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POTENTIAL ENERGY AND ENERGY CONSERVATION 

 7.1. IDENTIFY: gravU mgy= so grav 2 1( )U mg y yΔ = −  
SET UP: y+  is upward. 

EXECUTE: (a) 2 5(75 kg)(9.80 m/s )(2400 m 1500 m) 6.6 10  JUΔ = − = + ×  

(b) 2 5(75 kg)(9.80 m/s )(1350 m 2400 m) 7.7 10  JUΔ = − = − ×  
EVALUATE: gravU increases when the altitude of the object increases. 

 7.2. IDENTIFY: Apply m=∑F a
! ! to the sack to find the force. cosW Fs φ= . 

SET UP: The lifting force acts in the same direction as the sack�s motion, so 0φ = °  
EXECUTE: (a) For constant speed, the net force is zero, so the required force is the sack�s weight, 

2(5.00 kg)(9.80 m/s ) 49.0 N.=  
(b) (49.0 N) (15.0 m) 735 JW = = . This work becomes potential energy. 
EVALUATE: The results are independent of the speed. 

 7.3. IDENTIFY: Use the free-body diagram for the bag and Newton's first law to find the force the worker applies. 
Since the bag starts and ends at rest, 2 1 0K K− = and tot 0W = . 

SET UP: A sketch showing the initial and final positions of the bag is given in Figure 7.3a. 2.0 msin
3.5 m

φ = and 

34.85φ = ° . The free-body diagram is given in Figure 7.3b. F
!

is the horizontal force applied by the worker. In the 
calculation of gravU take y+  upward and 0y = at the initial position of the bag. 

EXECUTE: (a) 0yF =∑ gives cosT mgφ = and 0xF =∑ gives sinF T φ= . Combining these equations to 

eliminate T gives 2tan (120 kg)(9.80 m/s ) tan34.85 820 NF mg φ= = =° . 
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of T in the 
direction of the displacement during the motion and the tension in the rope does no work. (ii) tot 0W = so 

2
worker grav grav,2 grav,1 2 1( ) (120 kg)(9.80 m/s )(0.6277 m) 740 JW W U U mg y y= − = − = − = = . 

EVALUATE: The force applied by the worker varies during the motion of the bag and it would be difficult to 
calculate workerW directly. 

  
Figure 7.3 

 7.4. IDENTIFY: Only gravity does work on him from the point where he has just left the board until just before he 
enters the water, so Eq.(7.4) applies. 
SET UP: Let point 1 be just after he leaves the board and point 2 be just before he enters the water. y+  is upward 
and 0y = at the water. 
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EXECUTE: (a) 1 0K = . 2 0y = . 1 3.25 my = . 1 grav,1 2 grav,2K U K U+ = + gives grav,1 2U K= and 21
1 22mgy mv= . 

2
2 12 2(9.80 m/s )(3.25 m) 7.98 m/sv gy= = = . 

(b) 1 2.50 m/sv = , 2 0y = , 1 3.25 my = . 1 grav,1 2K U K+ = and 2 21 1
1 1 22 2mv mgy mv+ = . 

2 2 2
2 1 12 (2.50 m/s) 2(9.80 m/s )(3.25 m) 8.36 m/sv v gy= + = + = . 

(c) 1 2.5 m/sv = and 2 8.36 m/sv = , the same as in part (b). 
EVALUATE: Kinetic energy depends only on the speed, not on the direction of the velocity. 

 7.5. IDENTIFY and SET UP: Use energy methods. 
(a) 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then use 21

2 22K mv=  to obtain 2.v  

 

other 0W =  (The only force on the 
ball while it is in the air is gravity.) 

21
1 12 ;K mv=  21

2 22K mv=  

1 1,U mgy=  1 22.0 my =  

2 2 0,U mgy= =  since 2 0y =  
for our choice of coordinates. 

Figure 7.5  

EXECUTE: 2 21 1
1 1 22 2mv mgy mv+ =  

2 2 2
2 1 12 (12.0 m/s) 2(9.80 m/s )(22.0 m) 24.0 m/sv v gy= + = + =  

EVALUATE: The projection angle of 53.1°  doesn�t enter into the calculation. The kinetic energy depends only on 
the magnitude of the velocity; it is independent of the direction of the velocity. 
(b) Nothing changes in the calculation. The expression derived in part (a) for 2v  is independent of the angle, so 

2 24.0 m/s,v =  the same as in part (a). 
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect. 

 7.6. IDENTIFY: The normal force does no work, so only gravity does work and Eq.(7.4) applies. 
SET UP: 1 0K = . The crate�s initial point is at a vertical height of sind α above the bottom of the ramp. 

EXECUTE: (a) 2 0,y =  1 sin .y d α=  1 grav,1 2 grav,2K U K U+ = +  gives grav,1 2.U K=  21
22sinmgd mvα =  and 

2 2 sin .v gd α=  

(b) 1 0y = , 2 siny d α= − . 1 grav,1 2 grav,2K U K U+ = + gives 2 grav,20 K U= + . 21
220 ( sin )mv mgd α= + − and 

2 2 sinv gd α= , the same as in part (a). 
(c) The normal force is perpendicular to the displacement and does no work. 
EVALUATE: When we use gravU mgy= we can take any point as 0y = but we must take y+  to be upward. 

 7.7. IDENTIFY: Apply Eq.(7.7) to points 2 and 3. Take results from Example 7.6. other ,W fs= −  the work done by friction. 
SET UP: As in Example 7.6, 2 20,  94  J,K U= =  and 3 0.U =  

EXECUTE: The work done by friction is (35 N) (1.6 m) 56 J− = − . 3 38 J,K =  and 3
2(38 J) 2.5 m/s.
12 kg

v = =  

EVALUATE: The value of 3v we obtained is the same as calculated in Example 7.6. For the motion from point 2 to 
point 3, gravity does positive work, friction does negative work and the net work is positive. 

 7.8. IDENTIFY and SET UP: Apply Eq.(7.7) and consider how each term depends on the mass. 
EXECUTE: The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the normal 
force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the crate, and the 
speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass, and for the same 
speed but four times the mass, the kinetic energy is quadrupled. 
EVALUATE: The same result is obtained if we apply m=∑F a

! ! to the motion. Each force is proportional to m 
and m divides out, so a is independent of m. 
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 7.9. IDENTIFY: tot B AW K K= − . The forces on the rock are gravity, the normal force and friction. 
SET UP: Let 0y = at point B and let y+  be upward. 0.50 mAy R= = . The work done by friction is negative; 

0.22 JfW = − . 0AK = . The free-body diagram for the rock at point B is given in Figure 7.9. The acceleration of 

the rock at this point is 2
rad /a v R= , upward. 

EXECUTE: (a) (i) The normal force is perpendicular to the displacement and does zero work.  
(ii) 2

grav grav, grav, (0.20 kg)(9.80 m/s )(0.50 m) 0.98 JA B AW U U mgy= − = = = . 

(b) tot grav 0 ( 0.22 J) 0.98 J 0.76 Jn fW W W W= + + = + − + = . tot B AW K K= −  gives 21
tot2 Bmv W= . 

tot2 2(0.76 J) 2.8 m/s
0.20 kgB

Wv
m

= = = . 

(c) Gravity is constant and equal to mg. n is not constant; it is zero at A and not zero at B. Therefore, k kf nμ= is 
also not constant. 
(d) y yF ma=∑ applied to Figure 7.9 gives radn mg ma− = . 

2 2
2 [2.8 m/s](0.20 kg) 9.80 m/s 5.1 N

0.50 m
vn m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

EVALUATE: In the absence of friction, the speed of the rock at point B would be 2 3.1 m/sgR = . As the rock 
slides through point B, the normal force is greater than the weight 2.0 Nmg = of the rock. 

 
Figure 7.9 

 7.10. IDENTIFY: Only gravity does work, so Eq.(7.4) applies. 
SET UP: Let point 1 be just after the rock leaves the thrower and point 2 be at the maximum height. Let 

1 0y = and y+  be upward. 1 0v v= . At the highest point, 2 0 cosv v θ= . 2 2sin cos 1θ θ+ = . 

EXECUTE: 1 grav,1 2 grav,2K U K U+ = + gives 2 21 1
0 0 22 2 ( cos )mv m v mgyθ= + . 

2 2 2
20 0

2
sin(1 cos )

2 2
v vy
g g

θθ= − = , was to 

be shown. 
EVALUATE: The initial kinetic energy is independent of the angle θ but the kinetic energy at the maximum 
height depends on θ , so the maximum height depends on θ . 

 7.11. IDENTIFY: Apply Eq.(7.7) to the motion of the car. 
SET UP: Take 0y =  at point A. Let point 1 be A and point 2 be B. 

1 1 other 2 2K U W K U+ + = +  

EXECUTE: 1 0,U =  2 (2 ) 28,224 J,U mg R= =  other fW W=  
21

1 12 37,500 J,K mv= =  21
2 22 3840 JK mv= =  

The work-energy relation then gives 2 2 1 5400 J.fW K U K= + − = −  

EVALUATE: Friction does negative work. The final mechanical energy 2 2( 32,064 J)K U+ =  is less than the 
initial mechanical energy 1 1( 37,500 J)K U+ =  because of the energy removed by friction work. 

 7.12. IDENTIFY: Only gravity does work, so apply Eq.(7.5). 
SET UP: 1 0v = , so 21

2 1 22 ( )mv mg y y= − . 
EXECUTE: Tarzan is lower than his original height by a distance 1 2 (cos30 cos45 )y y l− = −° °  so his speed is 

2 (cos30 cos45 ) 7.9 m/s,v gl= °− ° = a bit quick for conversation. 
EVALUATE: The result is independent of Tarzan�s mass. 
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 7.13.  

 

1 0y =  

2 (8.00 m)sin36.9y = °  

2 4.80 my =  

Figure 7.13a  
(a) IDENTIFY and SET UP: F

!
 is constant so Eq.(6.2) can be used. The situation is sketched in Figure 7.13a. 

EXECUTE: ( cos ) (110 N)(cos0 )(8.00 m) 880 JFW F sφ= = ° =  

EVALUATE: F
!

 is in the direction of the displacement and does positive work. 
(b) IDENTIFY and SET UP: Calculate W using Eq.(6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can be 
calculated from k k .f nμ=  For this calculation use coordinates parallel and perpendicular to the incline. 

 

EXECUTE: y yF ma=∑  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  
2

k (0.25)(10.0 kg)(9.80 m/s )cos36.9 19.6 Nf = ° =  

Figure 7.13b  

k( cos ) (19.6 N)(cos180 )(8.00 m) 157 JfW f sφ= = ° = −  
EVALUATE: Friction does negative work. 
(c) IDENTIFY and SET UP: ;U mgy=  take 0y =  at the bottom of the ramp. 

EXECUTE: 2
2 1 2 1( ) (10.0 kg)(9.80 m/s )(4.80 m 0) 470 JU U U mg y yΔ = − = − = − =  

EVALUATE: The object moves upward and U increases. 
(d) IDENTIFY and SET UP: Use Eq.(7.7). Solve for .KΔ  
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

2 1 1 2 otherK K K U U WΔ = − = − +  

otherK W UΔ = − Δ  

other 880 J 157 J 723 JF fW W W= + = − =  
470 JUΔ =  

Thus 723 J 470 J 253 J.KΔ = − =  
EVALUATE: otherW  is positive. Some of otherW  goes to increasing U and the rest goes to increasing K. 

(e) IDENTIFY: Apply m=∑F a
! !  to the oven. Solve for a!  and then use a constant acceleration equation to 

calculate 2.v  
SET UP: We can use the free-body diagram that is in part (b): 

x xF ma=∑  

k sin36.9F f mg ma− − ° =  

EXECUTE: k sin36.9F f mga
m

− − °
= =

2
2110 N 19.6 N (10 kg)(9.80 m/s )sin36.9 3.16 m/s

10.0 kg
− − °

=  

SET UP: 1 0,xv =  23.16 m/s ,xa =  0 8.00 m,x x− =  2 ?xv =  
2 2
2 1 02 ( )x x xv v a x x= + −  

EXECUTE: 2 2
2 02 ( ) 2(3.16 m/s )(8.00 m) 7.11 m/sx xv a x x= − = =  

Then 2 21 1
2 1 22 2 (10.0 kg)(7.11 m/s) 253 J.K K K mvΔ = − = = =  

EVALUATE: This agrees with the result calculated in part (d) using energy methods. 
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 7.14. IDENTIFY: Only gravity does work, so apply Eq.(7.4). Use m=∑F a
! ! to calculate the tension. 

SET UP: Let 0y = at the bottom of the arc. Let point 1 be when the string makes a 45° angle with the vertical and 

point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial acceleration 2
rad /a v r=  

EXECUTE: (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect to the 
bottom of the circular arc) is (1 cos  ),mgl θ−  where l is the length of the string and θ  is the angle the string makes 
with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, so 

21
2(1 cos ) ,mgl θ mv− =  or 22 (1 cos ) 2(9 80 m/s ) (0 80 m) (1 cos45 ) 2.1 m/sv gl θ . .  = − = − ° = . 

(b) At 45° from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the radial 
component of the weight, or 2cos (0.12 kg) (9.80 m/s ) cos 45 0.83 N.mg θ = ° =  
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial acceleration, 

2
2 (1 2(1 cos45 )) 1.9 Nmg mv l mg+ = + − ° =  

EVALUATE: When the string passes through the vertical, the tension is greater than the weight because the 
acceleration is upward. 

 7.15. IDENTIFY: Apply 21
el 2U kx= . 

SET UP: kx F= , so 1
2U Fx= ,where F is the magnitude of force required to stretch or compress the spring a 

distance x. 
EXECUTE: (a) (1 2)(800 N)(0.200 m) 80.0  J.=  
(b) The potential energy is proportional to the square of the compression or extension; 

2(80.0 J) (0.050 m 0.200 m) 5.0 J.=  

EVALUATE: We could have calculated 800 N 4000 N/m
0.200 m

Fk
x

= = = and then used 21
el 2U kx= directly. 

 7.16. IDENTIFY: Use the information given in the problem with F kx= to find k. Then 21
el 2U kx= . 

SET UP: x is the amount the spring is stretched. When the weight is hung from the spring, F mg= . 

EXECUTE: 
2(3.15 kg)(9.80 m/s ) 2205 N/m

0.1340 m 0.1200 m
F mgk
x x

= = = =
−

. 

el2 2(10.0 J) 0.0952 m 9.52 cm
2205 N/m

Ux
k

= ± = ± = ± = ± . The spring could be either stretched 9.52 cm or 

compressed 9.52 cm. If it were stretched, the total length of the spring would be 12.00 cm 9.52 cm 21.52 cm+ = . 
If it were compressed, the total length of the spring would be 12.00 cm 9.52 cm 2.48 cm− = . 
EVALUATE: To stretch or compress the spring 9.52 cm requires a force 210 NF kx= = . 

 7.17. IDENTIFY: Apply 21
el 2U kx= . 

SET UP: 21
0 02U kx= . x is the distance the spring is stretched or compressed. 

EXECUTE: (a) (i) 02x x= gives 2 21 1
el 0 0 02 2(2 ) 4( ) 4U k x kx U= = = . (ii) 0 / 2x x= gives 

2 21 1 1
el 0 0 02 4 2( / 2) ( ) / 4U k x kx U= = = . 

(b) (i) 02U U= gives 2 21 1
02 22( )kx kx= and 0 2x x= . (ii) 0 / 2U U= gives 2 21 1 1

02 2 2( )kx kx= and 0 / 2x x= . 

EVALUATE: U is proportional to 2x and x is proportional to U . 
 7.18. IDENTIFY: Apply Eq.(7.13). 

SET UP: Initially and at the highest point, 0v = , so 1 2 0K K= = . other 0W = . 
EXECUTE: (a) In going from rest in the slingshot�s pocket to rest at the maximum height, the potential energy 
stored in the rubber band is converted to gravitational potential energy; 

3 2(10 10  kg)(9.80 m/s ) (22.0 m) 2.16 J.U mgy −= = × =  
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m. 
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions. 
EVALUATE: The potential energy stored in the rubber band depends on k for the rubber band and the maximum 
distance it is stretched. 
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 7.19. IDENTIFY and SET UP: Use energy methods. There are changes in both elastic and gravitational potential energy; 
elastic; 21

2 ,U kx=  gravitational: .U mgy=  

EXECUTE: (a) 21
2U kx=  so 2 2(3.20 J) 0.0632 m 6.32 cm

1600 N/m
Ux
k

= = = =  

(b) Points 1 and 2 in the motion are sketched in Figure 7.19. 

 

1 1 other 2 2K U W K U+ + = +  

other 0W =  (Only work is that done 
by gravity and spring force) 

1 0,K =  2 0K =  
0y =  at final position of book 

( )1 ,U mg h d= +  21
2 2U kd=  

Figure 7.19  
21

20 ( ) 0mg h d kd+ + + =  
The original gravitational potential energy of the system is converted into potential energy of the compressed 
spring. 

21
2 0kd mgd mgh− − =  

21 1( ) 4 ( )
2

d mg mg k mgh
k

⎛ ⎞⎛ ⎞= ± +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

d must be positive, so ( )21 ( ) 2d mg mg kmgh
k

= + +  

21 ((1.20 kg)(9.80 m/s )
1600 N/m

d = +  

2 2 2((1.20 kg)(9.80 m/s )) 2(1600 N/m)(1.20 kg)(9.80 m/s )(0.80 m)+  
 

 
EVALUATE: It was important to recognize that the total displacement was ;h d+  gravity continues to do work as 
the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an upward force 
(192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward from this position. 

 7.20. IDENTIFY: Use energy methods. There are changes in both elastic and gravitational potential energy. 
SET UP: 1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.20. 

  
 

 

 

The spring force and gravity are the 
only forces doing work on the cheese, 
so other 0W =  and grav el.U U U= +  

Figure 7.20  
EXECUTE: Cheese released from rest implies 1 0.K =  
At the maximum height 2 0v =  so 2 0.K =  

1 1,el 1,gravU U U= +  

1 0y =  implies 1,grav 0U =  
2 21 1

1,el 12 2 (1800 N/m)(0.15 m) 20.25 JU kx= = =  

(Here 1x  refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is not the  
x-coordinate of the cheese in the coordinate system shown in the sketch.) 

2 2,el 2,gravU U U= +  

0.0074 m 0.1087 m 0.12 m 12 cmd = + = =
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2,grav 2 ,U mgy=  where 2y  is the height we are solving for. 2,el 0U =  since now the spring is no longer compressed. 

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1,el 2,gravU U=  

2 2

20.25 J 20.25 J 1.72 m
(1.20 kg)(9.80 m/s )

y
mg

= = =  

EVALUATE: The description in terms of energy is very simple; the elastic potential energy originally stored in the 
spring is converted into gravitational potential energy of the system. 

 7.21. IDENTIFY: Apply Eq.(7.13). 
SET UP: other 0W = . As in Example 7.7, 1 0K =  and 1 0.0250 J.U =  

EXECUTE: For 2 0.20 m s,v =  2 0.0040 JK = . 21
2 20.0210 J ,U kx= =  and 2(0.0210 J) 0.092 m.

5.00 N m
x = ± = ±  The 

glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m. 
EVALUATE: Example 7.7 showed that 0.30 m/sxv =  when 0.0800 mx = . As x increases, xv decreases, so our 
result of 0.20 m/sxv = at 0.092 mx = is consistent with the result in the example. 

 7.22. IDENTIFY and SET UP: Use energy methods. The elastic potential energy changes. In part (a) solve for 2K  and 
from this obtain 2.v  In part (b) solve for 1U  and from this obtain 1.x  
(a) 1 1 other 2 2K U W K U+ + = +  
point 1: the glider is at its initial position, where 1 0.100 mx =  and 1 0v =  
point 2: the glider is at 0x =  
EXECUTE: 1 0K =  (released from rest), 21

2 22K mv=  
21

1 12 ,U kx=  2 0,U =  other 0W =  (only the spring force does work) 

Thus 2 21 1
1 22 2 .kx mv=  (The initial potential energy of the stretched spring is converted entirely into kinetic energy of 

the glider.) 

2 1
5.00 N/m(0.100 m) 0.500 m/s
0.200 kg

kv x
m

= = =  

(b) The maximum speed occurs at 0,x =  so the same equation applies. 
2 21 1
1 22 2kx mv=  

1 2
0.200 kg2.50 m/s 0.500 m
5.00 N/m

mx v
k

= = =  

EVALUATE: Elastic potential energy is converted into kinetic energy. A larger 1x  gives a larger 2.v  

 7.23. IDENTIFY: Only the spring does work and Eq.(7.11) applies. F kxa
m m

−
= = , where F is the force the spring exerts 

on the mass. 
SET UP: Let point 1 be the initial position of the mass against the compressed spring, so 1 0K = and 1 11.5 JU = . 
Let point 2 be where the mass leaves the spring, so el,2 0U = . 

EXECUTE: (a) 1 el,1 2 el,2K U K U+ = + gives el,1 2U K= . 21
2 el,12 mv U= and el,1

2

2 2(11.5 J) 3.03 m/s
2.50 kg

U
v

m
= = = .  

K is largest when elU is least and this is when the mass leaves the spring. The mass achieves its maximum speed of 
3.03 m/s as it leaves the spring and then slides along the surface with constant speed. 
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has its 

maximum compression. 21
el 2U kx= so el2 2(11.5 J) 0.0959 m

2500 N/m
Ux
k

= − = − = − . The minus sign indicates 

compression. xF kx ma= − = and 2(2500 N/m)( 0.0959 m) 95.9 m/s
2.50 kgx

kxa
m

−
= − = − = . 

EVALUATE: If the end of the spring is displaced to the left when the spring is compressed, then xa in part (b) is to 
the right, and vice versa. 
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 7.24. (a) IDENTIFY and SET UP: Use energy methods. Both elastic and gravitational potential energy changes. Work is 
done by friction. 
Choose point 1 as in Example 7.9 and let that be the origin, so 1 0.y =  Let point 2 be 1.00 m below point 1, so 

2 1.00 m.y = −  
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

2 21 1
1 12 2 (2000 kg)(25 m/s) 625,000 J,K mv= = =  1 0U =  

other 2 (17,000 N)(1.00 m) 17,000 JW f y= − = − = −  
21

2 22K mg=  
21

2 2,grav 2,el 2 22U U U mgy ky= + = +  
2 5 21

2 2(2000 kg)(9.80 m/s )( 1.00 m) (1.41 10  N/m)(1.00 m)U = − + ×  

2 19,600 J 70,500 J 50,900 JU = − + = +  

Thus 21
22625,000 J 17,000 J 50,900 Jmv− = +  

21
22 557,100 Jmv =  

2
2(557,100 J) 23.6 m/s

2000 kg
v = =  

EVALUATE: The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but has 
slowed down. 
(b) IDENTIFY: Apply m=∑F a

! !  to the elevator. We know the forces and can solve for .a!  
SET UP: The free-body diagram for the elevator is given in Figure 7.24. 

 

EXECUTE: spr ,F kd=  where d is the 
distance the spring is compressed 

y yF ma=∑  

k sprf F mg ma+ − =  

kf kd mg ma+ − =  

Figure 7.24  

5 2
k 17,000 N (1.41 10  N/m)(1.00 m) (2000 kg)(9.80 m/s )

2000 kg
f kd mga

m
+ − + × −

= = 269.2 m/s=  

We calculate that a is positive, so the acceleration is upward. 
EVALUATE: The velocity is downward and the acceleration is upward, so the elevator is slowing down at this 
point. Note that 7.1 ;a g=  this is unacceptably high for an elevator. 

 7.25. IDENTIFY: Apply Eq.(7.13) and F ma= . 
SET UP: other 0W = . There is no change in gravU . 1 0K = , 2 0U = . 

EXECUTE: 2 21 1
2 2 xkx mv= . The relations for m, xv , k and x are 2 2 and 5 .xkx mv kx mg= =  

Dividing the first equation by the second gives 
2

5
xvx
g

= , and substituting this into the second gives 
2

225
x

mgk
v

= . 

(a) 
2 2

5
2

(1160 kg)(9.80 m/s )25 4.46 10  N/m
(2.50 m/s)

k = = ×  

(b) 
2

2

(2.50 m/s) 0.128 m
5(9.80 m/s )

x = =  

EVALUATE: Our results for k and x do give the required values for xa and xv : 
5

2(4.46 10  N/m)(0.128 m) 49.2 m/s 5.0
1160 kgx

kxa g
m

×
= = = = and 2.5 m/sx

kv x
m

= = . 
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 7.26. IDENTIFY: grav cosW mg φ= . 

SET UP: When he moves upward, 180φ = ° and when he moves downward, 0φ = ° . When he moves parallel to 
the ground, 90φ = ° . 
EXECUTE: (a) 2

grav (75 kg)(9.80 m/s )(7.0 m)cos180 5100 JW = = −° . 

(b) 2
grav (75 kg)(9.80 m/s )(7.0 m)cos0 5100 JW = = +° . 

(c) 90φ = ° in each case and grav 0W = in each case. 
(d) The total work done on him by gravity during the round trip is 5100 J 5100 J 0− + = . 
(e) Gravity is a conservative force since the total work done for a round trip is zero. 
EVALUATE: The gravity force is independent of the position and motion of the object. When the object moves 
upward gravity does negative work and when the object moves downward gravity does positive work. 

 7.27. IDENTIFY: Apply 
k k cosfW f s φ= . k kf nμ= . 

SET UP: For a circular trip the distance traveled is 2d rπ= . At each point in the motion the friction force and the 
displacement are in opposite directions and 180φ = ° . Therefore, 

k k k (2 )fW f d f rπ= − = − . n mg= so k kf mgμ= . 

EXECUTE: (a) 
k

2
k 2 (0.250)(10.0 kg)(9.80 m/s )(2 )(2.00 m) 308 JfW mg rμ π π= − = − = − . 

(b) The distance along the path doubles so the work done doubles and becomes 616 J− . 
(c) The work done for a round trip displacement is not zero and friction is a nonconservative force. 
EVALUATE: The direction of the friction force depends on the direction of motion of the object and that is why 
friction is a nonconservative force. 

 7.28. IDENTIFY and SET UP: The force is not constant so we must use Eq.(6.14) to calculate W. The properties of work 
done by a conservative force are described in Section 7.3. 

2

1
,W d= ⋅∫ F l
!!

 2 �xα= −F i
!

 

EXECUTE: (a) �d dy=l j
!

 (x is constant; the displacement is in the -directiony+ ) 

0d⋅ =F l
!!

 (since � � 0)⋅ =i j  and thus 0.W =  

(b) �d dx=l i
!

 
2 2� �( ) ( )  d x dx x dxα α⋅ = − ⋅ = −F l i i

!!
 

2
2

1
1

2
2 3 3 3 31 1

2 13 3
12 N/m( ) ( ) ((0.300 m)

3
x x

xx
W x dx ax x xα α= − = − = − − = − −∫ 3(0.10 m) ) 0.10 J= −  

(c) �d dx=l i
!

 as in part (b), but now 1 0.30 mx =  and 2 0.10 mx =  
3 31
2 13 ( ) 0.10 JW x xα= − − = +  

(d) EVALUATE: The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then back to 
0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the starting and 
ending points are the same, so the force is conservative. 
EXECUTE: 

1 2

3 3 3 31 1 1
2 1 1 23 3 3( )x xW x x x xα α α→ = − − = −  

The definition of the potential energy function is 
1 2 1 2.x xW U U→ = −  Comparison of the two expressions for W gives 

31
3 .U xα=  This does correspond to 0U =  when 0.x =  

EVALUATE: In part (a) the work done is zero because the force and displacement are perpendicular. In part (b) 
the force is directed opposite to the displacement and the work done is negative. In part (c) the force and 
displacement are in the same direction and the work done is positive. 

 7.29. IDENTIFY: Since the force is constant, use cosW Fs φ= . 
SET UP: For both displacements, the direction of the friction force is opposite to the displacement and 180φ = ° . 
EXECUTE: (a) When the book moves to the left, the friction force is to the right, and the work is  

(1.2 N)(3.0 m) 3.6 J.− = −  
(b) The friction force is now to the left, and the work is again 3.6 J.−  
(c) 7.2 J.−  
(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force. 
EVALUATE: The direction of the friction force depends on the motion of the object. For the gravity force, which 
is conservative, the force does not depend on the motion of the object. 
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 7.30. IDENTIFY and SET UP: The friction force is constant during each displacement and Eq.(6.2) can be used to 
calculate work, but the direction of the friction force can be different for different displacements. 

2
k (0.25)(1.5 kg)(9.80 m/s ) 3.675 N;f mgμ= = =  direction of f

!
 is opposite to the motion. 

EXECUTE: (a) The path of the book is sketched in Figure 7.30a. 

 
Figure 7.30a 

For the motion from you to Beth the friction force is directed opposite to the displacement s!  and 
1 (3.675 N)(8.0 m) 29.4 J.W fs= − = − = −  

For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and 
2 29.4 J.W = −  

tot 1 2 29.4 J 29.4 J 59 JW W W= + = − − = −  

(b) The path of the book is sketched in Figure 7.30b. 

 

22(8.0 m) 11.3 ms = =  

Figure 7.30b  

f
!

 is opposite to ,s!  so (3.675 N)(11.3 m) 42 JW fs= − = − = −  
(c)  

 

For the motion from Kim 
to you 

29.4 JW fs= − = −  

Figure 7.30d  
The total work for the round trip is 29.4 J 29.4 J 59 J.− − = −  
(d) EVALUATE: Parts (a) and (b) show that for two different paths between you and Carlos, the work done by 
friction is different. Part (c) shows that when the starting and ending points are the same, the total work is not zero. 
Both these results show that the friction force is nonconservative. 

 7.31. IDENTIFY: The work done by a spring on an object attached to its end when the object moves from ix to fx is 
2 21 1
i f2 2W kx kx= − . This result holds for any ix and fx . 

SET UP: Assume for simplicity that 1x , 2x and 3x are all positive, corresponding to the spring being stretched. 

EXECUTE: (a) 2 21
1 22 ( )k x x−  

(b) 2 21
1 22 ( ).k x x− −  The total work is zero; the spring force is conservative. 

(c) From 1x  to 3,x  2 21
3 12 ( ).W k x x= − −  From 3x  to 2x ,  2 21

2 32 ( ).W k x x= − −  The net work is 2 21
2 12 ( ).k x x− −  This is 

the same as the result of part (a). 
EVALUATE: The results of part (c) illustrate that the work done by a conservative force is path independent. 

 

For the motion from you to Kim 
W fs= −  

(3.675 N)(8.0 m) 29.4 JW = − = −  

Figure 7.30c  
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 7.32. IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from ( ).U x  Use coordinates where the origin is at 
one atom. The other atom then has coordinate x. 
EXECUTE: 

6 6
66 6 7

1 6
x

dU d C d CF C
dx dx x dx x x

⎛ ⎞ ⎛ ⎞= − = − − = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The minus sign mean that xF  is directed in the -direction,x−  toward the origin. The force has magnitude 7
66 /C x  

and is attractive. 
EVALUATE: U depends only on x so F

!
 is along the x-axis; it has no y or z components. 

 7.33. IDENTIFY: Apply Eq.(7.16). 
SET UP: The sign of xF indicates its direction. 

EXECUTE: 43 34 (4.8 J m )x
dUF x x
dx

α= − = − = − . 4 3( 0.800 m) (4.8 J m )( 0.80 m) 2.46 N.xF − = − − =  The force is 

in the -direction.x+  
EVALUATE: 0xF > when 0x < and 0xF < when 0x > , so the force is always directed towards the origin. 

 7.34. IDENTIFY: Apply ( )( ) dU xF x
dx

= − . 

SET UP: 2

(1/ ) 1d x
dx x

= −  

EXECUTE: 1 2 1 2
1 2 2

( / ) (1/ )( )x
d Gm m x d x Gm mF x Gm m

dx dx x
− ⎡ ⎤= − = = −⎢ ⎥⎣ ⎦

. The force on 2m is in the -directionx− . This 

is toward 1m , so the force is attractive. 

EVALUATE: By Newton's 3rd law the force on 1m due to 2m is 2
1 2 /Gm m x , in the -directionx+  (toward 2m ). The 

gravitational potential energy belongs to the system of the two masses. 

 7.35. IDENTIFY: Apply x
UF
x

∂
= −

∂
and y

UF
y

∂
= −

∂
. 

SET UP: 2 2 1/ 2( )r x y= + . 2 2 3 / 2

(1/ )
( )

r x
x x y

∂
= −

∂ +
and 2 2 3 / 2

(1/ )
( )

r y
y x y

∂
= −

∂ +
. 

EXECUTE: (a) 1 2( ) Gm mU r
r

= − . 1 2
1 2 2 2 3 / 2

(1/ )
( )x

U r Gm m xF Gm m
x x x y

∂ ∂⎡ ⎤= − = + = −⎢ ⎥∂ ∂ +⎣ ⎦
 and 

1 2
1 2 2 2 3 / 2

(1/ )
( )y

U r Gm m yF Gm m
y y x y

⎡ ⎤∂ ∂
= − = + = −⎢ ⎥∂ ∂ +⎣ ⎦

. 

(b) 2 2 3 / 2 3( )x y r+ = so 1 2
3x

Gm m xF
r

= − and 1 2
3y

Gm m yF
r

= − . 2 2 2 21 2 1 2
3 2x y

Gm m Gm mF F F x y
r r

= + = + = . 

(c) xF and yF are negative. xF xα= and yF yα= , where α is a constant, so F
!

and the vector r! from 1m to 2m are 

in the same direction. Therefore, F
!

is directed toward 1m at the origin and F
!

is attractive. 

EVALUATE: If θ is the angle between the vector r! that points from 1m to 2m , then cosx
r

θ= and siny
r

θ= . This 

gives cosxF F θ= − and sinyF F θ= − , our more usual way of writing the components of a vector. 
 7.36. IDENTIFY: Apply Eq.(7.18). 

SET UP: 2 3

1 2d
dx x x
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 and 2 3

1 2d
dy y y
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 

EXECUTE: � �U U
x y

∂ ∂
− −
∂ ∂

F = i j
!

 since U has no z-dependence. 3 3
2 2 and    soU U ,x yx y
α α∂ − ∂ −= =

∂ ∂
 

3 3 3 3

2 2� �  2
x y x y

α α
⎛ ⎞⎛ ⎞− −

− = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jF = i + j +
! !!

. 

EVALUATE: xF and x have the same sign and yF and y have the same sign. When 0x > , xF is in the 
-direction,x+  and so forth. 
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 7.37. IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from U. At equilibrium 0.F =  
(a) EXECUTE: The graphs are sketched in Figure 7.37. 

 

12 6

a bU
r r

= −  

13 7

12 6dU a bF
dr r r

= − = + −  

Figure 7.37 

(b) At equilibrium 0,F =  so 0dU
dr

=  

0F =  implies 13 7

12 6 0a b
r r
+

− =  

66 12 ;br a=  solution is the equilibrium distance 1/ 6
0 (2 / )r a b=  

U is a minimum at this r; the equilibrium is stable. 
(c) At 1/ 6(2 / ) ,r a b=  12 6 2 2/ / ( / 2 ) ( / 2 ) / 4 .U a r b r a b a b b a b a= − = − = −  

At ,r →∞  0.U =  The energy that must be added is 2 / 4 .U b a−Δ =  
(d) 1/ 6 10

0 (2 / ) 1.13 10  mr a b −= = ×  gives that 
60 62 / 2.082 10  ma b −= ×  and 59 6/ 4 2.402 10  mb a −= ×  

2 18/ 4 ( / 4 ) 1.54 10  Jb a b b a −= = ×  
59 6 18(2.402 10  m ) 1.54 10  Jb − −× = ×  and 78 66.41 10  J m .b −= × ⋅  

Then 60 62 / 2.082 10  ma b −= ×  gives 60 6( / 2)(2.082 10  m )a b −= × =  
78 6 60 6 138 121

2 (6.41 10  J m )(2.082 10  m ) 6.67 10  J m− − −× ⋅ × = × ⋅  
EVALUATE: As the graphs in part (a) show, ( )F r  is the slope of ( )U r  at each r. ( )U r  has a minimum where 

0.F =  
 7.38. IDENTIFY: Apply Eq.(7.16). 

SET UP: dU
dx

is the slope of the U versus x graph. 

EXECUTE: (a) Considering only forces in the x-direction, x
dUF
dx

= −  and so the force is zero when the slope of 

the U vs x graph is zero, at points b and d. 
(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this point is 
stable. 
(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, and the 
marble tends to move further away, and so d is an unstable point. 
EVALUATE: At point b, xF is negative when the marble is displaced slightly to the right and xF is positive when 
the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium is stable. At point d, a 
small displacement in either direction produces a force directed away from d and the equilibrium is unstable. 

 7.39. IDENTIFY: Apply m=∑F a
! ! to the bag and to the box. Apply Eq.(7.7) to the motion of the system of the box 

and bucket after the bag is removed. 
SET UP: Let 0y = at the final height of the bucket, so 1 2.00 my = and 2 0y = . 1 0K = . The box and the bucket 

move with the same speed v, so 21
2 box bucket2 ( )K m m v= + . other kW f d= − , with 2.00 md = and k k boxf m gμ= . 

Before the bag is removed, the maximum possible friction force the roof can exert on the box is 
2(0.700)(80.0 kg 50.0 kg)(9.80 m/s ) 892 N+ = . This is larger than the weight of the bucket (637 N), so before the 

bag is removed the system is at rest. 
EXECUTE: (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on the bag 
for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N. 
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(b) Eq.(7.7) gives 21
bucket 1 k tot2m gy f d m v− = , with tot 145.0 kgm = . bucket 1 k box

tot

2 ( )v m gy m gd
m

μ= − . 

2 22 (65.0 kg)(9.80 m/s )(2.00 m) (0.400)(80.0 kg)(9.80 m/s )(2.00 m)
145.0 kg

v ⎡ ⎤= −⎣ ⎦ . 

2.99 m/sv = . 
EVALUATE: If we apply m=∑F a

! ! to the box and to the bucket we can calculate their common acceleration a. 
Then a constant acceleration equation applied to either object gives 2.99 m/sv = , in agreement with our result 
obtained using energy methods. 

 7.40. IDENTIFY: For the system of two blocks, only gravity does work. Apply Eq.(7.5). 
SET UP: Call the blocks A and B, where A is the more massive one. 1 1 0A Bv v= = . Let 0y =  for each block to be 
at the initial height of that block, so 1 1 0A By y= = . 2 1.20 mAy = − and 2 1.20 mBy = + . 2 2 2 3.00 m/sA Bv v v= = = . 

EXECUTE: Eq.(7.5) gives 21
220 ( ) (1.20 m)( )A B B Am m v g m m= + + − . 15.0 kgA Bm m+ = . 

2 21
2 (15.0 kg)(3.00 m/s) (9.80 m/s )(1.20 m)(15.0 kg 2 )Am+ − . Solving for Am gives 10.4 kgAm = . And then 

4.6 kgBm = . 
EVALUATE: The final kinetic energy of the two blocks is 68 J. The potential energy of block A decreases by 122 J. 
The potential energy of block B increases by 54 J. The total decrease in potential energy is 122 J 54 J 68 J,− =  and 
this equals the increase in kinetic energy of the system. 

 7.41. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = +  
SET UP: 1 2 2 0U U K= = = . other k  with  280 ft 85.3 mfW W mgs, sμ= = − = =  

EXECUTE: (a) The work-energy expression gives 21
1 k2 0mv mgsμ− = . 

1 k2 22.4 m/s 50 mph;v gsμ= = =  the driver was speeding. 
(b) 15 mph over speed limit so $150 ticket. 
EVALUATE: The negative work done by friction removes the kinetic energy of the object. 

 7.42. IDENTIFY: Apply Eq.(7.14). 
SET UP: Only the spring force and gravity do work, so other 0W = . Let 0y = at the horizontal surface. 

EXECUTE: (a) Equating the potential energy stored in the spring to the block's kinetic energy, 2 21 1
2 2kx mv ,=  or 

400 N/m (0.220 m) 3.11 m/s.
2.00 kg

kv x
m

= = =  

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational potential 

energy, 21
2 sin ,kx mgL θ=  or 

2 21 1
2 2

2

(400 N/m)(0.220 m)
0.821 m.

sin (2.00 kg)(9.80 m/s )sin37.0
kx

L
mg θ

= = =
°

 

EVALUATE: The total energy of the system is constant. Initially it is all elastic potential energy stored in the 
spring, then it is all kinetic energy and finally it is all gravitational potential energy. 

 7.43. IDENTIFY: Use the work-energy theorem, Eq(7.7). The target variable kμ  will be a factor in the work done by 
friction. 
SET UP: Let point 1 be where the block is released and let point 2 be where the block stops, as shown in 
Figure 7.43. 

1 1 other 2 2K U W K U+ + = +  

 

Work is done on the 
block by the spring and 
by friction, so other fW W=  

and el.U U=  
Figure 7.43  

EXECUTE: 1 2 0K K= =  
2 21 1

1 1,el 12 2 (100 N/m)(0.200 m) 2.00 JU U kx= = = =  

2 2,el 0,U U= =  since after the block leaves the spring has given up all its stored energy 

other k k k( cos ) (cos ) ,fW W f s mg s mgsφ μ φ μ= = = = −  since 180φ = °  (The friction force is directed opposite to the 
displacement and does negative work.) 
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Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1,el 0fU W+ =  

k 1,elmgs Uμ =  

1,el
k 2

200 J 0.41.
(0.50 kg)(9.80 m/s )(1.00 m)

U
mgs

μ = = =  

EVALUATE: 1,el 0fU W+ =  says that the potential energy originally stored in the spring is taken out of the system 
by the negative work done by friction. 

 7.44. IDENTIFY: Apply Eq.(7.14). Calculate kf from the fact that the crate slides a distance 5.60 mx = before coming 
to rest. Then apply Eq.(7.14) again, with 2.00 mx = . 
SET UP: 1 el 360 JU U= = . 2 0U = . 1 0K = . other kW f x= − . 
EXECUTE: Work done by friction against the crate brings it to a halt: 1 otherU W= − . 

k potential energy of compressed springf x = , and k
360 J 64.29 N

5.60 m
f = = . 

The friction force working over a 2.00-m distance does work equal to k (64.29 N)(2.00 m) 128.6 J.f x− = − = −  The 
kinetic energy of the crate at this point is thus 360 J 128.6 J 231.4 J,− =  and its speed is found from 

2 / 2 231.4 Jmv = , so 2(231.4 J) 3.04 m/s
50 0 kg

v
.

= = . 

EVALUATE: The energy of the compressed spring goes partly into kinetic energy of the crate and is partly 
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as friction 
does negative work on it. 

 7.45. IDENTIFY: At its highest point between bounces all the mechanical energy of the ball is in the form of 
gravitational potential energy. 
SET UP: E U mgh= = , where h is the height at the highest point of the motion. 

EXECUTE: (a) 2(0.650 kg)(9.80 m/s )(2.50 m) 15.9 Jmgh = =  
(b) The second height is 0.75(2.50 m) 1.875 m,=  so the second 11.9 J ;mgh =  it loses 15.9 J 11.9 J 4.0 J− =  on 
first bounce. This energy is converted to thermal energy. 
(c) The third height is 0.75(1.875 m) 1.40 m,= , so third 8.9 J ;mgh =  it loses 11.9 J 8.9 J 3.0 J− =  on second 
bounce. 
EVALUATE: In each bounce the ball loses 25% of its mechanical energy. 

 7.46. IDENTIFY: Apply Eq.(7.14) to relate h and Bv . Apply m=∑F a
! ! at point B to find the minimum speed required 

at B for the car not to fall off the track. 
SET UP: At B, 2 /Ba v R= , downward. The minimum speed is when 0n → and 2 /Bmg mv R= . The minimum 

speed required is Bv gR= . 1 0K = and other 0W = . 

EXECUTE: (a) Eq.(7.14) applied to points A and B gives 21
2A B BU U mv− = . The speed at the top must be at least 

.gR  Thus, 1 5( 2 )    or   .
2 2

mg h R mgR, h R− > >  

(b) Apply Eq.(7.14) to points A and C. (2.50)A C CU U Rmg K ,− = =  so 

2(5.00) (5.00)(9.80 m/s )(20.0 m) 31.3 m/s.Cv gR= = =  

The radial acceleration is 
2

2
rad 49.0 m/s .Cva

R
= =  The tangential direction is down, the normal force at point C is 

horizontal, there is no friction, so the only downward force is gravity, and 2
tan 9.80 m/s .a g= =  

EVALUATE: If 5
2h R> , then the downward acceleration at B due to the circular motion is greater than g and the 

track must exert a downward normal force n. n increases as h increases and hence Bv increases. 
 7.47. (a) IDENTIFY: Use work-energy relation to find the kinetic energy of the wood as it enters the rough bottom. 

SET UP: Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough bottom. 
Let 0y =  be at point 2. 
EXECUTE: 1 2U K=  gives 2 1 78.4 J.K mgy= =  
IDENTIFY: Now apply work-energy relation to the motion along the rough bottom. 
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SET UP: Let point 1 be where it enters the rough bottom and point 2 be where it stops. 

1 1 other 2 2K U W K U+ + = +  

EXECUTE: other k ,fW W mgsμ= = −  2 1 2 0;K U U= = =  1 78.4 JK =  

k78.4 J 0;mgsμ− =  solving for s gives 20.0 m.s =  
The wood stops after traveling 20.0 m along the rough bottom. 
(b) Friction does 78.4 J−  of work. 
EVALUATE: The piece of wood stops before it makes one trip across the rough bottom. The final mechanical 
energy is zero. The negative friction work takes away all the mechanical energy initially in the system. 

 7.48. IDENTIFY: Apply Eq.(7.14) to the rock. 
kother fW W= . 

SET UP: Let 0y = at the foot of the hill, so 1 0U = and 2U mgh= , where h is the vertical height of the rock above 
the foot of the hill when it stops. 
EXECUTE: (a) At the maximum height, 2 0K = . Eq.(7.14) gives 

kBottom TopfK W U+ = . 

2
0 k

1 cos
2

mv mg θ d mghμ− = . sind h θ= , so 2
0 k

1 cos
2 sin

hv g ghμ θ
θ

− = . 

2 2 21 cos40(15 m/s) (0.20)(9.8 m/s ) (9.8 m/s )
2 sin 40

h h°
− =

°
 and 9.3 mh = . 

(b) Compare maximum static friction force to the weight component down the plane. 
2

s s cos (0.75)(28 kg)(9.8 m/s )cos40 158 Nf mgμ θ= = ° = . 2
ssin (28 kg)(9.8 m/s )(sin 40 ) 176 Nmg fθ = ° = > , so 

the rock will slide down. 
(c) Use same procedure as in part (a), with 9.3 mh = and Bv being the speed at the bottom of the hill. 

kTop BfU W K+ = . 2
k B

1cos
sin 2

hmgh mg mvμ θ
θ

− =  and 

B k2 2 cos sin  11.8 m/sv gh ghμ θ θ= − = . 
EVALUATE: For the round trip up the hill and back down, there is negative work done by friction and the speed 
of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill. 

 7.49. IDENTIFY: Apply Eq.(7.7) to the motion of the stone. 
SET UP: 1 1 other 2 2K U W K U+ + = +  
Let point 1 be point A and point 2 be point B. Take 0y =  at point B. 

EXECUTE: 2 21 1
1 1 22 2 ,mgy mv mv+ =  with 20.0 mh =  and 1 10.0 m/sv =  

2
2 1 2 22.2 m/sv v gh= + =  

EVALUATE: The loss of gravitational potential energy equals the gain of kinetic energy. 
(b) IDENTIFY: Apply Eq.(7.8) to the motion of the stone from point B to where it comes to rest against the 
spring. 
SET UP: Use 1 1 other 2 2 ,K U W K U+ + = +  with point 1 at B and point 2 where the spring has its maximum 
compression x. 
EXECUTE: 1 2 2 0;U U K= = =  21

1 12K mv=  with 1 22.2 m/sv =  
21

other el k 2 ,fW W W mgs kxμ= + = − −  with 100 ms x= +  

The work-energy relation gives 1 other 0.K W+ =  
2 21 1
1 k2 2 0mv mgs kxμ− − =  

Putting in the numerical values gives 2 29.4 750 0.x x+ − =  The positive root to this equation is 16.4 m.x =  
EVALUATE: Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes into the 
potential energy stored in the spring. 
(c) IDENTIFY and SET UP: Consider the forces. 
EXECUTE: When the spring is compressed 16.4 mx =  the force it exerts on the stone is el 32.8 N.F kx= =  The 
maximum possible static friction force is 

2
s smax (0.80)(15.0 kg)(9.80 m/s ) 118 N.f mgμ= = =  

EVALUATE: The spring force is less than the maximum possible static friction force so the stone remains at rest. 
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 7.50. IDENTIFY: Once the block leaves the top of the hill it moves in projectile motion. Use Eq.(7.14) to relate the 
speed Bv  at the bottom of the hill to the speed Topv at the top and the 70 m height of the hill. 

SET UP: For the projectile motion, take y+  to be downward. 0xa = , ya g= . 0 Topxv v= , 0 0yv = . For the motion 
up the hill only gravity does work. Take 0y = at the base of the hill. 

EXECUTE: First get speed at the top of the hill for the block to clear the pit. 21
2

y gt= . 2 2120 m (9.8 m/s )
2

t= . 

2.0 st = . Then Top 40 mv t = gives Top
40 m 20 m/s
2.0 s

v = = . 

Energy conservation applied to the motion up the hill: Bottom Top TopK U K= +  gives 

2 2
B Top

1 1
2 2

mv mgh mv= + . 2 2 2
B Top 2 (20 m/s) 2(9.8 m/s )(70 m) 42 m/sv v gh= + = + = . 

EVALUATE: The result does not depend on the mass of the block. 
 7.51. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the person. 

SET UP: Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let 0y =  at 

point 2. 1 41.0 m.y =  21
other 2 ,W kx= −  where 11.0 mx =  is the amount the cord is stretched at point 2. The cord 

does negative work. 
EXECUTE: 1 2 2 0,K K U= = =  so 21

1 2 0mgy kx− =  and 631 N/m.k =  
Now apply F kx=  to the test pulls: 
F kx=  so / 0.602 m.x F k= =  
EVALUATE: All his initial gravitational potential energy is taken away by the negative work done by the force 
exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord. 

 7.52. IDENTIFY: Apply Eq.(7.14) to the motion of the skier from the gate to the bottom of the ramp. 
SET UP: other 4000 JW = − . Let 0y = at the bottom of the ramp. 
EXECUTE: For the skier to be moving at no more than 30.0 m/s ; his kinetic energy at the bottom of the ramp can be 

no bigger than 
2 2(85.0 kg)(30.0 m/s) 38,250 J

2 2
mv

= = . Friction does 4000 J−  of work on him during his run, which 

means his combined U and K at the top of the ramp must be no more than 38,250 J 4000 J 42,250 J.+ =  His K at the 

top is 
2 2(85.0 kg)(2.0 m/s) 170 J

2 2
mv

= = . His U at the top should thus be no more than 42,250 J 170 J 42,080 J,− =  

which gives a height above the bottom of the ramp of 2

42,080 J 42,080 J 50.5 m.
(85.0 kg)(9.80 m/s )

h
mg

= = =  

EVALUATE: In the absence of air resistance, for this h his speed at the bottom of the ramp would be 31.5 m/s. 
The work done by air resistance is small compared to the kinetic and potential energies that enter into the 
calculation. 

 7.53. IDENTIFY: Use the work-energy theorem, Eq.(7.7). Solve for 2K  and then for 2.v  
SET UP: Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of the barrel, 
as shown in Figure 7.53. Use F kx=  to find the amount the spring is initially compressed by the 4400 N force. 

1 1 other 2 2K U W K U+ + = +  

 

Take 0y =  at his initial position. 

EXECUTE: 1 0,K =  21
2 22K mv=  

other fricW W fs= = −  

other (40 N)(4.0 m) 160 JW = − = −  

Figure 7.53  

1,grav 0,U =  21
1,el 2 ,U kd=  where d is the distance the spring is initially compressed. 

F kd=  so 4400 N 4.00 m
1100 N/m

Fd
k

= = =  

and 21
1,el 2 (1100 N/m)(4.00 m) 8800 JU = =  

2
2,grav 2 (60 kg)(9.80 m/s )(2.5 m) 1470 J,U mgy= = =  2,el 0U =  
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Then 1 1 other 2 2K U W K U+ + = +  gives 
21
228800 J 160 J 1470 Jmv− = +  

21
22 7170 Jmv =  and 2

2(7170 J) 15.5 m/s
60 kg

v = =  

EVALUATE: Some of the potential energy stored in the compressed spring is taken away by the work done by 
friction. The rest goes partly into gravitational potential energy and partly into kinetic energy. 

 7.54. IDENTIFY: To be at equilibrium at the bottom, with the spring compressed a distance 0x ,  the spring force must 
balance the component of the weight down the ramp plus the largest value of the static friction, or 

0 sin .kx w θ f= +  Apply Eq.(7.14) to the motion down the ramp. 

SET UP: 2 0K = , 21
1 2K mv= , where v is the speed at the top of the ramp. Let 2 0U = , so 1 sinU wL θ= , where L 

is the total length traveled down the ramp. 

EXECUTE: Eq.(7.14) gives 2 2
0

1 1( sin )
2 2

kx w f L mvθ= − + . With the given parameters, 21
02 248 Jkx =  and 

3
0 1.10 10  N.kx = ×  Solving for k gives 2440 N/m.k =  

EVALUATE: 0 0.451 mx = . sin 551 Nw θ = . The decrease in gravitational potential energy is only slightly larger 

than the amount of mechanical energy removed by the negative work done by friction. 21
2 243 Jmv = . The energy 

stored in the spring is only slightly larger than the initial kinetic energy of the crate at the top of the ramp. 
 7.55. IDENTIFY: Apply Eq.(7.7) to the system consisting of the two buckets. If we ignore the inertia of the pulley we 

ignore the kinetic energy it has. 
SET UP: 1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.55. 

 
Figure 7.55 

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 12.0 kg 
bucket, so the net work done by the tension is zero. 
Work is done on the system only by gravity, so other 0W =  and gravU U=  

EXECUTE: 1 0K =  
2 21 1

2 ,2 ,22 2A A B BK m v m v= +  But since the two buckets are connected by a rope they move together and have the same 

speed: ,2 ,2 2.A Bv v v= =  

Thus 2 21
2 2 22 ( ) (8.00 kg) .A BK m m v v= + =  

2
1 ,1 (12.0 kg)(9.80 m/s )(2.00 m) 235.2 J.A AU m gy= = =  

2
2 ,2 (4.0 kg)(9.80 m/s )(2.00 m) 78.4 J.B BU m gy= = =  

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 2 2U K U= +  
2
2235.2 J (8.00 kg) 78.4 Jv= +  

2
235.2 J 78.4 J 4.4 m/s

8.00 kg
v −
= =  

EVALUATE: The gravitational potential energy decreases and the kinetic energy increases by the same amount. 
We could apply Eq.(7.7) to one bucket, but then we would have to include in otherW  the work done on the bucket by 
the tension T. 
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 7.56. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = + to the motion of the rocket from the starting point to the base of the 
ramp. otherW is the work done by the thrust and by friction. 
SET UP: Let point 1 be at the starting point and let point 2 be at the base of the ramp. 1 0v = , 2 50.0 m/sv = . Let 

0y = at the base and take y+  upward. Then 2 0y = and 1 sin53y d= ° , where d is the distance along the ramp 
from the base to the starting point. Friction does negative work. 
EXECUTE: 1 0K = , 2 0U = . 1 other 2U W K+ = . other (2000 N) (500 N) (1500 N)W d d d= − = . 

21
22sin53 (1500 N)mgd d mv+ =° .  

2 2
2

2

(1500 kg)(50.0 m/s) 142 m
2[ sin53 1500 N] 2[(1500 kg)(9.80 m/s )sin53 1500 N]

mvd
mg

= = =
+ +° °

. 

EVALUATE: The initial height is 1 (142 m)sin53 113 my = =° . An object free-falling from this distance attains a 

speed 12 47.1 m/sv gy= = . The rocket attains a greater speed than this because the forward thrust is greater than 
the friction force. 

 7.57. IDENTIFY: The force exerted by a spring is xF kx= − . The acceleration of the object is given by x xF ma= . Apply 
Eq.(7.14) to relate position and speed. 
SET UP: Let x+  be when the spring is stretched. 
EXECUTE: (a) 21

2U kx= . Let point 1 be when the spring is initially compressed a distance 0x , so 1 0x x= − . 

1 0K = . other 0W = . 21
0 2 22 kx U K= + . The speed is maximum when 0x = , so 2 0U = . Then 2 21 1

0 22 2kx mv= and 

2 0 /v x k m= is this maximum speed. 

(b) xF kx= − and x xF ma= give x
ka x
m

= − . a is maximum when x is maximum, so 0
ka x
m

= . 

(c) The speed is maximum when 0x = , when the spring has returned to its natural length, and the acceleration is 
maximum when 0x x= − , at the initial compression of the spring. 

(d) When the spring has maximum extension, 2 0v = . 2 21 1
02 2kx kx= and 0x x= .The magnitude of the maximum 

extension equals the magnitude of the maximum compression. 
(e) The machine part oscillates between 0x x= − and 0x x= + and never stops permanently. 
EVALUATE: In any real system there are mechanical energy losses, for example due to negative work done by 
friction, and the object eventually comes to rest. 

 7.58. IDENTIFY: Conservation of energy says the decrease in potential energy equals the gain in kinetic energy. 
SET UP: Since the two animals are equidistant from the axis, they each have the same speed v. 
EXECUTE: One mass rises while the other falls, so the net loss of potential energy is 

2(0.500 kg 0.200 kg)(9.80 m/s )(0.400 m) 1.176 J.− =  This is the sum of the kinetic energies of the animals and is 

equal to 21
tot2 m v , and 2(1.176 J) 1.83 m/s.

(0.700 kg)
v = =  

EVALUATE: The mouse gains both gravitational potential energy and kinetic energy. The rat�s gain in kinetic 
energy is less than its decrease of potential energy, and the energy difference is transferred to the mouse. 

 7.59. (a) IDENTIFY and SET UP: Apply Eq.(7.7) to the motion of the potato. 
Let point 1 be where the potato is released and point 2 be at the lowest point in its motion, as shown in 
Figure 7.59a. 

1 1 other 2 2K U W K U+ + = +  

 

1 2.50 my =  

2 0y =  
The tension in the string is at all points in 
the motion perpendicular to the 
displacement, so 0TW =  
The only force that does work on the 
potato is gravity, so other 0.W =  

Figure 7.59a  
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EXECUTE: 1 0,K =  21
2 22 ,K mv=  1 1,U mgy=  2 0U =   

Thus 1 2.U K=  
21

1 22mgy mv=  
2

2 12 2(9.80 m/s )(2.50 m) 7.00 m/sv gy= = =  

EVALUATE: 2v  is the same as if the potato fell through 2.50 m. 

(b) IDENTIFY: Apply m=∑F a
! !  to the potato. The potato moves in an arc of a circle so its acceleration is rad ,a!  

where 2
rad /a v R=  and is directed toward the center of the circle. Solve for one of the forces, the tension T in the 

string. 
SET UP: The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b. 

 

The acceleration rada
!  is directed in toward 

the center of the circular path, so at this 
point it is upward. 

Figure 7.59b  

EXECUTE: y yF ma=∑  

radT mg ma− =  
2
2

rad( ) ,vT m g a m g
R

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
 where the radius R for the circular motion is the length L of the string. 

It is instructive to use the algebraic expression for 2v  from part (a) rather than just putting in the numerical value: 

2 12 2 ,v gy gL= =  so 2
2 2v gL=  

Then 
2
2 2 3 ;v gLT m g m g mg

L L
⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 the tension at this point is three times the weight of the potato. 

23 3(0.100 kg)(9.80 m/s ) 2.94 NT mg= = =  

EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward. 
 7.60. IDENTIFY: Eq.(7.14) says other 2 2 1 1( )W K U K U= + − + . otherW is the work done on the baseball by the force 

exerted by the air. 
SET UP: U mgy= . 21

2K mv= , where 2 2 2
x yv v v= + . 

EXECUTE: (a) The change in total energy is the work done by the air, 
2 2

other 2 2 1 1 2 1 2
1( ) ( ) ( )
2

W K U K U m v v gy⎛ ⎞= + − + = − +⎜ ⎟
⎝ ⎠

. 

( )2 2 2 2
other (0.145 kg) (1/ 2 (18.6 m/s) (30.0 m/s) (40.0 m/s) (9.80 m/s )(53.6 m)W ⎡ ⎤= − − +⎣ ⎦ . 

other 80.0 JW = − . 
(b) Similarly, other 3 3 2 2( ) ( )W K U K U= + − + . 

( )2 2 2 2
other (0.145 kg) (1/ 2) (11.9 m/s) ( 28.7 m/s) (18.6 m/s) (9.80 m/s )(53.6 m)W ⎡ ⎤= + − − −⎣ ⎦ . 

other 31.3 J.W = −  
(c) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work done by 
the air is smaller in magnitude. 
EVALUATE: The initial kinetic energy of the baseball is 21

2 (0.145 kg)(50.0 m/s) 181 J= . For the total motion 
from the ground, up to the maximum height, and back down the total work done by the air is 111 J. The ball 
returns to the ground with 181 J 111 J 70 J− = of kinetic energy and a speed of 31 m/s, less than its initial speed of 
50 m/s. 
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 7.61. IDENTIFY and SET UP: There are two situations to compare: stepping off a platform and sliding down a pole. 
Apply the work-energy theorem to each. 
(a) EXECUTE: Speed at ground if steps off platform at height h: 

1 1 other 2 2K U W K U+ + = +  
21
22 ,mgh mv=  so 2

2 2v gh=  
Motion from top to bottom of pole: (take 0y =  at bottom) 

1 1 other 2 2K U W K U+ + = +  
21
22mgd fd mv− =  

Use 2
2 2v gh=  and get mgd fd mgh− =  

( )fd mg d h= −  
( ) / (1 / )f mg d h d mg h d= − = −  

EVALUATE: For h d=  this gives 0f =  as it should (friction has no effect). 
For 0,h =  2 0v =  (no motion). The equation for f gives f mg=  in this special case. When f mg=  the forces on 
him cancel and he doesn�t accelerate down the pole, which agrees with 2 0.v =  

(b) EXECUTE: 2(1 / ) (75 kg)(9.80 m/s )(1 1.0 m/2.5 m) 441 N.f mg h d= − = − =  
(c) Take 0y =  at bottom of pole, so 1y d=  and 2 .y y=  

1 1 other 2 2K U W K U+ + = +  
21

20 ( )mgd f d y mv mgy+ − − = +  
21

2 ( ) ( )mv mg d y f d y= − − −  

Using (1 / )f mg h d= −  gives 21
2 ( ) (1 / )( )mv mg d y mg h d d y= − − − −  

21
2 ( / )( )mv mg h d d y= −  and 2 (1 / )v gh y d= −  

EVALUATE: This gives the correct results for 0y =  and for .y d=  
 7.62. IDENTIFY: Apply Eq.(7.14) to each stage of the motion. 

SET UP: Let 0y = at the bottom of the slope. In part (a), otherW is the work done by friction. In part (b), otherW is 
the work done by friction and the air resistance force. In part (c), otherW is the work done by the force exerted by the 
snowdrift. 
EXECUTE: (a) The skier�s kinetic energy at the bottom can be found from the potential energy at the top minus 
the work done by friction, 1 (60.0 kg)(9.8 N/kg)(65.0 m) 10,500 J,fK mgh W= − = −  or 

1 38,200 J 10,500 J 27,720 JK = − = . Then 1
1

2 2(27,720 J) 30.4 m/s
60 kg

Kv
m

= = = . 

(b) 2 1 air k air( ) 27,720 J ( ).fK K W W mgd f dμ= − + = − +  2 27,720 J [(0.2)(588 N)(82 m) (160 N)(82 m)]K = − + or 

2 27,720 J 22,763 J 4957 JK = − = . Then, 2
2 2(4957 J) 12.9 m/s

60 kg
Kv
m

= = =  

(c) Use the Work-Energy Theorem to find the force. ,W K= Δ  / (4957 J) (2.5 m) 2000 NF K d= = = . 
EVALUATE: In each case, otherW is negative and removes mechanical energy from the system. 

 7.63. IDENTIFY and SET UP: First apply m=∑F a
! !  to the skier. 

Find the angle α  where the normal force becomes zero, in terms of the speed v2 at this point. Then apply the 
work-energy theorem to the motion of the skier to obtain another equation that relates v2 and .α  Solve these two 
equations for .α  

 

Let point 2 be where the skier loses contact 
with the snowball, as sketched in Figure 7.63a 
Loses contact implies 0.n→  

1 ,y R=  2 cosy R α=  

Figure 7.63a  
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First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b. For 
this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a circle, so her 
acceleration is 2

rad / ,a v R=  directed in towards the center of the snowball. 

 

EXECUTE: y yF ma=∑  
2
2cos /mg n mv Rα − =  

But 0n =  so 2
2cos /mg mv Rα =  

2
2 cosv Rg α=  

Figure 7.63b  
Now use conservation of energy to get another equation relating 2v  to :α  

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the skier is gravity, so other 0.W =  

1 0,K =  21
2 22K mv=  

1 1 ,U mgy mgR= =  2 2 cosU mgy mgR α= =  

Then 21
22 cosmgR mv mgR α= +  

2
2 2 (1 cos )v gR α= −  

Combine this with the y yF ma=∑  equation: 
cos 2 (1 cos )Rg gRα α= −  

cos 2 2cosα α= −  
3cos 2α =  so cos 2/3α =  and 48.2α = °  
EVALUATE: She speeds up and her rada  increases as she loses gravitational potential energy. She loses contact 
when she is going so fast that the radially inward component of her weight isn�t large enough to keep her in the 
circular path. Note that α  where she loses contact does not depend on her mass or on the radius of the snowball. 

 7.64. IDENTIFY: Use conservation of energy to relate the speed at the lowest point to the speed at the highest point. 
Use m=∑F a

! ! to calculate the tension. 

SET UP: The rock has acceleration 2
rad /a v R= , directed toward the center of the circle. 

EXECUTE: If the speed of the rock at the top is tv , then conservation of energy gives the speed bv  at the bottom 

from 2 21 1
b t2 2 (2 )mv mv mg R= + , R being the radius of the circle, and so 2 2

b t 4v v gR= + . The tension at the top and 

bottom are found from 
2
t

t
mvT mg
R

+ =  and 
2
b

b
mvT mg
R

− = , so 2 2
b t b t( ) 2 6 6mT T v v mg mg w

R
− = − + = = . 

EVALUATE: The tensions tT and bT depend on the speed of the rock and on R, but the difference b tT T− is 
independent of the speed of the rock and the radius of the circle. 

 7.65. IDENTIFY and SET UP: 

 

Ay R=  
0B Cy y= =  

Figure 7.65  
(a) Apply conservation of energy to the motion from B to C: 

other .B B C CK U W K U+ + = +  The motion is described in Figure 7.65. 
EXECUTE: The only force that does work on the package during this part of the motion is friction, so 

other k k k(cos ) (cos180 )fW W f s mg s mgsφ μ μ= = = ° = −  
21

2 ,B BK mv=  0CK =  
0,BU =  0CU =  
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Thus 0B fK W+ =  
21

k2 0Bmv mgsμ− =  
2 2

k 2

(4.80 m/s) 0.392
2 2(9.80 m/s )(3.00 m)

B

gs
μμ = = =  

EVALUATE: The negative friction work takes away all the kinetic energy. 
(b) IDENTIFY and SET UP: Apply conservation of energy to the motion from A to B: 

otherA A B BK U W K U+ + = +  

EXECUTE: Work is done by gravity and by friction, so other .fW W=  

0,AK =  2 21 1
2 2 (0.200 kg)(4.80 m/s) 2.304 JB BK mv= = =  

2(0.200 kg)(9.80 m/s )(1.60 m) 3.136 J,A AU mgy mgR= = = =  0BU =  
Thus A f BU W K+ =  

2.304 J 3.136 J 0.83 Jf B AW K U= − = − = −  

EVALUATE: fW  is negative as expected; the friction force does negative work since it is directed opposite to the 
displacement. 

 7.66. IDENTIFY: Apply Eq.(7.14) to the initial and final positions of the truck. 
SET UP: Let 0y = at the lowest point of the path of the truck. otherW is the work done by friction. 

r r r cosf n mgμ μ β= = . 

EXECUTE: Denote the distance the truck moves up the ramp by x. 21
1 02K mv= , 1 sinU mgL α= , 2 0K = , 

2 sinU mgx β=  and other r cosW mgxμ β= − . From other 2 2 1 1( ) ( )W K U K U= + − + , and solving for x, 
2

1 0

r r

sin ( /2 ) sin .
(sin cos ) sin cos
K mgL v g Lx

mg
α α

β μ β β μ β
+ +

= =
+ +

 

EVALUATE: x increases when 0v increases and decreases when rμ increases. 

 7.67. 2 ,xF x xα β= − −  60.0 N/mα =  and 218.0 N/mβ =  
(a) IDENTIFY: Use Eq.(6.7) to calculate W and then use W U= −Δ  to identify the potential energy function ( ).U x  

SET UP: 2

1
1 2 ( ) 

x

x

F xx
W U U F x dx= − = ∫  

Let 1 0x =  and 1 0.U =  Let 2x  be some arbitrary point x, so 2 ( ).U U x=  

EXECUTE: 2 2 2 31 1
2 30 0 0

( ) ( ) ( ) ( ) .
x x x

xU x F x dx x x dx x x dx x xα β α β α β= − = − − − = + = +∫ ∫ ∫  

EVALUATE: If 0,β =  the spring does obey Hooke�s law, with ,k α=  and our result reduces to 21
2 .kx  

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the object. 
SET UP: The system at points 1 and 2 is sketched in Figure 7.67. 

 

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the 
object is the spring force, so other 0.W =  

Figure 7.67  

EXECUTE: 1 0,K =  21
2 22K mv=  

2 3 2 2 31 1 1 1
1 1 1 12 3 2 3( ) (60.0 N/m)(1.00 m) (18.0 N/m )(1.00 m)U U x x xα β= = + = + 36.0 J=  

2 3 2 2 31 1 1 1
2 2 2 22 3 2 3( ) (60.0 N/m)(0.500 m) (18.0 N/m )(0.500 m)U U x x xα β= = + = + 8.25 J=  

Thus 21
2236.0 J 8.25 Jmv= +  

2
2(36.0 J 8.25 J) 7.85 m/s

0.900 kg
v −
= =  

EVALUATE: The elastic potential energy stored in the spring decreases and the kinetic energy of the object increases. 
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 7.68. IDENTIFY: Apply Eq.(7.14). otherW is the work done by F. 
SET UP: otherW K U= Δ + Δ . The distance the spring stretches is aθ . 2 1 siny y a θ− = . 
EXECUTE: The force increases both the gravitational potential energy of the block and the potential energy of the 
spring. If the block is moved slowly, the kinetic energy can be taken as constant, so the work done by the force is 
the increase in potential energy, 21

2sin ( )U mga k aθ θΔ = + . 
EVALUATE: The force is kept tangent to the surface so the block will stay in contact with the surface. 

 7.69. IDENTIFY: Apply Eq.(7.14) to the motion of the block. 
SET UP: Let 0y = at the floor. Let point 1 be the initial position of the block against the compressed spring and 
let point 2 be just before the block strikes the floor. 
EXECUTE: With 2 10, 0U K= = , 2 1K U= . 2 21 1

22 2mv kx mgh= + . Solving for 2v , 
2 2

2
2

(1900 N/m)(0.045 m)2 2(9.80 m/s )(1.20 m) 7.01 m/s
(0.150 kg)

kxv gh
m

= + = + = . 

EVALUATE: The potential energy stored in the spring and the initial gravitational potential energy all go into the 
final kinetic energy of the block. 

 7.70. IDENTIFY: Apply Eq.(7.14). U is the total elastic potential energy of the two springs. 
SET UP: Call the two points in the motion where Eq.(7.14) is applied A and B to avoid confusion with springs 1 
and 2, that have force constants 1k and 2k . At any point in the motion the distance one spring is stretched equals 
the distance the other spring is compressed. Let x+  be to the right. Let point A be the initial position of the block, 
where it is released from rest, so 1 0.150 mAx = + and 2 0.150 mAx = − . 
EXECUTE: (a) With no friction, other 0W = . 0AK = and A B BU K U= + . The maximum speed is when 0BU = and 

this is at 1 2 0B Bx x= = , when both springs are at their natural length. 2 2 21 1 1
1 1 2 22 2 2A A Bk x k x mv+ = . 

2 2 2
1 2 (0.150 m)A Ax x= = , so 1 2 2500 N/m 2000 N/m(0.150 m) (0.150 m) 5.81 m/s

3.00 kgB
k kv

m
+ +

= = = . 

(b) At maximum compression of spring 1, spring 2 has its maximum extension and 0Bv = . Therefore, at this point 

A BU U= . The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice versa: 

1 2A Ax x= − and 1 2B Bx x= − . Then A BU U= gives 2 21 1
1 2 1 1 2 12 2( ) ( )A Bk k x k k x+ = +  and 1 1 0.150 mB Ax x= − = − . The 

maximum compression of spring 1 is 15.0 cm. 
EVALUATE: When friction is not present mechanical energy is conserved and is continually transformed between 
kinetic energy of the block and potential energy in the springs. If friction is present, its work removes mechanical 
energy from the system. 

 7.71. IDENTIFY: Apply conservation of energy to relate x and h. Apply m=∑F a
! ! to relate a and x. 

SET UP: The first condition, that the maximum height above the release point is h, is expressed as 21
2 kx mgh= . 

The magnitude of the acceleration is largest when the spring is compressed to a distance x; at this point the net 
upward force is kx mg ma− = , so the second condition is expressed as ( / )( )x m k g a= + . 
EXECUTE: (a) Substituting the second expression into the first gives  

2 2
21 ( )( ) , or .

2 2
m m g ak g a mgh k
k gh

+⎛ ⎞ + = =⎜ ⎟
⎝ ⎠

 

(b) Substituting this into the expression for x gives 2ghx
g a

=
+

. 

EVALUATE: When 0a → , our results become 
2
mgk

h
= and 2x h= . The initial spring force is kx mg= and the 

net upward force approaches zero. But 21
2 kx mgh= and sufficient potential energy is stored in the spring to move 

the mass to height h. 
 7.72. IDENTIFY: At equilibrium the upward spring force equals the weight mg of the object. Apply conservation of 

energy to the motion of the fish. 
SET UP: The distance that the mass descends equals the distance the spring is stretched. 1 2 0K K= = , so 

1 2(gravitational) (spring)U U=  
EXECUTE: Following the hint, the force constant k is found from mg kd= , or /k mg d= . When the fish falls 
from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the spring, 

which is 2 21 1
2 2 ( / )ky mg d y= . Equating these, 21 , or 2 .

2
mg y mgy y d
d

= =  
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EVALUATE: At its lowest point the fish is not in equilibrium. The upward spring force at this point is 2ky kd= , 
and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has an upward 
acceleration equal to g. 

 7.73. IDENTIFY: Apply Eq.(7.15) to the motion of the block. 
SET UP: The motion from A to B is described in Figure 7.73. 

 
Figure 7.73 

The normal force is cos ,n mg θ=  so k k k cos .f n mgμ μ θ= =  
0;Ay =  (60.0 m)sin30.0 3.00 mBy = ° =  

otherA A B BK U W K U+ + = +  
EXECUTE: Work is done by gravity, by the spring force, and by friction, so other fW W=  and el gravU U U= +  

0,AK =  2 21 1
2 2 (1.50 kg)(7.00 m/s) 36.75 JB BK mv= = =  

el, grav, el, ,A A A AU U U U= + =  since grav, 0AU =  
2

el, grav, 0 (1.50 kg)(9.80 m/s )(3.00 m) 44.1 JB B B BU U U mgy= + = + = =  

other k k k( cos ) cos (cos180 ) cosfW W f s mg s mg sφ μ θ μ θ= = = ° = −  
2

other (0.50)(1.50 kg)(9.80 m/s )(cos30.0 )(6.00 m) 38.19 JW = − ° = −  
Thus el, 38.19 J 36.75 J 44.10 JAU − = +  

el, 38.19 J 36.75 J 44.10 J 119 JAU = + + =  

EVALUATE: elU  must always be positive. Part of the energy initially stored in the spring was taken away by 
friction work; the rest went partly into kinetic energy and partly into an increase in gravitational potential energy. 

 7.74. IDENTIFY: Apply Eq.(7.14) to the motion of the package. 
kother fW W= , the work done by the kinetic friction 

force. 
SET UP: k k k cosf n mgμ μ θ= = , with 53.1θ = ° . Let 4.00 mL = , the distance the package moves before 
reaching the spring and let d be the maximum compression of the spring. Let point 1 be the initial position of the 
package, point 2 be just as it contacts the spring, point 3 be at the maximum compression of the spring, and point 4 
be the final position of the package after it rebounds. 
EXECUTE: (a) 1 0K = , 2 0U = , other k k cosW f L Lμ θ= − = − . 1 sinU mgL θ= . 21

2 2K mv= , where v is the speed 
before the block hits the spring. Eq.(7.14) applied to points 1 and 2, with 2 0y = , gives 1 other 2U W K+ = . Solving 
for v, 

2
k2 (sin cos ) 2(9.80 m/s )(4.00 m)(sin53.1 (0.20)cos53.1 ) 7.30 m/s.v gL θ μ θ= − = ° − ° =  

(b) Apply Eq.(7.14) to points 1 and 3. Let 3 0y = . 1 3 0K K= = . 1 ( )sinU mg L d θ= + . 21
2 2U kd= . 

other k ( )W f L d= − + . Eq.(7.14) gives 21
k 2( )sin cos ( )mg L d mg L d kdθ μ θ+ − + = . This can be written as 

2

k

0.
2 (sin cos )

kd d L
mg θ μ θ

− − =
−

 The factor multiplying 2d  is 14.504 m− , and use of the quadratic formula 

gives 1.06 md = . 
(c) The easy thing to do here is to recognize that the presence of the spring determines d, but at the end of the 
motion the spring has no potential energy, and the distance below the starting point is determined solely by how 
much energy has been lost to friction. If the block ends up a distance y below the starting point, then the block has 
moved a distance L d+  down the incline and L d y+ −  up the incline. The magnitude of the friction force is the 
same in both directions, k cosmg θμ , and so the work done by friction is k (2 2 ) cosL d y mg θμ− + − . This must be 
equal to the change in gravitational potential energy, which is sinmgy θ− . Equating these and solving for y gives 

k k

k k

2 cos 2( ) ( ) .
sin cos tan

y L d L dμ θ μ
θ μ θ θ μ

= + = +
+ +

 Using the value of d found in part (b) and the given values for kμ  

and θ  gives 1.32 my = . 
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EVALUATE: Our expression for y gives the reasonable results that 0y = when k 0μ = ; in the absence of friction 
the package returns to its starting point. 

 7.75. (a) IDENTIFY and SET UP: Apply otherA A B BK U W K U+ + = +  to the motion from A to B. 

EXECUTE: 0,AK =  21
2B BK mv=  

0,AU =  21
el, 2 ,B B BU U kx= =  where 0.25 mBx =  

other F BW W Fx= =  

Thus 2 21 1
2 2 .B B BFx mv kx= +  (The work done by F goes partly to the potential energy of the stretched spring and 

partly to the kinetic energy of the block.) 
(20.0 N)(0.25 m) 5.0 JBFx = =  and 2 21 1

2 2 (40.0 N/m)(0.25 m) 1.25 JBkx = =  

Thus 21
25.0 J 1.25 JBmv= +  and 2(3.75 J) 3.87 m/s

0.500 kgBv = =  

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the block. Let point C be where the block is closest to the wall. 
When the block is at point C the spring is compressed an amount ,Cx  so the block is 0.60 m Cx−  from the wall, 

and the distance between B and C is .B Cx x+  
SET UP: The motion from A to B to C is described in Figure 7.75. 

 

otherB B C CK U W K U+ + = +  
EXECUTE: other 0W =  

21
2 5.0 J 1.25 J 3.75 JB BK mv= = − =  

 (from part (a)) 
21

2 1.25 JB BU kx= =  
0CK =  (instantaneously at rest at 

 point closest to wall) 
21

2C CU k x=  
Figure 7.75  

Thus 21
23.75 J 1.25 J Ck x+ =  

2(5.0 J) 0.50 m
40.0 N/mCx = =  

The distance of the block from the wall is 0.60 m 0.50 m 0.10 m.− =  
EVALUATE: The work (20.0 N)(0.25 m) 5.0 J=  done by F puts 5.0 J of mechanical energy into the system. No 
mechanical energy is taken away by friction, so the total energy at points B and C is 5.0 J. 

 7.76. IDENTIFY: Apply Eq.(7.14) to the motion of the student. 
SET UP: Let 0 0.18 mx = , 1 0.71 mx = . The spring constants (assumed identical) are then known in terms of the 
unknown weight w, 04kx w= . Let 0y = at the initial position of the student. 
EXECUTE: (a) The speed of the brother at a given height h above the point of maximum compression is then 

found from 2 2
1

1 1(4 ) ,
2 2

wk x v mgh
g

⎛ ⎞
= +⎜ ⎟

⎝ ⎠  
or 

2
2 2 1

1
0

(4 ) 2 2k g xv x gh g h
w x

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
. Therefore, 

2 2(9.80 m/s )((0.71 m) (0.18 m) 2(0.90 m)) 3.13 m/sv = − = , or 3.1 m/s  to two figures. 

(b) Setting 0v =  and solving for h, 
2 2
1 1

0

2 1.40 m,
2

kx xh
mg x

= = = or 1.4 m to two figures. 

(c) No; the distance 0x  will be different, and the ratio 
22 2

1 1
1

0 1 1

( 0.53 m) 0.53 m1x x x
x x x

⎛ ⎞+
= = +⎜ ⎟

⎝ ⎠
 will be different. 

Note that on a planet with lower g, 1x  will be smaller and h will be larger. 
EVALUATE: We are able to solve the problem without knowing either the mass of the student or the force 
constant of the spring. 
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 7.77. IDENTIFY: 2 2/xa d x dt= , 2 2/ya d y dt= . x xF ma= , y yF ma= . x yU F dx F dy= +∫ ∫ . 

SET UP: 0 0 0(cos ) sind t t
dt

ω ω ω= − . 0 0 0(sin ) cosd t t
dt

ω ω ω= . 0 0
0

1cos  sint dt tω ω
ω

=∫ , 0 0
0

1sin  cost dt tω ω
ω

= −∫ . 

/xv dx dt= , /yv dy dt= . E K U= + .  

EXECUTE: (a) 2 2 2 2
0 0/ ,  .x x xa d x dt x F ma m xω ω= = − = = −  2 2 2 2

0 0/ ,   y y ya d y dt y F ma m yω ω= = − = = −  

(b) 2 2 2 2
0 0

1 ( )
2x yU F dx F dy m xdx ydy m x yω ω⎡ ⎤ ⎡ ⎤= − + = + = +⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫  

(c) 0 0 0 0 0 0/ sin ( / ).xv dx dt x t x y yω ω ω= = − = −  0 0 0 0 0 0/ cos ( / ).yv dy dt y t y x xω ω ω= = + = +  

(i) When 0x x=  and 0, 0xy v= =  and 0 0yv y ω= , 

2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0

1 1 1 1( ) , and ( )
2 2 2 2x yK m v v my U mx E K U m x yω ω ω= + = = = + = +  

(ii) When 0x =  and 0 0 0, xy y v x ω= = −  and 0yv = , 

2 2 2 2 2 2 2
0 0 0 0 0 0 0

1 1 1, and ( )
2 2 2

K mx U m y E K U m x yω ω ω= = = + = +  

EVALUATE: The total energy is the same at the two points in part (c); the total energy of the system is constant. 
 7.78. IDENTIFY: Calculate the increase in kinetic energy for the car. 

SET UP: The car gets 8(0.15)(1.3 10  J)× of energy from one gallon of gasoline. 

EXECUTE: (a) The mechanical energy increase of the car is 2 61
2 1 2 (1500 kg)(37 m/s) 1.027 10  J.K K− = = ×  Let 

α be the number of gallons of gasoline consumed. 8 6(1.3 10 J)(0.15) 1.027 10 Jα × = ×  and 0.053gallonsα = . 
(b) (1.00 gallons) 19 accelerationsα =  
EVALUATE: The time over which the increase in velocity occurs doesn't enter into the calculation. 

 7.79. IDENTIFY: U mgh= . Use 150 mh = for all the water that passes through the dam. 
SET UP: m Vρ= and V A h= Δ is the volume of water in a height hΔ of water in the lake. 
EXECUTE: (a) Stored energy ( ) (1 m)mgh V gh A ghρ ρ= = = . 

3 6 2 2 12stored energy (1000 kg/m )(3.0 10  m )(1 m)(9.8 m/s )(150 m) 4.4 10  J.= × = ×  
(b) 90% of the stored energy is converted to electrical energy, so (0.90)( ) 1000 kWhmgh = . 

(0.90) 1000 kWhVghρ = . 3 3
3 2

(1000 kWh)((3600 s) (1 h)) 2 7 10  m
(0.90)(1000 kg/m )(150 m)(9.8 m/s )

V .= = × . 

Change in level of the lake: waterA h VΔ = . 
3 3

4
6 2

2.7 10 m 9.0 10 m
3.0 10 m

Vh
A

−×
Δ = = = ×

×
. 

EVALUATE: hΔ is much less than 150 m, so using 150 mh =  for all the water that passed through the dam was a 
very good approximation. 

 7.80. IDENTIFY and SET UP: The potential energy of a horizontal layer of thickness dy, area A, and height y is 
( ) .dU dm gy=  Let ρ  be the density of water. 

EXECUTE:  ,dm dV A dyρ ρ= =  so .dU Agy dyρ=  
The total potential energy U is 

21
20 0

 .
h h

U dU Ag y dy Aghρ ρ= = =∫ ∫  

6 23.0 10  mA = ×  and 150 m,h =  so 14 73.3 10  J 9.2 10  kWhU = × = ×  
EVALUATE: The volume is Ah and the mass of water is .V Ahρ ρ=  The average depth is av /2,h h=  so 

av.U mgh=  

 7.81. IDENTIFY: Apply x
UF
x

∂
= −

∂
, y

UF
y

∂
= −

∂
 and z

UF
z

∂
= −

∂
. 

SET UP: 2 2 2 1/ 2( )r x y z= + + . 2 2 3/ 2

(1/ )
( )

r x
x x y

∂
= −

∂ +
, 2 2 3/ 2

(1/ )
( )

r y
y x y

∂
= −

∂ +
 and 2 2 3/ 2

(1/ )
( )

r z
z x y

∂
= −

∂ +
. 
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EXECUTE: (a) 1 2( ) Gm mU r
r

= − . 1 2
1 2 2 2 2 3/ 2

(1/ )
( )x

U r Gm m xF Gm m
x x x y z

∂ ∂⎡ ⎤= − = + = −⎢ ⎥∂ ∂ + +⎣ ⎦
. Similarly, 

1 2
2 2 2 3/ 2( )y

Gm m yF
x y z

= −
+ +

 and 1 2
2 2 2 3/ 2( )z

Gm m zF
x y z

= −
+ +

. 

(b) 2 2 2 3/2 3( )x y z r+ + = so 1 2
3x

Gm m xF
r

= − , 1 2
3y

Gm m yF
r

= −  and 1 2
3z

Gm m zF
r

= − . 

2 2 2 2 2 21 2 1 2
3 2x y z

Gm m Gm mF F F F x y z
r r

= + + = + + = . 

(c) xF , yF and zF are negative. xF xα= , yF yα=  and zF zα= , where α is a constant, so F
!

and the vector r! from 

1m to 2m are in the same direction. Therefore, F
!

is directed toward 1m at the origin and F
!

is attractive. 
EVALUATE: When 2m moves to larger r, the work done on it by the attractive gravity force is negative. Since 
W U= −Δ , negative work done by gravity means the gravitational potential energy increases. 

1 2( ) Gm mU r
r

= − does increase (becomes less negative) as r increases. For an object near the surface of the earth, 

1 2( ) Gm mU r
r

= − will be shown in Chapter 12 to be equivalent to gravU mgy= . 

 7.82. IDENTIFY: Calculate the work W done by this force. If the force is conservative, the work is path independent. 

SET UP: 2

1

P

P
W d= ⋅∫ F l

!!
. 

EXECUTE: (a) 2 2

1 1

2P P

yP P
W F dy C y dy= =∫ ∫ . W doesn't depend on x, so it is the same for all paths between 1P and 

2P . The force is conservative. 

(b) 2 2

1 1

2P P

xP P
W F dx C y dx= =∫ ∫ . W will be different for paths between points 1P and 2P for which y has different 

values. For example, if y has the constant value 0y along the path, then 0 2 1( )W Cy x x= − . W depends on the value 
of 0y . The force is not conservative. 

EVALUATE: 2 �CyF = j
!

 has the potential energy function 
3

( )
3

CyU y = − . We cannot find a potential energy 

function for 2 �CyF = i
!

. 

 7.83. 2 �,xyα= −F j
!

 32.50 N/mα =  

IDENTIFY: F
!

 is not constant so use Eq.(6.14) to calculate W. F
!

 must be evaluated along the path. 
(a) SET UP: The path is sketched in Figure 7.83a. 

 

� �d dx dy= +l i j
!

 
2d xy dyα⋅ = −F l

!!
 

On the path, x y=  so 3d y dyα⋅ = −F l
!!

 

Figure 7.83a  

EXECUTE: ( )2 2

11

2 3 4 4 4
2 11

( ) ( / 4) ( / 4)( )|y y

yy
W d y dy y y yα α α= ⋅ = − = − = − −∫ ∫F l

!!
 

1 0,y =  2 3.00 m,y =  so 3 41
4 (2.50 N/m )(3.00 m) 50.6 JW = − = −  

(b) SET UP: The path is sketched in Figure 7.83b. 

 
Figure 7.83b 

For the displacement from point 1 to point 2, �,d dx=l i
!

 so 0d⋅ =F l
!!

 and 0.W =  (The force is perpendicular to 
the displacement at each point along the path, so 0.)W =  
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For the displacement from point 2 to point 3, �,d dy=l j
!

 so 2 .d xy dyα⋅ = −F l
!!

 On this path, 3.00 m,x =  so 
3 2 2 2(2.50 N/m )(3.00 m)  (7.50 N/m )  .d y dy y dy⋅ = − = −F l

!!
 

EXECUTE: 3

2

3 2 2 2 3 31
3 232

(7.50 N/m )  (7.50 N/m ) ( )
y

y
W d y dy y y= ⋅ = − = − −∫ ∫F l

!!
 

( )2 31
3(7.50 N/m ) (3.00 m) 67.5 JW = − = −  

(c) EVALUATE: For these two paths between the same starting and ending points the work is different, so the 
force is nonconservative. 

 7.84. IDENTIFY: Use 2

1

P

P
W d= ⋅∫ F l

!!
to calculate W for each segment of the path. 

SET UP:  xd F dx xy dxα⋅ =F l =
!!

 
EXECUTE: (a) The path is sketched in Figure 7.84. 
(b) (1): 0x =  along this leg, so 0=F

!
 and 0W = . (2): Along this leg, 1.50 my = , so (3.00 N m)d xdx⋅ =F l

!!
, 

and 2(1.50 N m)((1.50 m) 0) 3.38 JW = − =  (3) 0d⋅ =F l
!!

, so 0W =  (4) 0y = , so 0=F
!

 and 0W = . The work 
done in moving around the closed path is 3.38 J. 
(c) The work done in moving around a closed path is not zero, and the force is not conservative. 
EVALUATE: There is no potential energy function for this force. 

 
Figure 7.84 

 7.85. IDENTIFY: Use Eq.(7.16) to relate xF and ( )U x . The equilibrium is stable where ( )U x is a local minimum and 
the equilibrium is unstable where ( )U x is a local maximum. 
SET UP: The maximum and minimum values of x are those for which ( )U x E= . K E U= − , so the maximum 
speed is where U is a minimum. 

EXECUTE: (a) For the given proposed potential ( ), dUU x kx F
dx

− = − + , so this is a possible potential function. 

For this potential, 2(0) 2U F k= − , not zero. Setting the zero of potential is equivalent to adding a constant to the 
potential; any additive constant will not change the derivative, and will correspond to the same force. 
(b) At equilibrium, the force is zero; solving 0kx F− + =  for x gives 0 /x F k= . 2

0( ) /U x F k= − , and this is a 
minimum of U, and hence a stable point. 
(c) The graph is given in Figure 7.85. 
(d) No; tot 0F =  at only one point, and this is a stable point. 
(e) The extreme values of x correspond to zero velocity, hence zero kinetic energy, so ( )U x E± = , where x±  are 

the extreme points of the motion. Rather than solve a quadratic, note that 2 21
2 ( / ) /k x F k F k− − , so ( )U x E± =  

becomes 
2 2

21 /
2

F Fk x F k
k k±

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

. 2 ,F Fx
k k± − = ± so 3 .F Fx x

k k+ −= = −  

(f) The maximum kinetic energy occurs when ( )U x  is a minimum, the point 0 /x F k=  found in part (b). At this 

point 2 2 2( / ) ( / ) 2 /K E U F k F k F k= − = − − = , so 2v F mk= . 
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EVALUATE: As E increases, the magnitudes of x+ and x−  increase. The particle cannot reach values of x for 
which ( )E U x< because K cannot be negative. 

 
Figure 7.85 

 7.86. IDENTIFY: Use Eq.(7.16) to relate xF and ( )U x . The equilibrium is stable where ( )U x is a local minimum and 
the equilibrium is unstable where ( )U x is a local maximum. 
SET UP: /dU dx is the slope of the graph of U versus x. K E U= − , so K is a maximum when U is a minimum. 
The maximum x is where E U= . 
EXECUTE: (a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. (7.16)). 
(b) The slope of the curve at point B is positive, so the force is negative. 
(c) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at around 0.75 m. 
(d) The curve at point C looks pretty close to flat, so the force is zero. 
(e) The object had zero kinetic energy at point A, and in order to reach a point with more potential energy than 

( )U A , the kinetic energy would need to be negative. Kinetic energy is never negative, so the object can never be at 
any point where the potential energy is larger than ( )U A . On the graph, that looks to be at about 2.2 m. 
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m. 
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C. 
EVALUATE: If E is less than U at point C, the particle is trapped in one or the other of the potential "wells" and 
cannot move from one allowed region of x to the other. 

 7.87. IDENTIFY: K E U= − determines ( )v x . 
SET UP: v is a maximum when U is a minimum and v is a minimum when U is a maximum. /xF dU dx= − . The 
extreme values of x are where ( )E U x= . 
EXECUTE: (a) Eliminating β  in favor of α  and 0 0( / )x β xα= , 
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( ) .x x xU x
x x x x x x x x x
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0 2
0

( ) (1 1) 0U x
x
α⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

. ( )U x  is positive for 0x x<  and negative for 0x x>  (α  and β  must be taken as 

positive). The graph of ( )U x is sketched in Figure 7.87a. 

(b) 
2

0 0
2
0

2 2( ) x xv x U
m mx x x

α ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. The proton moves in the positive x-direction, speeding up until it 

reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus sign in the 
square root in the expression for ( )v x  indicates that the particle will be found only in the region where 0U < , that 
is, 0x x> . The graph of ( )v x is sketched in Figure 7.87b. 
(c) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential energy. 

This minimum occurs when 0dU
dx = , or 

3 2
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3 2 0,dU x x
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which has the solution 02x x= . 0 2
0

(2 )
4

U x
x
α

= − , so 2
02

v
mx
α

=  . 

(d) The maximum speed occurs at a point where 0dU
dx = , and from Eq. (7.15), the force at this point is zero. 
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(e) 1 03x x= , and 0 2
0

2(3 )
9

U x
x
α

= − . 

2 2
0 0 0 0
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. 

The particle is confined to the region where 1( ) ( )U x U x< . The maximum speed still occurs at 02x x= , but now 
the particle will oscillate between 1x  and some minimum value (see part (f)). 
(f) Note that 1( ) ( )U x U x−  can be written as 
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x x x x
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which is zero (and hence the kinetic energy is zero) at 0 13x x x= =  and 3
02x x= . Thus, when the particle is 

released from 0x , it goes on to infinity, and doesn�t reach any maximum distance. When released from 1x , it 
oscillates between 3

02 x  and 03x . 
EVALUATE: In each case the proton is released from rest and ( )iE U x= , where ix is the point where it is 
released. When 0ix x= the total energy is zero. When 1ix x=  the total energy is negative. ( ) 0U x →  as x →∞ , so 
for this case the proton can't reach x →∞ and the maximum x it can have is limited. 

  
Figure 7.87 


