SET UP: 3.00 rad/sω = and 0.600 mR = . For a hoop rotating about an axis at its center, 2I MR= . 
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EXECUTE: (a) cm (0.600 m)(3.00 rad/s) 1.80 m/sv Rω= = = . 

(b) 2 2 2 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2 ( )( / ) (2.20 kg)(1.80 m/s) 7.13 JK Mv I Mv MR v R Mvω= + = + = = =  

(c) (i) cm2 3.60 m/sv v= = . v! is to the right. (ii) 0v =  

(iii) 2 2 2 2
cm tan cm cm( ) 2 2.55 m/sv v v v R vω= + = + = = . v! at this point is at 45° below the horizontal. 

(d) To someone moving to the right at cmv v= , the hoop appears to rotate about a stationary axis at its center. 
(i) 1.80 m/sv Rω= = , to the right. (ii) 1.80 m/sv = , to the left. (iii) 1.80 m/sv = , downward. 
EVALUATE: For the special case of a hoop, the total kinetic energy is equally divided between the motion of the 
center of mass and the rotation about the axis through the center of mass. In the rest frame of the ground, different 
points on the hoop have different speed. 

10.20. IDENTIFY: Only gravity does work, so other 0W =  and conservation of energy gives i i f fK U K U+ = + . 
2 21 1

f cm cm2 2K Mv I ω= + . 
SET UP: Let f 0y = , so f 0U =  and i 0.750 my = . The hoop is released from rest so i 0K = . cmv Rω= . For a 

hoop with an axis at its center, 2
cmI MR= . 

EXECUTE: (a) Conservation of energy gives i fU K= . 2 2 2 2 2 21 1
f 2 2 ( )K MR MR MRω ω ω= + = , so 2 2

iMR Mgyω = . 
2

i (9.80 m/s )(0.750 m)
33.9 rad/s

0.0800 m
gy
R

ω = = = . 

(b) (0.0800 m)(33.9 rad/s) 2.71 m/sv Rω= = =  
EVALUATE: An object released from rest and falling in free-fall for 0.750 m attains a speed of 

2 (0.750 m) 3.83 m/sg = . The final speed of the hoop is less than this because some of its energy is in kinetic 
energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the hoop to be less 
than its weight. 

10.21. IDENTIFY: Apply Eq.(10.8). 
SET UP: For an object that is rolling without slipping, cmv Rω= . 
EXECUTE: The fraction of the total kinetic energy that is rotational is 

( )
( ) ( )

2
cm

2 2 2 2 2
cm cm cm cm cm

1 2 1 1
1 2 1 2 1( / ) / 1 ( / )

I
Mv I M I v MR I

ω
ω ω

= =
+ +

 

(a) 2
cm (1 2) ,  so the above ratio is 1 3.I MR=  

(b) 2
cm (2 5)I MR= so the above ratio is 2 7 . 

(c) 2
cm (2 3)I MR= so the ratio is 2 5 . 

(d) 2
cm (5 8)I MR= so the ratio is 5 13.  

EVALUATE: The moment of inertia of each object takes the form 2I MRβ= . The ratio of rotational kinetic 

energy to total kinetic energy can be written as 1
1 1/ 1

β
β β
=

+ +
. The ratio increases as β increases. 

10.22. IDENTIFY: Apply m=∑F a
! ! to the translational motion of the center of mass and z zIτ α=∑  to the rotation 

about the center of mass. 
SET UP: Let x+  be down the incline and let the shell be turning in the positive direction. The free-body diagram 
for the shell is given in Fig.10.22. From Table 9.2, 22

cm 3I mR= . 

EXECUTE: x xF ma=∑ gives cmsinmg f maβ − = . z zIτ α=∑  gives 22
3( )fR mR α= . With cm /a Rα =  this 

becomes 2
cm3f ma= . Combining the equations gives 2

cm cm3sinmg ma maβ − =  and 
2

2
cm

3 sin 3(9.80 m/s )(sin38.0 ) 3.62 m/s
5 5

ga β
= = =

° . 22 2
cm3 3 (2.00 kg)(3.62 m/s ) 4.83 Nf ma= = = . The friction is 

static since there is no slipping at the point of contact. cos 15.45 Nn mg β= = . s
4.83 N 0.313

15.45 N
f
n

μ = = = . 

(b) The acceleration is independent of m and doesn�t change. The friction force is proportional to m so will double; 
9.66 Nf = . The normal force will also double, so the minimum sμ required for no slipping wouldn�t change. 
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EVALUATE: If there is no friction and the object slides without rolling, the acceleration is sing β . Friction and 
rolling without slipping reduce a to 0.60 times this value. 

 
Figure 10.22 

10.23. IDENTIFY: Apply ext cmm=∑F a
! !  and cmz zIτ α=∑  to the motion of the ball. 

(a) SET UP: The free-body diagram is given in Figure 10.23a. 

 

EXECUTE: y yF ma=∑  

cosn mg θ=  and s s cosf mgμ θ=  

x xF ma=∑  

ssin cosmg mg maθ μ θ− =  

s(sin cos )g aθ μ θ− =  (eq. 1) 
Figure 10.23a  

SET UP: Consider Figure 10.23b. 

 

n and mg act at the 
center of the ball and 
provide no torque 

Figure 10.23b  

EXECUTE: s cos ;f mg Rτ τ μ θ= =∑  22
5I mR=  

cmz zIτ α=∑  gives 22
s 5cosmg R mRμ θ α=  

No slipping means / ,a Rα =  so 2
s 5cosg aμ θ =  (eq.2) 

We have two equations in the two unknowns a and s.μ  Solving gives 5
7 sina g θ=  and 

2 2
s 7 7tan tan 65.0 0.613μ θ= = ° =  

(b) Repeat the calculation of part (a), but now 22
3 .I mR=  3

5 sina g θ=  and 2 2
s 5 5tan tan65.0 0.858μ θ= = ° =  

The value of sμ  calculated in part (a) is not large enough to prevent slipping for the hollow ball. 
(c) EVALUATE: There is no slipping at the point of contact. More friction is required for a hollow ball since for a 
given m and R it has a larger I and more torque is needed to provide the same .α  Note that the required sμ  is 
independent of the mass or radius of the ball and only depends on how that mass is distributed. 

10.24. IDENTIFY: Apply conservation of energy to the motion of the marble. 
SET UP: 2 21 1

2 2K mv Iω= + , with 22
5I MR= . cm for no slippingv Rω= . Let 0y = at the bottom of the bowl. The 

marble at its initial and final locations is sketched in Figure 10.24. 
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EXECUTE: (a) Motion from the release point to the bottom of the bowl: 2 21 1
2 2

mgh mv Iω= + . 

2
2 21 1 2

2 2 5
vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

and 10
7 

v gh= . 

Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction torque on 

the marble, 2
rot rot

1
2

mv K mgh K′+ = + . 
2 10

7 5
2 2 7

ghvh h
g g

′ = = =  

(b) mgh mgh′= so h h′ = . 
EVALUATE: (c) With friction on both halves, all the initial potential energy gets converted back to potential 
energy. Without friction on the right half some of the energy is still in rotational kinetic energy when the marble is 
at its maximum height. 

 
Figure 10.24 

10.25. IDENTIFY: Apply conservation of energy to the motion of the wheel. 
SET UP: The wheel at points 1 and 2 of its motion is shown in Figure 10.25. 

 

Take y = 0 at the center 
of the wheel when it is at 
the bottom of the hill. 

Figure 10.25  

The wheel has both translational and rotational motion so its kinetic energy is 2 21 1
cm cm2 2 .K I Mvω= +  

EXECUTE: 1 1 other 2 2K U W K U+ + = +  

other fric 3500 JW W= = −  (the friction work is negative) 
2 21 1

1 1 12 2 ;K I Mvω= +  v Rω=  and 20.800I MR=  so 
2 2 2 2 2 21 1

1 1 1 12 2(0.800) 0.900K MR MR MRω ω ω= + =  

2 0,K =  1 0,U =  2U Mgh=  

Thus 2 2
1 fric0.900MR W Mghω + =  

2/ 392 N/(9.80 m/s ) 40.0 kgM w g= = =  
2 2

1 fric0.900MR Wh
Mg
ω +

=  

2 2

2

(0.900)(40.0 kg)(0.600 m) (25.0 rad/s) 3500 J 11.7 m
(40.0 kg)(9.80 m/s )

h −
= =  

EVALUATE: Friction does negative work and reduces h. 
10.26. IDENTIFY: Apply z zIτ α=∑ and m=∑F a

! !  to the motion of the bowling ball. 

SET UP: cma Rα= . s sf nμ= . Let x+  be directed down the incline. 
EXECUTE: (a) The free-body diagram is sketched in Figure 10.26. 
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up the hill. 
(b) The friction force results in an angular acceleration, given by .I fRα =  m=∑F a

! ! applied to the motion of the 

center of mass gives cm,sinmg f maβ − = and the acceleration and angular acceleration are related by cma Rα= . 

Combining, ( )2sin 1 7 5Img ma ma
mR

β ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. ( )cm 5 7 sina g β= . 



Dynamics of Rotational Motion  10-11 

(c) From either of the above relations between f and cm ,a  cm s s
2 2 sin cos
5 7

f ma mg n mgβ μ μ β= = ≤ = . 

( )s 2 7 tan .μ β≥  

EVALUATE: If s 0μ = , cm sina mg β= . cma is less when friction is present. The ball rolls farther uphill when 
friction is present, because the friction removes the rotational kinetic energy and converts it to gravitational 
potential energy. In the absence of friction the ball retains the rotational kinetic energy that is has initially. 

 
Figure 10.26 

10.27. (a) IDENTIFY: Use Eq.(10.7) to find zα  and then use a constant angular acceleration equation to find .zω  
SET UP: The free-body diagram is given in Figure 10.27. 

 

EXECUTE: Apply z zIτ α=∑  to find the angular 
acceleration: 

zFR Iα=  

2
2

(18.0 N)(2.40 m) 0.02057 rad/s
2100 kg mz

FR
I

α = = =
⋅

 

Figure 10.27  
SET UP: Use the constant zα  kinematic equations to find .zω  

?;zω =  0 zω  (initially at rest); 20.02057 rad/s ;zα =  15.0 st =  

EXECUTE: 2
0 0 (0.02057 rad/s )(15.0 s) 0.309 rad/sz z ztω ω α= + = + =  

(b) IDENTIFY and SET UP: Calculate the work from Eq.(10.21), using a constant angular acceleration equation to 
calculate 0,θ θ−  or use the work-energy theorem. We will do it both ways. 
EXECUTE: (1) zW τ θ= Δ  (Eq.(10.21)) 

2 2 21 1
0 0 2 20 (0.02057 rad/s )(15.0 s) 2.314 radz zt tθ θ θ ω αΔ = − = + = + =  

(18.0 N)(2.40 m) 43.2 N mzt FR= = = ⋅  
Then (43.2 N m)(2.314 rad) 100 J.zW τ θ= Δ = ⋅ =  
or 
(2) tot 2 1W K K= −  (the work-energy relation from chapter 6) 

tot ,W W=  the work done by the child 

1 0;K =  2 2 21 1
2 2 2 (2100 kg m )(0.309 rad/s) 100 JK Iω= = ⋅ =  

Thus 100 J,W =  the same as before. 
EVALUATE: Either method yields the same result for W. 
(c) IDENTIFY and SET UP: Use Eq.(6.15) to calculate avP  

EXECUTE: av
100 J 6.67 W
15.0 s

WP
t

Δ
= = =
Δ

 

EVALUATE: Work is in joules, power is in watts. 
10.28. IDENTIFY: Apply P τω= and W τ θ= Δ . 

SET UP: P must be in watts, θΔ must be in radians, and ω must be in rad/s. 1 rev 2  radπ= . 1 hp 746 W= . 
 rad/s 30 rev/minπ = . 

EXECUTE: (a) ( )( )

( )

175 hp 746 W / hp
519 N m.

rad/s2400 rev/min
30 rev/min

Pτ
πω

= = = ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) ( )( )519 N m 2  rad 3260 JW τ θ π= Δ = ⋅ =  
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EVALUATE: 40 rev/sω = , so the time for one revolution is 0.025 s. 51.306 10  WP = × , so in one revolution, 
3260 JW Pt= = , which agrees with our previous result. 

10.29. IDENTIFY: Apply z zIτ α=∑ and constant angular acceleration equations to the motion of the wheel. 
SET UP: 1 rev 2  radπ= .  rad/s 30 rev/minπ = . 

EXECUTE: (a) 0 z z
z zI I

t
ω ωτ α −

= = . 

( )( )( )( )( )2 rad s1 2 1.50 kg 0.100 m 1200 rev min
30 rev min

0.377 N m
2.5 sz

π

τ

⎛ ⎞
⎜ ⎟
⎝ ⎠= = ⋅  

(b) ( )( )
av

600 rev/min 2.5 s
25.0 rev 157 rad.

60 s/min
tω Δ = = =  

(c) (0.377 N m)(157 rad) 59.2 JW τ θ= Δ = ⋅ = . 

(d) ( )
2

2 21 1 rad/s (1/ 2)(1.5 kg)(0.100 m) (1200 rev/min) 59.2 J
2 2 30 rev/min

K I πω ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

the same as in part (c). 
EVALUATE: The agreement between the results of parts (c) and (d) illustrates the work-energy theorem 

10.30. IDENTIFY: The power output of the motor is related to the torque it produces and to its angular velocity by 
z zP τ ω= , where zω must be in rad/s. 

SET UP: The work output of the motor in 60.0 s is 2 (9.00 kJ) 6.00 kJ
3

= , so 6.00 kJ 100 W
60.0 s

P = = . 

2500 rev/min 262 rad/szω = = . 

EXECUTE: 100 W 0.382 N m
262 rad/sz

z

Pτ
ω

= = = ⋅  

EVALUATE: For a constant power output, the torque developed decreases and the rotation speed of the motor 
increases. 

10.31. IDENTIFY: Apply FRτ = and P τω= . 
SET UP: 1 hp 746 W= .  rad/s 30 rev/minπ =  
EXECUTE: (a) With no load, the only torque to be overcome is friction in the bearings (neglecting air friction), 
and the bearing radius is small compared to the blade radius, so any frictional torque can be neglected. 

(b) / (1.9 hp)(746 W/hp) 65.6 N.
rad/s(2400 rev/min) (0.086 m)

30 rev/min

PF
R R
τ ω

π
= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

EVALUATE: In P Iω= , τ must be in watts and ω must be in rad/s. 
10.32. IDENTIFY: Apply z zIτ α=∑ to the motion of the propeller and then use constant acceleration equations to 

analyze the motion. W τ θ= Δ . 
SET UP: 2 2 21 1

2 2 (117 kg)(2.08 m) 42.2 kg mI mL= = = ⋅ . 

EXECUTE: (a) 2
2

1950 N m 46.2 rad/s .
42.2 kg mI

τα ⋅
= = =

⋅
 

(b) 2 2
0 02 ( )z z zω ω α θ θ= + − gives 22 2(46.2 rad/s )(5.0 rev)(2  rad/rev) 53.9 rad/s.ω αθ π= = =  

(c) 4(1950 N m)(5.00 rev)(2  rad/rev) 6.13 10  J.W τθ π= = ⋅ = ×  

(d) 0
2

53.9 rad/s 1.17 s
46.2 rad/s  

z z

z

t ω ω
α
−

= = = . 
4

av
6.13 10  J 52.5 kW

1.17 s
WP

t
×

= = =
Δ

. 

EVALUATE: P τω= . τ is constant andω is linear in t, so avP is half the instantaneous power at the end of the 

5.00 revolutions. We could also calculate W from 2 2 2 41 1
2 2 (42.2 kg m )(53.9 rad/s) 6.13 10  JW K Iω= Δ = = ⋅ = × . 

10.33. (a) IDENTIFY and SET UP: Use Eq.(10.23) and solve for .zτ  
,z zP τ ω=  where zω  must be in rad/s 

EXECUTE: (4000 rev/min)(2  rad/1 rev)(1 min/60 s) 418.9 rad/szω π= =  
51.50 10  W 358 N m

418.9 rad/sz
z

Pτ
ω

×
= = = ⋅  
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(b) IDENTIFY and SET UP: Apply m=∑F a
! !  to the drum. Find the tension T in the rope using zτ  from part (a). 

The system is sketched in Figure 10.33. 

 

EXECUTE: v constant implies 0a =  and T w=  
z TRτ =  implies 

/ 358 N m/0.200 m 1790 NzT Rτ= = ⋅ =  
Thus a weight 1790 Nw =  can be lifted. 

Figure 10.33  
(c) IDENTIFY and SET UP: Use .v Rω=  
EXECUTE: The drum has 418.9 rad/s,ω =  so (0.200 m)(418.9 rad/s) 83.8 m/sv = =  
EVALUATE: The rate at which T is doing work on the drum is (1790 N)(83.8 m/s) 150 kW.P Tv= = =  This 
agrees with the work output of the motor. 

10.34. IDENTIFY: L Iω=  and disk womanI I I= + . 

SET UP: 0.50 rev/s 3.14 rad/sω = = . 21
disk disk2I m R=  and 2

woman womanI m R= . 

EXECUTE: 2 2(55 kg 50.0 kg)(4.0 m) 1680 kg mI = + = ⋅ . 2 3 2(1680 kg m )(3.14 rad/s) 5.28 10  kg m /sL = ⋅ = × ⋅  
EVALUATE: The disk and the woman have similar values of I, even though the disk has twice the mass. 

10.35. (a) IDENTIFY: Use sinL mvr φ=  (Eq.(10.25)): 
SET UP: Consider Figure 10.35. 

 

EXECUTE: sinL mvr φ= =  
(2.00 kg)(12.0 m/s)(8.00 m)sin143.1°  

2115 kg m /sL = ⋅  

Figure 10.35  

To find the direction of L
!

 apply the right-hand rule by turning r!  into the direction of v!  by pushing on it with the 
fingers of your right hand. Your thumb points into the page, in the direction of .L

!
 

(b) IDENTIFY and SET UP: By Eq.(10.26) the rate of change of the angular momentum of the rock equals the 
torque of the net force acting on it. 
EXECUTE: 2 2(8.00 m)cos36.9 125 kg m /smgτ = ° = ⋅  

To find the direction of τ!  and hence of / ,d dtL
!

 apply the right-hand rule by turning r!  into the direction of the 
gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in the 
direction of / .d dtL

!
 

EVALUATE: L
!

 and /d dtL
!

 are in opposite directions, so L is decreasing. The gravity force is accelerating the 
rock downward, toward the axis. Its horizontal velocity is constant but the distance l is decreasing and hence L is 
decreasing. 

10.36. IDENTIFY: z zL Iω=  

SET UP: For a particle of mass m moving in a circular path at a distance r from the axis, 2I mr= and v rω= . For 
a uniform sphere of mass M and radius R and an axis through its center, 22

5I MR= . The earth has mass 
24

E 5.97 10  kgm = × , radius 6
E 6.38 10  mR = × and orbit radius 111.50 10  mr = × . The earth completes one rotation 

on its axis in 24 h 86,400 s= and one orbit in 71 y 3.156 10  s= × . 

EXECUTE: (a) 2 24 11 2 40 2
7

2  rad(5.97 10  kg)(1.50 10  m) 2.67 10  kg m /s
3.156 10  sz z zL I mr πω ω ⎛ ⎞= = = × × = × ⋅⎜ ⎟×⎝ ⎠

. 

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for this 
calculation. 

(b) ( )2 24 6 2 33 22 2
5 5

2  rad(5.97 10  kg)(6.38 10  m) 7.07 10  kg m /s
86,400 sz zL I MR πω ω ⎛ ⎞

= = = × × = × ⋅⎜ ⎟
⎝ ⎠

 

EVALUATE: The angular momentum associated with each of these motions is very large. 
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10.37. IDENTIFY and SET UP: Use L Iω=  
EXECUTE: The second hand makes 1 revolution in 1 minute, so 

(1.00 rev/min)(2  rad/1 rev)(1 min/60 s) 0.1047 rad/sω π= =  
For a slender rod, with the axis about one end, 

2 3 2 5 21 1
3 3 (6.00 10  kg)(0.150 m) 4.50 10  kg mI ML − −= = × = × ⋅  

Then 5 2 6 2(4.50 10  kg m )(0.1047 rad/s) 4.71 10  kg m /s.L Iω − −= = × ⋅ = × ⋅  

EVALUATE: L
!

 is clockwise. 
10.38. IDENTIFY: /z d dtω θ= . z zL Iω= and z zdL dtτ = . 

SET UP: For a hollow, thin-walled sphere rolling about an axis through its center, 22
3I MR= . 0.240 mR = . 

EXECUTE: (a) 21.50 rad/sA = and 41.10 rad/sB = , so that ( )tθ will have units of radians. 

(b) (i) 32 4z
d At Bt
dt
θω = = + . At 3.00 st = , 2 4 32(1.50 rad/s )(3.00 s) 4(1.10 rad/s )(3.00 s) 128 rad/szω = + = . 

2 2 22 2
3 3( ) (12.0 kg)(0.240 m) (128 rad/s) 59.0 kg m /sz zL MR ω= = = ⋅ . 

(ii) 2(2 12 )z z
z

dL dI I A Bt
dt dt

ωτ = = = +  and 

2 2 4 22
3 (12.0 kg)(0.240 m) (2[1.50 rad/s ] 12[1.10 rad/s ][3.00 s] ) 56.1 N mzτ = + = ⋅ . 

EVALUATE: The angular speed of rotation is increasing. This increase is due to an acceleration zα that is 
produced by the torque on the sphere. When I is constant, as it is here, /z z z zdL dt Id dt Iτ ω α= = = and 
Equations (10.29) and (10.7) are identical. 

10.39. IDENTIFY: Apply conservation of angular momentum. 
SET UP: For a uniform sphere and an axis through its center, 22

5I MR= . 
EXECUTE: The moment of inertia is proportional to the square of the radius, and so the angular velocity will be 
proportional to the inverse of the square of the radius, and the final angular velocity is  

2 25
31

2 1
2

2  rad 7.0 10  km 4.6 10  rad s.
(30 d)(86,400 s d) 16 km

R
R

πω ω
⎛ ⎞ ⎛ ⎞⎛ ⎞ ×

= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: 21 1
2 2K I Lω ω= = . L is constant and ω increases by a large factor, so there is a large increase in the 

rotational kinetic energy of the star. This energy comes from potential energy associated with the gravity force 
within the star. 

10.40. IDENTIFY and SET UP: L
!

 is conserved if there is no net external torque. 
Use conservation of angular momentum to find ω  at the new radius and use 21

2K Iω=  to find the change in 
kinetic energy, which is equal to the work done on the block. 
EXECUTE: (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero so this 
force exerts no torque and there is no net torque on the block. 
(b) 1 2L L=  so 1 1 2 2.I Iω ω=  Block treated as a point mass, so 2,I mr=  where r is the distance of the block from the 
hole. 

2 2
1 1 2 2mr mrω ω=  

2 2
1

2 1
2

0.300 m (1.75 rad/s) 7.00 rad/s
0.150 m

r
r

ω ω
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(c) 2 2 2 21 1 1
1 1 1 1 1 12 2 2K I mr mvω ω= = =  

1 1 1 (0.300 m)(1.75 rad/s) 0.525 m/sv rω= = =  
2 21 1

1 12 2 (0.0250 kg)(0.525 m/s) 0.00345 JK mv= = =  
21

2 22K mv=  

2 2 2 (0.150 m)(7.00 rad/s) 1.05 m/sv r ω= = =  
2 21 1

2 22 2 (0.0250 kg)(1.05 m/s) 0.01378 JK mv= = =  

2 1 0.01378 J 0.00345 J 0.0103 JK K KΔ = − = − =  
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(d) totW K= Δ  
But tot ,W W=  the work done by the tension in the cord, so 0.0103 JW =  
EVALUATE: Smaller r means smaller I. L Iω=  is constant so ω  increases and K increases. The work done by 
the tension is positive since it is directed inward and the block moves inward, toward the hole. 

10.41. IDENTIFY: Apply conservation of angular momentum to the motion of the skater. 
SET UP: For a thin-walled hollow cylinder 2I mR= . For a slender rod rotating about an axis through its center, 

21
12I ml= . 

EXECUTE: i fL L=  so i i f fI Iω ω= . 
2 2 21

i 120.40 kg m (8.0 kg)(1.8 m) 2.56 kg mI = ⋅ + = ⋅ . 2 2 2
f 0.40 kg m (8.0 kg)(0.25 m) 0.90 kg mI = ⋅ + = ⋅ . 

2
i

f i 2
f

2.56 kg m (0.40 rev/s)=1.14 rev/s
0.90 kg m

I
I

ω ω
⎛ ⎞ ⎛ ⎞⋅

= =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
. 

EVALUATE: 21 1
2 2K I Lω ω= = . ω increases and L is constant, so K increases. The increase in kinetic energy 

comes from the work done by the skater when he pulls in his hands. 
10.42. IDENTIFY: Apply conservation of angular momentum to the diver. 

SET UP: The number of revolutions she makes in a certain time is proportional to her angular velocity. The ratio 
of her untucked to tucked angular velocity is 2 2(3.6 kg m ) /(18 kg m )⋅ ⋅ . 

EXECUTE: If she had tucked, she would have made 2 2(2 rev)(3.6 kg m ) (18 kg m ) 0.40 rev⋅ ⋅ =  in the last 1.0 s, 
so she would have made (0.40 rev)(1.5 1.0) 0.60  rev=  in the total 1.5 s. 
EVALUATE: Untucked she rotates slower and completes fewer revolutions. 

10.43. IDENTIFY and SET UP: There is no net external torque about the rotation axis so the angular momentum L Iω=  
is conserved. 
EXECUTE: (a) 1 2L L=  gives 1 1 2 2 ,I Iω ω=  so 2 1 2 1( / )I Iω ω=  

2 2 21 1
1 tt 2 2 (120 kg)(2.00 m) 240 kg mI I MR= = = = ⋅  

2 2 2 2 2
2 tt p 240 kg m 240 kg m (70 kg)(2.00 m) 520 kg mI I I mR= + = ⋅ + = ⋅ + = ⋅  

2 2
2 1 2 1( / ) (240 kg m /520 kg m )(3.00 rad/s) 1.38 rad/sI Iω ω= = ⋅ ⋅ =  

(b) 2 2 21 1
1 1 12 2 (240 kg m )(3.00 rad/s) 1080 JK I ω= = ⋅ =  

2 2 21 1
2 2 22 2 (520 kg m )(1.38 rad/s) 495 JK I ω= = ⋅ =  

EVALUATE: The kinetic energy decreases because of the negative work done on the turntable and the parachutist 
by the friction force between these two objects. 
The angular speed decreases because I increases when the parachutist is added to the system. 

10.44. IDENTIFY: Apply conservation of angular momentum to the collision. 
SET UP: Let the width of the door be l. The initial angular momentum of the mud is ( / 2)mv l , since it strikes the 

door at its center. For the axis at the hinge, 21
door 3I Ml= and 2

mud ( / 2)I m l= . 

EXECUTE: ( )
( ) ( )22

2
1 3 2

mv lL
I Ml m l

ω = =
+

. 

( )( )( )
( )( )( ) ( )( )2 2

0.500 kg 12.0 m s 0.500 m
0.223 rad s.

1 3 40.0 kg 1.00 m 0.500 kg 0.500 m
ω = =

+
 

Ignoring the mass of the mud in the denominator of the above expression gives 0.225 rad s,ω =  so the mass of 
the mud in the moment of inertia does affect the third significant figure. 
EVALUATE: Angular momentum is conserved but there is a large decrease in the kinetic energy of the system. 

10.45. (a) IDENTIFY and SET UP: Apply conservation of angular momentum ,L
!

 with the axis at the nail. Let object A 
be the bug and object B be the bar. Initially, all objects are at rest and 1 0.L =  Just after the bug jumps, it has 
angular momentum in one direction of rotation and the bar is rotating with angular velocity Bω  in the opposite 
direction. 
EXECUTE: 2 A A B BL m v r I ω= −  where 1.00 mr =  and 21

3B BI m r=  

1 2L L=  gives 21
3A A B Bm v r m r ω=  

3 0.120 rad/sA A
B

B

m v
m r

ω = =  
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(b) 1 0;K =  2 21 1
2 2 2A A B BK m v I ω= + =  

( )2 2 2 41 1 1
2 2 3(0.0100 kg)(0.200 m/s) [0.0500 kg][1.00 m] (0.120 rad/s) 3.2 10  J.−+ = ×  

The increase in kinetic energy comes from work done by the bug when it pushes against the bar in order to jump. 
EVALUATE: There is no external torque applied to the system and the total angular momentum of the system is 
constant. There are internal forces, forces the bug and bar exert on each other. The forces exert torques and change 
the angular momentum of the bug and the bar, but these changes are equal in magnitude and opposite in direction. 
These internal forces do positive work on the two objects and the kinetic energy of each object and of the system 
increases. 

10.46. IDENTIFY: Apply conservation of angular momentum to the system of earth plus asteroid. 
SET UP: Take the axis to be the earth�s rotation axis. The asteroid may be treated as a point mass and it has zero 
angular momentum before the collision, since it is headed toward the center of the earth. For the earth, 

z zL Iω= and 22
5I MR= ,where M is the mass of the earth and R is its radius. The length of a day is 2  radT π

ω
= , 

where ω is the earth�s angular rotation rate. 
EXECUTE: Conservation of angular momentum applied to the collision between the earth and asteroid gives 

2 2 22 2
1 25 5( )MR mR MRω ω= + and 1 22

5
2

m M ω ω
ω

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. 2 11.250T T= gives 

2 1

1 1.250
ω ω

= and 1 21.250ω ω= . 

1 2

2

0.250ω ω
ω
−

= . 2
5 (0.250) 0.100m M M= = . 

EVALUATE: If the asteroid hit the surface of the earth tangentially it could have some angular momentum with 
respect to the earth�s rotation axis, and could either speed up or slow down the earth�s rotation rate. 

10.47. IDENTIFY: Apply conservation of angular momentum to the collision. 
SET UP: The system before and after the collision is sketched in Figure 10.47. Let counterclockwise rotation be 
positive. The bar has 21

23I m L= . 

EXECUTE: (a) Conservation of angular momentum: 21
1 0 1 23m v d m vd m Lω= − + .  

2
2

1 90.0 N(3.00 kg)(10.0 m s)(1.50 m) (3.00 kg)(6.00 m s)(1.50 m) (2.00 m)
3 9.80 m s

ω
⎛ ⎞

= − + ⎜ ⎟
⎝ ⎠

 

5 88 rad s.ω = . 
(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot exerts an 
unbalanced horizontal external force on the system, so the linear momentum is not conserved. 
EVALUATE: Kinetic energy is not conserved in the collision. 

 
Figure 10.47 

10.48. IDENTIFY: d dtτ=L
! ! , so dL

!
is in the direction of τ! . 

SET UP: The direction of ω! is given by the right-hand rule, as described in Figure 10.26 in the textbook. 
EXECUTE: The sketches are given in Figures 10.48a�d. 
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EVALUATE: In figures (a) and (c) the precession is counterclockwise and in figures (b) and (d) it is clockwise. 
When the direction of either ω! or τ! reverses, the direction of precession reverses. 

  

  
Figure 10.48 

10.49. IDENTIFY: The precession angular velocity is wr
Iω

Ω = , where ω is in rad/s. Also apply m=∑F a
! ! to the 

gyroscope. 
SET UP: The total mass of the gyroscope is r f 0.140 kg 0.0250 kg 0.165 kgm m+ = + = . 

2  rad 2  rad 2.856 rad/s
2.20 sT

π π
Ω = = = . 

EXECUTE: (a) 2
p tot (0.165 kg)(9.80 m/s ) 1.62 NF w= = =  

(b) 
2

3
4 2

(0.165 kg)(9.80 m/s )(0.0400 m) 189 rad/s 1.80 10  rev/min
(1.20 10  kg m )(2.856 rad/s)

wr
I

ω −= = = = ×
Ω × ⋅

 

(c) If the figure in the problem is viewed from above, τ!  is in the direction of the precession and L
!

 is along the 
axis of the rotor, away from the pivot. 
EVALUATE: There is no vertical component of acceleration associated with the motion, so the force from the 
pivot equals the weight of the gyroscope. The larger ω is, the slower the rate of precession. 

10.50. IDENTIFY: The precession angular speed is related to the acceleration due to gravity by Eq.(10.33), with w mg= . 
SET UP: E 0.50 rad/sΩ = , Eg g= and M 0.165g g= . For the gyroscope, m, r, I, and ω are the same on the moon 
as on the earth. 

EXECUTE: mgr
Iω

Ω = . constantmr
g Iω
Ω
= = , so E M

E Mg g
Ω Ω

= . 

M
M E E

E

0.165 (0.165)(0.50 rad/s) 0.0825 rad/sg
g

⎛ ⎞
Ω = Ω = Ω = =⎜ ⎟

⎝ ⎠
. 

EVALUATE: In the limit that 0g → the precession rate 0→ . 
10.51. IDENTIFY and SET UP: Apply Eq.(10.33). 

EXECUTE: (a) halved 
(b) doubled (assuming that the added weight is distributed in such a way that r and I are not changed) 
(c) halved (assuming that w  and r  are not changed) 
(d) doubled 
(e) unchanged. 
EVALUATE: Ω  is directly proportional to w and r and is inversely proportional to I and ω . 

10.52. IDENTIFY: Apply Eq.(10.33), where wrτ = . 
SET UP: 1 day 86,400 s= . 71 yr 3.156 10  s= × . The earth has mass 245.97 10  kgM = × and radius 

66.38 10  mR = × . For a uniform sphere and an axis through its center, 22
5I MR= . 

EXECUTE: (a) 2(2 /5) .I MRτ ω ω= Ω = Ω  Using 2  rad
86,400 s
πω =  and 7

2  rad
(26,000 y)(3.156 10  s/y)

πΩ =
×

, and the mass 

and radius of the earth from Appendix F, 5.4 N mτ = ⋅ . 
EVALUATE: If the torque is applied by the sun, 111.5 10  mr = × and 113.6 10  NF⊥ = × . 
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10.53. IDENTIFY: Apply z zIτ α=∑ and constant acceleration equations to the motion of the grindstone. 

SET UP: Let the direction of rotation of the grindstone be positive. The friction force is kf nμ= and produces 

torque fR . 2  rad 1 min 4  rad
1 rev 60  s
πω π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. 2 21

2 1.69 kg mI MR= = ⋅ . 

EXECUTE: (a) The net torque must be 

20 4  rad/s(1.69 kg m ) 2.36 N m.
9.00 s

z zI I
t

ω ω πτ α −
= = = ⋅ = ⋅  

This torque must be the sum of the applied force FR  and the opposing frictional torques 

fτ  at the axle and kfR nRμ= due to the knife. f k
1 ( )F nR
R
τ τ μ= + + . 

( )1 (2.36 N m) (6.50 N m) (0.60)(160 N)(0.260 m) 67.6 N.
0.500 m

F = ⋅ + ⋅ + =  

(b) To maintain a constant angular velocity, the net torque τ is zero, and the force is F ′  
1 (6.50 N m 24.96 N m) 62.9 N.0.500 mF ′ = ⋅ + ⋅ =  

(c) The time t needed to come to a stop is found by taking the magnitudes in Eq.(10.27), with fτ τ=  constant; 

( )2

f f

(4  rad/s) 1.69 kg m
3.27 s.

6.50 N m
L It

πω
τ τ

⋅
= = = =

⋅
 

EVALUATE: The time for a given change inω is proportional toα , which is in turn proportional to the net torque, 

so the time in part (c) can also be found as ( ) 2.36 N m9.00 s .6.50 N mt ⋅=
⋅

 

10.54. IDENTIFY: Apply z zIτ α=∑ and use the constant acceleration equations to relateα to the motion. 
SET UP: Let the direction the wheel is rotating be positive. 100 rev/min 10.47 rad/s=  

EXECUTE: (a) 0z z ztω ω α= +  gives 20 10.47 rad/s 0 5.23 rad/s
2.00 s

z z
z t

ω ωα − −
= = = . 

2
2

5.00 N m 0.956 kg m
5.23 rad/s

z

z

I
τ

α
⋅

= = = ⋅∑  

(b) 0 10.47 rad/szω = , 0zω = , 125 st = . 0z z ztω ω α= +  gives 20 0 10.47 rad/s 0.0838 rad/s
125 s

z z
z t

ω ωα − −
= = = −  

2 2(0.956 kg m )( 0.0838 rad/s ) 0.0801 N mz zIτ α= = ⋅ − = − ⋅∑  

(c) 0 10.47 rad/s 0 (125 s) 654 rad 104 rev
2 2

z z tω ωθ + +⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The applied net torque ( 5.00 N m⋅ ) is much larger than the magnitude of the friction torque 
( 0.0801 N m⋅ ), so the time of 2.00 s that it takes the wheel to reach an angular speed of 100 rev/min is much less 
than the 125 s it takes the wheel to be brought to rest by friction. 

10.55. IDENTIFY and SET UP: Apply .v rω=  v is the tangential speed of a point on the rim of the wheel and equals the 
linear speed of the car. 
EXECUTE: (a) 60 mph 26.82 m/sv = =  

12 in. 0.3048 mr = =  

88.0 rad/s 14.0 rev/s 840 rpmv
r

ω = = = =  

(b) Same ω  as in part (a) since speedometer reads same. 
15 in. 0.381 mr = =  

(0.381 m)(88.0 rad/s) 33.5 m/s 75 mphv rω= = = =  
(c) 50 mph 22.35 m/sv = =  

10 in. 0.254 mr = =  

88.0 rad/s.v
r

ω = =  This is the same as for 60 mph with correct tires, so speedometer read 60 mph. 

EVALUATE: For a given ,ω  v increases when r increases. 



Dynamics of Rotational Motion  10-19 

10.56. IDENTIFY: The kinetic energy of the disk is 2 21 1
cm2 2K Mv Iω= + . As it falls its gravitational potential energy 

decreases and its kinetic energy increases. The only work done on the disk is the work done by gravity, so 
1 1 2 2K U K U+ = + . 

SET UP: 2 21
cm 2 12 ( )I M R R= + , where 1 0.300 mR = and 2 0.500 mR = . cm 2v R ω= . Take 1 0y = , so 

2 1.20 my = − . 

EXECUTE: 1 1 2 2K U K U+ = + . 1 0K = , 1 0U = . 2 2K U= − . 2 21 1
cm cm 22 2Mv I Mgyω+ = − . 

( )2 2 2 21 1
cm 1 2 cm cm2 4 1 [ / ] 0.340I M R R v Mvω = + = . Then 2

cm 20.840Mv Mgy= − and 

2
2

cm
(9.80 m/s )( 1.20 m) 3.74 m/s

0.840 0.840
gyv − − −

= = =  

EVALUATE: A point mass in free-fall acquires a speed of 4.85 m/s after falling 1.20 m. The disk has a value of 
cmv that is less than this, because some of the original gravitational potential energy has been converted to 

rotational kinetic energy. 
10.57. IDENTIFY: Use z zIτ α=∑ to find the angular acceleration just after the ball falls off and use conservation of 

energy to find the angular velocity of the bar as it swings through the vertical position. 
SET UP: The axis of rotation is at the axle. For this axis the bar has 21

bar12I m L= , where bar 3.80 kgm = and 
0.800 mL = . Energy conservation gives 1 1 2 2K U K U+ = + . The gravitational potential energy of the bar doesn�t 

change. Let 1 0y = , so 2 / 2y L= − . 

EXECUTE: (a) ball ( / 2)z m g Lτ = and 2 21
ball bar bar ball12 ( / 2)I I I m L m L= + = + . z zIτ α=∑  gives 

ball ball
2 21

bar ball ball bar12

( / 2) 2
( / 2) /3z

m g L g m
m L m L L m m

α
⎛ ⎞

= = ⎜ ⎟+ +⎝ ⎠
and 

2
22(9.80 m/s ) 2.50 kg 16.3 rad/s

0.800 m 2.50 kg [3.80 kg]/3zα
⎛ ⎞

= =⎜ ⎟+⎝ ⎠
. 

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of the bar 
decreases. 
(c) 1 1 2 2K U K U+ = + . 2 20 K U= + . 21

bar ball ball2 ( ) ( / 2)I I m g Lω+ = − − . 
2

ball ball
2 2

ball bar ball bar

4 9.80 m/s 4[2.50 kg]
/ 4 /12 /3 0.800 m 2.50 kg [3.80 kg]/3
m gL g m

m L m L L m m
ω

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

5.70 rad/sω = . 
EVALUATE: As the bar swings through the vertical, the linear speed of the ball that is still attached to the bar is 

(0.400 m)(5.70 rad/s) 2.28 m/sv = = . A point mass in free-fall acquires a speed of 2.80 m/s after falling 0.400 m; 
the ball on the bar acquires a speed less than this. 

10.58. IDENTIFY: Use z zIτ α=∑  to find ,zα  and then use the constant zα  kinematic equations to solve for t. 
SET UP: The door is sketched in Figure 10.58. 

 

EXECUTE: (220 N)(1.25 m) 275 N mz Flτ = = = ⋅∑  

From Table 9.2(d), 21
3I Ml=  

2 2 21
3 (750 N/9.80 m/s )(1.25 m) 39.9 kg mI = = ⋅  

Figure 10.58  

z zIτ α=∑  so 2
2

275 N m 6.89 rad/s
39.9 kg m

z
z I

τ
α ⋅

= = =
⋅

∑  

SET UP: 26.89 rad/s ;zα =  0 90 (  rad/180 ) /2 rad;θ θ π π− = ° ° =  0 0zω =  (door initially at rest); ?t =  
21

0 0 2z zt tθ θ ω α− = +  

EXECUTE: 0
2

2( ) 2( / 2 rad) 0.675 s
6.89 rad/sz

t θ θ π
α
−

= − =  

EVALUATE: The forces and the motion are connected through the angular acceleration. 
10.59. IDENTIFY: sinrFτ φ=  

SET UP: Let x be the distance from the left end of the rod where the string is attached. For the value of x 
where ( )f x is a maximum, / 0df dx = . 
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EXECUTE: (a) From geometric consideration, the lever arm and the sine of the angle between  and F r
""! !  are both 

maximum if the string is attached at the end of the rod. 
(b) In terms of the distance x where the string is attached, the magnitude of the torque is 2 2.Fxh x h+  This 
function attains its maximum at the boundary, where ,x h=  so the string should be attached at the right end of  
the rod. 

(c) As a function of x, l and h, the torque has magnitude
2 2

.
( 2)

xhF
x l h

τ =
− +

 Differentiatingτ with respect to x 

and setting equal to zero gives maxx 2( 2)(1 (2 ) ).l h l= +  This will be the point at which to attach the string unless 
2 ,h l>  in which case the string should be attached at the furthest point to the right, .x l=  
EVALUATE: In part (a) the maximum torque is independent of h. In part (b) the maximum torque is independent 
of l. In part (c) the maximum torque depends on both h and l. 

10.60. IDENTIFY: Apply z zIτ α=∑ , where zτ is due to the gravity force on the object. 

SET UP: rod clayI I I= + . 21
rod 3I ML= . In part (b), 2

clayI ML= . In part (c), clay 0I = . 

EXECUTE: (a) A distance 4L  from the end with the clay. 

(b) In this case 2(4 3)I ML= and the gravitational torque is (3 4)(2 )sin (3 2)sin ,L Mg Mg Lθ θ=  so 
(9 8 )sin .g Lα θ=  

(c) In this case 2(1 3)I ML= and the gravitational torque is ( 4)(2 )sin ( 2)sin ,L Mg Mg Lθ θ=  so (3 2 )sin .g Lα θ=  
This is greater than in part (b). 
(d) The greater the angular acceleration of the upper end of the cue, the faster you would have to react to overcome 
deviations from the vertical. 
EVALUATE: In part (b), I is 4 times larger than in part (c) and τ is 3 times larger. / Iα τ= , so the net effect is 
that α is smaller in (b) than in (c). 

10.61. IDENTIFY: Calculate W using the procedure specified in the problem. In part (c) apply the work-energy theorem. 
In part (d), tana Rα=  and z zIτ α=∑ . 2

rada Rω= . 
SET UP: Let θ be the angle the disk has turned through. The moment arm for F is cosR θ . 

EXECUTE: (a) The torque is cos .FRτ θ=  
2

0
cos  W FR d FR

π
θ θ= =∫ . 

(b) In Eq.(6.14), dl is the horizontal distance the point moves, and so ,W F dl FR= =∫  the same as part (a). 

(c) From 2 2
2 ( 4) ,  4 .K W MR F MRω ω= = =  

(d) The torque, and hence the angular acceleration, is greatest when 0,θ = at which point ( ) 2I F MRα τ= = , and 
so the maximum tangential acceleration is 2 .F M  

(e) Using the value for ω found in part (c), 2
rad 4 .a R F Mω= =  

EVALUATE: 2
tana Rω= is maximum initially, when the moment arm for F is a maximum, and it is zero after the 

disk has rotated one-quarter of a revolution. rada  is zero initially and is a maximum at the end of the motion, after 
the disk has rotated one-quarter of a revolution. 

10.62. IDENTIFY: Apply m=∑F a
! !  to the crate and z zIτ α=∑  to the cylinder. The motions are connected by 

(crate) (cylinder).a Rα=  
SET UP: The force diagram for the crate is given in Figure 10.62a. 

 

EXECUTE: y yF ma=∑  
T mg ma− =  

2 2( ) 50 kg(9.80 m/s 0.80 m/s ) 530 NT m g a= + = + =  

Figure 10.62a  
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SET UP: The force diagram for the cylinder is given in Figure 10.62b. 

 

EXECUTE: z zIτ α=∑  

,zFl TR Iα− =  where 0.12 ml =  and 0.25 mR =  
a Rα=  so /z a Rα =  

/Fl TR Ia R= +  

Figure 10.62b  
2 20.25 m (2.9 kg m )(0.80 m/s )530 N 1200 N

0.12 m (0.25 m)(0.12 m)
R IaF T
l Rl

⋅⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The tension in the rope is greater than the weight of the crate since the crate accelerates upward. If F 
were applied to the rim of the cylinder (l = 0.25 m), it would have the value 567 N.F =  This is greater than T 
because it must accelerate the cylinder as well as the crate. And F is larger than this because it is applied closer to 
the axis than R so has a smaller moment arm and must be larger to give the same torque. 

10.63. IDENTIFY: Apply ext cmm=∑F a
! ! and cmz zIτ α=∑ to the roll. 

SET UP: At the point of contact, the wall exerts a friction force f directed downward and a normal force n 
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero. 
EXECUTE: (a) Balancing vertical forces, rod cos ,F f w Fθ = + + and balancing horizontal forces 

rod ksin .  With ,F n f nθ μ= =  these equations become rod kcos ,F n F wθ μ= + +  rod sin . F nθ = Eliminating n and 
solving for rodF  gives 

2

rod
k

(16.0 kg) (9.80 m/s ) (40.0 N) 266 N.
cos sin cos 30 (0.25)sin30

w FF
θ μ θ

+ +
= = =

− ° − °
 

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of the net 
torque is k( ) ,  and F f R f nμ− =  may be found by insertion of the value found for rodF into either of the above 
relations; i.e., k rod sin 33.2 N. f Fμ θ= = Then, 

2
2

2

(40.0 N 31.54 N)(18.0 10  m) 4.71 rad/s .
(0.260 kg m )I

τα
−− ×

= = =
⋅

 

EVALUATE: If the applied force F is increased, rodF increases and this causes n and f to increase. The angle 
φ changes as the amount of paper unrolls and this affects α for a given F. 

10.64. IDENTIFY: Apply z zIτ α=∑  to the flywheel and m=∑F a
! !  to the block. The target variables are the tension in 

the string and the acceleration of the block. 
(a) SET UP: Apply z zIτ α=∑  to the rotation of the flywheel about the axis. The free-body diagram for the 
flywheel is given in Figure 10.64a. 

 

EXECUTE: The forces n and Mg act 
at the axis so have zero torque. 

z TRτ =∑  

zTR Iα=  

Figure 10.64a  



10-22 Chapter 10 

SET UP: Apply m=∑F a
! !  to the translational motion of the block. The free-body diagram for the block is given 

in Figure 10.64b. 

 

EXECUTE: y yF ma=∑  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  

Figure 10.64b  

x xF ma=∑  

ksin36.9 cos36.9mg T mg maμ° − − ° =  

k(sin36.9 cos36.9 )mg T maμ° − ° − =  

But we also know that block wheel ,a Rα=  so / .a Rα =  Using this in the z zIτ α=∑  equation gives /TR Ia R=  and 
2( / ) .T I R a=  Use this to replace T in the x xF ma=∑  equation: 

2
k(sin36.9 cos36.9 ) ( / )mg I R a maμ° − ° − =  

k
2

(sin36.9 cos36.9 )
/

mga
m I R

μ° − °
=

+
 

2
2

2 2

(5.00 kg)(9.80 m/s )(sin36.9 (0.25)cos36.9 ) 1.12 m/s
5.00 kg 0.500 kg m /(0.200 m)

a ° − °
= =

+ ⋅
 

(b) 
2

2
2

0.500 kg m (1.12 m/s ) 14.0 N
(0.200 m)

T ⋅
= =  

EVALUATE: If the string is cut the block will slide down the incline with 
2

ksin36.9 cos36.9 3.92 m/s .a g gμ= ° − ° =  The actual acceleration is less than this because sin36.9mg °  must also 
accelerate the flywheel. ksin36.9 19.6 N.mg f° − =  T is less than this; there must be more force on the block 
directed down the incline than up then incline since the block accelerates down the incline. 

10.65. IDENTIFY: Apply m=∑F a
! ! to the block and z zIτ α=∑ to the combined disks. 

SET UP: For a disk, 21
disk 2I MR= , so I for the disk combination is 3 22.25 10  kg m .I −= × ⋅  

EXECUTE: For a tension T in the string, and .amg T ma TR I I Rα− = = =  Eliminating T and solving for a gives 

2 2 ,
/ 1 /

m ga g
m I R I mR

= =
+ +

 where m is the mass of the hanging block and R is the radius of the disk to which the 

string is attached. 
(a) With 1.50m =  kg and 2 22.50 10 m, 2.88 m/s .R a−= × =  
(b) With 1.50m =  kg and 2 25.00 10 m, 6.13 m/s .R a−= × =  
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is capable 
of applying a larger torque. 
EVALUATE: /v Rω = , where v is the speed of the block and ω is the angular speed of the disks. When R is 
larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more speed as it 
falls a certain distance and therefore has a larger acceleration. 

10.66. IDENTIFY: Apply both m=∑F a
! !  and z zIτ α=∑  to the motion of the roller. Rolling without slipping means 

cm .a Rα=  Target variables are cma  and f. 
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SET UP: The free-body diagram for the roller is given in Figure 10.66. 

 

EXECUTE: Apply m=∑F a
! !  to the 

translational motion of the center of mass: 

x xF ma=∑  

cmF f Ma− =  

Figure 10.66  

Apply z zIτ α=∑  to the rotation about the center of mass: 

z fRτ =∑  

thin-walled hollow cylinder: 2I MR=  
Then z zIτ α=∑  implies 2 .fR MR α=  

But cm ,Rα α=  so cm.f Ma=  

Using this in the x xF ma=∑  equation gives cm cmF Ma Ma− =  

cm / 2 ,a F M=  and then cm ( / 2 ) / 2.f Ma M F M F= = =  
EVALUATE: If the surface were frictionless the object would slide without rolling and the acceleration would be 

cm / .a F M=  The acceleration is less when the object rolls. 

10.67. IDENTIFY: Apply m∑F = a
! ! to each object and apply z zIτ α=∑ to the pulley. 

SET UP: Call the 75.0 N weight A and the 125 N weight B. Let AT and BT be the tensions in the cord to the left 

and to the right of the pulley. For the pulley, 21
2I MR= , where 50.0 NMg = and 0.300 mR = . The 125 N weight 

accelerates downward with acceleration a, the 75.0 N weight accelerates upward with acceleration a and the pulley 
rotates clockwise with angular acceleration α , where a Rα= . 
EXECUTE: m∑F = a

! ! applied to the 75.0 N weight gives A A AT w m a− = . m∑F = a
! ! applied to the 125.0 N 

weight gives B B Bw T m a− = . z zIτ α=∑ applied to the pulley gives 21
2( ) ( )B A zT T R MR α− = and 1

2B AT T M− = . 

Combining these three equations gives ( / 2)B A A Bw w m m M a− = + + and 

pulley

125 N 75.0 N 0.222
/ 2 75.0 N 125 N 25.0 N

B A

A B

w wa g g g
w w w

⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠
. (1 / ) 1.222 91.65 NA A AT w a g w= + = = . 

(1 / ) 0.778 97.25 NB B BT w a g w= − = = . m∑F = a
! ! applied to the pulley gives that the force F applied by the hook 

to the pulley is pulley 239 NA BF T T w= + + = . The force the ceiling applies to the hook is 239 N. 
EVALUATE: The force the hook exerts on the pulley is less than the total weight of the system, since the net 
effect of the motion of the system is a downward acceleration of mass. 

10.68. IDENTIFY: This problem can be done either with conservation of energy or with ext .m=∑F a
! !  We will do it both 

ways. 
(a) SET UP: (1) Conservation of energy: 1 1 other 2 2.K U W K U+ + = +  

 

Take position 1 to be the location of the disk 
at the base of the ramp and 2 to be where the 
disk momentarily stops before rolling back 
down, as shown in Figure 10.68a. 

Figure 10.68a  
Take the origin of coordinates at the center of the disk at position 1 and take y+  to be upward. Then 1 0y =  and 

2 sin30 ,y d= °  where d is the distance that the disk rolls up the ramp. �Rolls without slipping� and neglect rolling 
friction says 0;fW =  only gravity does work on the disk, so other 0W =  
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EXECUTE: 1 1 0U Mgy= =  
2 21 1

1 1 cm 12 2K Mv I ω= +  (Eq.10.11). But 1 1 /v Rω =  and 21
cm 2 ,I MR=  so ( )2 2 2 21 1 1 1

cm 1 1 12 2 2 4( / ) .I MR v R Mvω = =  Thus 
2 2 231 1

1 1 1 12 4 4 .K Mv Mv Mv= + =   

2 2 sin30U Mgy Mgd= = °  

2 0K =  (disk is at rest at point 2). 

Thus 23
14 sin30Mv Mgd= °  
2 2
1

2

3 3(2.50 m/s) 0.957 m
4 sin30 4(9.80 m/s )sin30

vd
g

= = =
° °

 

SET UP: (2) force and acceleration The free-body diagram is given in Figure 10.68b. 

 

EXECUTE: Apply x xF ma=∑  to the 
translational motion of the center of mass: 

cmsinMg f Maθ − =  

Apply z zIτ α=∑  to the rotation about the 
center of mass: 

( )21
2 zf R MR α=  

1
2 zf MRα=  

Figure 10.68b  

But cma Rα=  in this equation gives 1
cm2 .f Ma=  Use this in the x xF ma=∑  equation to eliminate f. 

1
cm cm2sinMg Ma Maθ − =  

M divides out and 3
cm2 sin .a g θ=  2 22 2

cm 3 3sin (9.80 m/s )sin30 3.267 m/sa g θ= = ° =  
SET UP: Apply the constant acceleration equations to the motion of the center of mass. Note that in our 
coordinates the positive x-direction is down the incline. 

0 2.50 m/sxv = −  (directed up the incline); 23.267 m/s ;xa = +  
0xv =  (momentarily comes to rest); 0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE: 
2 2
0

0 2

( 2.50 m/s) 0.957 m
2 2(3.267 m/s )

x

x

vx x
a

−
− = − = − = −  

(b) EVALUATE: The results from the two methods agree; the disk rolls 0.957 m up the ramp before it stops. 
The mass M enters both in the linear inertia and in the gravity force so divides out. The mass M and radius R enter 
in both the rotational inertia and the gravitational torque so divide out. 

10.69. IDENTIFY: Apply ext cmm=∑F a
! ! to the motion of the center of mass and apply cmz zIτ α=∑ to the rotation about 

the center of mass. 
SET UP: ( )2 21

22I MR MR= = . The moment arm for T is b. 

EXECUTE: The tension is related to the acceleration of the yo-yo by (2 ) (2 ) ,m g T m a− =  and to the angular 

acceleration by .aTb I I bα= =  Dividing the second equation by b and adding to the first to eliminate T yields 

2 2 2

2 2 2,   
(2 ) 2 ( ) 2

ma g g g
m I b R b b R b

α= = =
+ + +

. The tension is found by substitution into either of the two 

equations: 
2

2 2 2

2 ( ) 2(2 )( ) (2 ) 1 2 .
2 ( ) 2 ( ) (2( ) 1)

R b mgT m g a mg mg
R b R b b R

⎛ ⎞
= − = − = =⎜ ⎟+ + +⎝ ⎠

 

EVALUATE: 0a → when 0b → . As b R→ , 2 /3a g→ . 
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10.70. IDENTIFY: Apply conservation of energy to the motion of the shell, to find its linear speed v at points A and B. 
Apply m∑F = a

! ! to the circular motion of the shell in the circular part of the track to find the normal force exerted 
by the track at each point. Since r R<< the shell can be treated as a point mass moving in a circle of radius R when 
applying m∑F = a

! ! . But as the shell rolls along the track, it has both translational and rotational kinetic energy. 

SET UP: 1 1 2 2K U K U+ = + . Let 1 be at the starting point and take 0y = to be at the bottom of the track, so 

1 0y h= . 2 21 1
2 2K mv Iω= + . 22

3I mr= and /v rω = , so 25
6K mv= . During the circular motion, 2

rad /a v R= . 

EXECUTE: (a) m∑F = a
! ! at point A gives 

2vn mg m
R

+ = . The minimum speed for the shell not to fall off the 

track is when 0n → and 2v gR= . Let point 2 be A, so 2 2y R= and 2
2v mR= . Then 1 1 2 2K U K U+ = + gives 

5
0 62 ( )mgh mgR m gR= + . 5 17

0 6 6(2 )h R R= + = . 

(b) Let point 2 be B, so 2y R= . Then 1 1 2 2K U K U+ = + gives 25
0 26mgh mgR mv= + . With 17

6h R= this gives 

2 11
5v gR= . Then m∑F = a

! ! at B gives 
2

11
5

vn m mg
R

= = . 

(c) Now 21
2K mv= instead of 25

6 mv . The shell would be moving faster at A than with friction and would still make 
the complete loop. 

(d) In part (c): 21
0 2(2 )mgh mg R mv= + . 17

0 6h R= gives 2 5
3v gR= . m∑F = a

! ! at point A gives 
2vmg n m

R
+ = and 

2
2
3

vn m g mg
R

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
. In part (a), 0n = , since at this point gravity alone supplies the net downward force that is 

required for the circular motion. 
EVALUATE: The normal force at A is greater when friction is absent because the speed of the shell at A is greater 
when friction is absent than when there is rolling without slipping. 

10.71. IDENTIFY: Consider the direction of the net force and the sense of the net torque in each case. 
SET UP: The free-body diagram in each case is shown in Figure 10.71. 

EXECUTE: In the first case, 
→

F and the friction force act in opposite directions, and the friction force causes a 
larger torque to tend to rotate the yo-yo to the right. The net force to the right is the difference ,F f−  so the net 
force is to the right while the net torque causes a clockwise rotation. For the second case, both the torque and the 
friction force tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case, friction tends to 
move the yo-yo to the right, and since the applied force is vertical, the yo-yo moves to the right. 
EVALUATE: In the first case the torque due to friction must be larger than the torque due to F, so the net torque is 
clockwise. In the third case the torque due to F must be larger than the torque due to f, so the net torque will be clockwise. 

 
Figure 10.71 

10.72. IDENTIFY: Apply ext cmm=∑F a
! ! to the motion of the center of mass and cmz zIτ α=∑ to the rotation about the 

center of mass. 
SET UP: For a hoop, 2I MR= . For a solid disk, 21

2I MR= . 
EXECUTE: (a) Because there is no vertical motion, the tension is just the weight of the hoop: 

( )( )0.180 kg 9.8 N kg 1.76 NT Mg= = = . 

(b) Use  to find .Iτ α α=  The torque is 2,  so / / ,  RT RT I RT MR T MR Mg MRα = = = = so 
2 2/ (9.8 m/s ) (0.08 m) 122.5 rad/sg Rα = = = . 

(c) 29.8 m sa Rα= =  

(d) T would be unchanged because the mass M is the same, and aα would be twice as great because I is now 21
2 .MR  

EVALUATE: tana for a point on the rim of the hoop or disk equals a for the free end of the string. Since I is 
smaller for the disk, the same value of T produces a greater angular acceleration. 
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10.73. IDENTIFY: Apply z zIτ α=∑ to the cylinder or hoop. Find a for the free end of the cable and apply constant 
acceleration equations. 
SET UP: tana for a point on the rim equals a for the free end of the cable, and tana Rα= . 

EXECUTE: (a) tan and z zI a Rτ α α= =∑  gives 2 2 tan1 1
2 2

aFR MR MR
R

α ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 2
tan

2 200 N 50 m/s
4.00 kg

Fa
M

= = = . 

Distance the cable moves: 21
0 0 2x xx x v t a t− = +  gives ( )2 2150 m 50 m/s

2
t=  and 1.41 st = . 

( )( )2
0 0 50 m/s 1.41 s 70.5 m sx x xv v a t= + = + = . 

(b) For a hoop, 2 ,I MR= which is twice as large as before, so tanand aα would be half as large. Therefore the time 

would be longer by a factor of 2 . For the speed, 2 2
0 2 ,x x xv v a x= + in which x is the same, so xv  would be half as 

large since xa  is smaller. 
EVALUATE: The acceleration a that is produced depends on the mass of the object but is independent of its 
radius. But a depends on how the mass is distributed and is different for a hoop versus a cylinder. 

10.74. IDENTIFY: Use projectile motion to find the speed v the marble needs at the edge of the pit to make it to the level 
ground on the other side. Apply conservation of energy to the motion down the hill in order to relate the initial 
height to the speed v at the edge of the pit. other 0W =  so conservation of energy gives i i f fK U K U+ = + . 
SET UP: In the projectile motion the marble must travel 36 m horizontally while falling vertically 20 m. Let y+  
be downward. For the motion down the hill, let f 0y =  so f 0U =  and iy h= . i 0K = . Rolling without slipping 

means v Rω= . 2 2 2 2 2 271 1 1 2 1
cm2 2 2 5 2 10( )K I mv mR mv mvω ω= + = + = . 

EXECUTE: (a) Projectile motion: 0 0yv = . 29.80 m/sya = . 0 20 my y− = . 21
0 0 2y yy y v t a t− = +  gives 

02( ) 2.02 s
y

y yt
a
−

= = . Then 0 0xx x v t− =  gives 0
0

36 m 17.8 m/s
2.02 sx

x xv v
t
−

= = = = . 

Motion down the hill: i fU K= . 27
10mgh mv= . 

2 2

2

7 7(17.8 m/s) 22.6 m
10 10(9.80 m/s )

vh
g

= = = . 

(b) 2 21 1
2 5I mvω = , independent of R. I is proportional to 2R  but 2ω is proportional to 21/ R  for a given 

translational speed v. 
(c) The object still needs 17.8 m/sv = at the bottom of the hill in order to clear the pit. But now 21

f 2K mv= and 
2

16.6 m
2
vh
g

= = . 

EVALUATE: The answer to part (a) also does not depend on the mass of the marble. But, it does depend on how 
the mass is distributed within the object. The answer would be different if the object were a hollow spherical shell. 
In part (c) less height is needed to give the object the same translational speed because in (c) none of the energy 
goes into rotational motion. 

10.75. IDENTIFY: Apply conservation of energy to the motion of the boulder. 
SET UP: 2 21 1

2 2K mv Iω= + and v Rω= when there is rolling without slipping. 22
5I mR= . 

EXECUTE: Break into 2 parts, the rough and smooth sections. 

Rough: 2 21 1
1 2 2mgh mv Iω= + . 

2
2 2

1
1 1 2
2 2 5

vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 2
1

10
7

v gh= . 

Smooth: Rotational kinetic energy does not change. 2 2
2 rot Bottom rot

1 1
2 2

mgh mv K mv K+ + = + . 2
2 1 B

1 10 1
2 7 2

gh gh v⎛ ⎞+ =⎜ ⎟
⎝ ⎠

. 

2 2
B 1 2

10 102 (9.80 m/s )(25  m) 2(9.80 m/s )(25 m) 29.0 m/s
7 7

v gh gh= + = + = . 

EVALUATE: If all the hill was rough enough to cause rolling without slipping, B
10 (50 m) 26.5 m/s
7

v g= = . A 

smaller fraction of the initial gravitational potential energy goes into translational kinetic energy of the center of 
mass than if part of the hill is smooth. If the entire hill is smooth and the boulder slides without slipping, 

B 2 (50 m) 31.3 m/sv g= = . In this case all the initial gravitational potential energy goes into the kinetic energy of 
the translational motion. 
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10.76. IDENTIFY: Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball leaves the 
edge of the cliff it moves in projectile motion and constant acceleration equations can be used. 
(a) SET UP: Use conservation of energy to find the speed 2v  of the ball just before it leaves the top of the cliff. 
Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take 0y =  at the bottom of the hill, so 

1 0y =  and 2 28.0 m.y =  
EXECUTE: 1 1 2 2K U K U= = +  

2 2 2 21 1 1 1
1 1 2 2 22 2 2 2mv I mgy mv Iω ω+ = + +  

Rolling without slipping means /v rω =  and ( )2 2 2 21 1 2 1
2 2 5 5( / )I mr v r mvω = =  

2 27 7
1 2 210 10mv mgy mv= +  

2 10
2 1 27 15.26 m/sv v gy= − =  

SET UP: Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just before it 
lands. Take y+  to be downward. Use the vertical motion to find the time in the air: 

0 0,yv =  29.80 m/s ,ya =  0 28.0 m,y y− =  ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 2.39 st =  

During this time the ball travels horizontally 
0 0 (15.26 m/s)(2.39 s) 36.5 m.xx x v t− = = =  

Just before it lands, 0 23.4 m/sy y yv v a t= + =  and 0 15.3 m/sx xv v= =  
2 2 28.0 m/sx yv v v= + =  

(b) EVALUATE: At the bottom of the hill, / (25.0 m/s) / .v r rω = =  The rotation rate doesn�t change while the ball 
is in the air, after it leaves the top of the cliff, so just before it lands (15.3 m/s) / .rω =  The total kinetic energy is 
the same at the bottom of the hill and just before it lands, but just before it lands less of this energy is rotational 
kinetic energy, so the translational kinetic energy is greater. 

10.77. IDENTIFY: Apply conservation of energy to the motion of the wheel. 2 21 1
2 2K mv Iω= + . 

SET UP: No slipping means that .v Rω =  Uniform density means r s2  and m R m Rλ π λ= = , where rm is the 

mass of the rim and sm is the mass of each spoke. For the wheel, rim spokesI I I= + . For each spoke, 21
s3I m R= . 

EXECUTE: (a) 2 21 1
2 2

mgh mv Iω= + . 2 2
rim spokes r s

1 6
3

I I I m R m R⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

 

Also, ( )r s 2 6 2 3m m m R R Rπ λ λ λ π= + = + = + . Substituting into the conservation of energy equation gives 

( ) ( )( )( )2 2 2 21 1 12 3 2 3 2 6
2 2 3

R gh R R R R RRλ π λ π ω π λ π ω⎡ ⎤⎛ ⎞+ = + + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

( )
( )

( )( )( )
( ) ( )

2

22

3 9.80 m s 58.0 m3
124 rad s

2 0.210 m 2
gh

R
ππ

ω
π π

++
= = =

+ +
and 26.0 m sv Rω= =  

(b) Doubling the density would have no effect because it does not appear in the answer. ω is inversely proportional 
to R so doubling the diameter would double the radius which would reduce by half, butω v Rω= would be 
unchanged. 
EVALUATE: Changing the masses of the rim and spokes by different amounts would alter the speed v at the 
bottom of the hill. 

10.78. IDENTIFY: Apply v Rω= . 
SET UP: For the antique bike, v is the same for points on the rim of each wheel and equals the linear speed of the 
bike. 1 rev 2  radπ= . 
EXECUTE: (a) The front wheel is turning at 1.00 rev s 2  rad s.ω π= =  (0.330 m)(2  rad s) 2.07 sv rω π= = = . 
(b) (2.07 m s) (0.655 m) 3.16 rad s 0.503 rev sv rω = = = =  
(c) (2.07 m s) (0.220 m) 9.41 rad s 1.50 rev sv rω = = = =  
EVALUATE: Since the front wheel has a larger radius for the antique bike, that wheel doesn't have to rotate at as 
many rev/s to achieve the same linear speed of the bike. 
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10.79. IDENTIFY: Apply conservation of energy to the motion of the ball. Once the ball leaves the track the ball moves 
in projectile motion. 
SET UP: The ball has 22

5I mR= ; the silver dollar has 21
2I mR= . For the projectile motion take y+  downward, 

so 0xa = and ya g= + . 
EXECUTE: (a) The kinetic energy of the ball when it leaves the track (when it is still rolling without slipping) is 

2(7 10)mv and this must be the work done by gravity, W mgh= , so 10 7.v gh= The ball is in the air for a time 

2 ,  so 20 7.t y g x vt hy= = =  
(b) The answer does not depend on g, so the result should be the same on the moon. 
(c) The presence of rolling friction would decrease the distance. 
(e) For the dollar coin, modeled as a uniform disc, 2(3 4) ,  and so 8 3.K mv x hy= =  
EVALUATE: The sphere travels a little farther horizontally, because its moment of inertia is a smaller fraction of 

2MR than for the disk. The result is independent of the mass and radius of the object but it does depend on how 
that mass is distributed within the object. 

10.80. IDENTIFY and SET UP: Apply conservation of energy to the motion of the ball. The ball ends up with both 
translational and rotational kinetic energy. Use Fig.(10.13) in the textbook to relate the speed of different points on 
the ball to cm.v  

EXECUTE: (a) 2 21 1
el 2 2 (400 N m)(0.15 m) 4.50 JU kx= = ⋅ =  and 1 el0.800 3.60 JK U= =  

2 21 1
1 cm cm2 2K mv I ω= +  rolling without slipping says cm /v Rω =  

22
cm 5I mR=  

Thus ( ) ( )2 2 2 2 271 1 2 1 1
1 cm cm cm cm2 2 5 2 5 10( / )K mv mR v R mv mv= + = + =  

and 1
cm

10 10(3.60 J) 9.34 m/s.
7 7(0.0590 kg)

Kv
m

= = =  

(b) Consider Figure 10.80a. 

 

From Fig.(10.13) in the textbook, 
at the top of the ball 

cm2 18.7 m/sv v= =  

Figure 10.80a  
(c)  

 

From Fig.(10.13) in the textbook, 
0v =  at the bottom of the ball. 

Figure 10.80b  
(d) The problem says that 2 10.900 3.24 J.U K= =  Thus 2 3.24 JU mgh= =  and 

2

3.24 J 3.24 J 5.60 m
(0.0590 kg)(9.80 m/s )

h
mg

= = =  

EVALUATE: Not all the potential energy stored in the spring goes into kinetic energy at the base of the ramp or 
into gravitational potential energy at the top of the ramp because of loss of mechanical energy due to negative 
work done by friction. If the ball slides without rolling, then 21

1 cm2K mv=  and cm 11.0 m/s.v =  cmv  is less than this 
when the ball rolls and some of its total kinetic energy is rotational. 

10.81. IDENTIFY: /xv dx dt= , /yv dy dt= . /x xa dv dt= , /y ya dv dt= . 
SET UP: cos( ) / sin( )d t dt tω ω ω= − . sin( ) / cos( )d t dt tω ω ω= . 
EXECUTE: (a) The sketch is shown in Figure 10.81. 
(b) R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the wheel�s rotation. 

(c) Differentiating, 2 21 cosx
R tv

T T
π π⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 
22 2sinx

ta R
T T
π π⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and 2 2siny

R tv
T T
π π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

22 2 cos .y
ta R

T T
π π⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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(d) 20 when 2x y
tv v

T
π π⎛ ⎞= = =⎜ ⎟

⎝ ⎠
or any multiple of 2 ,π  so the times are integer multiples of the period T. The 

acceleration components at these times are 
2

2

40,  .x y
Ra a

T
π

= =  

(e) 
2 2

2 2 2 2
2

2 2 2 4cos sin ,x y
t t Ra a a R

T T T T
π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
independent of time. This is the magnitude of the 

radial acceleration for a point moving on a circle of radius R with constant angular velocity 2 /Tπ . For motion that 
consists of this circular motion superimposed on motion with constant velocity ( )0 ,=a!  the acceleration due to the 
circular motion will be the total acceleration. 
EVALUATE: a is independent of time, but v does depend on time. 

 
Figure 10.81 

10.82. IDENTIFY: Apply the work-energy theorem to the motion of the basketball. 2 21 1
2 2K mv Iω= + and v Rω= . 

SET UP: For a thin-walled, hollow sphere 22
3I mR= . 

EXECUTE: For rolling without slipping, the kinetic energy is ( )( ) ( )2 2 21 2 5 6 ;m I R v mv+ =  initially, this is 

32.0 J and at the return to the bottom it is 8.0 J. Friction has done 24.0 J−  of work, 12.0 J− each going up and 
down. The potential energy at the highest point was 20.0 J, so the height above the ground was 

( )( )2
20.0 J 3.40 m.

0.600 kg 9.80 m s
=  

EVALUATE: All of the kinetic energy of the basketball, translational and rotational, has been removed at the point 
where the basketball is at its maximum height up the ramp. 

10.83. IDENTIFY: Use conservation of energy to relate the speed of the block to the distance it has descended. Then use 
a constant acceleration equation to relate these quantities to the acceleration. 
SET UP: For the cylinder, 21

2 (2 )I M R= , and for the pulley, 21
2I MR= . 

EXECUTE: Doing this problem using kinematics involves four unknowns (six, counting the two angular 
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the cylinder 
both have speed v, the pulley has angular velocity v/R and the cylinder has angular velocity v/2R, the total kinetic 
energy is 

2 2
2 2 2 2 21 (2 ) 3( 2 ) ( ) .

2 2 2 2
M R MRK Mv v R v R Mv Mv

⎡ ⎤
= + + + =⎢ ⎥

⎣ ⎦
 

This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y, ,K Mgy=  or 
2 (2 3) .v gy=  For constant acceleration, 2 2 ,v ay=  and comparison of the two expressions gives 3.a g=  

EVALUATE: If the pulley were massless and the cylinder slid without rolling, 2Mg Ma= and / 2a g= . The 
rotation of the objects reduces the acceleration of the block. 

10.84. IDENTIFY: Apply z zIτ α=∑ to the drawbridge and calculate zα . For part (c) use conservation of energy. 

SET UP: The free-body diagram for the drawbridge is given in Fig.10.84. For an axis at the lower end, 21
3I ml= . 

EXECUTE: (a) z zIτ α=∑ gives 21
3(4.00 m)(cos60.0 ) zmg ml α=° and 2

2

3 (4.00 m)(cos60.0 ) 0.919 rad/s
(8.00 m)z

gα = =
° . 

(b) zα depends on the angle the bridge makes with the horizontal. zα is not constant during the motion and 

0z z ztω ω α= + cannot be used. 
(c) Use conservation of energy. Take 0y =  at the lower end of the drawbridge, so i (4.00 m)(sin60.0 )y = ° and 

f 0y = . f f i i otherK U K U W+ = + +  gives i fU K= , 21
i 2mgy Iω= . 2 21 1

i 2 3( )mgy ml ω=  and 
2

i6 6(9.80 m/s )(4.00 m)(sin60.0 )
1.78 rad/s

8.00 m
gy
l

ω = = =
°

. 
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EVALUATE: If we incorrectly assume that zα is constant and has the value calculated in part (a), then 
2 2

0 02 ( )z z zω ω α θ θ= + −  gives 139 rad/sω = . The angular acceleration increases as the bridge rotates and the actual 
angular velocity is larger than this. 

 
Figure 10.84 

10.85. IDENTIFY: Apply conservation of energy to the motion of the first ball before the collision and to the motion of 
the second ball after the collision. Apply conservation of angular momentum to the collision between the first ball 
and the bar. 
SET UP: The speed of the ball just before it hits the bar is 2 15.34 m/s.v gy= =  Use conservation of angular 
momentum to find the angular velocity ω  of the bar just after the collision. Take the axis at the center of the bar. 
EXECUTE: 2

1 (5.00 kg)(15.34 m/s)(2.00 m) 153.4 kg mL mvr= = = ⋅  
Immediately after the collision the bar and both balls are rotating together. 

2 totL I ω=  
2 2 2 2 21 1

tot 12 122 (8.00 kg)(4.00 m) 2(5.00 kg)(2.00 m) 50.67 kg mI Ml mr= + = + = ⋅  
2

2 1 153.4 kg mL L= = ⋅  

2 tot/ 3.027 rad/sL Iω = =  
Just after the collision the second ball has linear speed (2.00 m)(3.027 rad/s) 6.055 m/sv rω= = =  and is moving 

upward. 21
2 mv mgy=  gives 1.87 my =  for the height the second ball goes. 

EVALUATE: Mechanical energy is lost in the inelastic collision and some of the final energy is in the rotation of the bar 
with the first ball stuck to it. As a result, the second ball does not reach the height from which the first ball was dropped. 

10.86. IDENTIFY: The rings and the rod exert forces on each other, but there is no net force or torque on the system, and 
so the angular momentum will be constant. 
SET UP: For the rod, 21

12I ML= . For each ring, 2I mr= , where r is their distance from the axis. 
EXECUTE: (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular velocity is 

given by 
2 2 4 21

11 112
2 1 1 12 2 3 21

2 212

2 5.00 10  kg m ,
2 2.00 10  kg m 4

ML mrI
I ML mr

ωω ω ω ω
−

−

⎡ ⎤+ × ⋅
= = = =⎢ ⎥+ × ⋅⎣ ⎦

 so 2 7.5 rev min.ω =  

(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common angular 
velocity will be the same, 7.5 rev/min. 
EVALUATE: Note that conversion from rev/min to rad/s was not necessary. The angular velocity of the rod 
decreases as the rings move away from the rotation axis. 

10.87. IDENTIFY: Apply conservation of angular momentum to the collision. Linear momentum is not conserved 
because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces no 
torque and angular momentum is conserved. 
SET UP: The system before and after the collision is sketched in Figure 10.87. 
EXECUTE: (a) 1

rod4bm m=  

 

EXECUTE: 1
1 b rod4 ( / 2)L m vr m v L= =  

1
1 rod8L m vL=  

2 rod b( )L I I ω= +  
21

rod rod3I m L=  
2 21

b b rod4 ( / 2)I m r m L= =  
21

b rod16I m L=  
Figure 10.87  
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Thus 1 2L L=  gives ( )2 21 1 1
rod rod rod8 3 16m vL m L m L ω= +  

191
8 48v Lω=  

6
19 /v Lω =  

(b) 2 21 1
1 rod2 8K mv m v= =  

( )2 2 2 2 21 1 1 1 1
2 rod b rod rod2 2 2 3 16( ) (6 /19 )K I I I m L m L v Lω ω= = + = +  

( )( )2 2 219 6 31
2 rod rod2 48 19 152K m v m v= =  

Then 
23

rod2 152
21

1 rod8

3/19.
m vK

K m v
= =  

EVALUATE: The collision is inelastic and 2 1.K K<  
10.88. IDENTIFY: Apply Eq.(10.29). 

SET UP: The door has 21
3I ml= . The torque applied by the force is avrF , where / 2r l= . 

EXECUTE: av av, av and .rF L rF t rJτΣ = Δ = Δ =  The angular velocityω is then 

( ) avav av
21

3

2 3 ,
2

l F tL rF t F t
I I ml ml

ω
ΔΔ Δ Δ

= = = = where l  is the width of the door. Substitution of the given numeral 

values gives 0.514rad s.ω =  
EVALUATE: The final angular velocity of the door is proportional to both the magnitude of the average force and 
also to the time it acts. 

10.89. (a) IDENTIFY: Apply conservation of angular momentum to the collision between the bullet and the board: 
SET UP: The system before and after the collision is sketched in Figure 10.89a. 

 
Figure 10.89a 

EXECUTE: 1 2L L=  
3 2

1 sin (1.90 10  kg)(360 m/s)(0.125 m) 0.0855 kg m /sL mvr mvlφ −= = = × = ⋅  

2 2 2L I ω=  
2 21

2 board bullet 3I I I ML mr= + = +  
2 3 2 21

2 3 (0.750 kg)(0.250 m) (1.90 10  kg)(0.125 m) 0.01565 kg mI −= + × = ⋅  

Then 1 2L L=  gives that 
2

1
2 2

2

0.0855 kg m /s 5.46 rad/s
0.1565 kg m

L
I

ω ⋅
= = =

⋅
 

(b) IDENTIFY: Apply conservation of energy to the motion of the board after the collision. 
SET UP: The position of the board at points 1 and 2 in its motion is shown in Figure 10.89b. Take the origin of 
coordinates at the center of the board and y+  to be upward, so cm,1 0y =  and cm,2 ,y h=  the height being asked for. 

 

1 1 other 2 2K U W K U+ + = +  
EXECUTE: Only gravity does work, so other 0.W =  

21
1 2K Iω=  

1 cm,1 0U mgy= =  

2 0K =  

2 cm,2U mgy mgh= =  

Figure 10.89b  
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Thus 21
2 .I mghω =  

2 2 2

3 2

(0.01565 kg m )(5.46 rad/s) 0.0317 m 3.17 cm
2 2(0.750 kg 1.90 10  kg)(9.80 m/s )
Ih
mg
ω

−

⋅
= = = =

+ ×
 

(c) IDENTIFY and SET UP: The position of the board at points 1 and 2 in its motion is shown in Figure 10.89c. 

 

Apply conservation of energy as in part (b), 
except now we want cm,2 0.250 m.y h= =  
Solve for the ω  after the collision that is 
required for this to happen. 

Figure 10.89c  

EXECUTE: 21
2 I mghω =  

3 2

2

2 2(0.750 kg 1.90 10  kg)(9.80 m/s )(0.250 m)
0.01565 kg m

mgh
I

ω
−+ ×

= =
⋅

 

15.34 rad/sω =  
Now go back to the equation that results from applying conservation of angular momentum to the collision and 
solve for the initial speed of the bullet. 1 2L L=  implies bullet 2 2m vl I ω=  

2
2 2

3
bullet

(0.01565 kg m )(15.34 rad/s) 1010 m/s
(1.90 10  kg)(0.125 m)

Iv
m l
ω

−

⋅
= = =

×
 

EVALUATE: We have divided the motion into two separate events: the collision and the motion after the 
collision. Angular momentum is conserved in the collision because the collision happens quickly. The board 
doesn�t move much until after the collision is over, so there is no gravity torque about the axis. The collision is 
inelastic and mechanical energy is lost in the collision. Angular momentum of the system is not conserved during 
this motion, due to the external gravity torque. Our answer to parts (b) and (c) say that a bullet speed of 360 m/s 
causes the board to swing up only a little and a speed of 1010 m/s causes it to swing all the way over. 

10.90. IDENTIFY: Angular momentum is conserved, so 0 0 2 2I Iω ω= . 
SET UP: For constant mass the moment of inertia is proportional to the square of the radius. 
EXECUTE: 2 2

0 0 2 2R Rω ω= , or ( ) ( )22 2 2
0 0 0 0 0 0 0 0 0= 2 ,R R R R R R Rω ω ω ω ω ω= + Δ + Δ + Δ + Δ  where the terms in 

R ωΔ Δ  and 2( )ωΔ  have been omitted. Canceling the 2
0 0R ω  term gives 

0

0

1.1 cm.
2
R ωR
ω
Δ

Δ = − = −  

EVALUATE: 0/R RΔ and 0/ω ωΔ  are each very small so the neglect of terms containing R ωΔ Δ or 2( )ωΔ  is an 
accurate simplifying approximation. 

10.91. IDENTIFY: Apply conservation of angular momentum to the collision between the bird and the bar and apply 
conservation of energy to the motion of the bar after the collision. 
SET UP: For conservation of angular momentum take the axis at the hinge. For this axis the initial angular 
momentum of the bird is bird (0.500 m)m v , where bird 0.500 kgm = and 2.25 m/sv = . For this axis the moment of 

inertia is 2 2 21 1
bar3 3 (1.50 kg)(0.750 m) 0.281 kg mI m L= = = ⋅ . For conservation of energy, the gravitational 

potential energy of the bar is bar cmU m gy= , where cmy is the height of the center of the bar. Take cm,1 0y = , so 

cm,2 0.375 my = − . 

EXECUTE: (a) 1 2L L= gives 21
bird bar3(0.500 m) ( )m v m L ω= . 

bird
2 2

bar

3 (0.500 m) 3(0.500 kg)(0.500 m)(2.25 m/s) 2.00 rad/s
(1.50 kg)(0.750 m)

m v
m L

ω = = = . 
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(b) 1 1 2 2U K U K+ = + applied to the motion of the bar after the collision gives 2 21 1
1 bar 22 2( 0.375 m)I m g Iω ω= − + . 

2
2 1 bar

2 (0.375 m)m g
I

ω ω= +  . 2 2
2 2

2(2.00 rad/s) (1.50 kg)(9.80 m/s )(0.375 m) 6.58 rad/s
0.281 kg m

ω = + =
⋅

 

EVALUATE: Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after the 
collision is less than the kinetic energy of the bird just before the collision. 

10.92. IDENTIFY: Angular momentum is conserved, since the tension in the string is in the radial direction and therefore 
produces no torque. Apply m=∑F a

! ! to the block, with 2
rad /a a v r= = . 

SET UP: The block�s angular momentum with respect to the hole is L mvr= . 

EXECUTE: The tension is related to the block�s mass and speed, and the radius of the circle, by
2

.vT m
r

=  

( )22 2 2 2
2

3 3 3

1 .
mvrm v r LT mv

r m r mr mr
= = = =  The radius at which the string breaks is 

( ) ( )( )( )( )
( )( )

222
1 13

max max

0.250 kg 4.00 m s 0.800 m
,

0.250 kg 30.0 N
mv rLr

mT mT
= = = from which 0.440 m.r =  

EVALUATE: Just before the string breaks the speed of the rock is 0.800 m(4.00 m/s) 7.27 m/s
0.440 m
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. We can 

verify that 7.27 m/sv = and 0.440 mr = do give 30.0 NT = . 
10.93. IDENTIFY and SET UP: Apply conservation of angular momentum to the system consisting of the disk and train. 

SET UP: 1 2 ,L L=  counterclockwise positive. The motion is sketched in Figure 10.93. 

 

1 0L =  (before you switch on the train�s engine; 
both the train and the platform are at rest) 

2 train diskL L L= +  

Figure 10.93  
EXECUTE: The train is 1

2 (0.95 m) 0.475 m=  from the axis of rotation, so for it 
2 2 2

t t t (1.20 kg)(0.475 m) 0.2708 kg mI m R= = = ⋅  

rel rel t/ (0.600 m/s)/0.475 s 1.263 rad/sv Rω = = =  
This is the angular velocity of the train relative to the disk. Relative to the earth t rel d.ω ω ω= +  
Thus train t t t rel d( ).L I Iω ω ω= = +  

2 1L L=  says disk trainL L= −  

disk d d ,L I ω=  where 21
d d d2I m R=  

21
d d d t rel d2 ( )m R Iω ω ω= − +  

2
t rel

d 2 2 21 1
d d t2 2

(0.2708 kg m )(1.263 rad/s) 0.30 rad/s.
(7.00 kg)(0.500 m) 0.2708 kg m

I
m R I
ωω ⋅

= − = − = −
+ + ⋅

 

EVALUATE: The minus sign tells us that the disk is rotating clockwise relative to the earth. The disk and train 
rotate in opposite directions, since the total angular momentum of the system must remain zero. Note that we 
applied 1 2L L=  in an inertial frame attached to the earth. 

10.94. IDENTIFY: I for the wheel is the sum of the values of I for each of its parts, the rim and each spoke. The total 
length of wire is constant. The motion is related to the friction torque by z zIτ α=∑ . 

SET UP: 04 2R R Lπ+ = , where R is the radius of the wheel and therefore the length of each of the four spokes. 
The mass of a piece is proportional to the length of that piece. 

EXECUTE: (a) 0

4 2
LR
π

=
+

. 2
rim rimI m R= . rim 0 0

0

2 2
4 2

Rm M M
L
π π

π
⎛ ⎞= = ⎜ ⎟+⎝ ⎠

. 

2 3 2
rim 0 0 0 03

2 (5.778 10 )
(2 4)

I M L M Lπ
π

−= = ×
+

. 21
spoke spoke3I m R= . 0

spoke 0
0 2 4

R Mm M
L π

= =
+

and 

2 4 2
spoke 0 0 0 03

1 (3.065 10 )
3(2 4)

I M L M L
π

−= = ×
+

. 3 2
rim spoke 0 04 (7.00 10 )I I I M L−= + = × . 
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(b) 0z z ztω ω α= + gives 0
z T

ωα = − . Then z zIτ α=∑ gives 3 2 0
f 0 0(7.00 10 )M L

T
ωτ −= ×  

EVALUATE: If the wire were bent into a circle, without spokes, the moment of inertia would be 
2

2 3 20 0
0 0 02 (9.46 10 )

(4 2 )
M LM R M L

π
−= = ×

+
. The actual value of I for the wheel is less than this because the mass in the 

spokes is closer to the axis than the rim. 
10.95. IDENTIFY and SET UP: Use the methods stipulated in the problem. 

EXECUTE: (a) The initial angular momentum with respect to the pivot is ,mvr and the final total moment of 

inertia is 2I mr+ , so the final angular velocity is ( )2 .mvr mr Iω = +  

(b) The kinetic energy after the collision is converted to gravitational potential energy, so 

( ) ( )2 21
2

mr I M m ghω + = + , or ( )
( )2

2
 

M m gh
mr I

ω
+

=
+

. 

(c) Substitution of 2Ι Μr= into the result of part (a) gives ( ),m v r
m M

ω ⎛ ⎞= ⎜ ⎟+⎝ ⎠
 and into the result of part (b), 

2 (1 ),gh rω = which are consistent with the forms for v. 

EVALUATE: 2I Mr= applies approximately when the pendulum consists of a heavy catcher mounted on a light 
arm. In the actual apparatus some of the mass is distributed closer to the axis and 2I Mr< . 

10.96. IDENTIFY: Apply conservation of momentum to the system of the runner and turntable 
SET UP: Let the positive sense of rotation be the direction the turntable is rotating initially. 
EXECUTE: The initial angular momentum is 1 1I mRvω − , with the minus sign indicating that runner�s motion is 

opposite the motion of the part of the turntable under his feet. The final angular momentum is 2
2 ( ),  soI mRω +  

1 1
2 2

I mRv
I mR
ωω −

=
+

. 

2

2 2 2

(80 kg m )(0.200 rad s) (55.0 kg)(3.00 m)(2.8 m s) 0.776 rad s
(80 kg m ) (55.0 kg)(3.00 m)

ω ⋅ −
= = −

⋅ +
. 

EVALUATE: The minus sign indicates that the turntable has reversed its direction of motion. This happened 
because the man had the larger magnitude of angular momentum initially. 

10.97. IDENTIFY: Treat the moon as a point mass, so 2L I mrω ω= = , where r is the distance of the moon from the 
center of the earth. Conservation of angular momentum says / 0dL dt = . 
SET UP: 2/ 3.0 cm/y 3.0 10  m/ydr dt −= = × . The period of the moon�s orbital motion is 627.3 d 2.36 10  s= × . 

83.84 10  mr = × . 

EXECUTE: 2 2/ ( ) (2 ) 0d dr ddL dt mr m r mr
dt dt dt

ωω ω= = + = , so 2d dr
dt r dt
ω ω
= − . 

6
6

2  rad 2  rad 2.66 10  rad/s
2.36 10  sT

π πω −= = = ×
×

. 
6

2 16
8

2(2.66 10  rad/s) (3.0 10  m/y) 4.2 10  rad/s per year
3.84 10  m

d
dt
ω −

− −×
= − × = − ×

×
. 

d
dt
ω is negative, so the angular velocity is decreasing. 

EVALUATE: 2L mr ω= . If L is constant, then ω decreases when r increases. The fractional changes in r and 
ω are very, very small. 

10.98. IDENTIFY: Follow the method outlined in the hint. 
SET UP: cmJ m v= Δ . cm( )L J x xΔ = − . 
EXECUTE: The velocity of the center of mass will change by cm /v J mΔ = and the angular velocity will change by 

cm( )J x x
I

ω −
Δ = . The change is velocity of the end of the bat will then be end cm cmv v xωΔ = Δ − Δ = cm cm( )J J x x x

m I
−

− ⋅  

Setting end 0vΔ =  allows cancellation of J cm cmand gives ( ) , I x x x m= − which when solved for x is 
2 2

cm
cm

(5.30 10 kg m ) (0.600 m) 0.710 m.
(0.600 m)(0.800 kg)

Ix x
x m

−× ⋅
= + = + =  

EVALUATE: The center of percussion is farther from the handle than the center of mass. 
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10.99. IDENTIFY and SET UP: Follow the analysis that led to Eq.(10.33). 
EXECUTE: In Figure 10.33a in the textbook, if the vector r!  and hence the vector L

"!
 are not horizontal but make 

an angle β  with the horizontal, the torque will still be horizontal (the torque must be perpendicular to the vertical 
weight). The magnitude of the torque will be cosrω β , and this torque will change the direction of the horizontal 
component of the angular momentum, which has magnitude cos L β . Thus, the situation of Figure 10.35 in the 

textbook is reproduced, but with horizL
"!

 instead of L
"!

. Then, the expression found in Eq. (10.33) becomes 

horiz

horiz

  cos
cos

dd mgr wr
dt dt L I
φ τ β

β ω
Ω = = = = = ⋅

L L

L

"! "!

"!  

EVALUATE: The torque and the horizontal component of L
!

both depend on β  by the same factor, cosβ . 
10.100. IDENTIFY: Apply conservation of energy to the motion of the ball. 

SET UP: In relating 21
cm2 mv and 21

2 Iω , instead of cmv Rω= use the relation derived in part (a). 22
5I mR= . 

EXECUTE: (a) Consider the sketch in Figure 10.100. 
The distance from the center of the ball to the midpoint of the line joining the points where the ball is in contact 

with the rails is ( )22 2 ,R d− 2 2
cmso 4  v R dω= − . When 0,d =  this reduces to cm ,v Rω=  the same as rolling 

on a flat surface. When 2 ,d R= the rolling radius approaches zero, and cm 0 for any .v ω→  

(b) ( )
( ) ( )

2
2

2 2 2 2 cm cm
cm 2 22 2

1 1 1 22 5 5
2 2 2 10 1 44

v mvK mv I mv mR
d RR d

ω
⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟ ⎢ ⎥= + = + = +⎢ ⎥⎜ ⎟ −⎢ ⎥⎜ ⎟−⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

 

Setting this equal to mgh and solving for cmv gives the desired result. 
(c) The denominator in the square root in the expression for cmv is larger than for the case cm0,  so d v= is smaller. 
For a given speed,  is larger than in the  0dω =  case, so a larger fraction of the kinetic energy is rotational, and the 
translational kinetic energy, and hence cmv , is smaller. 
(d) Setting the expression in part (b) equal to 0.95 of that of the 0d =  case and solving for the ratio d R  gives 

1.05.d R =  Setting the ratio equal to 0.995 gives 0.37.d R =  

EVALUATE: If we set 0d = in the expression in part (b), cm
10

7
ghv = , the same as for a sphere rolling down a 

ramp. When 2d R→ , the expression gives cm 0v = , as it should. 

 
Figure 10.100 

10.101. IDENTIFY: Apply ext cmm=∑F a
! ! and cmz zIτ α=∑ to the motion of the cylinder. Use constant acceleration equations 

to relate xa to the distance the object travels. Use the work-energy theorem to find the work done by friction. 

SET UP: The cylinder has 21
cm 2I MR= . 

EXECUTE: (a) The free-body diagram is sketched in Figure 10.101. The friction force is 

k k k,   so  .f n Mg a gμ μ μ= = =  The magnitude of the angular acceleration is 
( )

k k
2

2 .
1 2

MgR gfR
I RMR

μ μ
= =  

(b) Setting ( )0v at R t Rω ω ω= = = −  and solving for t gives 0 0 0

k k k

,
2 3

R R Rt
a R g g g
ω ω ω
α μ μ μ

= = =
+ +

 

and ( )
2 2 2

2 0 0
k

k k

1 1 .
2 2 3 18

R Rd at g
g g

ω ωμ
μ μ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
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(c) The final kinetic energy is ( ) ( ) ( )223 4 3 4 ,Mv M at= so the change in kinetic energy is 
2

2 2 2 20
k 0 0

k

3 1 1 .
4 3 4 6

RK M g MR MR
g

ωμ ω ω
μ

⎛ ⎞
Δ = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE: The fraction of the initial kinetic energy that is removed by friction work is 
21
06
21
04

2
3

MR
MR

ω
ω

= . This 

fraction is independent of the initial angular speed 0ω . 

 
Figure 10.101 

10.102. IDENTIFY: The vertical forces must sum to zero. Apply Eq.(10.33). 
SET UP: Denote the upward forces that the hands exert as and L RF F . ( )L RF F rτ = − , where 0.200 mr = . 

EXECUTE: The conditions that  and L RF F must satisfy are L RF F w+ = and L R
IF F
r
ω

− = Ω , where the second 

equation is ,Lτ = Ω  divided by r. These two equations can be solved for the forces by first adding and then subtracting, 

yielding 1
2L

IF w
r
ω⎛ ⎞= +Ω⎜ ⎟

⎝ ⎠
and 1 .

2R
IF w
r
ω⎛ ⎞= −Ω⎜ ⎟

⎝ ⎠
 Using the values 2(8.00 kg)(9.80 m s ) 78.4 N andw mg= = =  

2(8.00 kg)(0.325 m) (5.00 rev s 2  rad rev) 132.7 kg m s
(0.200 m)

I
r
ω π×
= = ⋅  gives 

39.2 N (66.4 N s),  39.2 N (66.4 N s).L RF F= +Ω ⋅ = −Ω ⋅  
(a) 0, 39.2 NL RF FΩ = = = . 
(b) 0.05 rev s 0.314 rad s, 60.0 N, 18.4 N.L RF FΩ = = = =  
(c) 0.3 rev s 1.89 rad s, 165 N, 86.2 NL RF FΩ = = = = − , with the minus sign indicating a downward force. 

(e) 39.2 N0  gives  0.575 rad s,  which is 0.0916 rev s.
66.4  N sRF = Ω = =

⋅
 

EVALUATE: The larger the precession rate Ω , the greater the torque on the wheel and the greater the difference 
between the forces exerted by the two hands. 

10.103. IDENTIFY: The answer to part (a) can be taken from the solution to Problem 10.92. The work-energy theorem 
says W K= Δ . 
SET UP: Problem 10.92 uses conservation of angular momentum to show that 1 1 2 2rv r v= . 

EXECUTE: (a) 2 2 3
1 1 . T mv r r=  

(b)  and dT r
! !  are always antiparallel. d Tdr⋅ = −T r

! ! . 
2 1

1 2

2
2 2 21
1 1 13 2 2

2 1

1 1 .
2

r r

r r

dr mvW T dr mv r r
r r r

⎡ ⎤
= − = = −⎢ ⎥

⎣ ⎦
∫ ∫  

(c) 2 1 1 2( ),  sov v r r=
2

2 2 21
2 1 1 2

1 ( ) ( / )  1
2 2

mvK m v v r r⎡ ⎤Δ = − = −⎣ ⎦ , which is the same as the work found in part (b). 

EVALUATE: The work done by T is positive, since T
!

is toward the hole in the surface and the block moves 
toward the hole. Positive work means the kinetic energy of the object increases. 


