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ROTATION OF RIGID BODIES 

 9.1. IDENTIFY: s rθ= , with θ  in radians. 
SET UP:  rad 180π = ° . 

EXECUTE: (a) 1.50 m 0.600 rad 34.4
2.50 m

s
r

θ = = = = °  

(b) 14.0 cm 6.27 cm
(128 )(  rad /180 )

sr
θ π

= = =
° °

 

(c) (1.50 m)(0.700 rad) 1.05 ms rθ= = =  
EVALUATE: An angle is the ratio of two lengths and is dimensionless. But, when s rθ= is used, θ must be in 
radians. Or, if /s rθ = is used to calculate θ , the calculation gives θ  in radians. 

 9.2. IDENTIFY: 0 tθ θ ω− = , since the angular velocity is constant. 
SET UP: 1 rpm (2 / 60) rad/sπ= . 
EXECUTE: (a) (1900)(2  rad / 60 s) 199 rad/sω π= =  

(b) 35 (35 )( /180 ) 0.611 radπ= =° ° ° . 30 0.611 rad 3.1 10  s
199 rad/s

t θ θ
ω

−−
= = = ×  

EVALUATE: In 0t θ θ
ω
−

= we must use the same angular measure (radians, degrees or revolutions) for both 

0θ θ− and ω . 

 9.3. IDENTIFY: ( ) z
z

dt
dt
ωα = . Writing Eq.(2.16) in terms of angular quantities gives 2

1

t

zt
dtθ θ ω− = ∫ . 

SET UP: 1n nd t nt
dt

−= and 11
1

n nt dt t
n

+=
+∫  

EXECUTE: (a) A must have units of rad/s and B must have units of 3rad/s . 
(b) 3( ) 2 (3.00 rad/s )z t Bt tα = = . (i) For 0t = , 0zα = . (ii) For 5.00 st = , 215.0 rad/szα = . 

(c) 2

1

2 3 31
2 1 2 1 2 13( ) ( ) ( )

t

t
A Bt dt A t t B t tθ θ− = + = − + −∫ . For 1 0t = and 2 2.00 st = , 

3 31
2 1 3(2.75 rad/s)(2.00 s) (1.50 rad/s )(2.00 s) 9.50 radθ θ− = + = . 

EVALUATE: Both zα and zω are positive and the angular speed is increasing.  

 9.4. IDENTIFY: /z zd dtα ω= . av-
z

z t
ωα Δ

=
Δ

. 

SET UP: 2( ) 2d t t
dt

=  

EXECUTE: (a) 3( ) 2  ( 1.60 rad s ) .z
z

dωα t βt t
dt

= = − = −  

(b) 3 2(3.0 s)  ( 1.60 rad s )(3.0 s) 4.80 rad s .zα = − = −  

2.
av-

(3.0 s)  (0) 2.20 rad s 5.00 rad s 2.40 rad s ,
3.0 s 3.0 s

z z
z
ω ωα − − −

= = = −  

which is half as large (in magnitude) as the acceleration at 3.0 s.t =  

EVALUATE: ( )z tα increases linearly with time, so av-
(0) (3.0 s)

2
z z

z
α αα +

= . (0) 0zα = . 

9
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 9.5. IDENTIFY and SET UP: Use Eq.(9.3) to calculate the angular velocity and Eq.(9.2) to calculate the average 
angular velocity for the specified time interval. 
EXECUTE: 3;t tθ γ β= +  0.400 rad/s,γ =  30.0120 rad/sβ =  

(a) 23z
d t
dt
θω γ β= = +  

(b) At 0,t =  0.400 rad/szω γ= =  

(c) At 5.00 s,t =  3 20.400 rad/s 3(0.0120 rad/s )(5.00 s) 1.30 rad/szω = + =  

2 1
av-

2 1
z t t t

θ θ θω Δ −
= =
Δ −

 

For 1 0,t =  1 0.θ =  

For 2 5.00 s,θ =  3 3
2 (0.400 rad/s)(5.00 s) (0.012 rad/s )(5.00 s) 3.50 radθ = + =  

So av-
3.50 rad 0 0.700 rad/s.
5.00 s 0zω −

= =
−

 

EVALUATE: The average of the instantaneous angular velocities at the beginning and end of the time interval is 
1
2 (0.400 rad/s 1.30 rad/s) 0.850 rad/s.+ =  This is larger than av- ,zω  because ( )z tω  is increasing faster than linearly. 

 9.6. IDENTIFY: ( )z
dt
dt
θω = . ( ) z

z
dt
dt
ωα = . av-z t

θω Δ
=
Δ

. 

SET UP: 2 3 2(250 rad s) (40.0 rad s ) (4.50 rad s )zω t t= − − . 2 3
z (40.0 rad s ) (9.00 rad s )α t= − − . 

EXECUTE: (a) Setting 0zω = results in a quadratic in t. The only positive root is 4.23 st = . 

(b) At 4.23 st = , 278.1 rad s .zα = −  
(c) At 4.23 st = , 586 rad 93.3 revθ = = . 
(d) At 0t = , 250 rad/szω = . 

(e) av-
586 rad 138 rad s.4.23 szω = =  

EVALUATE: Between 0t = and 4.23 st = , zω decreases from 250 rad/s to zero. zω is not linear in t, so av-zω is 
not midway between the values of zω at the beginning and end of the interval. 

 9.7. IDENTIFY: ( )z
dt
dt
θω = . ( ) z

z
dt
dt
ωα = . Use the values of θ and zω at 0t = and zα at 1.50 s to calculate a, b, 

and c. 

SET UP: 1n nd t nt
dt

−=  

EXECUTE: (a) 2( ) 3z t b ctω = − . ( ) 6z t ctα = − . At 0t = , / 4 radaθ π= = and 2.00 rad/sz bω = = . At 1.50 st = , 
26 (1.50 s) 1.25 rad/sz cα = − = and 30.139 rad/sc = − . 

(b) / 4 radθ π= and 0zα = at 0t = . 

(c) 23.50 rad/szα = at 
2

3

3.50 rad/s 4.20 s
6 6( 0.139 rad/s )

zt
c
α

= − = − =
−

. At 4.20 st = , 

3 3 rad (2.00 rad/s)(4.20 s) ( 0.139 rad/s )(4.20 s) 19.5 rad
4
πθ = + − − = . 

3 22.00 rad/s 3( 0.139 rad/s )(4.20 s) 9.36 rad/szω = − − = . 
EVALUATE: θ , zω and zα all increase as t increases. 

 9.8. IDENTIFY: z
z

d
dt
ωα = . 0 av-ztθ θ ω− = . When zω is linear in t, av-zω for the time interval 1t  to 2t  is 

1 2
av-

2 1

z z
z t t

ω ωω +
=

−
. 

SET UP: From the information given, 2( ) 6.00 rad/s (2.00 rad/s )z t tω = − +  
EXECUTE: (a) The angular acceleration is positive, since the angular velocity increases steadily from a negative 
value to a positive value. 
(b) It takes 3.00 seconds for the wheel to stop ( 0)zω = . During this time its speed is decreasing. For the next 
4.00 s its speed is increasing from 0 rad s to 8.00 rad s+ . 
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(c) The average angular velocity is 6.00 rad s 8.00 rad s 1.00 rad s
2

− +
= . 0 av-ztθ θ ω− = then leads to 

displacement of 7.00 rad after 7.00 s. 
EVALUATE: When zα and zω have the same sign, the angular speed is increasing; this is the case for 3.00 st = to 

7.00 st = . When zα and zω have opposite signs, the angular speed is decreasing; this is the case between 
0t = and 3.00 st = . 

 9.9. IDENTIFY: Apply the constant angular acceleration equations. 
SET UP: Let the direction the wheel is rotating be positive. 
EXECUTE: (a) 2

0 1.50 rad s (0.300 rad s )(2.50 s) 2.25  rad s.z z ztω ω α= + = + =  

(b) 2 2 21 1
0 0 2 2(1.50 rad/s)(2.50 s) (0.300 rad/s )(2.50 s) 4.69 radz zt tθ θ ω α− = + = + = . 

EVALUATE: 0
0

1.50 rad/s 2.25 rad/s (2.50 s) 4.69 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, the same as calculated with 

another equation in part (b). 
 9.10. IDENTIFY: Apply the constant angular acceleration equations to the motion of the fan. 

(a) SET UP: 0 (500 rev/min)(1 min/60 s) 8.333 rev/s,zω = =  (200 rev/min)(1 min/60 s) 3.333 rev/s,zω = =  
4.00 s,t =  ?zα =  

0z z ztω ω α= +  

EXECUTE: 20 3.333 rev/s 8.333 rev/s 1.25 rev/s
4.00 s

z z
z t

ω ωα − −
= = = −  

0 ?θ θ− =  
2 2 21 1

0 0 2 2(8.333 rev/s)(4.00 s) ( 1.25 rev/s )(4.00 s) 23.3 revz zt tθ θ ω α− = + = + − =  

(b) SET UP: 0zω =  (comes to rest); 0 3.333 rev/s;zω =  21.25 rev/s ;zα = −  
?t =  

0z z ztω ω α= +  

EXECUTE: 0
2

0 3.333 rev/s 2.67 s
1.25 rev/s

z z

z

t ω ω
α
− −

= = =
−

 

EVALUATE: The angular acceleration is negative because the angular velocity is decreasing. The average angular 
velocity during the 4.00 s time interval is 350 rev/min and 0 av-ztθ θ ω− =  gives 0 23.3 rev,θ θ− =  which checks. 

 9.11. IDENTIFY: Apply the constant angular acceleration equations to the motion. The target variables are t and 0.θ θ−  

SET UP: (a) 21.50 rad/s ;zα =  0 0zω =  (starts from rest); 36.0 rad/s;zω =  ?t =  

0z z ztω ω α= +  

EXECUTE: 0
2

36.0 rad/s 0 24.0 s
1.50 rad/s

z z

z

t ω ω
α
− −

= = =  

(b) 0 ?θ θ− =  
2 2 21 1

0 0 2 20 (1.50 rad/s )(2.40 s) 432 radz zt tθ θ ω α− = + = + =  

0 432 rad(1 rev/2  rad) 68.8 revθ θ π− = =  
EVALUATE: We could use 1

0 02 ( )z z tθ θ ω ω− = +  to calculate 1
0 2 (0 36.0 rad/s)(24.0 s) 432 rad,θ θ− = + =  which 

checks. 
 9.12. IDENTIFY: In part (b) apply the equation derived in part (a). 

SET UP: Let the direction the propeller is rotating be positive. 

EXECUTE: (a) Solving Eq. (9.7) for t gives 0z z

z

t ω ω
α
−

= . Rewriting Eq. (9.11) as 1
0 0 2( )z zt tθ θ ω ω− = +  and 

substituting for t gives 

2 20 0
0 0 0 0 0

1 1 1( ) ( ) ( ),
2 2 2

z z z z
z z z z z z z

z z z

ω ω ω ωθ θ ω ω ω ω ω ω ω
α α α

⎛ ⎞− +⎛ ⎞ ⎛ ⎞− = + − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

which when rearranged gives Eq. (9.12). 

(b) ( ) ( ) ( )( )2 22 2 21 1
02 2

0

1 1 16.0 rad s 12.0 rad s 8.00 rad/s
7.00 radz z zα ω ω

θ θ
⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
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EVALUATE: We could also use 0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

to calculate 0.500 st = . Then 0z z ztω ω α= +  gives 

28.00 rad/szα = , which agrees with our results in part (b). 
 9.13. IDENTIFY: Use a constant angular acceleration equation and solve for 0 .zω  

SET UP: Let the direction of rotation of the flywheel be positive. 

EXECUTE: 21
0 0 2z ztθ θ ω α− = +  gives 20 1 1

0 2 2
60.0 rad (2.25 rad/s )(4.00 s) 10.5 rad/s
4.00 sz zt

θ θω α−
= − = − = . 

EVALUATE: At the end of the 4.00 s interval, 0 19.5 rad/sz z ztω ω α= + = . 

0
0

10.5 rad/s 19.5 rad/s (4.00 s) 60.0 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, which checks. 

 9.14. IDENTIFY: Apply the constant angular acceleration equations. 
SET UP: Let the direction of the rotation of the blade be positive. 0 0zω = . 

EXECUTE: 0z z zω ω α= +  gives 20 140 rad/s 0 23.3 rad/s
6.00 s

z z
z t

ω ωα − −
= = = . 

0
0

0 140 rad/s( ) (6.00 s) 420 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: We could also use 21
0 0 2z zt tθ θ ω α− = + . This equation gives 

2 21
0 2 (23.3 rad/s )(6.00 s) 419 radθ θ− = = , in agreement with the result obtained above. 

 9.15. IDENTIFY: Apply constant angular acceleration equations. 
SET UP: Let the direction the flywheel is rotating be positive. 

0 0200 rev, 500 rev min 8.333 rev s,   30.0 sz tθ θ ω− = = = = . 

EXECUTE: (a) 0
0 gives 5.00 rev s 300 rpm

2
z z

ztω ωθ θ ω+⎛ ⎞− = = =⎜ ⎟
⎝ ⎠

 

(b) Use the information in part (a) to find :zα  0z z ztω ω α= + gives 20.1111 rev szα = − . Then 0,zω =  

2
00.1111 rev s ,  8.333 rev sz zα ω= − =  in 0z z ztω ω α= + gives 75.0 st = and 0

0 2
z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟

⎝ ⎠
gives 

0 312 revθ θ− = . 
EVALUATE: The mass and diameter of the flywheel are not used in the calculation. 

 9.16. IDENTIFY: Use the constant angular acceleration equations, applied to the first revolution and to the first two 
revolutions. 
SET UP: Let the direction the disk is rotating be positive. 1 rev 2  radπ= . Let t be the time for the first revolution. 
The time for the first two revolutions is 0.750 st + . 
EXECUTE: (a) 21

0 0 2z zt tθ θ ω α− = + applied to the first and to the first two revolutions gives 21
22  rad ztπ α= and 

21
24  rad ( 0.750 s)z tπ α= + . Eliminating zα between these equations gives 2

2

2  rad4  rad ( 0.750 s)t
t
ππ = + . 

2 22 ( 0.750 s)t t= + . 2 ( 0.750 s)t t= ± + . The positive root is 0.750 s 1.81 s
2 1

t = =
−

. 

(b) 21
22  rad ztπ α= and 1.81 st = gives 23.84 rad/szα =  

EVALUATE: At the start of the second revolution, 2
0 (3.84 rad/s )(1.81 s) 6.95 rad/szω = = . The distance the disk 

rotates in the next 0.750 s is 2 2 21 1
0 0 2 2(6.95 rad/s)(0.750 s) (3.84 rad/s )(0.750 s) 6.29 radz zt tθ θ ω α− = + = + = , 

which is two revolutions. 
 9.17. IDENTIFY: Apply Eq.(9.12) to relate zω to 0θ θ− . 

SET UP: Establish a proportionality. 
EXECUTE: From Eq.(9.12), with 0 0,  zω = the number of revolutions is proportional to the square of the initial 
angular velocity, so tripling the initial angular velocity increases the number of revolutions by 9, to 9.00 rev. 
EVALUATE: We don't have enough information to calculate zα ; all we need to know is that it is constant. 
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 9.18. IDENTIFY: In each case we apply constant acceleration equations to determine ( )tθ and ( )z tω . 
SET UP: Let 0 0θ = . The following table gives the revolutions and the angle θ (in degrees) through which the 
wheel has rotated for each instant in time (in seconds) and each of the three situations: 

 t  (a)
rev       θ

 (b)
rev       θ

 (c)
rev        θ

 

 0.05 0.50  180 0.03  11.3 0.44  158 
 0.10 1.00  360 0.13  45 0.75  270 
 0.15 1.50  540 0.28  101 0.94  338 
 0.20 2.00  720 0.50  180 1.00  360 

EXECUTE: The θ and zω graphs for each case are given in Figures 9.18 a�c. 
EVALUATE: The slope of the ( )tθ  graph is ( )z tω  and the slope of the ( )z tω  graph is ( )z tα . 

 

 

 
Figure 9.18 



9-6 Chapter 9 

 9.19. IDENTIFY: Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s and  
2.00 s until the wheel stops. 
(a) SET UP: Consider the motion from 0t =  to 2.00 s:t =  

0 ?;θ θ− =  0 24.0 rad/s;zω =  230.0 rad/s ;zα =  2.00 st =  

EXECUTE: 2 2 21 1
0 0 2 2(24.0 rad/s)(2.00 s) (30.0 rad/s )(2.00 s)z zt tθ θ ω α− = + = +  

0 48.0 rad 60.0 rad 108 radθ θ− = + =  
Total angular displacement from 0t =  until stops: 108 rad 432 rad 540 rad+ =  
Note: At 2.00 s,t =  2

0 24.0 rad/s (30.0 rad/s )(2.00 s) 84.0 rad/s;z z ztω ω α= + = + =  angular speed when breaker trips. 
(b) SET UP: Consider the motion from when the circuit breaker trips until the wheel stops. For this calculation let 

0t =  when the breaker trips. 
?;t =  0 432 rad;θ θ− =  0;zω =  0 84.0 rad/szω =  (from part (a)) 

0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

EXECUTE: 0

0

2( ) 2(432 rad) 10.3 s
84.0 rad/s 0z z

t θ θ
ω ω

−
= = =

+ +
 

The wheel stops 10.3 s after the breaker trips so 2.00 s 10.3 s 12.3 s+ =  from the beginning. 
(c) SET UP: ?;zα =  consider the same motion as in part (b): 

0z z ztω ω α= +  

EXECUTE: 20 0 84.0 rad/s 8.16 rad/s
10.3 s

z z
z t

ω ωα − −
= = = −  

EVALUATE: The angular acceleration is positive while the wheel is speeding up and negative while it is slowing 

down. We could also use 2 2
0 02 ( )z z zω ω α θ θ= + −  to calculate 

2 2 2
20

0

0 (84.0 rad/s) 8.16 rad/s
2( ) 2(432 rad)

z z
z

ω ωα
θ θ
− −

= = = −
−

 for 

the acceleration after the breaker trips. 
 9.20. IDENTIFY: The linear distance the elevator travels, its speed and the magnitude of its acceleration are equal to the 

tangential displacement, speed and acceleration of a point on the rim of the disk. s rθ= , v rω= and a rα= . In 
these equations the angular quantities must be in radians. 
SET UP: 1 rev 2  radπ= . 1 rpm 0.1047 rad/s= . rad 180π = ° . For the disk, 1.25 mr = . 

EXECUTE: (a) 0.250 m/sv = so 0.250 m/s 0.200 rad/s 1.91 rpm
1.25 m

v
r

ω = = = = . 

(b) 21
8 1.225 m/sa g= = . 

2
21.225 m/s 0.980 rad/s

1.25 m
a
r

α = = = . 

(c) 3.25 ms = . 3.25 m 2.60 rad 149
1.25 m

s
r

θ = = = = ° . 

EVALUATE: When we use s rθ= , v rω= and tana rα=  to solve for θ , ω and α , the results are in rad, rad/s 

and 2rad/s . 
 9.21. IDENTIFY: When the angular speed is constant, / tω θ= . tanv rω= , tana rα= and 2

rada rω= . In these equations 
radians must be used for the angular quantities. 
SET UP: The radius of the earth is 6

E 6.38 10  mR = × and the earth rotates once in 1 day 86,400 s= . The orbit radius 

of the earth is 111.50 10  m× and the earth completes one orbit in 71 y 3.156 10  s= × . When ω is constant, / tω θ= . 

EXECUTE: (a) 1 rev 2  radθ π= = in 73.156 10  st = × . 7
7

2  rad 1.99 10  rad/s
3.156 10  s

πω −= = ×
×

. 

(b) 1 rev 2  radθ π= = in 86,400 st = . 52  rad 7.27 10  rad/s
86,400 s
πω −= = ×  

(c) 11 7 4(1.50 10  m)(1.99 10  rad/s) 2.98 10  m/sv rω −= = × × = × . 

(d) 6 5(6.38 10  m)(7.27 10  rad/s) 464 m/sv rω −= = × × = . 

(e) 2 6 5 2 2
rad (6.38 10  m)(7.27 10  rad/s) 0.0337 m/sa rω −= = × × = . tan 0a rα= = . 0α = since the angular velocity is 

constant. 
EVALUATE: The tangential speeds associated with these motions are large even though the angular speeds are 
very small, because the radius for the circular path in each case is quite large. 
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 9.22. IDENTIFY: Linear and angular velocities are related by v rω= . Use 0z z ztω ω α= +  to calculate zα . 
SET UP: /v rω = givesω in rad/s. 

EXECUTE: (a) 3

1.25 m/s 50.0 rad/s,
25.0 10  m− =

×
 3

1.25 m/s 21.6 rad/s.
58.0 10  m− =

×
 

(b) (1.25 m/s) (74.0 min) (60 s/min) = 5.55 km. 
(c) 3 221.55 rad/s 50.0 rad/s 6.41 10  rad/s .(74.0 min) (60 s/min)zα

−−= = − ×  

EVALUATE: The width of the tracks is very small, so the total track length on the disc is huge. 
 9.23. IDENTIFY: Use constant acceleration equations to calculate the angular velocity at the end of two revolutions. 

v rω= . 
SET UP: 2 rev 4  rad.π=  0.200 m.r =  

EXECUTE: (a) 2 2
0 02 ( ).z z zω ω α θ θ= + −  2

02 ( ) 2(3.00 rad/s )(4  rad) 8.68 rad/s.z zω α θ θ π= − = =  
2 2 2

rad (0.200 m)(8.68 rad/s) 15.1 m/s .a rω= = =  

(b) (0.200 m)(8.68 rad/s) 1.74 m/s.v rω= = =  
2 2

2
rad

(1.74 m/s) 15.1 m/s .
0.200 m

va
r

= = =  

EVALUATE: 2rω and 2 /v r are completely equivalent expressions for rada . 

 9.24. IDENTIFY: 2
rada rω= , with ω  in rad/s. Solve for ω . 

SET UP: 1 rpm (2 / 60) rad/sπ=  

EXECUTE: 
2

4 5rad (400,000)(9.80 m/s ) 1.25 10  rad/s 1.20 10  rpm
0.0250 m

a
r

ω = = = × = ×  

EVALUATE: In 2
rada rω= , ω must be in rad/s. 

 9.25. IDENTIFY and SET UP: Use constant acceleration equations to find ω  and α  after each displacement. The use 
Eqs.(9.14) and (9.15) to find the components of the linear acceleration. 
EXECUTE: (a) at the start 0t =  
flywheel starts from rest so 0 0z zω ω= =  

2 2
tan (0.300 m)(0.600 rad/s ) 0.180 m/sa rα= = =  

2
rad 0a rω= =  

2 2 2
rad tan 0.180 m/sa a a= + =  

(b) 0 60θ θ− = °  
2

tan 0.180 m/sa rα= =  
Calculate :ω  

0 60 (  rad/180 ) 1.047 rad;θ θ π− = ° ° =  0 0;zω =  20.600 rad/s ;zα =  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0.600 rad/s )(1.047 rad) 1.121 rad/sz zω α θ θ= − = =  and .zω ω=  

Then 2 2 2
rad (0.300 m)(1.121 rad/s) 0.377 m/s .a rω= = =  
2 2 2 2 2 2 2
rad tan (0.377 m/s ) (0.180 m/s ) 0.418 m/sa a a= + = + =  

(c) 0 120θ θ− = °  
2

tan 0.180 m/sa rα= =  
Calculate :ω  

0 120 (  rad/180 ) 2.094 rad;θ θ π− = ° ° =  0 0;zω =  20.600 rad/s ;zα =  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0.600 rad/s )(2.094 rad) 1.585 rad/sz zω α θ θ= − = =  and .zω ω=  

Then 2 2 2
rad (0.300 m)(1.585 rad/s) 0.754 m/s .a rω= = =  
2 2 2 2 2 2 2
rad tan (0.754 m/s ) (0.180 m/s ) 0.775 m/sa a a= + = + =  

EVALUATE: α  is constant so tanα  is constant. ω  increases so rada  increases. 
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 9.26. IDENTIFY: Apply constant angular acceleration equations. v rω= . A point on the rim has both tangential and 
radial components of acceleration. 
SET UP: tana rα=  and 2

rada rω= . 

EXECUTE: (a) 2
0  = 0.250 rev/s (0.900 rev/s )(0.200 s) 0.430 rev/sz z ztω ω α= + + =  

(Note that since 0 zω  and zα  are given in terms of revolutions, it�s not necessary to convert to radians). 
(b) av- (0.340 rev s)(0.2 s) 0.068 revz tω Δ = = . 
(c) Here, the conversion to radians must be made to use Eq. (9.13), and 

( )( )0.750 m 0.430 rev/s 2  rad rev 1.01 m s.
2

v rω π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(d) Combining equations (9.14) and (9.15), 
2 2 2 2 2
rad tan ( ) ( )a a a r rω α= + = + .

2 22 2((0.430 rev/s)(2  rad/rev)) (0.375 m) (0.900 rev/s )(2  rad/rev)(0.375 m)a π π⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ . 
23.46 m sa = . 

EVALUATE: If the angular acceleration is constant, tana is constant but rada increases as ω increases. 
 9.27. IDENTIFY: Use Eq.(9.15) and solve for r. 

SET UP: 2
rada rω=  so 2

rad / ,r a ω=  where ω  must be in rad/s 

EXECUTE: 2 2
rad 3000 3000(9.80 m/s ) 29,400 m/sa g= = =  

1 min 2  rad(5000 rev/min) 523.6 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then 
2

rad
2 2

29,400 m/s 0.107 m.
(523.6 rad/s)

ar
ω

= = =  

EVALUATE: The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is not realistic. 
 9.28. IDENTIFY: In part (b) apply the result derived in part (a). 

SET UP: 2
rada rω= and v rω= ; combine to eliminate r. 

EXECUTE: (a) 2 2 
rad =     .va r vω ω ω

ω
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) From the result of part (a), 
2

rad 0.500 m s 0.250 rad s.2.00 m s
a
v

ω = = =  

EVALUATE: 2
rada rω= and v rω= both require that ω be in rad/s, so in rada vω= , ω is in rad/s. 

 9.29. IDENTIFY: v rω= and 2 2
rad /a r v rω= = . 

SET UP: 2  rad 1 revπ = , so  rad/s 30 rev/minπ = . 

EXECUTE: (a) ( )
312.7 10 m rad/s(1250 rev min ) 0.831 m s.30 rev/min 2

r πω
−⎛ ⎞×

= =⎜ ⎟
⎝ ⎠

 

(b) 
2 2

2
3

(0.831 m s) 109 m s .
(12.7 10  m) 2

v
r −= =

×
 

EVALUATE: In v rω= , ω must be in rad/s. 
 9.30. IDENTIFY: tana rα= , v rω= and 2

rad /a v r= . 0 av-ztθ θ ω− = . 

SET UP: When zα is constant, 0
av- 2

z z
z

ω ωω +
= . Let the direction the wheel is rotating be positive. 

EXECUTE: (a) 
2

2tan 10.0 m s 50.0 rad s
0.200 m

a
r

α −
= = = −  

(b) At 3.00 st = , 50.0 m sv = and 50.0 m s 250 rad s0.200 m
v
r

ω = = =  and at 0,t =  

250.0 m s ( 10.0 m s )(0 3.00 s) 80.0 m sv = + − − = , 400 rad s.ω =  
(c) av- (325 rad s)(3.00 s) 975 rad 155 revztω = = = . 
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(d) 2
rad (9.80 m/s )(0.200 m) 1.40 m/s.v a r= = =  This speed will be reached at time 50.0 m/s 1.40 m/s 4.86 s

10.0 m/s
−

=  

after 3.00 st = , or at 7.86 st = . (There are many equivalent ways to do this calculation.) 
EVALUATE: At 0t = , 2 4 2

rad 3.20 10  m/sa rω= = × . At 3.00 st = , 4 2
rad 1.25 10  m/sa = × . For rada g= the wheel 

must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s. 
 9.31. IDENTIFY and SET UP: Use Eq.(9.15) to relate ω  to rada  and m=∑F a

! !  to relate rada  to rad.F  Use Eq.(9.13) to 
relate ω  and v, where v is the tangential speed. 
EXECUTE: (a) 2

rada rω=  and 2
rad radF ma mrω= =  

2 2
rad,2 2

rad,1 1

640 rev/min 2.29
423 rev/min

F
F

ω
ω
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) v rω=  
2 2

1 1

640 rev/min 1.51
423 rev/min

v
v

ω
ω

= = =  

(c) v rω=  
1 min 2  rad(640 rev/min) 67.0 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then (0.235 m)(67.0 rad/s) 15.7 m/s.v rω= = =  
2 2 2

rad (0.235 m)(67.0 rad/s) 1060 m/sa rω= = =  
2

rad
2

1060 m/s 108;
9.80 m/s

a
g

= =  108a g=  

EVALUATE: In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert ω  to rad/s. 
In part (c), v and rada  are calculated from ,ω  and ω  must be in rad/s. 

 9.32. IDENTIFY: v rω= and tana rα= . 
SET UP: The linear acceleration of the bucket equals tana for a point on the rim of the axle. 

EXECUTE: (a) v Rω= . 7.5 rev 1 min 2  rad2.00 cm s 
min 60 s 1 rev

R π⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 gives 2.55 cmR = . 

2 5.09 cmD R= = . 

(b) tana Rα= . 
2

2tan 0.400 m s 15.7 rad s
0.0255 m

a
R

α = = = . 

EVALUATE: In v Rω= and tana Rα= , ω and α must be in radians. 
 9.33. IDENTIFY: Apply v rω= . 

SET UP: Points on the chain all move at the same speed, so r r f fr rω ω= . 

EXECUTE: The angular velocity of the rear wheel is r
r

5.00 m s 15.15 rad s.
0.330 m

v
r

ω = = =  

The angular velocity of the front wheel is f 0.600 rev s 3.77 rad sω = = . ( )r f f r 2.99 cmr r ω ω= = . 
EVALUATE: The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel have 
the same angular velocity. rω  is the same for both, so the rear sprocket has a smaller radius since it has a larger 
angular velocity. The speed of a point on the chain is 2

r r (2.99 10  m)(15.15 rad/s) 0.453 m/sv rω −= = × = . The linear 
speed of the bicycle is 5.50 m/s. 

 9.34. IDENTIFY and SET UP: Use Eq.(9.16). Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE: The object is shown in Figure 9.34a. 
(a)  

 

2 2(0.200 m) (0.200 m) 0.2828 mr = + =  
2 24(0.200 kg)(0.2828 m)i iI m r= =∑  

20.0640 kg mI = ⋅  

Figure 9.34a  
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(b) The object is shown in Figure 9.34b. 

 

0.200 mr =  
2 24(0.200 kg)(0.200 m)i iI m r= =∑  

20.0320 kg mI = ⋅  

Figure 9.34b  
(c) The object is shown in Figure 9.34c. 

 

0.2828 mr =  
2 22(0.200 kg)(0.2828 m)i iI m r= =∑  

20.0320 kg mI = ⋅  

Figure 9.34c  
EVALUATE: In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). It just 
happens that I is the same in parts (b) and (c). 

 9.35. IDENTIFY: Use Table 9.2. The correct expression to use in each case depends on the shape of the object and the 
location of the axis. 
SET UP: In each case express the mass in kg and the length in m, so the moment of inertia will be in 2kg m⋅ . 

EXECUTE: (a) (i) 2 2 21 1
3 3 (2.50 kg)(0.750 m) 0.469 kg mI ML= = = ⋅ . 

(ii) 2 2 21 1
12 4 (0.469 kg m ) 0.117 kg mI ML= = ⋅ = ⋅ . (iii) For a very thin rod, all of the mass is at the axis and 0I = . 

(b) (i) 2 2 22 2
5 5 (3.00 kg)(0.190 m) 0.0433 kg mI MR= = = ⋅ . 

(ii) 2 2 252
3 3 (0.0433 kg m ) 0.0722 kg mI MR= = ⋅ = ⋅ . 

(c) (i) 2 2 2(8.00 kg)(0.0600 m) 0.0288 kg mI MR= = = ⋅ . 

(ii) 2 2 21 1
2 2 (8.00 kg)(0.0600 m) 0.0144 kg mI MR= = = ⋅ . 

EVALUATE: I depends on how the mass of the object is distributed relative to the axis. 
 9.36. IDENTIFY: Treat each block as a point mass, so for each block 2I mr= , where r is the distance of the block from 

the axis. The total I for the object is the sum of the I for each of its pieces. 
SET UP: In part (a) two blocks are a distance / 2L from the axis and the third block is on the axis. In part (b) two 
blocks are a distance / 4L from the axis and one is a distance 3 / 4L from the axis. 
EXECUTE: (a) 2 21

22 ( / 2)I m L mL= = . 

(b) 2 2 2 21 112 ( / 4) (3 / 4) (2 9)
16 16

I m L m L mL mL= + = + = . 

EVALUATE: For the same object I is in general different for different axes. 
 9.37. IDENTIFY: I for the object is the sum of the values of I for each part. 

SET UP: For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2. For a 
point mass, 2I mr= , where r is the distance of the mass from the axis. 

EXECUTE: (a) 
2

2
bar balls bar balls

1 2
12 2

LI I I M L m ⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

. 

( )( ) ( )( )2 2 21 4.00 kg 2.00 m 2 0.500 kg 1.00 m 2.33 kg m
12

I = + = ⋅  

(b) ( )( ) ( ) ( )2 22 2 2
bar ball

1 1 4.00 kg 2.00 m 0.500 kg  2.00 m 7.33 kg m
3 3

I m L m L= + = + = ⋅  

(c) 0I =  because all masses are on the axis. 
(d) All the mass is a distance 0.500 md = from the axis and 

2 2 2 2 2
bar ball Total2 (5.00 kg)(0.500 m) 1.25 kg mI m d m d M d= + = = = ⋅ . 

EVALUATE: I for an object depends on the location and direction of the axis. 
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 9.38. IDENTIFY and SET UP: According to Eq.(9.16), I for the entire object equals the sum of I for each piece, the rod 
plus the end caps. The object is shown in Figure 9.38. 

 

EXECUTE: rod cap2I I I= +  

( )2 2 21 1 1
12 12 22( )( / 2)I ML m L M m L= + = +  

Figure 9.38  

EVALUATE: Table 9.2 was used for rodI  and 2I mr=  for the end caps, since they are treated as point particles. 

 9.39. IDENTIFY and SET UP: 2
i iI m r=∑  implies rim spokesI I I= +  

EXECUTE: 2 2 2
rim (1.40 kg)(0.300 m) 0.126 kg mI MR= = = ⋅  

Each spoke can be treated as a slender rod with the axis through one end, so 
( )2 2 281

spokes 3 38 (0.280 kg)(0.300 m) 0.0672 kg mI ML= = = ⋅  
2 2 2

rim spokes 0.126 kg m 0.0672 kg m 0.193 kg mI I I= + = ⋅ + ⋅ = ⋅  

EVALUATE: Our result is smaller than 2 2 2
tot (3.64 kg)(0.300 m) 0.328 kg m ,m R = = ⋅  since the mass of each 

spoke is distributed between 0r =  and .r R=  
 9.40. IDENTIFY: Compare this object to a uniform disk of radius R and mass 2M. 

SET UP: With an axis perpendicular to the round face of the object at its center, I for a uniform disk is the same 
as for a solid cylinder. 
EXECUTE: (a) The total I for a disk of mass 2M and radius R, 2 21

2 (2 )I M R MR= = . Each half of the disk has the 

same I, so for the half-disk, 21
2I MR= . 

(b) The same mass M is distributed the same way as a function of distance from the axis. 
(c) The same method as in part (a) says that I for a quarter-disk of radius R and mass M is half that of a half-disk of 
radius R and mass 2M, so 2 21 1 1

2 2 2( [2 ] )I M R MR= = . 
EVALUATE: I depends on how the mass of the object is distributed relative to the axis, and this is the same for 
any segment of a disk. 

 9.41. IDENTIFY: I for the compound disk is the sum of I of the solid disk and of the ring. 
SET UP: For the solid disk, 21

d d2I m r= . For the ring, 2 21
r r 1 22 ( )I m r r= + , where 1 250.0 cm, 70.0  cmr r= = . The 

mass of the disk and ring is their area times their area density. 
EXECUTE: d rI I I= + . 

Disk: 2 2
d d(3.00 g cm ) 23.56 kgm rπ= = . 2 2

d d d
1 2.945 kg m
2

I m r= = ⋅ . 

Ring: 2 2 2
r 2 1(2.00 g cm ) ( ) 15.08 kgm r rπ= − = . 2 2 2

r r 1 2
1 ( ) 5.580 kg m
2

I m r r= + = ⋅ . 

2
d r 8.52 kg mI I I= + = ⋅ . 

EVALUATE: Even though r dm m< , r dI I> since the mass of the ring is farther from the axis. 

 9.42. IDENTIFY: 21
2K Iω= . Use Table 9.2b to calculate I. 

SET UP: 21
12I ML= . 1 rpm 0.1047 rad/s=  

EXECUTE: (a) 2 21
12 (117 kg)(2.08 m) 42.2 kg mI = = ⋅ . 0.1047 rad/s(2400 rev/min) 251 rad/s

1 rev/min
ω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
. 

2 2 2 61 1
2 2 (42.2 kg m )(251 rad/s) 1.33 10  JK Iω= = ⋅ = × . 

(b) 2 21
1 1 1 112K M Lω= , 2 21

2 2 2 212K M L ω= . 1 2L L= and 1 2K K= , so 2 2
1 1 2 2M Mω ω= . 

1 1
2 1

2 1

(2400 rpm) 2770 rpm
0.750

M M
M M

ω ω= = =  

EVALUATE: The rotational kinetic energy is proportional to the square of the angular speed and directly 
proportional to the mass of the object. 

 9.43. IDENTIFY: 21
2K Iω= . Use Table 9.2 to calculate I. 

SET UP: 22
5I MR= . For the moon, 227.35 10  kgM = × and 61.74 10  mR = × . The moon moves through 

1 rev 2  radπ= in 27.3 d. 41 d 8.64 10  s= × .  
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EXECUTE: (a) 22 6 2 34 22
5 (7.35 10  kg)(1.74 10  m) 8.90 10  kg mI = × × = × ⋅ . 

6
4

2  rad 2.66 10  rad/s
(27.3 d)(8.64 10  s/d)

πω −= = ×
×

. 

2 34 2 6 2 231 1
2 2 (8.90 10  kg m )(2.66 10  rad/s) 3.15 10  JK Iω −= = × ⋅ × = × . 

(b) 
23

20

3.15 10  J 158 years
5(4.0 10  J)

×
=

×
. Considering the expense involved in tapping the moon�s rotational energy, this 

does not seem like a worthwhile scheme for only 158 years worth of energy. 
EVALUATE: The moon has a very large amount of kinetic energy due to its motion. The earth has even more, but 
changing the rotation rate of the earth would change the length of a day. 

 9.44. IDENTIFY: 21
2K Iω= . Use Table 9.2 to relate I to the mass M of the disk. 

SET UP: 45.0 rpm 4.71 rad/s= . For a uniform solid disk, 21
2I MR= . 

EXECUTE: (a) 2
2 2

2 2(0.250 J) 0.0225 kg m
(4.71 rad/s)

KI
ω

= = = ⋅ . 

(b) 21
2I MR= and 

2

2 2

2 2(0.0225 kg m ) 0.500 kg
(0.300 m)

IM
R

⋅
= = = . 

EVALUATE: No matter what the shape is, the rotational kinetic energy is proportional to the mass of the object. 
 9.45. IDENTIFY: 21

2K Iω= , with ω  in rad/s. Solve for I. 
SET UP: 1 rev/min (2 / 60) rad/sπ= . 500 JKΔ = −  

EXECUTE: i 650 rev/min 68.1 rad/sω = = . f 520 rev/min 54.5 rad/sω = = . 2 21
f i f i2 ( )K K K I ω ωΔ = − = −  and 

2
2 2 2 2
f i

2( ) 2( 500 J) 0.600 kg m
(54.5 rad/s) (68.1 rad/s)

KI
ω ω
Δ −

= = = ⋅
− −

. 

EVALUATE: In 21
2K Iω= , ω must be in rad/s. 

 9.46. IDENTIFY: The work done on the cylinder equals its gain in kinetic energy. 
SET UP: The work done on the cylinder is PL, where L is the length of the rope. 1 0K = . 21

2 2K Iω= . 

2 21 1
2 2

wI mr r
g

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

EXECUTE: 
2 2

2
2

1 1 (40.0 N)(6.00 m s),   or  14.7 N.
2 2 2(9.80 m s )(5.00 m)

w w vPL v P
g g L

= = = =  

EVALUATE: The linear speed v of the end of the rope equals the tangential speed of a point on the rim of the 
cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn't appear. 

 9.47. IDENTIFY and SET UP: Combine Eqs.(9.17) and (9.15) to solve for K. Use Table 9.2 to get I. 
EXECUTE: 21

2K Iω=  
2

rad ,a Rω=  so 2
rad / (3500 m/s ) /1.20 m 54.0 rad/sa Rω = = =  

For a disk, 2 2 21 1
2 2 (70.0 kg)(1.20 m) 50.4 kg mI MR= = = ⋅  

Thus 2 2 2 41 1
2 2 (50.4 kg m )(54.0 rad/s) 7.35 10  JK Iω= = ⋅ = ×  

EVALUATE: The limit on rada  limits ω  which in turn limits K. 
 9.48. IDENTIFY: Repeat the calculation in Example 9.9, but with a different expression for I. 

SET UP: For the solid cylinder in Example 9.9, 21
2I MR= . For the thin-walled, hollow cylinder, 2I MR= . 

EXECUTE: (a) With 2,I MR= the expression for v is 2 .
1

ghv
M m

=
+

 

(b) This expression is smaller than that for the solid cylinder; more of the cylinder�s mass is concentrated at its 
edge, so for a given speed, the kinetic energy of the cylinder is larger. A larger fraction of the potential energy is 
converted to the kinetic energy of the cylinder, and so less is available for the falling mass. 
EVALUATE: When M is much larger than m, v is very small. When M is much less than m, v becomes 2v gh= , 
the same as for a mass that falls freely from a height h. 



Rotation of Rigid Bodies  9-13 

 9.49. IDENTIFY: Apply conservation of energy to the system of stone plus pulley. v rω= relates the motion of the 
stone to the rotation of the pulley. 
SET UP: For a uniform solid disk, 21

2I MR= . Let point 1 be when the stone is at its initial position and point 2 be 
when it has descended the desired distance. Let y+  be upward and take 0y = at the initial position of the stone, so 

1 0y = and 2y h= − , where h is the distance the stone descends. 

EXECUTE: (a) 21
p p2K I ω= . 2 2 21 1

p p2 2 (2.50 kg)(0.200 m) 0.0500 kg mI M R= = = ⋅ . 

p
2

p

2 2(4.50 J) 13.4 rad/s
0.0500 kg m

K
I

ω = = =
⋅

. The stone has speed (0.200 m)(13.4 rad/s) 2.68 m/sv Rω= = = . The 

stone has kinetic energy 2 21 1
s 2 2 (1.50 kg)(2.68 m/s) 5.39 JK mv= = = . 1 1 2 2K U K U+ = + gives 2 20 K U= + . 

0 4.50 J 5.39 J ( )mg h= + + − . 2

9.89 J 0.673 m
(1.50 kg)(9.80 m/s )

h = = . 

(b) tot p s 9.89 JK K K= + = . p

tot

4.50 J 45.5%
9.89 J

K
K

= = . 

EVALUATE: The gravitational potential energy of the pulley doesn�t change as it rotates. The tension in the wire 
does positive work on the pulley and negative work of the same magnitude on the stone, so no net work on the 
system. 

 9.50. IDENTIFY: 21
p 2K Iω= for the pulley and 21

b 2K mv= for the bucket. The speed of the bucket and the rotational 
speed of the pulley are related by v Rω= . 
SET UP: 1

p b2K K=  

EXECUTE: 2 2 2 21 1 1 1
2 2 2 4( )I mv mRω ω= = . 21

2I mR= . 
EVALUATE: The result is independent of the rotational speed of the pulley and the linear speed of the mass. 

 9.51. IDENTIFY: The general expression for I is Eq.(9.16). 21
2K Iω= . 

SET UP: R will be multiplied by f. 
EXECUTE: (a) In the expression of Eq. (9.16), each term will have the mass multiplied by 3f and the distance 

multiplied by ,f  and so the moment of inertia is multiplied by 3 2 5( ) . f f f=  

(b) 5 8 (2.5 J)(48) 6.37 10  J.= ×  
EVALUATE: Mass and volume are proportional to each other so both scale by the same factor. 

 9.52. IDENTIFY: The work the person does is the negative of the work done by gravity. grav grav,1 grav,2W U U= − . 

grav cmU Mgy= . 
SET UP: The center of mass of the ladder is at its center, 1.00 m from each end. 

cm,1 (1.00 m)sin53.0 0.799 my = =° . cm,2 1.00 my = . 

EXECUTE: 2
grav (9.00 kg)(9.80 m/s )(0.799 m 1.00 m) 17.7 JW = − = − . The work done by the person is 17.7 J. 

EVALUATE: The gravity force is downward and the center of mass of the ladder moves upward, so gravity does 
negative work. The person pushes upward and does positive work. 

 9.53. IDENTIFY: cmU Mgy= . 2 1U U UΔ = − . 
SET UP: Half the rope has mass 1.50 kg and length 12.0 m. Let 0y = at the top of the cliff and take y+  to be 
upward. The center of mass of the hanging section of rope is at its center and cm,2 6.00 my = − . 

EXECUTE: 2
2 1 cm,2 cm,1( ) (1.50 kg)(9.80 m/s )( 6.00 m 0) 88.2 JU U U mg y yΔ = − = − = − − = − . 

EVALUATE: The potential energy of the rope decreases when part of the rope moves downward. 
 9.54. IDENTIFY: Apply Eq.(9.19), the parallel-axis theorem. 

SET UP: The center of mass of the hoop is at its geometrical center. 
EXECUTE: In Eq. (9.19), 2 2 2

cm and ,  so 2 .PI MR d R I MR= = =  
EVALUATE: I is larger for an axis at the edge than for an axis at the center. Some mass is closer than distance R 
from the axis but some is also farther away. Since I for each piece of the hoop is proportional to the square of the 
distance from the axis, the increase in distance has a larger effect. 

 9.55. IDENTIFY: Use Eq.(9.19) to relate I for the wood sphere about the desired axis to I for an axis along a diameter. 
SET UP: For a thin-walled hollow sphere, axis along a diameter, 22

3 .I MR=  

For a solid sphere with mass M and radius R, 22
cm 5 ,I MR=  for an axis along a diameter. 
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EXECUTE: Find d such that 2
cmPI I Md= +  with 22

3 :PI MR=  
2 2 22 2

3 5MR MR Md= +  

The factors of M divide out and the equation becomes ( ) 2 22 2
3 5 R d− =  

(10 6) /15 2 / 15 0.516 .d R R R= − = =  
The axis is parallel to a diameter and is 0.516R from the center. 
EVALUATE: cm cm(lead) (wood)I I>  even though M and R are the same since for a hollow sphere all the mass is a 
distance R from the axis. Eq.(9.19) says cm ,PI I>  so there must be a d where cm(wood) (lead).PI I=  

 9.56. IDENTIFY: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an axis through its 
end and perpendicular to the rod. 
SET UP: The center of mass of the rod is at its center, and 21

cm 12I ML= . 

EXECUTE: 
2

2 2 2
cm .

12 2 3p
M L MI I Md L M L⎛ ⎞= + = + =⎜ ⎟

⎝ ⎠
 

EVALUATE: I is larger when the axis is not at the center of mass. 
 9.57. IDENTIFY and SET UP: Use Eq.(9.19). The cm of the sheet is at its geometrical center. The object is sketched in 

Figure 9.57. 
EXECUTE: 2

cm .PI I Md= +  

 

From part (c) of Table 9.2, 
2 21

cm 12 ( ).I M a b= +  
The distance d of P from 
the cm is 

2 2( / 2) ( / 2) .d a b= +  

Figure 9.57  

Thus ( ) ( )2 2 2 2 2 2 21 1 1 1 1
cm 12 4 4 12 4( ) ( )PI I Md M a b M a b M a b= + = + + + = + + =  

2 21
3 ( )M a b+  

EVALUATE: cm4 .PI I=  For an axis through P mass is farther from the axis. 
 9.58. IDENTIFY: Consider the plate as made of slender rods placed side-by-side. 

SET UP: The expression in Table 9.2(a) gives I for a rod and an axis through the center of the rod. 
EXECUTE: (a) I is the same as for a rod with length a: 21

12I Ma= . 

(b) I is the same as for a rod with length b: 21
12I Mb= . 

EVALUATE: I is smaller when the axis is through the center of the plate than when it is along one edge. 
 9.59. IDENTIFY: Use the equations in Table 9.2. I for the rod is the sum of I for each segment. The parallel-axis 

theorem says 2
p cmI I Md= + . 

SET UP: The bent rod and axes a and b are shown in Figure 9.59. Each segment has length / 2L and mass / 2M . 
EXECUTE: (a) For each segment the moment of inertia is for a rod with mass / 2M , length / 2L and the axis 

through one end. For one segment, 
2

2
s

1 1
3 2 2 24

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. For the rod, 2
a s

12
12

I I ML= = . 

(b) The center of mass of each segment is at the center of the segment, a distance of / 4L from each end. For each 

segment, 
2

2
cm

1 1
12 2 2 96

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. Axis b is a distance / 4L from the cm of each segment, so for each 

segment the parallel axis theorem gives I for axis b to be 
2

2 2
s

1 1
96 2 4 24

M LI ML ML⎛ ⎞= + =⎜ ⎟
⎝ ⎠

and 2
b s

12
12

I I ML= = . 
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EVALUATE: I for these two axes are the same. 

 
Figure 9.59 

 9.60. IDENTIFY: Apply the parallel-axis theorem. 

SET UP: ( ) ( )2
cmIn Eq 9 19  and  2

12
M . . , I L   d L h= = − . 

EXECUTE: 
2

2 2 2 2 2 21 1 1 1
12 2 12 4 3P

LI M L h M L L Lh h M L Lh h
⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + − = + − + = − +⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

, 

which is the same as found in Example 9.11. 
EVALUATE: Example 9.11 shows that this result gives the expected result for 0h = , h L= and / 2h L= . 

 9.61. IDENTIFY: Apply Eq.(9.20). 
SET UP: (2  )dm dV rL drρ ρ π= = , where L is the thickness of the disk. 2M L Rπ ρ= . 
EXECUTE: The analysis is identical to that of Example 9.12, with the lower limit in the integral being zero and 
the upper limit being R. The result is 21

2I MR= . 
EVALUATE: Our result agrees with Table 9.2(f). 

 9.62. IDENTIFY: Eq.(9.20), 2  I r dm= ∫  

SET UP:  

 
Figure 9.62 

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and width 
dx, as shown in Figure 9.62. The mass per unit length for this rod is / ,M L  so the mass of this slice is 

( / ) .dm M L dx=  

EXECUTE: 2 2 3 21
30 0

( / ) ( / )  ( / )( /3)
L L

I x M L dx M L x dx M L L ML= = = =∫ ∫  

EVALUATE: This result agrees with Table 9.2. 
 9.63. IDENTIFY: Apply Eq.(9.20). 

SET UP: For this case,  .dm dxγ=  

EXECUTE: (a) 
2 2

0 02 2

LL x LM dm x dx γγ γ= = = =∫ ∫  

(b) 
4 4

2 2

0 0

( ) .24 4

LL x L MI x x dx Lγγ γ= = = =∫  This is larger than the moment of inertia of a uniform rod of the same 

mass and length, since the mass density is greater further away from the axis than nearer the axis. 

(c) 
2 3 4 4

2 2 2 3 2 2

0 0 0

( ) ( 2 ) 2
2 3 4 12 6

LL L x x x L MI L x xdx L x Lx x dx L L Lγ γ γ γ
⎛ ⎞

= − = − + = − + = =⎜ ⎟
⎝ ⎠

∫ ∫ . 

This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the right end. 
EVALUATE: For a uniform rod with an axis at one end, 21

3I ML= . The result in (b) is larger than this and the 
result in (a) is smaller than this. 

 9.64. IDENTIFY: We know that v rω= and v! is tangential. We know that 2
rada rω= and rada

!  is in toward the center of 
the wheel. See if the vector product expressions give these results. 
SET UP: sinAB φ× =A B , where φ is the angle between A

!
and B

!
. 

EXECUTE: (a) For a counterclockwise rotation,ω! will be out of the page. 
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(b) The upward direction crossed into the radial direction is, by the right-hand rule, counterclockwise. !ω and r! are 
perpendicular, so the magnitude of × r! !ω is r vω = . 
(c) !ω  is perpendicular to v! and so × v! !ω  has magnitude rad,v aω =  and from the right-hand rule, the upward 

direction crossed into the counterclockwise direction is inward, the direction of rad.a!  
EVALUATE: If the wheel rotates clockwise, the directions of !ω  and v! are reversed, but rada

! is still inward. 
 9.65. IDENTIFY: Apply tθ ω= . 

SET UP: For alignment, the earth must move through 60°  more than Mars, in the same time t. e 360 / yrω = ° . 

M 360 /(1.9 yr)ω = ° . 
EXECUTE: e M 60θ θ= + ° . e M 60t tω ω= + ° . 

2

e M

60 60 (1/[0.9yr /1.9 yr ]) 0.352 yr 128 days360 360 360
1 yr 1.9 yr

t
ω ω

= = = = =
− −

° 60° °
° ° °

. 

EVALUATE: Earth has a larger angular velocity than Mars, and completes one orbit in less time. 
 9.66. IDENTIFY and SET UP: Use Eqs.(9.3) and (9.5). As long as 0,zα >  zω  increases. At the t when 0,zα =  zω  is at 

its maximum positive value and then starts to decrease when zα  becomes negative. 
2 3( ) ;t t tθ γ β= −  23.20 rad/s ,γ =  30.500 rad/sβ =  

EXECUTE: (a) 
2 3

2( )( ) 2 3z
d d t tt t t
dt dt
θ γ βω γ β−

= = = −  

(b) 
2(2 3 )( ) 2 6z

z
d d t tt t
dt dt
ω γ βα γ β−

= = = −  

(c) The maximum angular velocity occurs when 0.zα =  

2 6 0tγ β− =  implies 
2

3

2 3.20 rad/s 2.133 s
6 3 3(0.500 rad/s )

t γ γ
β β

= = = =  

At this t, 2 2 3 22 3 2(3.20 rad/s )(2.133 s) 3(0.500 rad/s )(2.133 s)z t tω γ β= − = − = 6.83 rad/s 
The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s. 
EVALUATE: For large t both zω  and zα  are negative and zω  increases in magnitude. In fact, zω → −∞  at 

.t →∞  So the answer in (c) is not the largest angular speed, just the largest positive angular velocity. 
 9.67. IDENTIFY: The angular acceleration α of the disk is related to the linear acceleration a of the ball by a Rα= . 

Since the acceleration is not constant, use 0 0

t

z z zdtω ω α− = ∫ and 0 0

t

zdtθ θ ω− = ∫  to relate θ , zω , zα and t for the 

disk. 0 0zω = . 

SET UP: 11  
1

n nt dt t
n

+=
+∫ . In a Rα= , α is in 2rad/s . 

EXECUTE: (a) 
2

31.80 m/s 0.600 m/s
3.00 s

aA
t

= = =  

(b) 
3

3(0.600 m/s ) (2.40 rad/s )
0.250 m

a t t
R

α = = =  

(c) 3 3 2

0
(2.40 rad/s ) (1.20 rad/s )

t

z tdt tω = =∫ . 15.0 rad/szω = for 3

15.0 rad/s 3.54 s
1.20 rad/s

t = = . 

(d) 3 2 3 3
0 0 0

(1.20 rad/s ) (0.400 rad/s )
t t

zdt t dt tθ θ ω− = = =∫ ∫ . For 3.54 st = , 0 17.7 radθ θ− = . 

EVALUATE: If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have turned 
through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the angular velocity is 
increasing in time and is less than 15.0 rad/s at all but the end of the interval. 

 9.68. IDENTIFY and SET UP: The translational kinetic energy is 21
2K mv=  and the kinetic energy of the rotating 

flywheel is 21
2 .K Iω=  Use the scale speed to calculate the actual speed v. From that calculate K for the car and 

then solve for ω  that gives this K for the flywheel. 
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EXECUTE: (a) toy toy

scale real

v L
v L

=  

toy
toy scale

real

0.150 m(700 km/h) 35.0 km/h
3.0 m

L
v v

L
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

toy (35.0 km/h)(1000 m/1 km)(1 h/3600 s) 9.72 m/sv = =  

(b) 2 21 1
2 2 (0.180 kg)(9.72 m/s) 8.50 JK mv= = =  

(c) 21
2K Iω=  gives that 5 2

2 2(8.50 J) 652 rad/s
4.00 10  kg m

K
I

ω −= = =
× ⋅

 

EVALUATE: 21
2K Iω=  gives ω  in rad/s. 652 rad/s 6200 rev/min= so the rotation rate of the flywheel is very 

large. 
 9.69. IDENTIFY: tana rα= , 2

rada rω= . Apply the constant acceleration equations and m=∑F a
! ! . 

SET UP: tana and rada  are perpendicular components of a! , so 2 2
rad tana a a= + . 

EXECUTE: (a) 
2

2tan 3.00 m s 0.050 rad s
60.0 m

a
r

α = = =  

(b) 2(0.05 rad s )(6.00 s) 0.300 rad s.tα = =  

(c) 2 2 2
rad (0.300 rad s) (60.0 m) 5.40 m s .a rω= = =  

(d) The sketch is given in Figure 9.69. 

(e) 22 2 2 2 2 2
rad tan (5.40 m s ) (3.00 m s ) 6.18 m s ,a a a= + = + = and the magnitude of the force is 

2(1240 kg)(6.18 m s ) 7.66 kN.F ma= = =  

(f) rad

tan

5.40arctan arctan 60.9 .
3.00

a
a

⎛ ⎞ ⎛ ⎞= = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: tana  is constant and rada  increases as ω increases. At 0t = , a!  is parallel to v! . As t increases, 
a! moves toward the radial direction and the angle between a!  increases toward 90° . 

 
Figure 9.69 

 9.70. IDENTIFY: Apply conservation of energy to the system of drum plus falling mass, and compare the results for 
earth and for Mars. 
SET UP: 21

drum 2K Iω= . 21
mass 2K mv= . v Rω= so if drumK is the same, ω is the same and v is the same on both 

planets. Therefore, massK is the same. Let 0y = at the initial height of the mass and take y+  upward. 
Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended 5.00 m, so 

1 0y = and 2y h= − , where h is the height the mass descends. 
EXECUTE: (a) 1 1 2 2K U K U+ = + gives drum mass0 K K mgh= + − . drum massK K+ are the same on both planets, so 

E E M Mmg h mg h= . 
2

E
M E 2

M

9.80 m/s(5.00 m) 13.2 m
3.71 m/s

gh h
g

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 
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(b) M M drum massmg h K K= + . 21
M M drum2 mv mg h K= − and 

2drum
M M

2 2(250.0 J)2 2(3.71 m/s )(13.2 m) 8.04 m/s
15.0 kg

Kv g h
m

= − = − =  

EVALUATE: We did the calculations without knowing the moment of inertia I of the drum, or the mass and radius 
of the drum. 

 9.71. IDENTIFY and SET UP: All points on the belt move with the same speed. Since the belt doesn�t slip, the speed of 
the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and these speeds are 
related to the angular speed of each circular object by .v rω=  
EXECUTE:  

 
Figure 9.71 

(a) 1 1 1v rω=  

1 (60.0 rev/s)(2  rad/1 rev) 377 rad/sω π= =  
2

1 1 1 (0.45 10  m)(377 rad/s) 1.70 m/sv rω −= = × =  
(b) 1 2v v=  

1 1 2 2r rω ω=  

2 1 2 1( / ) (0.45 cm/2.00 cm)(377 rad/s) 84.8 rad/sr rω ω= = =  
EVALUATE: The wheel has a larger radius than the shaft so turns slower to have the same tangential speed for 
points on the rim. 

 9.72. IDENTIFY: The speed of all points on the belt is the same, so 1 1 2 2r rω ω= applies to the two pulleys. 
SET UP: The second pulley, with half the diameter of the first, must have twice the angular velocity, and this is 
the angular velocity of the saw blade. rad/s 30 rev/minπ = . 

EXECUTE: (a) 2
rad s 0.208 m(2(3450 rev min)) 75.1 m s.

30 rev min 2
v π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 
2

2 4 2
rad

rad s 0.208 m2(3450 rev min)  5.43 10  m s ,
30 rev min 2

a r πω
⎛ ⎞⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity. 
EVALUATE: In v rω= and 2

rada rω= , ω must be in rad/s. 
 9.73. IDENTIFY and SET UP: Use Eq.(9.15) to relate rada  to ω  and then use a constant acceleration equation to 

replace .ω  
EXECUTE: (a) 2

rad ,a rω=  2
rad,1 1 ,a rω=  2

rad,2 2a rω=  
2 2

rad rad,2 rad,1 2 1( )a a a r ω ωΔ = − = −  
One of the constant acceleration equations can be written 

2 2
2 1 2 12 ( ),z zω ω α θ θ= + −  or 2 2

2 1 2 12 ( )z z zω ω α θ θ− = −  
Thus rad 2 1 2 12 ( ) 2 ( ),z za r rα θ θ α θ θΔ = − = −  as was to be shown. 

(b) 
2 2

2rad

2 1

85.0 m/s 25.0 m/s 8.00 rad/s
2 ( ) 2(0.250 m)(15.0 rad)z

a
r

α
θ θ
Δ −

= = =
−

 

Then 2 2
tan (0.250 m)(8.00 rad/s ) 2.00 m/sa rα= = =  

EVALUATE: 2ω  is proportional to zα  and 0( )θ θ−  so rada  is also proportional to these quantities. rada  increases 
while r stays fixed, zω  increases, and zα  is positive. 
IDENTIFY and SET UP: Use Eq.(9.17) to relate K and ω  and then use a constant acceleration equation to replace .ω  
EXECUTE: (c) 21

2 ;K Iω=  21
2 22 ,K Iω=  21

1 12K Iω=  
2 21 1

2 1 2 1 2 1 2 12 2( ) (2 ( )) ( ),z zK K K I I Iω ω α θ θ α θ θΔ = − = − = − = −  as was to be shown. 

(d) 2
2

2 1

45.0 J 20.0 J 0.208 kg m
( ) (8.00 rad/s )(15.0 rad)z

KI
α θ θ

Δ −
= = = ⋅

−
 

EVALUATE: zα  is positive, ω  increases, and K increases. 
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 9.74. IDENTIFY: wood lead.I I I= +  m Vρ= , where ρ is the volume density and m Aσ= , where σ is the area density. 

SET UP: For a solid sphere, 22
5I mR= . For the hollow sphere (foil), 22

3I mR= . For a sphere, 34
3V Rπ= and 

24A Rπ= . 3
w w w w

4
3

m V Rρ ρ π= = . 2
L L L L 4m A Rσ σ π= = . 

EXECUTE: 2 2 3 2 2 2 4 w
w L w L L

2 2 2 4 2 8( 4 )
5 3 5 3 3 3 5

RI m R m R R R R R R ρρ π σ π π σ⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

3
4 2 28 (800 kg m )(0.20 m)(0.20 m) 20 kg m 0.70 kg m

3 5
I π ⎡ ⎤
= + = ⋅⎢ ⎥

⎣ ⎦
. 

EVALUATE: W 26.8 kgm = and 2
W 0.429 kg mI = ⋅ . L 10.1 kgm = and 2

L 0.268 kg mI = ⋅ . Even though the foil is 
only 27% of the total mass its contribution to I is about 38% of the total. 

 9.75. IDENTIFY: Estimate the shape and dimensions of your body and apply the approximate expression from 
Table 9.2. 
SET UP: I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and diameter 0.30 m 
(radius 0.15 m) 

EXECUTE: 2 2 21 1 (80 kg) (0.15 m) 0.9 kg m
2 2

I mR= = = ⋅  

EVALUATE: I depends on your mass and width but not on your height. 
 9.76. IDENTIFY: Treat the V like two thin 0.160 kg bars, each 25 cm long. 

SET UP: For a slender bar with the axis at one end, 21
3I mL= . 

EXECUTE: 2 2 3 21 12 2 (0.160 kg)(0.250 m) 6.67 10  kg m
3 3

I mL −⎛ ⎞ ⎛ ⎞= = = × ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The value of I is independent of the angle between the two sides of the V; the angle 70.0° didn't 
enter into the calculation. 

 9.77. IDENTIFY: 21
2K Iω= . 2

rada rω= . m Vρ= . 

SET UP: For a disk with the axis at the center, 21
2I mR= . 2V t Rπ= , where 0.100 mt = is the thickness of the 

flywheel. 37800 kg mρ = is the density of the iron. 

EXECUTE: (a) 90.0 rpm 9.425 rad sω = = .
6

5 2
2 2

2 2(10 0 10 J) 2 252 10 kg m
(9 425 rad s)

 K . I .  
.ω

×
= = = × ⋅ . 

2m V R tρ ρπ= = . 2 41 1
2 2

I mR tRρπ= = . This gives 1 4(2 ) 3.68 mR I tρπ= =  and the diameter is 7.36 m. 

(b) 2 2
rad 327m sa Rω= =  

EVALUATE: In 21
2K Iω= , ω must be in rad/s. rada  is about 33g; the flywheel material must have large cohesive 

strength to prevent the flywheel from flying apart. 
 9.78. IDENTIFY: 21

2K Iω= . To have the same K for any ω the two parts must have the same I. Use Table 9.2 for I. 

SET UP: For a solid sphere, 22
solid solid5I M R= . For a hollow sphere, 22

hollow hollow3I M R= . 

EXECUTE: solid hollowI I= gives 2 22 2
solid hollow5 3M R M R= and 3 3

hollow solid5 5M M M= = . 
EVALUATE: The hollow sphere has less mass since all its mass is distributed farther from the rotation axis. 

 9.79. IDENTIFY: 21
2K Iω= . 2  rad

T
πω = , where T is the period of the motion. For the earth's orbital motion it can be 

treated as a point mass and 2I MR= . 
SET UP: The earth's rotational period is 24 h 86,164 s= . Its orbital period is 71 yr 3.156 10  s= × . 

245.97 10  kgM = × . 66.38 10  mR = × . 

EXECUTE: (a) 
2 2 24 6 2

29
2 2

2 2 (0.3308)(5.97 10  kg)(6.38 10 m) 2.14 10  J.
(86,164 s)

IK
T
π π × ×

= = = ×  

(b) 
2 2 24 11 2

33
7 2

1 2 2 (5.97 10  kg)(1.50 10  m) 2.66 10  J.
2 (3.156 10 s)

RM
T
π π × ×⎛ ⎞ = = ×⎜ ⎟ ×⎝ ⎠

 

(c) Since the Earth�s moment of inertia is less than that of a uniform sphere, more of the Earth�s mass must be 
concentrated near its center. 
EVALUATE: These kinetic energies are very large, because the mass of the earth is very large. 
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 9.80. IDENTIFY: Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR. 

SET UP: The kinetic energy is 2 21 1
2 2

K I mvω= + , with 21
2I mR= for the disk. v Rω= . 

EXECUTE: 2 2 21 1 1( ) ( )
2 2 2

K I m R I mRω ω= + = + . 21
2Using  and solving for ,Ι mR ω=  2 4

3
g
R

ω = and 4 .
3

g
R

ω =  

EVALUATE: The small object has speed 2 2
3

v gR= . If it was not attached to the disk and was dropped from a 

height h, it would attain a speed 2gR . Being attached to the disk reduces its final speed by a factor of 2
3

. 

 9.81. IDENTIFY: Use Eq.(9.20) to calculate I. Then use 21
2K Iω=  to calculate K. 

(a) SET UP: The object is sketched in Figure 9.81. 

 

Consider a small strip of width dy 
and a distance y below the top of the 
triangle. 
The length of the strip is 

( / ) .x y h b=  

Figure 9.81  
EXECUTE: The strip has area  x dy and the area of the sign is 1

2 ,bh  so the mass of the strip is 

21
2

 2 2x dy yb dy Mdm M M y dy
bh h bh h

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2
2 31

3 4

2( )  
3
MbdI dm x y dy
h

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

2 2
3 4 2

04 40 0

2 2 1 1 
3 3 6

h h hMb MbI dI y dy y Mb
h h h

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫  

(b) 2 21
6 2.304 kg mI Mb= = ⋅  

2.00 rev/s 4.00  rad/sω π= =  
21

2 182 JK Iω= =  

EVALUATE: From Table (9.2), if the sign were rectangular, with length b, then 21
3 .I Mb=  Our result is one-half 

this, since mass is closer to the axis for the triangular than for the rectangular shape. 
 9.82. IDENTIFY: Apply conservation of energy to the system. 

SET UP: For the falling mass 21
2K mv= . For the wheel 21

2K Iω= . 

EXECUTE: (a) The kinetic energy of the falling mass after 2.00 m is ( )( )221 1
2 2 8.00 kg 5.00 m/s 100 J.K mv= = =  

The change in its potential energy while falling is ( )( )( )28.00 kg 9.8 m/s 2.00 m 156.8 Jmgh = = . The wheel must 

have the �missing� 56.8 J in the form of rotational kinetic energy. Since its outer rim is moving at the same speed 

as the falling mass, 5.00 m/s , v rω= gives 5.00 m/s 13.51 rad/s
0.370 m

v
r

ω = = = . 21 ;  therefore
2

K Iω=  

( )
( )

2
22

2 56.8 J2 0.622 kg m
13.51 rad s

KI
ω

= = = ⋅ . 

(b) The wheel�s mass is 2(280 N) (9.8 m s ) 28.6 kg= . The wheel with the largest possible moment of inertia 
would have all this mass concentrated in its rim. Its moment of inertia would be 

( )( )22 228.6 kg 0.370 m 3.92 kg mI MR= = = ⋅ . The boss�s wheel is physically impossible. 
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EVALUATE: If the mass falls from rest in free-fall its speed after it has descended 2.00 m is 
2 (2.00 m) 6.26 m/sv g= = . Its actual speed is less because some of the energy of the system is in the form of 

rotational kinetic energy of the wheel. 
 9.83. IDENTIFY: Use conservation of energy. The stick rotates about a fixed axis so 21

2 .K Iω=  Once we have ω  use 
v rω=  to calculate v for the end of the stick. 
SET UP: The object is sketched in Figure 9.83. 

 

Take the origin of coordinates at the lowest point reached by 
the stick and take the positive y-direction to be upward. 

Figure 9.83  
EXECUTE: (a) Use Eq.(9.18): cmU Mgy=  

2 1 cm2 cm1( )U U U Mg y yΔ = − = −  
The center of mass of the meter stick is at its geometrical center, so 

cm1 1.00 my =  and cm2 0.50 my =  

Then 2(0.160 kg)(9.80 m/s )(0.50 m 1.00 m) 0.784 JUΔ = − = −  
(b) Use conservation of energy: 1 1 other 2 2K U W K U+ + = +  
Gravity is the only force that does work on the meter stick, so other 0.W =  

1 0.K =  
Thus 2 1 2 ,K U U U= − = −Δ  where UΔ  was calculated in part (a). 

21
2 22K Iω=  so 21

22 I Uω = −Δ  and 2 2( ) /U Iω = −Δ  

For stick pivoted about one end, 21
3I ML=  where 1.00 m,L =  so 

2 2 2

6( ) 6(0.784 J) 5.42 rad/s
(0.160 kg)(1.00 m)

U
ML

ω −Δ
= = =  

(c) (1.00 m)(5.42 rad/s) 5.42 m/sv rω= = =  
(d) For a particle in free-fall, with y+  upward, 

0 0;yv =  0 1.00 m;y y− = −  29.80 m/s ;ya = −  ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  
2

02 ( ) 2( 9.80 m/s )( 1.00 m) 4.43 m/sy yv a y y= − − = − − − = −  

EVALUATE: The magnitude of the answer in part (c) is larger. 1,gravU  is the same for the stick as for a particle 

falling from a height of 1.00 m. For the stick ( )2 2 2 21 1 1 1
22 2 3 6( / ) .K I ML v L Mvω= = =  For the stick and for the 

particle, 2K  is the same but the same K gives a larger v for the end of the stick than for the particle. The reason is 
that all the other points along the stick are moving slower than the end opposite the axis. 

 9.84. IDENTIFY: Apply conservation of energy to the system of cylinder and rope. 
SET UP: Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is zero (the 
rope is wrapped in a circle with center on the axle).When the rope has unwound, its center of mass is a distance 

Rπ below the axle, since the length of the rope is 2 Rπ and half this distance is the position of the center of the 
mass. Initially, every part of the rope is moving with speed 0 ,Rω  and when the rope has unwound, and the cylinder 
has angular speed ,ω the speed of the rope is Rω (the upper end of the rope has the same tangential speed at the 
edge of the cylinder). 2(1 2)I MR= for a uniform cylinder, 
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EXECUTE: 1 2 2K K U= + . 2 2 2 2
0  .

4 2 4 2
M m M mR R mg Rω ω π⎛ ⎞ ⎛ ⎞+ = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Solving forω gives 

( )
( )

2
0

4
2

mg R
M m
π

ω ω= +
+

, and the speed of any part of the rope is .v Rω=  

EVALUATE: When 0m → , 0ω ω→ . When m M>> , 2
0

2 g
R
πω ω= + and 2

0 2v v gRπ= + . This is the final 

speed when an object with initial speed 0v descends a distance Rπ . 
 9.85. IDENTIFY: Apply conservation of energy to the system consisting of blocks A and B and the pulley. 

SET UP: The system at points 1 and 2 of its motion is sketched in Figure 9.85. 

 
Figure 9.85 

Use the work-energy relation 1 1 other 2 2.K U W K U+ + = +  Use coordinates where y+  is upward and where the origin 
is at the position of block B after it has descended. The tension in the rope does positive work on block A and 
negative work of the same magnitude on block B, so the net work done by the tension in the rope is zero. Both 
blocks have the same speed. 
EXECUTE: Gravity does work on block B and kinetic friction does work on block A. Therefore 

other k .f AW W m gdμ= = −  

1 0K =  (system is released from rest) 

1 1 ;B B BU m gy m gd= =  2 2 0B BU m gy= =  
2 2 21 1 1

2 2 2 22 2 2 .A BK m v m v Iω= + +  
But (blocks) (pulley),v Rω=  so 2 2 /v Rω =  and 

2 2 2 21 1 1
2 2 2 22 2 2( ) ( / ) ( / )A B A BK m m v I v R m m I R v= + + = + +  

Putting all this into the work-energy relation gives 
2 21

k 22 ( / )B A A Bm gd m gd m m I R vμ− = + +  
2 2

2 k( / ) 2 ( )A B B Am m I R v gd m mμ+ + = −  

k
2 2

2 ( )
/

B A

A B

gd m mv
m m I R

μ−
=

+ +
 

EVALUATE: If B Am m>>  and 2/ ,I R  then 2 2 ;v gd=  block B falls freely. If I is very large, 2v  is very small. 

Must have kB Am mμ>  for motion, so the weight of B will be larger than the friction force on A. 2/I R  has units of 
mass and is in a sense the �effective mass� of the pulley. 

 9.86. IDENTIFY: Apply conservation of energy to the system of two blocks and the pulley. 
SET UP: Let the potential energy of each block be zero at its initial position. The kinetic energy of the system is 
the sum of the kinetic energies of each object. v Rω= , where v is the common speed of the blocks and ω is the 
angular velocity of the pulley. 
EXECUTE: The amount of gravitational potential energy which has become kinetic energy is 

( )( )( )24.00 kg 2.00 kg 9.80 m s 5.00 m 98.0 J.K = − =  In terms of the common speed v of the blocks, the kinetic 

energy of the system is 
2

2
1 2

1 1( )
2 2

vK m m v I
R

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

. 

2
2 2

2

1 (0.480 kg m )4.00 kg 2 00 kg (12.4 kg).
2 (0.160 m)

K v . v
⎛ ⎞⋅

= + + =⎜ ⎟
⎝ ⎠

 Solving for v gives 98.0 J 2.81 m s.
12.4 kg

v = =  
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EVALUATE: If the pulley is massless, 21
298.0 J (4.00 kg 2.00 kg)v= + and 5.72 m/sv = . The moment of inertia 

of the pulley reduces the final speed of the blocks. 
 9.87. IDENTIFY and SET UP: Apply conservation of energy to the motion of the hoop. Use Eq.(9.18) to calculate grav.U  

Use 21
2K Iω=  for the kinetic energy of the hoop. Solve for .ω  The center of mass of the hoop is at its geometrical 

center. 

 

Take the origin to be at the original location 
of the center of the hoop, before it is rotated 
to one side, as shown in Figure 9.87. 

Figure 9.87  

cm1 cos (1 cos )y R R Rβ β= − = −  

cm2 0y =  (at equilibrium position hoop is at original position) 
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

other 0W =  (only gravity does work) 

1 0K =  (released from rest), 21
2 22K Iω=  

For a hoop, 2
cm ,I MR=  so 2 2I Md MR= +  with d R=  and 22 ,I MR=  for an axis at the edge. Thus 

2 2 2 21
2 2 22 (2 ) .K MR MRω ω= =  

1 cm1 (1 cos ),U Mgy MgR β= = −  2 cm2 0U mgy= =  
Thus 1 1 other 2 2K U W K U+ + = +  gives 

2 2
2(1 cos )MgR MRβ ω− =  and (1 cos ) /g Rω β= −  

EVALUATE: If 0,β =  then 2 0.ω =  As β  increases, 2ω  increases. 

 9.88. IDENTIFY: 21
2K Iω= , with ω  in rad/s. energyP

t
=  

SET UP: For a solid cylinder, 21
2I MR= . 1 rev/min (2 / 60) rad/sπ=  

EXECUTE: (a) 3000 rev/min 314 rad/sω = = . 2 21
2 (1000 kg)(0.900 m) 405 kg mI = = ⋅  

2 2 71
2 (405 kg m )(314 rad/s) 2.00 10  JK = ⋅ = × . 

(b) 
7

3
4

2.00 10  J 1.08 10  s 17.9 min
1.86 10  W

Kt
P

×
= = = × =

×
. 

EVALUATE: In 21
2K Iω= , we must use ω in rad/s. 

 9.89. IDENTIFY: 1 2I I I= + . Apply conservation of energy to the system. The calculation is similar to Example 9.9. 

SET UP: 
1

v
R

ω = for part (b) and 
2

v
R

ω =  for part (c). 

EXECUTE: (a) 2 2 2 2 2 2
1 1 2 2

1 1 1 ((0.80 kg)(2.50 10  m) (1.60 kg)(5 00 10  m) )
2 2 2

I M R M R .− −= + = × + ×  

3 22.25 10  kg m .I −= × ⋅  

(b) The method of Example 9.9 yields 2
1

2
1 ( )

ghv
I mR

=
+

. 

2

3 2 2

2(9.80 m s )(2.00 m) 3.40 m s.
(1 ((2.25 10  kg m ) (1.50 kg)(0.025 m) ))

v −= =
+ × ⋅

 

The same calculation, with 2R  instead of 1R  gives 4.95 m s.v =  
EVALUATE: The final speed of the block is greater when the string is wrapped around the larger disk. v Rω= , so 
when 2R R=  the factor that relates v to ω is larger. For 2R R= a larger fraction of the total kinetic energy resides 
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with the block. The total kinetic energy is the same in both cases (equal to mgh), so when 2R R= the kinetic energy 
and speed of the block are greater. 

 9.90. IDENTIFY: Apply conservation of energy to the motion of the mass after it hits the ground. 

SET UP: From Example 9.9, the speed of the mass just before it hits the ground is 2
1 / 2

ghv
M m

=
+

. 

EXECUTE: (a) In the case that no energy is lost, the rebound height h′  is related to the speed v by 
2

2
vh
g

′ = , and 

with the form for v given in Example 9.9, .1  2
hh M m

′ =
+

 

(b) Considering the system as a whole, some of the initial potential energy of the mass went into the kinetic energy 
of the cylinder. Considering the mass alone, the tension in the string did work on the mass, so its total energy is not 
conserved. 
EVALUATE: If m M>> , h h′ =  and the mass does rebound to its initial height. 

 9.91. IDENTIFY: Apply conservation of energy to relate the height of the mass to the kinetic energy of the cylinder. 
SET UP: First use (cylinder) 250 JK =  to find ω  for the cylinder and v for the mass. 

EXECUTE: 2 21 1
2 2 (10.0 kg)(0.150 m) 0.1125 kg mI MR2= = = ⋅  

21
2K Iω=  so 2 / 66.67 rad/sK Iω = =  

10.0 m/sv Rω= =  
SET UP: Use conservation of energy 1 1 2 2K U K U+ = +  to solve for the distance the mass descends. Take 0y =  
at lowest point of the mass, so 2 0y =  and 1 ,y h=  the distance the mass descends. 
EXECUTE: 1 2 0K U= =  so 1 2.U K=  

2 21 1
2 2 ,mgh mv Iω= +  where 12.0 kgm =  

For the cylinder, 21
2I MR=  and / ,v Rω =  so 2 21 1

2 4 .I Mvω =  
2 21 1

2 4mgh mv Mv= +  
2

1 7.23 m
2 2
v Mh
g m
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

EVALUATE: For the cylinder ( )2 2 2 21 1 1 1
cyl 2 2 2 4( / ) .K I MR v R Mvω= = =  

21
mass 2 ,K mv=  so mass cyl(2 / ) [2(12.0 kg)/10.0 kg](250 J) 600 J.K m M K= = =  The mass has 600 J of kinetic energy 

when the cylinder has 250 J of kinetic energy and at this point the system has total energy 850 J since 2 0.U =  
Initially the total energy of the system is 1 1 850 J,U mgy mgh= = =  so the total energy is shown to be conserved. 

 9.92. IDENTIFY: Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and pulley have 

kinetic energy of the form 21
2K Iω= . 2 2 2

box box box pulley pulley cylinder cylinder
1 1 1
2 2 2

m gh m v I Iω ω= + + . 

SET UP: Box Box
pulley cylinder

p cylinder

 and v v
r r

ω ω= = . 

EXECUTE: 
2 2

2 2 2 B
B B B P p C C

p C

1 1 1 1 1    
2 2 2 2 2

Bv vm gh m v m r m r
r r

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 2 2 2

B B B P B C B
1 1 1
2 4 4

m gh m v m v m v= + +  and 

2
B

B 1 1 1 1
B p C2 4 4 4

(3.00 kg)(9.80 m s )(1.50 m) 3.68 m s
1.50 kg (7.00 kg)

m ghv
m m m

= = =
+ + +

. 

EVALUATE: If the box was disconnected from the rope and dropped from rest, after falling 1.50 m its speed 
would be 2 (1.50 m) 5.42 m/sv g= = . Since in the problem some of the energy of the system goes into kinetic 
energy of the cylinder and of the pulley, the final speed of the box is less than this. 

 9.93. IDENTIFY: disk holeI I I= − , where holeI is I for the piece punched from the disk. Apply the parallel-axis theorem to 
calculate the required moments of inertia. 
SET UP: For a uniform disk, 21

2I MR= . 
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EXECUTE: (a) The initial moment of inertia is 21
0 2 .I MR=  The piece punched has a mass of 

16
M  and a moment 

of inertia with respect to the axis of the original disk of  
2 2

21 9 .
16 2 4 2 512
M R R MR
⎡ ⎤⎛ ⎞ ⎛ ⎞+ =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

The moment of inertia of the remaining piece is then 2 2 21 9 247 .
2 512 512

I MR MR MR= − =  

(b) 2 2 2 23831 1
2 2 512 ( / 2) ( /16)( / 4) .I MR M R M R MR= + − =  

EVALUATE: For a solid disk and an axis at a distance / 2R from the disk's center, the parallel-axis theorem gives 
2 2 23 3841

2 4 512I MR MR MR= = = . For both choices of axes the presence of the hole reduces I, but the effect of the hole 
is greater in part (a), when it is farther from the axis. 

 9.94. IDENTIFY: In part (a) use the parallel-axis theorem to relate the moment of inertia cmI for an axis through the 
center of the sphere to PI , the moment of inertia for an axis at the pivot. 

SET UP: I for a uniform solid sphere and the axis through its center is 22
5 .MR  I for a slender rod and an axis at 

one end is 21
3 mL , where m is the mass of the rod and L is its length. 

EXECUTE: (a) From the parallel-axis theorem, the moment of inertia is 2 2(2 5) ,PI MR ML= + and 
2

2

21 .
5

PI R
ML L

⎛ ⎞⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 If (0.05) ,R L=  the difference is 2(2 5)(0.05) 0.001 0.1%.= =  

(b) 2
rod rod ( ) ( 3 ),I ML m M=  which is 0.33% when rod (0.01) .m M=  

EVALUATE: In both these cases the correction to 2I ML= is very small. 
 9.95. IDENTIFY: Follow the instructions in the problem to derive the perpendicular-axis theorem. Then apply that 

result in part (b). 
SET UP: 2

i i
i

I m r=∑ . The moment of inertia for the washer and an axis perpendicular to the plane of the washer 

at its center is 2 21
1 22 ( )M R R+ . In part (b), I for an axis perpendicular to the plane of the square at its center is 

2 2 21 1
12 6( )M L L ML+ = . 

EXECUTE: (a) With respect to O, 2 2 2,i i ir x y= +  and so 
2 2 2 2 2( ) .O i i i i i i i i i x y

i i i i
I m r m x y m x m y I I= = + = + = +∑ ∑ ∑ ∑  

(b) Two perpendicular axes, both perpendicular to the washer�s axis, will have the same moment of inertia about 
those axes, and the perpendicular-axis theorem predicts that they will sum to the moment of inertia about the 
washer axis, which is 2 21

1 22 ( ),I M R R= +  and so xI yI= 2 21
1 24 ( ).M R R= +  

(c) 21
0 6 .I mL=  Since 1

0 12,  and ,  both  and  must be x y x y x yI I I I I  I I= + = 2.mL  
EVALUATE: The result in part (c) says that I is the same for an axis that bisects opposite sides of the square as for 
an axis along the diagonal of the square, even though the distribution of mass relative to the two axes is quite 
different in these two cases. 

 9.96. IDENTIFY: Apply the parallel-axis theorem to each side of the square. 
SET UP: Each side has length a and mass / 4,M  and the moment of inertia of each side about an axis 
perpendicular to the side and through its center is 2 21 1 1

12 4 48Ma Ma= . 
EXECUTE: The moment of inertia of each side about the axis through the center of the square is, from the 

perpendicular axis theorem, ( )22 2

48 4 2 12
Ma a MaM+ = . The total moment of inertia is the sum of the contributions 

from the four sides, or 
2 2

4 .12 3
Ma Ma× =  

EVALUATE: If all the mass of a side were at its center, a distance / 2a from the axis, we would have 
2

214
4 2 4
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. If all the mass was divided equally among the four corners of the square, a distance 

/ 2a from the axis, we would have 
2

214
4 22
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. The actual I is between these two values. 
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 9.97. IDENTIFY: Use Eq.(9.20) to calculate I. 
(a) SET UP: Let L be the length of the cylinder. Divide the cylinder into thin cylindrical shells of inner radius r 
and outer radius .r dr+  An end view is shown in Figure 9.97. 

 

rρ α=  
The mass of the thin cylindrical shell is 

2(2  ) 2  dm dV r dr L Lr drρ ρ π πα= = =  

Figure 9.97  

EXECUTE: ( )2 4 5 51 2
5 50

 2  2
R

I r dm L r dr L R LRπα πα πα= = = =∫ ∫  

Relate M to :α  ( )2 3 31 2
3 30

2  2 ,
R

M dm L r dr L R LRπα πα πα= = = =∫ ∫  so 3 3 / 2.LR Mπα =  

Using this in the above result for I gives 2 232
5 5(3 / 2) .I M R MR= =  

(b) EVALUATE: For a cylinder of uniform density 21
2 .I MR=  The answer in (a) is larger than this. Since the 

density increases with distance from the axis the cylinder in (a) has more mass farther from the axis than for a 
cylinder of uniform density. 

 9.98. IDENTIFY: Write K in terms of the period T and take derivatives of both sides of this equation to relate /dK dt to 
/dT dt . 

SET UP: 2
T
πω = and 21

2K Iω= . The speed of light is 83.00 10  m/sc = × . 

EXECUTE: (a) 
2

2

2 IK
T
π

= . 
2

3

4dK I dT
dt T dt

π
= − . The rate of energy loss is 

2

3

4 I dT
T dt
π . Solving for the moment of 

inertia  in terms of the power ,I P  
3 31 3

38 2
2 13 

1 (5 10  W)(0.0331 s) 1 s  1.09 10 kg m
4 4 4.22 10 s
PTI

dT dtπ π −

×
= = = × ⋅

×
 

(b) 
38 2

3 
30 

5 5(1.08 10 kg m ) 9.9 10 m,  about 10 km.
2 2(1.4)(1.99 10 kg)

IR
M

× ⋅
= = = ×

×
 

(c) 
3

6 32 2 (9.9 10 m) 1.9 10  m s 6.3 10 .
(0.0331 s)

Rv c
T
π π −×

= = = × = ×  

(d) 17 3
3 6.9 10 kg m ,

(4 3)
M M
V R

ρ
π

= = = × which is much higher than the density of ordinary rock by 14 orders of 

magnitude, and is comparable to nuclear mass densities. 
EVALUATE: I is huge because M is huge. A small rate of change in the period corresponds to a large release of 
energy. 

 9.99. IDENTIFY: In part (a), do the calculations as specified in the hint. In part (b) calculate the mass of each shell of 
inner radius 1R and outer radius 2R  and sum to get the total mass. In part (c) use the expression in part (a) to 
calculate I for each shell and sum to get the total I. 
SET UP: m Vρ= . For a solid sphere, 34

3V Rπ= . 
EXECUTE: (a) Following the hint, the moment of inertia of a uniform sphere in terms of the mass density is 

2 582
5 15 ,I MR Rπρ= =  and so the difference in the moments of inertia of two spheres with the same density ρ  but 

different radii 5 5
2 1 2 1 and  is  (8 15)( ).R R I R Rρ π= −  

(b) A rather tedious calculation, summing the product of the densities times the difference in the cubes of the radii 
that bound the regions and multiplying by 24 4 3,  gives 5.97 10 kg.Mπ = ×  
(c) A similar calculation, summing the product of the densities times the difference in the fifth powers of the radii 
that bound the regions and multiplying by 22 2 28 15,   gives 8.02 10  kg m 0.334 .I MRπ = × ⋅ =  

EVALUATE: The calculated value of 20.334I MR= agrees closely with the measured value of 20.3308MR . This 
simple model is fairly accurate. 
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9.100. IDENTIFY: Apply Eq.(9.20) 

SET UP: Let z be the coordinate along the vertical axis. ( ) zRr z
h

= . 
2 2

2

R zdm
h

πρ= and 
4

4
42

RdI z dz
h

πρ
= . 

EXECUTE: 
4 4

4 5 4
4 00

1
2 10 10

h h R RI dI z dz z R h .
h h

πρ πρ πρ⎡ ⎤= = = =⎣ ⎦∫ ∫  The volume of a right circular cone is 

2 21 1
3 3,  the mass is  and soV R h R hπ πρ=  

2
2 23 3 .

10 3 10
R hI R MRπρ⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

EVALUATE: For a uniform cylinder of radius R and for an axis through its center, 21
2I MR= . I for the cone is 

less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease from R to zero 
along the vertical axis of the cone. 

9.101. IDENTIFY: Follow the steps outlined in the problem. 
SET UP: /z d dtω θ= . 2 2/z zd dtα ω= . 

EXECUTE: (a) 0  ds r d r d dθ θ βθ θ= = +  so 2
0( ) 2s r βθ θ θ= + . θ must be in radians. 

(b) Setting 2
0 2s vt r βθ θ= = + gives a quadratic in θ . The positive solution is 

2
0 0

1) 2(t r vt rθ β
β
⎡ ⎤= + −⎣ ⎦ . 

(The negative solution would be going backwards, to values of r smaller than 0r .) 

(c) Differentiating, 
2

0

( ) ,
2

z
d vt
dt r vt
θω

β
= =

+
 

( )
2

3 22
0

.
2

z
z

d v
dt r vt

ω βα
β

= = −
+

 The angular acceleration zα  is not 

constant. 
(d) 0 25.0 mm.r =  θ  must be measured in radians, so ( )( )1.55 m rev 1 rev 2 rad 0.247 m rad. β μ π μ= =  Using 

( )tθ  from part (b), the total angle turned in 74.0 min 4440 s=  is 

( )( )( ) ( )27 3 3
7

1 2 2.47 10 m/rad 1.25 m/s 4440 s 25.0 10 m 25.0 10  m  
2.47 10 m/rad

θ − − −
−

⎛ ⎞= × + × − ×⎜ ⎟× ⎝ ⎠
 

5= 1.337 10  radθ × , which is 42.13 10  rev× . 
(e) The graphs are sketched in Figure 9.101. 
EVALUATE: zω must decrease as r increases, to keep v rω= constant. For zω to decrease in time, zα must be 
negative. 

 
Figure 9.101 



 

 

 


