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APPLYING NEWTON�S LAWS 

 5.1. IDENTIFY: 0a =  for each object. Apply y yF ma=∑ to each weight and to the pulley. 

SET UP: Take y+  upward. The pulley has negligible mass. Let rT be the tension in the rope and let cT be the 
tension in the chain. 
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a. 

y yF ma=∑ gives r 25.0 NT w= = . 

(b) The free-body diagram for the pulley is given in Figure 5.1b. c r2 50.0 NT T= = . 
EVALUATE: The tension is the same at all points along the rope. 

 
Figure 5.1a, b 

 5.2. IDENTIFY: Apply m=∑F a
! ! to each weight. 

SET UP: Two forces act on each mass: w down and ( )T w=  up. 
EXECUTE: In all cases, each string is supporting a weight w against gravity, and the tension in each string is w. 
EVALUATE: The tension is the same in all three cases. 

 5.3. IDENTIFY: Both objects are at rest and 0a = . Apply Newton�s first law to the appropriate object. The maximum 
tension maxT is at the top of the chain and the minimum tension is at the bottom of the chain. 
SET UP: Let y+  be upward. For the maximum tension take the object to be the chain plus the ball. For the 
minimum tension take the object to be the ball. For the tension T three-fourths of the way up from the bottom of 
the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of these 
three cases are sketched in Figures 5.3a, 5.3b and 5.3c. b+c 75.0 kg 26.0 kg 101.0 kgm = + = . b 75.0 kgm = . m is 
the mass of three-fourths of the chain: 3

4 (26.0 kg) 19.5 kgm = = . 

EXECUTE: (a) From Figure 5.3a, 0yF =∑ gives max b+c 0T m g− = and 2
max (101.0 kg)(9.80 m/s ) 990 NT = = . 

From Figure 5.3b, 0yF =∑ gives min b 0T m g− = and 2
min (75.0 kg)(9.80 m/s ) 735 NT = = . 

(b) From Figure 5.3c, 0yF =∑ gives b( ) 0T m m g− + = and 2(19.5 kg 75.0 kg)(9.80 m/s ) 926 NT = + = . 
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EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain. 

 
Figure 5.3a�c 

 5.4. IDENTIFY: Apply Newton�s 1st law to the person. Each half of the rope exerts a force on him, directed along the 
rope and equal to the tension T in the rope. 
SET UP: (a) The force diagram for the person is given in Figure 5.4 

 

1T  and 2T  are the 
tensions in each half of 
the rope. 

Figure 5.4  

EXECUTE: 0xF =∑  

2 1cos cos 0T Tθ θ− =  
This says that 1 2T T T= =  (The tension is the same on both sides of the person.) 

0yF =∑  

1 2sin sin 0T T mgθ θ+ − =  
But 1 2 ,T T T= =  so 2 sinT mgθ =  

2(90.0 kg)(9.80 m/s ) 2540 N
2sin 2sin10.0

mgT
θ

= = =
°

 

(b) The relation 2 sinT mgθ =  still applies but now we are given that 42.50 10  NT = ×  (the breaking strength) and 
are asked to find .θ  

2

4

(90.0 kg)(9.80 m/s )sin 0.01764,
2 2(2.50 10  N)
mg

T
θ = = =

×
 1.01 .θ = °  

EVALUATE: /(2sin )T mg θ=  says that / 2T mg=  when 90θ = °  (rope is vertical). 
T →∞  when 0θ →  since the upward component of the tension becomes a smaller fraction of the tension. 

 5.5. IDENTIFY: Apply m=∑F a
! ! to the frame. 

SET UP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the tension 
is the same in each wire. 0.75T w= . 
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight, and 

this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical. 3 cos
2 4
w w θ=  

and 2
3arccos 48θ = = ° . 

EVALUATE: If 0θ = ° , / 2T w= and T →∞ as 90θ → ° . Therefore, there must be an angle where 3 / 4T w= . 
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 5.6. IDENTIFY: Apply Newton�s 1st law to the car. The forces are the same as in Example 5.5. 
SET UP: The free-body diagram is sketched in Figure 5.6. 

 

EXECUTE:  
x xF ma=∑  

cos sin 0T nα α− =  
cos sinT nα α=  

y yF ma=∑  
cos sin 0n T wα α+ − =  
cos sinn T wα α+ =  

Figure 5.6  

The first equation gives cos .
sin

n T α
α

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Use this in the second equation to eliminate n: 
cos cos sin
sin

T T wα α α
α

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

 

Multiply this equation by sin :α  
2 2(cos sin ) sinT wα α α+ =  

sinT w α=  (since 2 2cos sin 1α α+ = ). 

Then cos cossin cos .
sin sin

n T w wα αα α
α α

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: These results are the same as obtained in Example 5.5. The choice of coordinate axes is up to us. 
Some choices may make the calculation easier, but the results are the same for any choice of axes. 

 5.7. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: Use coordinates with x+  parallel to the surface of the street. 
EXECUTE: 0xF =∑ gives sinT w α= . 2 3sin (1390 kg)(9.80 m/s )sin17.5 4.10 10  NF mg θ= = ° = × . 
EVALUATE: The force required is less than the weight of the car by the factor sinα . 

 5.8. IDENTIFY: Apply Newton�s 1st law to the wrecking ball. Each cable exerts a force on the ball, directed along the 
cable. 
SET UP: The force diagram for the wrecking ball is sketched in Figure 5.8. 

 
Figure 5.8 

EXECUTE:  
(a) y yF ma=∑  

cos40 0BT mg° − =  
2

4(4090 kg)(9.80 m/s ) 5.23 10  N
cos40 cos40B

mgT = = = ×
° °

 

(b) x xF ma=∑  

sin 40 0B AT T° − =  
4sin 40 3.36 10  NA BT T= ° = ×  

EVALUATE: If the angle 40°  is replaces by 0°  (cable B is vertical), then BT mg=  and 0.AT =  
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 5.9. IDENTIFY: Apply m=∑F a
! ! to the object and to the knot where the cords are joined. 

SET UP: Let y+  be upward and x+  be to the right. 
EXECUTE: (a) ,   sin30 sin 45 ,  and cos30 cos45 0.C A B C A BT w T T T w T T= ° + ° = = ° − ° =  Since sin 45 cos45 ,° = °  

adding the last two equations gives (cos30 sin30 ) ,AT w° + ° =  and so 0.732 .
1.366A

wT w= =  Then, 

cos30 0.897 .
cos45B AT T w°

= =
°

 

(b) Similar to part (a), ,  cos60 sin 45 ,C A BT w T T w= − ° + ° =  and sin 60 cos45 0.A BT T° − ° =  

Adding these two equations, 2.73 ,  
(sin60 cos60 )A

wT w= =
° − °

and sin60 3.35 .
cos45B AT T w°

= =
°

 

EVALUATE: In part (a), A BT T w+ > since only the vertical components of AT and BT  hold the object against 
gravity. In part (b), since AT  has a downward component BT  is greater than w. 

 5.10. IDENTIFY: Apply Newton�s first law to the car. 
SET UP: Use x and y coordinates that are parallel and perpendicular to the ramp. 
EXECUTE: (a) The free-body diagram for the car is given in Figure 5.10. The vertical weight w and the tension T 
in the cable have each been replaced by their x and y components. 

(b) 0xF =∑ gives cos31.0 sin 25.0 0T w− =° ° and 2sin 25.0 sin 25.0(1130 kg)(9.80 m/s ) 5460 N
cos31.0 cos31.0

T w= = =
° °
° °

. 

(c) 0yF =∑ gives sin31.0 cos25.0 0n T w+ − =° ° and 
2cos25.0 sin31.0  kg 9.80 m/s )cos25.0 (5460 N)sin31.0 7220 Nn w T= − =°− °=(1130 )( ° °  

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same values of n 
and T. 

 
Figure 5.10 

 5.11. IDENTIFY: Since the velocity is constant, apply Newton�s first law to the piano. The push applied by the man 
must oppose the component of gravity down the incline. 
SET UP: The free-body diagrams for the two cases are shown in Figures 5.11a and b. F

!
is the force applied by 

the man. Use the coordinates shown in the figure. 
EXECUTE: (a) 0xF =∑ gives sin11.0 0F w− =° and 2(180 kg)(9.80 m/s )sin11.0 337 NF = °= . 

(b) 0yF =∑ gives cos11.0 0n w− =° and 
cos11.0

wn =
°

. 0xF =∑ gives sin11.0 0F n− =° and 

sin11.0 tan11.0  N
cos11.0

wF w⎛ ⎞= ⎜ ⎟
⎝ ⎠

°= °=343
°

. 



Applying Newton�s Laws  5-5 

EVALUATE: A slightly greater force is required when the man pushes parallel to the floor. If the slope angle of 
the incline were larger, sinα and tanα would differ more and there would be more difference in the force needed 
in each case. 

 
Figure 5.11a, b 

 5.12. IDENTIFY: Apply Newton�s 1st law to the hanging weight and to each knot. The tension force at each end of a 
string is the same. 
(a) Let the tensions in the three strings be T, ,T ′  and ,T ′′  as shown in Figure 5.12a. 

 
Figure 5.12a 

SET UP: The free-body diagram for the block is given in Figure 5.12b. 

 

EXECUTE:  
0yF =∑  
0T w′ − =  
60.0 NT w′ = =  

Figure 5.12b  
SET UP: The free-body diagram for the lower knot is given in Figure 5.12c. 

 

EXECUTE:  
0yF =∑  

sin 45 0T T ′° − =  
60.0 N 84.9 N

sin 45 sin 45
TT
′

= = =
° °

 

Figure 5.12c  
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(b) Apply 0xF =∑  to the force diagram for the lower knot: 

0xF =∑  

2 cos45 (84.9 N)cos45 60.0 NF T= ° = ° =  
SET UP: The free-body diagram for the upper knot is given in Figure 5.12d. 

 

EXECUTE:  
0xF =∑  

1cos45 0T F° − =  

1 (84.9 N)cos45F = °  

1 60.0 NF =  

Figure 5.12d  
Note that 1 2.F F=  

EVALUATE: Applying 0yF =∑  to the upper knot gives sin 45 60.0 N .T T w′′ = ° = =  If we treat the whole 
system as a single object, the force diagram is given in Figure 5.12e. 

 

0xF =∑  gives 2 1,F F=  which checks 

0yF =∑  gives ,T w′′ =  which checks 
 

Figure 5.12e  
 5.13. IDENTIFY: Apply Newton�s first law to the ball. The force of the wall on the ball and the force of the ball on the 

wall are related by Newton�s third law. 
SET UP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall. 

To calculate the angle φ that the wire makes with the wall, use Figure 5.13a. 16.0 cmsin
46.0 cm

φ = and 20.35φ = °  

EXECUTE: (a) The free-body diagram is shown in Figure 5.13b. Use the x and y coordinates shown in the figure. 

0yF =∑ gives cos 0T wφ − = and 
2(45.0 kg)(9.80 m/s ) 470 N

cos cos20.35
wT
φ

= = =
°

 

(b) 0xF =∑ gives sin 0T nφ − = . (470 N)sin 20.35 163 Nn = =° . By Newton�s third law, the force the ball 
exerts on the wall is 163 N, directed to the right. 

EVALUATE: sin tan
cos

wn wφ φ
φ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. As the angle φ decreases (by increasing the length of the wire), T 

decreases and n decreases. 

 
Figure 5.13a, b 

 5.14. IDENTIFY: Apply m=∑F a
! !  to each block. 0a = . 

SET UP: Take y+  perpendicular to the incline and x+  parallel to the incline. 
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EXECUTE: The free-body diagrams for each block, A and B, are given in Figure 5.14. 
(a) For B, x xF ma=∑ gives 1 sin 0T w α− =  and 1 sinT w α= . 

(b) For block A, x xF ma=∑  gives 1 2 sin 0T T w α− − =  and 2 2 sinT w α= . 

(c) y yF ma=∑  for each block gives cosA Bn n w α= = . 

(d) For 0α → , 1 2 0T T= →  and A Bn n w= → . For 90α → ° , 1T w= , 2 2T w=  and 0A Bn n= = . 
EVALUATE: The two tensions are different but the two normal forces are the same. 

 
Figure 5.14a, b 

 5.15. IDENTIFY: Apply Newton�s first law to the ball. Treat the ball as a particle. 
SET UP: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface. 
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical. 
EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.15. The normal force has been replaced by 
its x and y components. 

(b) 0yF =∑ gives cos35.0 0n w− =° and 1.22
cos35.0

mgn mg= =
°

. 

(c) 0xF =∑ gives sin35.0 0T n− =° and (1.22 )sin35.0 0.700T mg mg= =° . 
EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle of the 
ramp increases towards 90° . The tension in the wire is tanw φ , where φ is the angle of the ramp and T also 
increases without limit as 90φ → ° . 

 
Figure 5.15 

 5.16. IDENTIFY: Apply Newton�s second law to the rocket plus its contents and to the power supply. Both the rocket 
and the power supply have the same acceleration. 
SET UP: The free-body diagrams for the rocket and for the power supply are given in Figures 5.16a and b. Since 
the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a downward gravity 
force on each object. Let y+  be upward, since that is the direction of the acceleration. The power supply has 

mass 2
ps (15.5 N) /(9.80 m/s ) 1.58 kgm = =  
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EXECUTE: (a) y yF ma=∑ applied to the rocket gives r rF m g m a− = . 
2

2r

r

1720 N (125 kg)(9.80 m/s ) 3.96 m/s
125 kg

F m ga
m
− −

= = = . 

(b) y yF ma=∑ applied to the power supply gives ps psn m g m a− = . 
2 2

ps ( ) (1.58 kg)(9.80 m/s 3.96 m/s ) 21.7 Nn m g a= + = + = . 
EVALUATE: The acceleration is constant while the thrust is constant and the normal force is constant while the 
acceleration is constant. The altitude of 120 m is not used in the calculation. 

 
Figure 5.16a, b 

 5.17. IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time. Use 
Newton�s second law to find the force F that the ground exerted on the capsule during the crash. 
SET UP: Let y+  be upward. 311 km/h 86.4 m/s= . The free-body diagram for the capsule is given in 
Figure 15.17. 
EXECUTE: 0 0.810 my y− = −  , 0 86.4 m/syv = − , 0yv = . 2 2

0 02 ( )y y yv v a y y= + −  gives 
2 2 2

0 2

0

0 ( 86.4 m/s) 4610 m/s 470
2( ) 2( 0.810) m

y y
y

v v
a g

y y
− − −

= = = =
− −

. 

(b) y yF ma=∑ applied to the capsule gives F mg ma− = and 
2 2 5( ) (210 kg)(9.80 m/s 4610 m/s ) 9.70 10  N 471 .F m g a w= + = + = × =  

(c) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
gives 0

2
0

2( ) 2( 0.810 m) 0.0187 s
86.4 m/s 0y y

y yt
v v

− −
= = =

+ − +
 

EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and stops the 
capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a force mg on the 
capsule, but the large 59.00 10  N× force is exerted only for 0.0187 s. 

 
Figure 5.17 

 5.18. IDENTIFY: Apply Newton�s second law to the three sleds taken together as a composite object and to each 
individual sled. All three sleds have the same horizontal acceleration a. 
SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.18a and for 
each individual sled in Figure 5.18b-d. Let x+  be to the right, in the direction of the acceleration. tot 60.0 kgm = . 

EXECUTE: (a) x xF ma=∑ for the three sleds as a composite object gives totP m a= and 

2

tot

125 N 2.08 m/s
60.0 kg

Pa
m

= = = . 
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(b) x xF ma=∑ applied to the 10.0 kg sled gives 10AP T m a− = and 
2

10 125 N (10.0 kg)(2.08 m/s ) 104 NAT P m a= − = − = . x xF ma=∑ applied to the 30.0 kg sled gives 
2

30 (30.0 kg)(2.08 m/s ) 62.4 NBT m a= = = . 

EVALUATE: If we apply x xF ma=∑ to the 20.0 kg sled and calculate a from AT and BT found in part (b), we get 

20A BT T m a− = . 2

20

104 N 62.4 N 2.08 m/s
20.0 kg

A BT Ta
m
− −

= = = , which agrees with the value we calculated in part (a). 

 
Figure 5.18a�d 

 5.19. IDENTIFY: Apply m=∑F a
! !  to the load of bricks and to the counterweight. The tension is the same at each end 

of the rope. The rope pulls up with the same force ( )T  on the bricks and on the counterweight. The counterweight 
accelerates downward and the bricks accelerate upward; these accelerations have the same magnitude. 
(a) SET UP: The free-body diagrams for the bricks and counterweight are given in Figure 5.19. 

 
Figure 5.19 

(b) EXECUTE: Apply y yF ma=∑  to each object. The acceleration magnitude is the same for the two objects. 
For the bricks take y+  to be upward since a!  for the bricks is upward. For the counterweight take y+  to be 
downward since a!  is downward. 
bricks: y yF ma=∑  

1 1T m g m a− =  

counterweight: y yF ma=∑  

2 2m g T m a− =  
Add these two equations to eliminate T: 

2 1 1 2( ) ( )m m g m m a− = +  

2 22 1

1 2

28.0 kg 15.0 kg (9.80 m/s ) 2.96 m/s
15.0 kg 28.0 kg

m ma g
m m

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

(c) 1 1T m g m a− =  gives 2 2
1( ) (15.0 kg)(2.96 m/s 9.80 m/s ) 191 NT m a g= + = + =  

As a check, calculate T using the other equation. 

2 2m g T m a− =  gives 2 2
2 ( ) 28.0 kg(9.80 m/s 2.96 m/s ) 191 N,T m g a= − = − =  which checks. 
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EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate upward. The 
tension is 0.696 times the weight of the counterweight; this causes the counterweight to accelerate downward. If 

1 2 ,m m=  0a =  and 1 2 .T m g m g= =  In this special case the objects don�t move. If 1 0,m =  a g=  and 0;T =  in 
this special case the counterweight is in free-fall. Our general result is correct in these two special cases. 

 5.20. IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate the 
acceleration of the ice. Then apply m∑F = a

! ! . In part (b) use m∑F = a
! ! to find the acceleration and use this in 

the constant acceleration equations to find the final speed. 
SET UP: Figures 5.20a and b give the free-body diagrams for the ice both with and without friction. Let x+  be 
directed down the ramp, so y+  is perpendicular to the ramp surface. Let φ be the angle between the ramp and the 
horizontal. The gravity force has been replaced by its x and y components. 
EXECUTE: (a) 0 1.50 mx x− = , 0 0xv = , 2.50 m/sxv = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2 2 2

20

0

(2.50 m/s) 0 2.08 m/s
2( ) 2(1.50 m)

x x
x

v va
x x
− −

= = =
−

. x xF ma=∑ gives sinmg maφ = and 
2

2

2.08 m/ssin
9.80 m/s

a
g

φ = = . 

12.3φ = ° . 
(b) x xF ma=∑ gives sinmg f maφ − = and 

2
2sin (8.00 kg)(9.80 m/s )sin12.3 10.0 N 0.838 m/s

8.00 kg
mg fa

m
φ − −

= = =
° . 

Then 0 1.50 mx x− = , 0 0xv = , 20.838 m/sxa = and 2 2
0 02 ( )x x xv v a x x= + − gives  

2
02 ( ) 2(0.838 m/s )(1.50 m) 1.59 m/sx xv a x x= − = =  

EVALUATE: With friction present the speed at the bottom of the ramp is less. 

 
Figure 5.20a, b 

 5.21. IDENTIFY: Apply m∑F = a
! ! to each block. Each block has the same magnitude of acceleration a. 

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg block, 
the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and the suspended 
block accelerates downward. Let x+  be to the right for the 4.00 kg block, so for it xa a= , and let y+  be 
downward for the suspended block, so for it ya a= . 
EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.21a and b. 

(b) x xF ma=∑ applied to the 4.00 kg block gives (4.00 kg)T a= and 210.0 N 2.50 m/s
4.00 kg 4.00 kg

Ta = = = . 

(c) y yF ma=∑ applied to the suspended block gives mg T ma− = and 

2 2

10.0 N 1.37 kg
9.80 m/s 2.50 m/s

Tm
g a

= = =
− −

. 

(d) The weight of the hanging block is 2(1.37 kg)(9.80 m/s ) 13.4 Nmg = = . This is greater than the tension in the 
rope; 0.75T mg= . 
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EVALUATE: Since the hanging block accelerates downward, the net force on this block must be downward and 
the weight of the hanging block must be greater than the tension in the rope. Note that the blocks accelerate no 
matter how small m is. It is not necessary to have 4.00 kgm > , and in fact in this problem m is less than 4.00 kg. 

 
Figure 5.21a, b 

 5.22. IDENTIFY: (a) Consider both gliders together as a single object, apply m=∑F a
! ! , and solve for a. Use a in a 

constant acceleration equation to find the required runway length. 
(b) Apply m=∑F a

! !  to the second glider and solve for the tension gT  in the towrope that connects the two 
gliders. 
SET UP: In part (a), set the tension tT  in the towrope between the plane and the first glider equal to its maximum 
value, t 12,000 NT = . 
EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2 1400 kgm =  is given in Figure 

5.22a. x xF ma=∑  gives t 2 (2 )T f m a− =  and 2t 2 12,000 N 5000 N 5.00 m/s
2 1400 kg

T fa
m
− −

= = = . Then 

25.00 m/sxa = , 0 0xv =  and 40 m/sxv =  in 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2
0

0( ) 160 m
2

x x

x

v vx x
a
−

− = = . 

(b) The free-body diagram for the second glider is given in Figure 5.22b. 

x xF ma=∑  gives gT f ma− =  and 22500 N + (700 kg)(5.00 m/s ) 6000 NT f ma= + = = . 

EVALUATE: We can verify that x xF ma=∑ is also satisfied for the first glider. 

 
Figure 5.22a, b 

 5.23. IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply m∑F = a
! ! to the composite 

object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to the time. 
SET UP: Let y+  be upward. The free-body diagram for the composite object is given in Figure 5.23. 

chain2.50T w= . tot chain boulder 1325 kgm m m= + = . 

EXECUTE: (a) y yF ma=∑ gives tot totT m g m a− = . tot chain tot chain

tot tot tot

2.50 2.50 1T m g m g m g ma g
m m m

⎛ ⎞− −
= = = −⎜ ⎟

⎝ ⎠
 

2 22.50[575 kg] 1 (9.80 m/s ) 0.832 m/s
1325 kg

a
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

. 
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(b) Assume the acceleration has its maximum value: 20.832 m/sya = , 0 125 my y− = and 0 0yv = . 

21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2(125 m) 17.3 s
0.832 m/sy

y yt
a
−

= = =  

EVALUATE: The tension in the chain is 41.41 10  NT = × and the total weight is 41.30 10  N× . The upward force 
exceeds the downward force and the acceleration is upward. 

 
Figure 5.23 

 5.24. IDENTIFY: Apply m∑F = a
! ! to the composite object of elevator plus student ( tot 850 kgm = ) and also to the 

student ( 550 Nw = ). The elevator and the student have the same acceleration. 
SET UP: Let y+  be upward. The free-body diagrams for the composite object and for the student are given in 
Figure 5.24a and b. T is the tension in the cable and n is the scale reading, the normal force the scale exerts on the 
student. The mass of the student is / 56.1 kgm w g= = . 

EXECUTE: (a) y yF ma=∑ applied to the student gives yn mg ma− = . 

2450 N 550 N 1.78 m/s
56.1 kgy

n mga
m
− −

= = = − . The elevator has a downward acceleration of 21.78 m/s . 

(b) 2670 N 550 N 2.14 m/s
56.1 kgya −

= = . 

(c) 0n = means ya g= − . The student should worry; the elevator is in free-fall. 

(d) y yF ma=∑ applied to the composite object gives tot totT m g m a− = . tot ( )yT m a g= + . In part (a), 
2 2(850 kg)( 1.78 m/s 9.80 m/s ) 6820 NT = − + = . In part (c), ya g= − and 0T = . 

EVALUATE: In part (b), 2 2(850 kg)(2.14 m/s 9.80 m/s ) 10,150 NT = + = . The weight of the composite object is 
8330 N. When the acceleration is upward the tension is greater than the weight and when the acceleration is 
downward the tension is less than the weight. 

 
Figure 5.24a, b 

 5.25. IDENTIFY: Apply m=∑F a
! ! to the puck. Use the information about the motion to calculate the acceleration. The 

table must slope downward to the right. 
SET UP: Let α be the angle between the table surface and the horizontal. Let the x+ -axis be to the right and 
parallel to the surface of the table. 
EXECUTE: x xF ma=∑ gives sin xmg maα = . The time of travel for the puck is 0/L v , where 1.75 mL = and 

0 3.80 m/sv = . 21
0 0 2x xx x v t a t− = + gives 

2
0

2 2

2 2
x

x xva
t L

= = , where 0.0250 mx = . 
2
0

2

2sin xa xv
g gL

α = = . 

( )
2 2

2 2

2(2.50 10 m)(3.80 m /s)arcsin 1.38
9.80 m /s (1.75 m)

α
−⎛ ⎞×⎜ ⎟= = °

⎜ ⎟
⎝ ⎠

. 
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EVALUATE: The table is level in the direction along its length, since the velocity in that direction is constant. The 
angle of slope to the right is small, so the acceleration and deflection in that direction are small. 

 5.26. IDENTIFY: Acceleration and velocity are related by y
y

dv
a

dt
= . Apply m∑F = a

! ! to the rocket. 

SET UP: Let y+  be upward. The free-body diagram for the rocket is sketched in Figure 5.26. F
!

is the thrust 
force. 
EXECUTE: (a) 2

yv At Bt= + . 2ya A Bt= + . At 0t = , 21.50 m/sya = so 21.50 m/sA = . Then 2.00 m/syv = at 

1.00 st = gives 2 22.00 m/s (1.50 m/s )(1.00 s) (1.00 s)B= + and 30.50 m/sB = . 

(b) At 4.00 st = , 2 3 21.50 m/s 2(0.50 m/s )(4.00 s) 5.50 m/sya = + = . 

(c) y yF ma=∑ applied to the rocket gives T mg ma− = and 
2 2 4( ) (2540 kg)(9.80 m/s 5.50 m/s ) 3.89 10  NT m a g= + = + = × . 1.56T w= . 

(d) When 21.50 m/sa = , 2 2 4(2540 kg)(9.80 m/s 1.50 m/s ) 2.87 10  NT = + = ×  

EVALUATE: During the time interval when 2( )v t At Bt= + applies the magnitude of the acceleration is increasing, 
and the thrust is increasing. 

 
Figure 5.26 

 5.27. IDENTIFY: Consider the forces in each case. There is the force of gravity and the forces from objects that touch 
the object in question. 
SET UP: A surface exerts a normal force perpendicular to the surface, and a friction force, parallel to the surface. 
EXECUTE: The free-body diagrams are sketched in Figure 5.27a-c. 
EVALUATE: Friction opposes relative motion between the two surfaces. When one surface is stationary the 
friction force on the other surface is directed opposite to its motion. 

 
Figure 5.27a�c 

 5.28. IDENTIFY: s sf nμ≤ and k kf nμ= . The normal force n is determined by applying m∑F = a
! ! to the block. 

Normally, k sμ μ≤ . sf is only as large as it needs to be to prevent relative motion between the two surfaces. 
SET UP: Since the table is horizontal, with only the block present 135 Nn = . With the brick on the 
block, 270 Nn = . 
EXECUTE: (a) The friction is static for 0P = to 75.0 NP = . The friction is kinetic for 75.0 NP > . 
(b) The maximum value of sf is snμ . From the graph the maximum sf is s 75.0 Nf = , so 

s
s

max 75.0 N 0.556
135 N

f
n

μ = = = . k kf nμ= . From the graph, k 50.0 Nf = and k
k

50.0 N 0.370
135 N

f
n

μ = = = . 

(c) When the block is moving the friction is kinetic and has the constant value k kf nμ= , independent of P. This is 
why the graph is horizontal for 75.0 NP > . When the block is at rest, sf P= since this prevents relative motion. 
This is why the graph for 75.0 NP < has slope 1.+  
(d) smax  f  and kf would double. The values of f on the vertical axis would double but the shape of the graph 
would be unchanged. 
EVALUATE: The coefficients of friction are independent of the normal force. 
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 5.29. (a) IDENTIFY: Constant speed implies 0.a =  Apply Newton�s 1st law to the box. The friction force is directed 
opposite to the motion of the box. 
SET UP: Consider the free-body diagram for the box, given in Figure 5.29a. Let F

!
 be the horizontal force 

applied by the worker. The friction is kinetic friction since the box is sliding along the surface. 

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  
So k k kf n mgμ μ= =  

Figure 5.29a  

x xF ma=∑  

k 0F f− =  
2

k k (0.20)(11.2 kg)(9.80 m/s ) 22 NF f mgμ= = = =  
(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton�s 2nd law to 
the box to calculate its acceleration. Once we have the acceleration, we can find the distance using a constant 
acceleration equation. The friction force is k k ,f mgμ=  just as in part (a). 
SET UP: The free-body diagram is sketched in Figure 5.29b. 

 

EXECUTE:  
x xF ma=∑  

k xf ma− =  

k xmg maμ− =  
2 2

k (0.20)(9.80 m/s ) 1.96 m/sxa gμ= − = − = −  

Figure 5.29b  
 

Use the constant acceleration equations to find the distance the box travels: 
0,xv =  0 3.50 m/s,xv =  21.96 m/s ,xa = −  0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

2 2 2
0

0 2

0 (3.50 m/s) 3.1 m
2 2( 1.96 m/s )

x x

x

v vx x
a
− −

− = = =
−

 

EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface. Its 
magnitude is determined by .m=∑F a

! !  In this case n and mg are the only vertical forces and 0,ya =  so .n mg=  

Also note that kf  and n are proportional in magnitude but perpendicular in direction. 

 5.30. IDENTIFY: Apply m=∑F a
! ! to the box. 

SET UP: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static friction 
is as large as it needs to be to prevent relative motion between the box and the surface, up to its maximum possible 
value of max

s sf nμ= . If the box is sliding then the friction force is k kf nμ= . 
EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest. 
(b) max

s s (0.40)(40.0 N) 16.0 Nf nμ= = = . If a horizontal force of 6.0 N is applied to the box, then s 6.0 Nf =  in 
the opposite direction. 
(c) The monkey must apply a force equal to max

sf , 16.0 N. 
(d) Once the box has started moving, a force equal to k k 8.0 Nf nμ= =  is required to keep it moving at constant 
velocity. 
EVALUATE: k sμ μ< and less force must be applied to the box to maintain its motion than to start it moving. 
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 5.31. IDENTIFY: Apply m∑F = a
! ! to the crate. s sf nμ≤ and k kf nμ= . 

SET UP: Let y+  be upward and let x+  be in the direction of the push. Since the floor is horizontal and the push 
is horizontal, the normal force equals the weight of the crate: 441 Nn mg= = . The force it takes to start the crate 
moving equals smax  f and the force required to keep it moving equals kf  

EXECUTE: smax  313 Nf = , so s
313 N 0.710
441 N

μ = = . k 208 Nf = , so k
208 N 0.472
441 N

μ = = . 

(b) The friction is kinetic. x xF ma=∑ gives kF f ma− = and 2
k 208 (45.0 kg)(1.10 m/s ) 258 NF f ma= + = + = . 

(c) (i) The normal force now is 72.9 Nmg = . To cause it to move, s smax (0.710)(72.9 N) 51.8 NF f nμ= = = = . 

(ii) kF f ma= + and 2k 258 N (0.472)(72.9 N) 4.97 m/s
45.0 kg

F fa
m
− −

= = =  

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of the 
crate is the same as on earth, but the weight and normal force are less. 

 5.32. IDENTIFY: Apply m=∑F a
! ! to the box and calculate the normal and friction forces. The coefficient of kinetic 

friction is the ratio kf
n

. 

SET UP: Let x+  be in the direction of motion. 20.90 m/sxa = − . The box has mass 8.67 kg. 
EXECUTE: The normal force has magnitude 85 N 25 N 110 N.+ =  The friction force, from H kF f ma− =  is 

2
k H 20 N (8.67 kg)( 0.90 m/s ) 28  Nf F ma= − = − − = . k

28 N 0.25.
110 N

μ = =  

EVALUATE: The normal force is greater than the weight of the box, because of the downward component of the 
push force. 

 5.33. IDENTIFY: Apply m∑F = a
! ! to the composite object consisting of the two boxes and to the top box. The friction 

the ramp exerts on the lower box is kinetic friction. The upper box doesn�t slip relative to the lower box, so the 
friction between the two boxes is static. Since the speed is constant the acceleration is zero. 
SET UP: Let x+  be up the incline. The free-body diagrams for the composite object and for the upper box are 

given in Figures 5.33a and b. The slope angle φ of the ramp is given by 2.50 mtan
4.75 m

φ = , so 27.76φ = ° . Since the 

boxes move down the ramp, the kinetic friction force exerted on the lower box by the ramp is directed up the 
incline. To prevent slipping relative to the lower box the static friction force on the upper box is directed up the 
incline. tot 32.0 kg 48.0 kg 80.0 kgm = + = . 

EXECUTE: (a) y yF ma=∑ applied to the composite object gives tot tot cosn m g φ= and k k tot cosf m gμ φ= . 

x xF ma=∑ gives k tot sin 0f T m g φ+ − = and 
2

k tot(sin cos ) (sin 27.76 [0.444]cos27.76 )(80.0 kg)(9.80 m/s ) 57.1 NT m gφ μ φ= − = − =° ° . 
The person must apply a force of 57.1 N, directed up the ramp. 
(b) x xF ma=∑ applied to the upper box gives 2

s sin (32.0 kg)(9.80 m/s )sin 27.76 146 Nf mg φ= = =° , directed up 
the ramp. 
EVALUATE: For each object the net force is zero. 

 
Figure 5.33a, b 
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 5.34. IDENTIFY: Use m=∑F a
! !  to find the acceleration that can be given to the car by the kinetic friction force. Then 

use a constant acceleration equation. 
SET UP: Take x+  in the direction the car is moving. 
EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.34. y yF ma=∑  gives n mg= . 

x xF ma=∑  gives k xn maμ− = . k xmg maμ− =  and kxa gμ= − . Then 0xv =  and 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0 0

0 2
k

(29.1 m/s)( ) 54.0 m
2 2 2(0.80)(9.80 m/s )

x x

x

v vx x
a gμ

− = − = + = = . 

(b) 2
0 k 02 ( ) 2(0.25)(9.80 m/s )(54.0 m) 16.3 m/sxv g x xμ= − = =  

EVALUATE: For constant stopping distance 
2
0

k

xv
μ

is constant and 0xv is proportional to kμ . The answer to 

part (b) can be calculated as (29.1 m/s) 0.25/ 0.80 16.3 m/s= . 

 
Figure 5.34 

 5.35. IDENTIFY: For a given initial speed, the distance traveled is inversely proportional to the coefficient of kinetic 
friction. 
SET UP: From Table 5.1 the coefficient of kinetic friction is 0.04 for Teflon on steel and 0.44 for brass on steel. 

EXECUTE: The ratio of the distances is 0.44 11
0.04

= . 

EVALUATE: The smaller the coefficient of kinetic friction the smaller the retarding force of friction, and the 
greater the stopping distance. 

 5.36. IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving the friction force the 
tabletop exerts on it is kinetic friction. Apply m∑F = a

! ! to each block. 
SET UP: The free-body diagrams and choice of coordinates for each block are given by Figure 5.36. 

4.59 kgAm = and 2.55 kgBm = . 

EXECUTE: (a) y yF ma=∑ with 0ya = applied to block B gives 0Bm g T− = and 25.0 NT = . x xF ma=∑ with 

0xa = applied to block A gives k 0T f− = and k 25.0 Nf = . 45.0 NA An m g= = and k
k

25.0 N 0.556
45.0 NA

f
n

μ = = = . 

(b) Now let A be block A plus the cat, so 9.18 kgAm = . 90.0 NAn = and k k (0.556)(90.0 N) 50.0 Nf nμ= = = . 

x xF ma=∑ for A gives k A xT f m a− = . y yF ma=∑ for block B gives B B ym g T m a− = . xa for A equals ya for B, 

so adding the two equations gives k ( )B A B ym g f m m a− = + and 2k 25.0 N 50.0 N 2.13 m/s
9.18 kg 2.55 kg

B
y

A B

m g fa
m m

− −
= = = −

+ +
. 

The acceleration is upward and block B slows down. 
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EVALUATE: The equation k ( )B A B ym g f m m a− = + has a simple interpretation. If both blocks are considered 

together then there are two external forces: Bm g that acts to move the system one way and kf that acts oppositely. 
The net force of kBm g f− must accelerate a total mass of A Bm m+ . 

 
Figure 5.36 

 5.37. IDENTIFY: Apply m=∑F a
! !  to each crate. The rope exerts force T to the right on crate A and force T to the left 

on crate B. The target variables are the forces T and F. Constant v implies 0.a =  
SET UP: The free-body diagram for A is sketched in Figure 5.37a 

 

EXECUTE:  
y yF ma=∑  

0A An m g− =  

A An m g=  

k k kA A Af n m gμ μ= =  

Figure 5.37a  

x xF ma=∑  

k 0AT f− =  

k AT m gμ=  
SET UP: The free-body diagram for B is sketched in Figure 5.37b. 

 

EXECUTE:  
y yF ma=∑  

0B Bn m g− =  

B Bn m g=  

k k kB B Bf n m gμ μ= =  

Figure 5.37b  

x xF ma=∑  

k 0BF T f− − =  

k BF T m gμ= +  
Use the first equation to replace T in the second: 

k k .A BF m g m gμ μ= +  
(a) k ( )A BF m m gμ= +  
(b) k AT m gμ=  

EVALUATE: We can also consider both crates together as a single object of mass ( ).A Bm m+  x xF ma=∑  for 

this combined object gives k k ( ) ,A BF f m m gμ= = +  in agreement with our answer in part (a). 
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 5.38. IDENTIFY: rf nμ= . Apply m=∑F a
! ! to the tire. 

SET UP: n mg= and f ma= . 

EXECUTE: 
2 2

0
x

v va
L
−

= , where L is the distance covered before the wheel�s speed is reduced to half its original 

speed and 0 / 2v v= . 
2 22 2 21
0 00 04

r
3

2 2 8
v va v v v

g Lg Lg Lg
μ

−−
= = = = . 

Low pressure, 18.1 mL = and 
2

2

3 (3.50 m /s) 0.0259
8 (18.1 m)(9.80 m /s )

= . 

High pressure, 92.9 mL = and 
2

2

3 (3.50 m /s) 0.00505
8 (3.50 m /s)

= . 

EVALUATE: rμ  is inversely proportional to the distance L, so r1 2

r2 1

L
L

μ
μ

= . 

 5.39. IDENTIFY: Apply m=∑F a
! ! to the box. Use the information about sliding to calculate the mass of the box. 

SET UP: k kf nμ= , r rf nμ= and n mg= . 
EXECUTE: Without the dolly: n mg= and k 0F nμ− =  ( 0xa =  since speed is constant). 

2
k

160 N 34.74 kg
(0.47) (9.80 m s )

Fm
gμ

= = =  

With the dolly: the total mass is 34.7 kg 5.3 kg 40.04 kg+ =  and friction now is rolling friction, r r .f mgμ=  

rF mg maμ− = . 2r 3.82 m sF mga
m
μ−

= = . 

EVALUATE: k k 160 Nf mgμ= =  and r r 4.36 Nf mgμ= = , or, r r

k k

f
f

μ
μ

= . The rolling friction force is much less 

than the kinetic friction force. 
 5.40. IDENTIFY: Apply m=∑F a

! ! to the truck. For constant speed, 0a =  and horiz rF f= . 

SET UP: r r rf n mgμ μ= = . Let 2 11.42m m= and r2 r10.81μ μ= . 
EXECUTE: Since the speed is constant and we are neglecting air resistance, we can ignore the 2.4 m/s, and netF in 
the horizontal direction must be zero. Therefore r r horiz 200 Nf n Fμ= = = before the weight and pressure changes 
are made. After the changes, r horiz(0.81 ) (1.42 ) ,n Fμ =  because the speed is still constant and net 0F = . We can 

simply divide the two equations: r horiz

r

(0.81 )(1.42 )
200 N

n F
μ n
μ

= and horiz(0.81) (1.42) (200 N) 230 NF= = . 

EVALUATE: The increase in weight increases the normal force and hence the friction force, whereas the decrease 
in rμ reduces it. The percentage increase in the weight is larger, so the net effect is an increase in the friction force. 

 5.41. IDENTIFY: Apply m=∑F a
! !  to each block. The target variables are the tension T in the cord and the 

acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of each block. 
The magnitude of the acceleration is the same for both blocks. 
SET UP: The system is sketched in Figure 5.41a. 

 

For each block take a positive 
coordinate direction to be the 
direction of the block�s acceleration. 

Figure 5.41a  
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block on the table: The free-body is sketched in Figure 5.41b. 

 

EXECUTE:  
y yF ma=∑  

0An m g− =  

An m g=  

k k k Af n m gμ μ= =  

Figure 5.41b  

x xF ma=∑  

k AT f m a− =  

k A AT m g m aμ− =  
SET UP: hanging block: The free-body is sketched in Figure 5.41c. 

 

EXECUTE:  
y yF ma=∑  

B Bm g T m a− =  

B BT m g m a= −  

Figure 5.41c  
(a) Use the second equation in the first 

kB B A Am g m a m g m aμ− − =  

k( ) ( )A B B Am m a m m gμ+ = −  

2
2k( ) (1.30 kg (0.45)(2.25 kg))(9.80 m/s ) 0.7937 m/s

2.25 kg 1.30 kg
B A

A B

m m ga
m m

μ− −
= = =

+ +
 

SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the same 
speeds. 0 0.0300 m,x x− =  20.7937 m/s ,xa =  0 0,xv =  ?xv =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE: 2
02 ( ) 2(0.7937 m/s )(0.0300 m) 0.218 m/s 21.8 cm/s.x xv a x x= − = = =  

(b) 2 2( ) 1.30 kg(9.80 m/s 0.7937 m/s ) 11.7 NB B BT m g m a m g a= − = − = − =  
Or, to check, k A AT m g m aμ− =  

2 2
k( ) 2.25 kg(0.7937 m/s (0.45)(9.80 m/s )) 11.7 N,AT m a gμ= + = + =  which checks. 

EVALUATE: The force T exerted by the cord has the same value for each block. BT m g<  since the hanging block 
accelerates downward. Also, k k 9.92 N.Af m gμ= =  kT f>  and the block on the table accelerates in the direction 
of T. 

 5.42. IDENTIFY: Apply m∑F = a
! ! to the box. When the box is ready to slip the static friction force has its maximum 

possible value, s sf nμ= . 
SET UP: Use coordinates parallel and perpendicular to the ramp. 
EXECUTE: (a) The normal force will be cos w θ  and the component of the gravitational force along the ramp 
is sin w θ . The box begins to slip when ssin cos ,w θ w θμ>  or stan 0.35,θ μ> =  so slipping occurs at 

arctan(0.35) 19.3θ = = ° . 
(b) When moving, the friction force along the ramp is k cosw θμ , the component of the gravitational force along 
the ramp is sinw θ , so the acceleration is 

2
k k( sin cos ) (sin cos ) 0.92 m s .w θ w θ m g θ θμ μ− = − =  

(c) Since 0 0xv = , 22ax v= , so 1 2(2 )v ax= , or 2 1 2[(2)(0.92m s )(5 m)] 3 m/sv = = . 
EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force becomes 
smaller. 
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 5.43. (a) IDENTIFY: Apply m=∑F a
! !  to the crate. Constant v implies 0.a =  Crate moving says that the friction is 

kinetic friction. The target variable is the magnitude of the force applied by the woman. 
SET UP: The free-body diagram for the crate is sketched in Figure 5.43. 

 

EXECUTE:  
y yF ma=∑  

sin 0n mg F θ− − =  
sinn mg F θ= +  

k k k k sinf n mg Fμ μ μ θ= = +  

Figure 5.43  

x xF ma=∑  

kcos 0F fθ − =  

k kcos sin 0F mg Fθ μ μ θ− − =  

k k(cos sin )F mgθ μ θ μ− =  

k

kcos sin
mgF μ

θ μ θ
=

−
 

(b) IDENTIFY and SET UP: �start the crate moving� means the same force diagram as in part (a), except that 

kμ  is replaced by s.μ Thus s

s

.
cos sin

mgF μ
θ μ θ

=
−

 

EXECUTE: F →∞  if scos sin 0.θ μ θ− =  This gives s
cos 1 .
sin tan

θμ
θ θ

= =  

EVALUATE: F
!

 has a downward component so .n mg>  If 0θ =  (woman pushes horizontally), n mg=  and 

k k .F f mgμ= =  

 5.44. IDENTIFY: Apply m∑F = a
! ! to the box. 

SET UP: Let y+  be upward and x+  be horizontal, in the direction of the acceleration. Constant speed means 0a = . 
EXECUTE: (a) There is no net force in the vertical direction, so sin 0,n F wθ+ − =  or 

sin sin .n w F θ mg F θ= − = −  The friction force is k k k ( sin ).f n mg F θμ μ= = −  The net horizontal force 
is k kcos cos ( sin )F θ f F θ mg F θμ− = − − , and so at constant speed, 

k

kcos sin
mgF

θ θ
μ
μ

=
+

 

(b) Using the given values, 
2(0.35)(90 kg)(9.80m s ) 290  N

(cos25 (0.35)sin 25 )
F = =

° + °
. 

EVALUATE: If 0θ = ° , kF mgμ= . 

 5.45. IDENTIFY: Apply m∑F = a
! ! to each block. 

SET UP: For block B use coordinates parallel and perpendicular to the incline. Since they are connected by ropes, 
blocks A and B also move with constant speed. 
EXECUTE: (a) The free-body diagrams are sketched in Figure 5.45. 
(b) The blocks move with constant speed, so there is no net force on block A; the tension in the rope connecting A 
and B must be equal to the frictional force on block A, k (0.35) (25.0 N) 9 N.μ = =  
(c) The weight of block C will be the tension in the rope connecting B and C; this is found by considering the 
forces on block B. The components of force along the ramp are the tension in the first rope (9 N, from part (a)), the 
component of the weight along the ramp, the friction on block B and the tension in the second rope. Thus, the 
weight of block C is 

k9 N (sin36.9 cos36.9 ) 9 N (25.0 N)(sin 36.9 (0.35)cos 36.9 ) 31.0 NC Bw w μ= + ° + ° = + ° + ° =  
The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the common 
weight w of blocks A and B, k k( (sin cos )),Cw w μ θ θμ= + + giving the same result. 
(d) Applying Newton�s Second Law to the remaining masses (B and C) gives: 

( ) 2
k( cos sin ) 1.54m s .C B B B Ca g w w θ w w wμ θ= − − + =  
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EVALUATE: Before the rope between A and B is cut the net external force on the system is zero. When the rope is 
cut the friction force on A is removed from the system and there is a net force on the system of blocks B and C. 

 
Figure 5.45 

 5.46. IDENTIFY and SET UP: The derivative of yv gives ya as a function of time, and the integral of yv gives y as a 
function of time. 
EXECUTE: Differentiating Eq. (5.10) with respect to time gives the acceleration 

( ) ( )
t ,k m t k m tka v e ge

m
− −⎛ ⎞= =⎜ ⎟

⎝ ⎠
where Eq. (5.9), tv mg k= , has been used. Integrating Eq. (5.10) with respect to time 

with 0 0y =  gives 

( )( ) ( ) ( )
t t t t0
[1 ] 1

t k m t k m t k m tm m my v e dt v t e v v t e
k k k

− − −⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − = + − = − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∫ . 

EVALUATE: We can verify that / ydy dt v= . 
 5.47. IDENTIFY and SET UP: Apply Eq.(5.13). 

EXECUTE: (a) Solving for D in terms of tv , 
2

2 2
t

(80 kg) (9.80 m s ) 0.44 kg m.
(42 m s)

mgD
v

= = =  

(b) 
2

t
(45 kg)(9.80 m s ) 42 m s.

(0.25 kg m)
mgv
D

= = =  

EVALUATE: tv is less for the daughter since her mass is less. 

 5.48. IDENTIFY: Apply m∑F = a
! ! to the ball. At the terminal speed, f mg= . 

SET UP: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed, the 
magnitude of the frictional force is one-fourth the weight. 
EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is (5/4)w 
and the acceleration is (5/4)g, down. 
(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration 
is (3/4)g, down. 
EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward and the 
acceleration is downward. 

 5.49. IDENTIFY: Apply m∑F = a
! ! to one of the masses. The mass moves in a circular path, so has acceleration 

2

rad
va
R

= , directed toward the center of the path. 

SET UP: In each case, 0.200 mR = . In part (a), let x+  be toward the center of the circle, so radxa a= . In part (b) 
let y+  be toward the center of the circle, so radya a= . y+  is downward when the mass is at the top of the circle 

and y+  is upward when the mass is at the bottom of the circle. Since rada has its greatest possible value, F
!

is in 
the direction of rada

! at both positions. 

EXECUTE: (a) x xF ma=∑ gives 
2

rad
vF ma m
R

= = . 75.0 NF = and (75.0 N)(0.200 m) 3.61 m/s
1.15 kg

FRv
m

= = = . 

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in figure 5.49. 
At the top, y yF ma=∑ gives radF ma mg= − and at the bottom it gives radF mg ma= + . For a given rotation rate 

and hence value of rada , the value of F required is larger at the bottom of the path. 

(c) radF mg ma= +  so 
2v F g

R m
= − and 

275.0 N(0.200 m) 9.80 m/s 3.33 m/s
1.15 kg

Fv R g
m

⎛ ⎞⎛ ⎞= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
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EVALUATE: The maximum speed is less for the vertical circle. At the bottom of the vertical path F
!

and the 
weight are in opposite directions so F must exceed radma by an amount equal to mg. At the top of the vertical path 
F and mg are in the same direction and together provide the required net force, so F must be larger at the bottom. 

 
Figure 5.49 

 5.50. IDENTIFY: Since the car travels in an arc of a circle, it has acceleration 2
rad /a v R= , directed toward the center of 

the arc. The only horizontal force on the car is the static friction force exerted by the roadway. To calculate the 
minimum coefficient of friction that is required, set the static friction force equal to its maximum value, s sf nμ= . 
Friction is static friction because the car is not sliding in the radial direction. 
SET UP: The free-body diagram for the car is given in Figure 5.50. The diagram assumes the center of the curve 
is to the left of the car. 

EXECUTE: (a) y yF ma=∑ gives n mg= . x xF ma=∑  gives 
2

s
vn m
R

μ = . 
2

s
vmg m
R

μ =  and 

2 2

s 2

(25.0 m/s) 0.290
(9.80 m/s )(220 m)

v
gR

μ = = =  

(b) 
2

s

constantv Rg
μ

= = , so 
2 2
1 2

s1 s2

v v
μ μ

= . s2 s1
2 1

s1 s1

/3(25.0 m/s) 14.4 m/sv v μ μ
μ μ

= = = . 

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible 
acceleration and therefore a smaller speed. 

 
Figure 5.50 

 5.51. IDENTIFY: We can use the analysis done in Example 5.23. As in that example, we assume friction is negligible. 

SET UP: From Example 5.23, the banking angle β is given by 
2

tan v
gR

β = . Also, / cosn mg β= . 

65.0 mi/h 29.1 m/s= . 

EXECUTE: (a) 
2

2

(29.1 m/s)tan
(9.80 m/s )(225 m)

β = and 21.0β = ° . The expression for tanβ does not involve the mass 

of the vehicle, so the truck and car should travel at the same speed. 

(b) For the car, 
2

4
car

(1125 kg)(9.80 m/s ) 1.18 10  N
cos21.0

n = = ×
°

and 4
truck car2 2.36 10  Nn n= = × , since truck car2m m= . 

EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the normal 
force is proportional to m. 

 5.52. IDENTIFY: The acceleration of the person is 2
rad /a v R= , directed horizontally to the left in the figure in the 

problem. The time for one revolution is the period 2 RT
v
π

= . Apply m=∑F a
! ! to the person. 
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SET UP: The person moves in a circle of radius 3.00 m (5.00 m)sin30.0 5.50 mR = + =° . The free-body diagram 

is given in Figure 5.52. F
!

is the force applied to the seat by the rod. 

EXECUTE: (a) y yF ma=∑  gives cos30.0F mg=°  and 
cos30.0

mgF =
°

. x xF ma=∑  gives 
2

sin30.0 vF m
R

=° . 

Combining these two equations gives 2tan (5.50 m)(9.80 m/s ) tan30.0 5.58 m/sv Rg θ= = =° . Then the period 

is 2 2 (5.50 m) 6.19 s
5.58 m/s

RT
v
π π

= = = . 

(b) The net force is proportional to m so in m=∑F a
! ! the mass divides out and the angle for a given rate of 

rotation is independent of the mass of the passengers. 
EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward force 
required for circular motion is produced by a component of the force exerted on the seat by the rod. 

 
Figure 5.52 

 5.53. IDENTIFY: Apply m∑F = a
! ! to the composite object of the person plus seat. This object moves in a horizontal 

circle and has acceleration rada , directed toward the center of the circle. 
SET UP: The free-body diagram for the composite object is given in Figure 5.53. Let x+  be to the right, in the 
direction of rada

! . Let y+  be upward. The radius of the circular path is 7.50 mR = . The total mass is 
2(255 N 825 N) /(9.80 m/s ) 110.2 kg+ = . Since the rotation rate is 32.0 rev/min 0.5333 rev/s= , the period T is 

1 1.875 s
0.5333 rev/s

= . 

EXECUTE: y yF ma=∑ gives cos40.0 0AT mg− =° and 255 N 825 N 1410 N
cos40.0 cos40.0A

mgT +
= = =

° °
. 

x xF ma=∑ gives radsin 40.0A BT T ma+ =° and 
2 2

2 2

4 4 (7.50 m)sin 40.0 (110.2 kg) (1410 N)sin 40.0 8370 N
(1.875 s)B A

RT m T
T
π π

= − = − =° ° . 

The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N. 
EVALUATE: The weight of the composite object is 1080 N. The tension in cable A is larger than this since its 
vertical component must equal the weight. rad 9280 Nma = . The tension in cable B is less than this because part of 
the required inward force comes from a component of the tension in cable A. 

 
Figure 5.53 
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 5.54. IDENTIFY: Apply m∑F = a
! ! to the button. The button moves in a circle, so it has acceleration rada . 

SET UP: The situation is equivalent to that of Example 5.22. 

EXECUTE: (a) 
2

s
v
Rg

μ = . Expressing v in terms of the period T, 2 Rv
T
π

=  so 
2

s 2
4 R
T g
πμ = . A platform speed of 

40.0 rev/min corresponds to a period of 1.50 s, so 
2

s 2 2

4 (0.150 m) 0.269.
(1.50 s) (9.80 m s )

μ π
= =  

(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the period 
(longer periods mean slower speeds, so the button may be moved further out) and so is inversely proportional to 

the square of the speed. Thus, at the higher speed, the maximum radius is (0.150 m) 
240.0 0 067 m

60.0
⎛ ⎞ = .⎜ ⎟
⎝ ⎠

. 

EVALUATE: 
2

rad 2

4 Ra
T
π

= . The maximum radial acceleration that friction can give is smgμ . At the faster rotation 

rate T is smaller so R must be smaller to keep rada the same. 

 5.55. IDENTIFY: The acceleration due to circular motion is 
2

rad 2

4 Ra
T
π

= . 

SET UP: 800 mR = . 1/T is the number of revolutions per second. 
EXECUTE: (a) Setting rada g=  and solving for the period T gives 

2

400 m2 2 40.1 s,
9.80 m s

RT π π
g

= = =  

so the number of revolutions per minute is (60 s min) (40.1 s) 1.5 rev min= . 
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of the square 
root of the ratio of the accelerations, (1.5 rev min) 3.70 9.8 0.92 rev min.T ′ = × =  

EVALUATE: In part (a) the tangential speed of a point at the rim is given by 
2

rad
va
R

= , so 

rad 62.6 m/sv Ra Rg= = = ; the space station is rotating rapidly. 

 5.56. IDENTIFY: 2 RT
v
π

= . The apparent weight of a person is the normal force exerted on him by the seat he is sitting 

on. His acceleration is 2
rad /a v R= , directed toward the center of the circle. 

SET UP: The period is 60.0 s.T =  The passenger has mass / 90.0 kgm w g= = . 

EXECUTE: (a) 2 2 (50.0 m) 5.24 m/s
60.0 s

Rv
T
π π

= = = . Note that 
2 2

2
rad

(5.24 m/s) 0.549 m/s
50.0 m

va
R

= = = . 

(b) The free-body diagram for the person at the top of his path is given in Figure 5.56a. The acceleration is 
downward, so take y+  downward. y yF ma=∑  gives radmg n ma− = . 

2 2
rad( ) (90.0 kg)(9.80 m/s 0.549 m/s ) 833 Nn m g a= − = − = . 

The free-body diagram for the person at the bottom of his path is given in Figure 5.56b. The acceleration is 
upward, so take y+  upward. y yF ma=∑  gives radn mg ma− =  and rad( ) 931 Nn m g a= + = . 

(c) Apparent weight 0=  means 0n =  and radmg ma= . 
2vg

R
=  and 22.1 m/sv gR= = . The time for one 

revolution would be 2 2 (50.0 m) 14.2 s
22.1 m/s

RT
v
π π

= = = . Note that rada g= . 

(d) rad( ) 2 2(882 N) 1760 Nn m g a mg= + = = = , twice his true weight. 
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EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his path 
his apparent weight is greater than his true weight. 

 
Figure 5.56a, b 

 5.57. IDENTIFY: Apply m=∑F a
! !  to the motion of the pilot. The pilot moves in a vertical circle. The apparent weight 

is the normal force exerted on him. At each point rada
!  is directed toward the center of the circular path. 

(a) SET UP: �the pilot feels weightless� means that the vertical normal force n exerted on the pilot by the chair on 
which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in Figure 5.57a. 

 

EXECUTE:  
y yF ma=∑  

radmg ma=  
2vg

R
=  

Figure 5.57a  

Thus 2(9.80 m/s )(150 m) 38.34 m/sv gR= = =  

3

1 km 3600 s(38.34 m/s) 138 km/h
10  m 1 h

v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) SET UP: The force diagram for the pilot at the bottom of the path is given in Figure 5.57b. Note that the 
vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward. 

 

EXECUTE:  
y yF ma=∑  

2vn mg m
R

− =  

2vn mg m
R

= +  

This normal force is the pilot�s apparent weight. 
Figure 5.57b  

700 N,w =  so 71.43 kgwm
g

= =  

31 h 10  m(280 km/h) 77.78 m/s
3600 s 1 km

v
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Thus 
2(77.78 m/s)700 N 71.43 kg 3580 N.

150 m
n = + =  

EVALUATE: In part (b), n mg>  since the acceleration is upward. The pilot feels he is much heavier than when at 

rest. The speed is not constant, but it is still true that 2
rad /a v R=  at each point of the motion. 

 5.58. IDENTIFY: 2
rad /a v R= , directed toward the center of the circular path. At the bottom of the dive, rada

!  is upward. 
The apparent weight of the pilot is the normal force exerted on her by the seat on which she is sitting. 
SET UP: The free-body diagram for the pilot is given in Figure 5.58. 
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EXECUTE: (a) 
2

rad
va
R

=  gives 
2 2

2
rad

(95.0 m/s) 230 m
4.00(9.80 m/s )

vR
a

= = = . 

(b) y yF ma=∑ gives radn mg ma− = . 
2

rad( ) ( 4.00 ) 5.00 (5.00)(50.0 kg)(9.80 m/s ) 2450 Nn m g a m g g mg= + = + = = =  
EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her. 

 
Figure 5.58 

 5.59. IDENTIFY: Apply m=∑F a
! !  to the water. The water moves in a vertical circle. The target variable is the speed 

v; we will calculate rada  and then get v from 2
rad /a v R=  

SET UP: Consider the free-body diagram for the water when the pail is at the top of its circular path, as shown in 
Figures 5.59a and b. 

 

The radial acceleration is in toward the center 
of the circle so at this point is downward. 
n is the downward normal force exerted on 
the water by the bottom of the pail. 

Figure 5.59a  
 

 

EXECUTE:  
y yF ma=∑  

2vn mg m
R

+ =  

Figure 5.59b  
At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed, 0.n →  
(Note that the force n cannot be upward.) 

With 0n →  the equation becomes 
2

.vmg m
R

=  2(9.80 m/s )(0.600 m) 2.42 m/s.v gR= = =  

EVALUATE: At the minimum speed rad .a g=  If v is less than this minimum speed, gravity pulls the water (and 
bucket) out of the circular path. 

 5.60. IDENTIFY: The ball has acceleration 2
rad /a v R= , directed toward the center of the circular path. When the ball is 

at the bottom of the swing, its acceleration is upward. 
SET UP: Take y+  upward, in the direction of the acceleration. The bowling ball has mass / 7.27 kgm w g= = . 

EXECUTE: (a) 
2 2

rad
(4.20 m/s) 4.64 m/s

3.80 m
va
R

= = = , upward. 

(b) The free-body diagram is given in Figure 5.60. y yF ma=∑  gives radT mg ma− = . 
2 2

rad( ) (7.27 kg)(9.80 m/s 4.64 m/s ) 105 NT m g a= + = + =  
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EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight. 

 
Figure 5.60 

 5.61. IDENTIFY: Apply m∑F = a
! ! to the knot. 

SET UP: 0a = . Use coordinates with axes that are horizontal and vertical. 
EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.61. 

1T  is more vertical so supports more of the weight and is larger. You can also see this from :x xF ma∑ =  

2 1cos40 cos60 0T T° − ° = . 2 1cos40 cos60 0T T° − ° = . 
(b) 1T  is larger so set 1 5000 N.T =  Then 2 1 1.532 3263.5  NT T= = . y yF ma∑ = gives 

1 2sin 60 sin 40T T w° + ° = and 6400 Nw = . 
EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended object. 
The sum of the tensions is greater than the weight. 

 
Figure 5.61 

 5.62. IDENTIFY: Apply m∑F = a
! ! to each object . Constant speed means 0a = . 

SET UP: The free-body diagrams are sketched in Figure 5.62. 1T is the tension in the lower chain, 2T is the 
tension in the upper chain and T F= is the tension in the rope. 
EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must have 
no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope, which equals F, is 

2w . Then, the downward force on the upper pulley due to the rope is also w, and so the upper chain exerts a force 
w on the upper pulley, and the tension in the upper chain is also w. 
EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only / 2w . 

 
Figure 5.62 

 5.63. IDENTIFY: Apply m∑F = a
! ! to the rope. 

SET UP: The hooks exert forces on the ends of the rope. At each hook, the force that the hook exerts and the 
force due to the tension in the rope are an action-reaction pair. 
EXECUTE: (a) The vertical forces that the hooks exert must balance the weight of the rope, so each hook exerts 
an upward vertical force of 2w  on the rope. Therefore, the downward force that the rope exerts at each end is 

end sin 2T θ w= , so end (2sin ) (2sin ).T w θ Mg θ= =  
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(b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance the horizontal force that 
each hook exerts, which is the same as the horizontal component of the force due to the tension at the end; 

end middlecos ,T θ T=  so middle cos (2sin ) (2tan ).T Mg θ θ Mg θ= =  
(c) Mathematically speaking, 0θ ≠  because this would cause a division by zero in the equation for endT  or middleT . 
Physically speaking, we would need an infinite tension to keep a non-massless rope perfectly straight. 
EVALUATE: The tension in the rope is not the same at all points along the rope. 

 5.64. IDENTIFY: Apply m=∑F a
! !  to the combined rope plus block to find a. Then apply m=∑F a

! !  to a section of 
the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.64a. 

 

At the top of the rope T F=  
At the bottom of the rope ( )T M g a= +  

Figure 5.64a  
SET UP: Consider the rope and block as one combined object, in order to calculate the acceleration: The free-
body diagram is sketched in Figure 5.64b. 

 

EXECUTE:  
y yF ma=∑  
( ) ( )F M m g M m a− + = +  

Fa g
M m

= −
+

 

Figure 5.64b  
SET UP: Now consider the forces on a section of the rope that extends a distance x L<  below the top. The 
tension at the bottom of this section is ( )T x  and the mass of this section is ( / ).m x L  The free-body diagram is 
sketched in Figure 5.64c. 

 

EXECUTE: 
y yF ma=∑  

( ) ( / ) ( / )F T x m x L g m x L a− − =  
( ) ( / ) ( / )T x F m x L g m x L a= − −  

Figure 5.64c  
Using our expression for a and simplifying gives 

( ) 1
( )

mxT x F
L M m

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 

EVALUATE: Important to check this result for the limiting cases: 
0 :x =  The expression gives the correct value of .T F=  

:x L=  The expression gives ( /( )).T F M M m= +  This should equal ( ),T M g a= +  and when we use the 
expression for a we see that it does. 

 5.65. IDENTIFY: Apply m∑F = a
! ! to each block. 

SET UP: Constant speed means 0a = . When the blocks are moving, the friction force is kf and when they are at 
rest, the friction force is sf . 
EXECUTE: (a) The tension in the cord must be 2m g  in order that the hanging block move at constant speed. This 
tension must overcome friction and the component of the gravitational force along the incline, so 

( )2 1 1sin coskm g m g μ m gα α= +  and 2 1(sin cos )km m μα α= + . 

(b) In this case, the friction force acts in the same direction as the tension on the block of mass 1m , so 

2 1 k 1( sin cos )m g m g α μ m g α= − , or 2 1 k(sinα cos )m m μ α= − . 
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(c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 1 s(sin cos )m α μ α+  and the smallest 2m  
could be is 1 s(sin cos )m α μ α− . 
EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of 

1m changes. In part (c), for the largest 2m the static friction force on 1m is directed down the incline and for the 
smallest 2m the static friction force on 1m is directed up the incline. 

 5.66. IDENTIFY: The system is in equilibrium. Apply Newton�s 1st law to block A, to the hanging weight and to the 
knot where the cords meet. Target variables are the two forces. 
(a) SET UP: The free-body diagram for the hanging block is given in Figure 5.66a. 

 

EXECUTE:  
y yF ma=∑  

3 0T w− =  

3 12.0 NT =  

Figure 5.66a  
SET UP: The free-body diagram for the knot is given in Figure 5.66b. 

 

EXECUTE:  
y yF ma=∑  

2 3sin 45.0 0T T° − =  

3
2

12.0 N
sin 45.0 sin 45.0

TT = =
° °

 

2 17.0 NT =  

Figure 5.66b  

x xF ma=∑  

2 1cos45.0 0T T° − =  

1 2 cos45.0 12.0 NT T= ° =  
SET UP: The free-body diagram for block A is given in Figure 5.66c. 

 

EXECUTE:  
x xF ma=∑  

1 s 0T f− =  

s 1 12.0 Nf T= =  

Figure 5.66c  

EVALUATE: Also can apply y yF ma=∑  to this block: 

0An w− =  

60.0 NAn w= =  

Then s (0.25)(60.0 N) 15.0 N;nμ = =  this is the maximum possible value for the static friction force. We see that 

s s ;f nμ<  for this value of w the static friction force can hold the blocks in place. 
(b) SET UP: We have all the same free-body diagrams and force equations as in part (a) but now the static 
friction force has its largest possible value, s s 15.0 N.f nμ= =  Then 1 s 15.0 N.T f= =  
EXECUTE: From the equations for the forces on the knot 

2 1cos45.0 0T T° − =  implies 2 1
15.0 N/ cos45.0 21.2 N

cos45.0
T T= ° = =

°
 

2 3sin 45.0 0T T° − =  implies 3 2 sin 45.0 (21.2 N)sin 45.0 15.0 NT T= ° = ° =  
And finally 3 0T w− =  implies 3 15.0 N.w T= =  
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is larger by 
this same ratio. 
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 5.67. IDENTIFY: Apply m=∑F a
! ! to each block. Use Newton�s 3rd law to relate forces on A and on B. 

SET UP: Constant speed means 0a = . 
EXECUTE: (a) Treat A and B as a single object of weight 4.80 NA Bw w w= + = . The free-body diagram for this 

combined object is given in Figure 5.67a. y yF ma=∑  gives 4.80 Nn w= = . k k 1.44 Nf nμ= = . x xF ma=∑  

gives k 1.44 NF f= =  
(b) The free-body force diagrams for blocks A and B are given in Figure 5.67b. n and kf  are the normal and 
friction forces applied to block B by the tabletop and are the same as in part (a). kBf  is the friction force that A 
applies to B. It is to the right because the force from A opposes the motion of B. Bn  is the downward force that A 
exerts on B. kAf  is the friction force that B applies to A. It is to the left because block B wants A to move with it. 

An  is the normal force that block B exerts on A. By Newton�s third law, k kB Af f=  and these forces are in opposite 
directions. Also, A Bn n=  and these forces are in opposite directions. 

y yF ma=∑  for block A gives 1.20 NA An w= = , so 1.20 NBn = . 

k k (0.300)(1.20 N) 0.36 NA Af nμ= = = , and k 0.36 N.Bf =  

x xF ma=∑  for block A gives k 0.36 NAT f= = . 

x xF ma=∑  for block B gives k k 0.36 N 1.44 N 1.80 NBF f f= + = + =  
EVALUATE: In part (a) block A is at rest with respect to B and it has zero acceleration. There is no horizontal 
force on A besides friction, and the friction force on A is zero. A larger force F is needed in part (b), because of the 
friction force between the two blocks. 

 
Figure 5.67a�c 

 5.68. IDENTIFY: Apply m=∑F a
! !  to the brush. Constant speed means 0.a =  Target variables are two of the forces 

on the brush. 
SET UP: Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall. The 
kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is vertically 
downward. The free-body diagram is given in Figure 5.68. 

 

EXECUTE:  
x xF ma=∑  

cos53.1 0n F− ° =  
cos53.1n F= °  

k k k cos53.1f n Fμ μ= = °  

Figure 5.68  

y yF ma=∑  

ksin53.1 0F w f° − − =  

ksin53.1 cos53.1 0F w Fμ° − − ° =  

k(sin53.1 cos53.1 )F wμ° − ° =  

ksin53.1 cos53.1
wF
μ

=
° − °
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(a) 
k

120 N 16.9 N
sin53.1 cos53.1 sin53.1 (0.15)cos53.1

wF
μ

= = =
° − ° ° − °

 

(b) cos53.1 (16.9 N)cos53.1 10.1 Nn F= ° = ° =  
EVALUATE: In the absence of friction sin53.1 ,w F= °  which agrees with our expression. 

 5.69. IDENTIFY: The net force at any time is netF ma= . 
SET UP: At 0t = , 62a g= . The maximum acceleration is 140g at 1.2 mst = . 

EXECUTE: (a) 9 2 4
net 62 62(210 10  kg)(9.80 m/s ) 1.3 10  NF ma mg − −= = = × = × . This force is 62 times the flea�s 

weight. 
(b) 4

net 140 2.9 10  NF mg −= = × . 
(c) Since the initial speed is zero, the maximum speed is the area under the -xa t graph. This gives 1.2 m/s. 
EVALUATE: a is much larger than g and the net external force is much larger than the flea's weight. 

 5.70. IDENTIFY: Apply m∑F = a
! ! to the instrument and calculate the acceleration. Then use constant acceleration 

equations to describe the motion. 
SET UP: The free-body diagram for the instrument is given in Figure 5.70. The instrument has mass 

1.531 kgm w g= = . 

EXECUTE: (a) For on the instrument, y yF ma∑ = gives T mg ma− = and 213.07 m sT mga
m
−

= = . 

2
0 0,  330 m s,  13.07 m s ,  ?y y yv v a t= = = =  Then 0y y yv v a t= +  gives 25.3 s t = . Consider forces on the 

rocket; rocket has the same ya . Let F be the thrust of the rocket engines. F mg ma− =  and 
2 2 5( ) (25,000 kg) (9.80 m s 13.07 m s ) 5.72 10 NF m g a= + = + = × . 

(b) 21
0 0 02  gives 4170 m.y yy y v t a t y y− = + − =  

EVALUATE: The rocket and instrument have the same acceleration. The tension in the wire is over twice the 
weight of the instrument and the upward acceleration is greater than g. 

 
Figure 5.70 

 5.71. IDENTIFY: /a dv dt= . Apply m∑F = a
! ! to yourself. 

SET UP: The reading of the scale is equal to the normal force the scale applies to you. 
EXECUTE: The elevator�s acceleration is 

2 3 2 3( ) 3.0 m s 2(0.20 m s ) 3.0 m s (0.40 m s )dv ta t t
dt

= = + = +  

At 2 3 24.0 s, 3.0 m s (0.40 m s )(4.0 s) 4.6  m st a= = + = . From Newton�s Second Law, the net force on you is 

net scaleF F w ma= − =  and 
2 2

scale  (72 kg)(9.8 m s ) (72 kg)(4.6 m s ) 1040 NF w ma= + = + =  

EVALUATE: a increases with time, so the scale reading is increasing. 
 5.72. IDENTIFY: Apply m∑F = a

! ! to the passenger to find the maximum allowed acceleration. Then use a constant 
acceleration equation to find the maximum speed. 
SET UP: The free-body diagram for the passenger is given in Figure 5.72. 
EXECUTE:  y yF ma∑ = gives n mg ma− = . 1.6n mg= , so 20.60 5.88 m sa  g= = . 

2
0 03.0 m, 5.88 m s ,  0y yy y a v− = = =  so 2 2

0 02 ( )y y yv v a y y= + − gives 5.0 m syv = . 
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EVALUATE: A larger final speed would require a larger value of ya , which would mean a larger normal force on 
the person. 

 
Figure 5.72 

 5.73. IDENTIFY: Apply m∑F = a
! ! to the package. Calculate a and then use a constant acceleration equation to 

describe the motion. 
SET UP: Let x+  be directed up the ramp. 
EXECUTE: (a) net k ksin37 sin37 cos37F mg f mg mg maμ= − ° − = − ° − ° = and 

2 2(9.8 m s )(0.602 (0.30)(0.799)) 8.25m sa = − + = −  

Since we know the length of the slope, we can use 2 2
0 02 ( )x x xv v a x x= + −  with 0 0x =  and 0xv =  at the top. 

2 2 2 2
0 2 2( 8.25 m s )(8.0 m) 132 m sv ax= − = − − = and 2 2

0 132 m s 11.5 m sv = =  
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each other. 

net ksin37 cos37F mg μ mg ma= − ° + ° = and 
2 2( sin37 0.30 cos37 ) (9.8 m s )(( 0.602) (0.30)(0.799)) 3.55 m sa g= − ° + ° = − + = − . 

Now we have 0 00,  8.0 m, 0v x x= = − = and 2 2 2 2 2
0 02 ( ) 0 2( 3.55 m s )( 8.0 m) 56.8 m sv v a x x= + − = + − − = , so 

2 256.8 m s 7.54 m sv = = . 
EVALUATE: In both cases, moving up the incline and moving down the incline, the acceleration is directed down 
the incline. The magnitude of a is greater when the package is going up the incline, because sin37mg ° and kf are 
in the same direction whereas when the package is going down these two forces are in opposite directions. 

 5.74. IDENTIFY: Apply m∑F = a
! ! to the hammer. Since the hammer is at rest relative to the bus its acceleration 

equals that of the bus. 
SET UP: The free-body diagram for the hammer is given in Figure 5.74. 
EXECUTE:  gives sin74 0 so sin 74 .y yF ma T mg T mg∑ = ° − = ° =  gives cos74 .x xF ma T ma∑ = ° =  Divide the 

second equation by the first: 21 and 2.8 m s
tan74

a a
g
= =

°
. 

EVALUATE: When the acceleration increases the angle between the rope and the ceiling of the bus decreases, 
and the angle the rope makes with the vertical increases. 

 
Figure 5.74 

 5.75. IDENTIFY: Apply m∑F = a
! ! to the washer and to the crate. Since the washer is at rest relative to the crate, these 

two objects have the same acceleration. 
SET UP: The free-body diagram for the washer is given in Figure 5.75. 
EXECUTE: It�s interesting to look at the string�s angle measured from the perpendicular to the top of the crate. 
This angle is string 90 angle measured from the top of the crateθ = °− . The free-body diagram for the washer then 
leads to the following equations, using Newton�s Second Law and taking the upslope direction as positive: 

w slope string wsin sinm g θ T θ m a− + = and string w slopesin (  sin )T θ m a g θ= +  

w slope stringcos cos 0m g θ T θ− + = and string w slopecos cosT m g θθ =  
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Dividing the two equations: slope
string

slope

sin
tan

cos
a g θ

θ
g θ
+

=  

For the crate, the component of the weight along the slope is c slopesinm g θ−  and the normal force is c slopecos .m g θ  

Using Newton�s Second Law again: c slope k c slope csin  cosm g θ m g θ m aμ− + = . slope
k

slope

sin
cos

a g θ
g θ

μ
+

= . This leads to the 

interesting observation that the string will hang at an angle whose tangent is equal to the coefficient of kinetic 
friction: 

k stringtan tan(90 68 ) tan  22 0.40θμ = = ° − ° = ° = . 

EVALUATE: In the limit that k 0μ → , string 0θ → and the string is perpendicular to the top of the crate. 

As kμ increases, stringθ increases. 

 
Figure 5.75 

 5.76. IDENTIFY: Apply m∑F = a
! ! to yourself and calculate a. Then use constant acceleration equations to describe 

the motion. 
SET UP: The free-body diagram is given in Figure 5.76. 
EXECUTE: (a) y yF ma∑ = gives cosn mg α= . x xF ma∑ = gives ksinmg α f ma− = . Combining these two 

equations, we have 2
k(sin cos ) 3.094 m sa g α μ α= − = − . Find your stopping distance: 

2
00,  3.094 m s ,  20 m sx x xv a v= = − = . 2 2

0 0 02 ( ) gives 64.6 m, x x xv v a x x x x= + − − = which is greater than 40 m. 
You don�t stop before you reach the hole, so you fall into it. 
(b) 2

03.094 m s ,  40 m, 0x xa x x v= − − = = . 2 2
0 0 02 ( ) gives 16 m s.x x x xv v a x x v= + − =  

EVALUATE: Your stopping distance is proportional to the square of your initial speed, so your initial speed is 
proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your initial speed must 

be 40 m(20 m/s) 16 m/s
64.6 m

= . 

 
Figure 5.76 

 5.77. IDENTIFY: Apply m∑F = a
! ! to each block and to the rope. The key idea in solving this problem is to recognize 

that if the system is accelerating, the tension that block A exerts on the rope is different from the tension that block 
B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn�t accelerate.) 
SET UP: Take a positive coordinate direction for each object to be in the direction of the acceleration of that 
object. All three objects have the same magnitude of acceleration. 
EXECUTE: The Second Law equations for the three different parts of the system are: 
Block A (The only horizontal forces on A are tension to the right, and friction to the left): k .A A Am g T m aμ− + =  
Block B (The only vertical forces on B are gravity down, and tension up): .B B Bm g T m a− =  
Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight of the 

portion of the rope that hangs vertically): ( ) .R B A R
dm g T T m aL + − =  
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To solve for a and eliminate the tensions, add the left hand sides and right hand sides of the three equations: 

( ) k
k

( / )( ) ,  or .( )
B R A

A B R A B R
A B R

m m d L mdm g m g m g m m m a a gL m m m
μμ + −

− + + = + + =
+ +

 

(a) When k
( / )0,  .( )

B R

A B R

m m d La g m m mμ +
= =

+ +
 As the system moves, d will increase, approaching L as a limit, and thus 

the acceleration will approach a maximum value of ( )
B R

A B R

m ma g m m m
+

=
+ +

. 

(b) For the blocks to just begin moving, 0,a >  so solve s0 [ ( / ) ]B R Am m d L mμ= + −  for d. Note that we must use 

static friction to find d for when the block will begin to move. Solving for d, s( )A B
R

Ld m m
m

μ= −  or 

1.0 m (0.25(2 kg) 0.4 kg) 0.63 m.0.160 kgd = − =  

(c) When 1.0 m0.04 kg,  (0.25(2 kg) 0.4 kg) 2.50 m0.04 kgRm d= = − = . This is not a physically possible situation 

since .d L>  The blocks won�t move, no matter what portion of the rope hangs over the edge. 
EVALUATE: For the blocks to move when released, the weight of B plus the weight of the rope that hangs 
vertically must be greater than the maximum static friction force on A, which is s 4.9 Nnμ = . 

 5.78. IDENTIFY: Apply Newton�s 1st law to the rope. Let 1m  be the mass of that part of the rope that is on the table, 
and let 2m  be the mass of that part of the rope that is hanging over the edge. ( 1 2 ,m m m+ =  the total mass of the 
rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the length of the rope. 
Let T be the tension in the rope at that point that is at the edge of the table. 
SET UP: The free-body diagram for the hanging section of the rope is given in Figure 5.78a 

 

EXECUTE: 
y yF ma=∑  

2 0T m g− =  

2T m g=  

Figure 5.78a  
SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.78b. 

 

EXECUTE: 
y yF ma=∑  

1 0n m g− =  

1n m g=  

Figure 5.78b  
When the maximum amount of rope hangs over the edge the static friction has its maximum value: 

s s s 1f n m gμ μ= =  

x xF ma=∑  

s 0T f− =  

s 1T m gμ=  
Use the first equation to replace T: 

2 s 1m g m gμ=  

2 s 1m mμ=  

The fraction that hangs over is 2 s 1 s

1 s 1 s

.
1

m m
m m m

μ μ
μ μ

= =
+ +

 

EVALUATE: As s 0,μ →  the fraction goes to zero and as s ,μ →∞  the fraction goes to unity. 
 5.79. IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case. Apply 

m=∑F a
! !  to the case. 
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(a) SET UP: The static friction force is to the right in Figure 5.79a (northward) since it tries to make the case 
move with the truck. The maximum value it can have is s s .f Nμ=  

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

s s sf n mgμ μ= =  

Figure 5.79a  

x xF ma=∑  

sf ma=  

smg maμ =  
2 2

s (0.30)(9.80 m/s ) 2.94 m/sa gμ= = =  
The truck�s acceleration is less than this so the case doesn�t slip relative to the truck; the case�s acceleration is 

22.20 m/sa =  (northward). Then 2
s (30.0 kg)(2.20 m/s ) 66 N,f ma= = =  northward. 

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can give the 
case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction force still tries to 
keep the case moving with the truck, so the acceleration of the case and the friction force are both southward. The 
free-body diagram is sketched in Figure 5.79b. 
SET UP:  

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

2
k k (0.20)(30.0 kg)(9.80 m/s )f mgμ= =  

k 59 N,f =  southward 
Figure 5.79b  

EVALUATE: kf ma=  implies 2k 59 N 2.0 m/s .
30.0 kg

fa
m

= = =  The magnitude of the acceleration of the case is less 

than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b) the friction is in the 
direction of the motion and accelerates the case. Friction opposes relative motion between two surfaces in contact. 

 5.80. IDENTIFY: Apply m∑F = a
! ! to the car to calculate its acceleration. Then use a constant acceleration equation to 

find the initial speed. 
SET UP: Let x+  be in the direction of the car�s initial velocity. The friction force kf is then in the -directionx− . 
192 ft 58.52 m= . 
EXECUTE: n mg= and k kf mgμ= . x xF ma=∑ gives k xmg maμ− = and 

2 2
k (0.750)(9.80 m/s ) 7.35 m/sxa gμ= − = − = − . 0xv = (stops), 0 58.52 mx x− = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2

0 02 ( ) 2( 7.35 m/s )(58.52 m) 29.3 m/s 65.5 mi/hx xv a x x= − − = − − = = . He was guilty. 

EVALUATE: 
2 2 2

0 0
0 2 2

x x x

x x

v v vx x
a a
−

− = = − . If his initial speed had been 45 mi/h he would have stopped in 

245 mi/h (192 ft) 91 ft
65.5 mi/h
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 5.81. IDENTIFY: Apply m∑F = a
! ! to the point where the three wires join and also to one of the balls. By symmetry 

the tension in each of the 35.0 cm wires is the same. 
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SET UP: The geometry of the situation is sketched in Figure 5.81a. The angle φ that each wire makes with the 

vertical is given by 12.5 cmsin
47.5 cm

φ = and 15.26φ = ° . Let AT be the tension in the vertical wire and let BT be the 

tension in each of the other two wires. Neglect the weight of the wires. The free-body diagram for the left-hand 
ball is given in Figure 5.81b and for the point where the wires join in Figure 5.81c. n is the force one ball exerts on 
the other. 
EXECUTE: (a) y yF ma=∑ applied to the ball gives cos 0BT mgφ − = . 

2(15.0 kg)(9.80 m/s ) 152 N
cos cos15.26B
mgT
φ

= = =
°

. Then y yF ma=∑ applied in Figure 5.81c gives 2 cos 0A BT T φ− = and 

2(152 N)cos 294 NAT φ= = . 

(b) x xF ma=∑ applied to the ball gives sin 0Bn T φ− = and (152 N)sin15.26 40.0 Nn = =° . 

EVALUATE: AT equals the total weight of the two balls. 

 
Figure 5.81a�c 

 5.82. IDENTIFY: Apply m∑F = a
! ! to the box. Compare the acceleration of the box to the acceleration of the truck and 

use constant acceleration equations to describe the motion. 
SET UP: Both objects have acceleration in the same direction; take this to be the x+ -direction. 
EXECUTE: If the block were to remain at rest relative to the truck, the friction force would need to cause an 
acceleration of 22.20 m s ;  however, the maximum acceleration possible due to static friction is 

2 2(0.19)(9.80 m s ) 1.86 m s ,=  and so the block will move relative to the truck; the acceleration of the box 

would be 2 2
k (0.15)(9.80 m s ) 1.47 m s .gμ = =  The difference between the distance the truck moves and the 

distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time 

22
truck box

2 2(1.80 m) 2.221 s.
(2.20 m s 1.47 m s )

xt
a a

Δ
= = =

− −
 

In this time, the truck moves 2 2 21 1
truck2 2 (2.20m s ) (2.221 s) 5.43 m.a t = =  

EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to be 
2

s (2.20 m/s ) / 0.224gμ = = . 

 5.83. IDENTIFY: Apply m=∑F a
! !  to each block. Forces between the blocks are related by Newton�s 3rd law. The 

target variable is the force F. Block B is pulled to the left at constant speed, so block A moves to the right at 
constant speed and 0a =  for each block. 
SET UP: The free-body diagram for block A is given in Figure 5.83a. BAn  is the normal force that B exerts on A. 

kBA BAf nμ=  is the kinetic friction force that B exerts on A. Block A moves to the right relative to B, and BAf  
opposes this motion, so BAf  is to the left. 
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Note also that F acts just on B, not on A. 

 

EXECUTE:  
y yF ma=∑  

0BA An w− =  
1.40 NBAn =  

k (0.30)(1.40 N) 0.420 NBA BAf nμ= = =  

Figure 5.83a  

x xF ma=∑  

0BAT f− =  
0.420 NBAT f= =  

SET UP: The free-body diagram for block B is given in Figure 5.83b. 

 
Figure 5.83b 

EXECUTE: ABn  is the normal force that block A exerts on block B. By Newton�s third law ABn  and BAn  are equal 
in magnitude and opposite in direction, so 1.40 N.ABn =  ABf  is the kinetic friction force that A exerts on B. Block 
B moves to the left relative to A and ABf  opposes this motion, so ABf  is to the right. 

k (0.30)(1.40 N) 0.420 N.AB ABf nμ= = =   
n and kf  are the normal and friction force exerted by the floor on block B; k k .f nμ=  Note that block B moves to 
the left relative to the floor and kf  opposes this motion, so kf  is to the right. 

y yF ma=∑  

0B ABn w n− − =  
4.20 N 1.40 N 5.60 NB ABn w n= + = + =  

Then k k (0.30)(5.60 N) 1.68 N.f nμ= = =  

x xF ma=∑  

k 0ABf T f F+ + − =  

k 0.420 N 0.420 N 1.68 N 2.52 NABF T f f= + + = + + =  
EVALUATE: Note that ABf  and BAf  are a third law action-reaction pair, so they must be equal in magnitude and 
opposite in direction and this is indeed what our calculation gives. 

 5.84. IDENTIFY: Apply m∑F = a
! ! to the person to find the acceleration the PAPS unit produces. Apply constant 

acceleration equations to her free-fall motion and to her motion after the PAPS fires. 
SET UP: We take the upward direction as positive. 
EXECUTE: The explorer�s vertical acceleration is 23.7 m s−  for the first 20 s. Thus at the end of that time her 

vertical velocity will be 2( 3.7 m s )(20 s) 74 m s.y yv a t= = − = −  She will have fallen a distance 

av
74 m s (20 s) 740 m

2
d v t −⎛ ⎞= = = −⎜ ⎟

⎝ ⎠
 and will thus be 1200 m 740 m 460 m− = above the surface. Her vertical 

velocity must reach zero as she touches the ground; therefore, taking the ignition point of the PAPS as  
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0 0,y = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

0 ( 74 m s) 5.95 m s
2( ) 460 m

y y
y

v v
a

y y
− − −

= = =
− −

, which is the vertical 

acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by 

0
2

0 ( 74 m s) 12.4 s
5.95 m s

y y

y

v v
t

a
− − −

= = =  

Using Newton�s Second Law for the vertical direction PAPSvF mg ma+ = . This gives 
2

PAPSv ( ) (150 kg)(5.95 ( 3.7)) m s 1450 NF ma mg m a g= − = + = − − = , 

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally in 
12.4 seconds; the acceleration needed to do this is 

2
0 20 33 m s 2.66 m s

12.4 s
y y

y

v v
a

t
− −

= = =  

and the force needed is 2
PAPSh (150 kg)(2.66 m s ) 400 NF ma= = = , since there are no other horizontal forces. 

EVALUATE: The acceleration produced by the PAPS must bring to zero both her horizontal and vertical 
components of velocity. 

 5.85. IDENTIFY: Apply m=∑F a
! !  to each block. Parts (a) and (b) will be done together. 

 
Figure 5.85a 

Note that each block has the same magnitude of acceleration, but in different directions. For each block let the 
direction of a!  be a positive coordinate direction. 
SET UP: The free-body diagram for block A is given in Figure 5.85b. 

 

EXECUTE:  
y yF ma=∑  

AB A AT m g m a− =  
( )AB AT m a g= +  

2 24.00 kg(2.00 m/s 9.80 m/s ) 47.2 NABT = + =  

Figure 5.85b  
SET UP: The free-body diagram for block B is given in Figure 5.85b. 

 

EXECUTE: 
y yF ma=∑  

0Bn m g− =  

Bn m g=  

Figure 5.85c  
2

k k k (0.25)(12.0 kg)(9.80 m/s ) 29.4 NBf n m gμ μ= = = =  

x xF ma=∑  

kBC AB BT T f m a− − =  
2

k 47.2 N 29.4 N (12.0 kg)(2.00 m/s )BC AB BT T f m a= + + = + +  
100.6 NBCT =  
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SET UP: The free-body diagram for block C is sketched in Figure 5.85d. 

 

EXECUTE:  
y yF ma=∑  

C BC Cm g T m a− =  
( )C BCm g a T− =  

2 2

100.6 N 12.9 kg
9.80 m/s 2.00 m/s

BC
C

Tm
g a

= = =
− −

 

Figure 5.85d  

EVALUATE: If all three blocks are considered together as a single object and m=∑F a
! !  is applied to this 

combined object, k ( ) .C A B A B Cm g m g m g m m m aμ− − = + +  Using the values for k ,μ  Am  and Bm  given in the 

problem and the mass Cm  we calculated, this equation gives 22.00 m/s ,a =  which checks. 

 5.86. IDENTIFY: Apply m=∑F a
! ! to each block. They have the same magnitude of acceleration, a. 

SET UP: Consider positive accelerations to be to the right (up and to the right for the left-hand block, down and 
to the right for the right-hand block). 
EXECUTE: (a) The forces along the inclines and the accelerations are related by 

(100 kg) sin30 (100 kg)  and (50 kg) sin53 (50 kg) ,T g a g T a− ° = ° − =  where T is the tension in the cord and a the 
mutual magnitude of acceleration. Adding these relations, 
(50 kg sin 53 100 kg sin 30 ) (50 kg 100 kg) ,  or 0.067 .g a a g° − ° = + = −  Since a comes out negative, the blocks will 
slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so that positive 
accelerations were to the left, a would be 0.067 .g+  

(b) 220.067(9.80 m s ) 0.658 m s .a = =  
(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of the 
above relations involving T yields 424 N. 
EVALUATE: For part (a) we could have compared sinmg θ for each block to determine which direction the 
system would move. 

 5.87. IDENTIFY: Let the tensions in the ropes be 1T  and 2.T  

 
Figure 5.87a 

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the 
acceleration of that block. 
SET UP: The free-body diagram for 1m  is given in Figure 5.87b. 

 

EXECUTE: 
x xF ma=∑  

1 1 1T m a=  

Figure 5.87b  
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SET UP: The free-body diagram for 2m  is given in Figure 5.87c. 

 

EXECUTE:  
y yF ma=∑  

2 2 2 2m g T m a− =  

Figure 5.87c  
This gives us two equations, but there are 4 unknowns ( 1,T  2 ,T  1,a  and 2a ) so two more equations are required. 
SET UP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.87d. 

 

EXECUTE:  
y yF ma=∑  

2 12mg T T ma+ − =  

Figure 5.87d  
But our pulleys have negligible mass, so 0mg ma= =  and 2 12 .T T=  Combine these three equations to eliminate 1T  
and 2 :T  2 2 2 2m g T m a− =  gives 2 1 2 22 .m g T m a− =  And then with 1 1 1T m a=  we have 2 1 1 2 22 .m g m a m a− =  
SET UP: There are still two unknowns, 1a  and 2.a  But the accelerations 1a  and 2a  are related. In any time 
interval, if 1m  moves to the right a distance d, then in the same time 2m  moves downward a distance / 2.d  One of 

the constant acceleration kinematic equations says 21
0 0 2 ,x xx x v t a t− = +  so if 2m  moves half the distance it must 

have half the acceleration of 1 :m  2 1 / 2,a a=  or 1 22 .a a=  
EXECUTE: This is the additional equation we need. Use it in the previous equation and get 

2 1 2 2 22 (2 ) .m g m a m a− =  

2 1 2 2(4 )a m m m g+ =  

2
2

1 24
m ga

m m
=

+
 and 2

1 2
1 2

22 .
4

m ga a
m m

= =
+

 

EVALUATE: If 2 0m →  or 1 ,m →∞  1 2 0.a a= =  If 2 1,m m>>  2a g=  and 1 2 .a g=  

 5.88. IDENTIFY: Apply m∑F = a
! ! to block B, to block A and B as a composite object and to block C. If A and B slide 

together all three blocks have the same magnitude of acceleration. 
SET UP: If A and B don�t slip the friction between them is static. The free-body diagrams for block B, for blocks 
A and B, and for C are given in Figures 5.88a-c. Block C accelerates downward and A and B accelerate to the right. 
In each case take a positive coordinate direction to be in the direction of the acceleration. Since block A moves to 
the right, the friction force sf on block B is to the right, to prevent relative motion between the two blocks. When C 
has its largest mass, sf has its largest value: s sf nμ= . 

EXECUTE: x xF ma=∑ applied to the block B gives s Bf m a= . Bn m g= and s s Bf m gμ= . s B Bm g m aμ = and 

sa gμ= . x xF ma=∑ applied to blocks A B+ gives sAB ABT m a m gμ= = . y yF ma=∑ applied to block C gives 

C Cm g T m a− = . s sC AB Cm g m g m gμ μ− = . s

s

0.750(5.00 kg 8.00 kg) 39.0 kg
1 1 0.750

AB
C

mm μ
μ

⎛ ⎞= = + =⎜ ⎟− −⎝ ⎠
. 
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EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C is. 
If Cm is less than 39.0 kg, the friction force that A exerts on B is less than snμ . If Cm is greater than 39.0 kg, 
blocks C and A have a larger acceleration than friction can give to block B and A accelerates out from under B. 

 
Figure 5.88 

 5.89. IDENTIFY: Apply the method of Exercise 5.19 to calculate the acceleration of each object. Then apply constant 
acceleration equations to the motion of the 2.00 kg object. 
SET UP: After the 5.00 kg object reaches the floor, the 2.00 kg object is in free-fall, with downward acceleration g. 

EXECUTE: The 2.00-kg object will accelerate upward at 5.00 kg 2.00 kg 3 7,5.00 kg 2.00 kgg g− =
+

 and the 5.00-kg object will 

accelerate downward at 3 7.g  Let the initial height above the ground be 0h . When the large object hits the 

ground, the small object will be at a height 02h , and moving upward with a speed given by 2
0 0 02 6 7.v ah gh= =  

The small object will continue to rise a distance 2
0 02 3 7,v g h=  and so the maximum height reached will be 

0 0 02 3 7 17 7 1.46 mh h h+ = = above the floor , which is 0.860 m above its initial height. 
EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises an 
additional 0.26 m after that. 

 5.90. IDENTIFY: Apply m=∑F a
! ! to the box. 

SET UP: The box has an upward acceleration of 21.90 m/sa = . 
EXECUTE: The floor exerts an upward force n on the box, obtained from ,n mg ma− =  or ( ).n m a g= +  The 
friction force that needs to be balanced is 

22
k k ( ) (0.32)(28.0 kg)(1.90 m s 9.80 m s ) 105 N.n m a gμ μ= + = + =  

EVALUATE: If the elevator wasn't accelerating the normal force would be n mg= and the friction force that 
would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and that 
increases the friction force. 

 5.91. IDENTIFY: Apply m=∑F a
! !  to the block. The cart and the block have the same acceleration. The normal force 

exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the right. The 
friction force on the block is directed so as to hold the block up against the downward pull of gravity. We want to 
calculate the minimum a required, so take static friction to have its maximum value, s s .f nμ=  
SET UP: The free-body diagram for the block is given in Figure 5.91. 

 

EXECUTE:  
x xF ma=∑  

n ma=  
s s sf n maμ μ= =  

Figure 5.91  

y yF ma=∑  

s 0f mg− =  

sma mgμ =  

s/a g μ=  
EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on it 
because the block is at rest relative to the cart. Therefore, such an observer concludes that 0n =  and thus s 0,f =  
and he doesn�t understand what holds the block up against the downward force of gravity. The reason for this 
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difficulty is that m=∑F a
! !  does not apply in a coordinate frame attached to the cart. This reference frame is 

accelerated, and hence not inertial. The smaller sμ  is, the larger a must be to keep the block pinned against the 
front of the cart. 

 5.92. IDENTIFY: Apply m=∑F a
! ! to each block. 

SET UP: Use coordinates where x+  is directed down the incline. 
EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be 
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have 
the same acceleration. For the smaller block, (4.00 kg) (sin30 (0.25)cos  30 ) (4.00 kg) ,g T a° − ° − =  or 
11.11 N (4.00 kg) ,T a− =  and similarly for the larger, 15.44 N (8.00 kg)T a+ = . Adding these two relations, 

26.55 N (12.00 kg) ,a= 22.21 m s .a =  
(b) Substitution into either of the above relations gives 2.27  N.T =  
(c) The string will be slack. The 4.00-kg block will have 22.78 m sa =  and the 8.00-kg block will have 

21.93 m s ,a =  until the 4.00-kg block overtakes the 8.00-kg block and collides with it. 
EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that block and 
will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block would have a smaller 
acceleration even though it has a larger mass, since it has a larger kμ . 

 5.93. IDENTIFY: Apply m=∑F a
! ! to the block and to the plank. 

SET UP: Both objects have 0a = . 
EXECUTE: Let Bn  be the normal force between the plank and the block and An  be the normal force between the 
block and the incline. Then, cosBn w θ=  and 3 cos 4 cos .A Bn n w θ w θ= + =  The net frictional force on the block is 

k k( ) 5 cosA Bn n wμ μ θ+ = . To move at constant speed, this must balance the component of the block�s weight 
along the incline, so k3 sin 5 cos ,w θ w θμ=  and 3 3

k 5 5tan tan37 0.452.θμ = = ° =  
EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and 
coefficient of friction are related by ktanθ μ= . For 36.9θ = ° , k 0.75μ = . A smaller kμ is needed when the plank 
is present because the plank provides an additional friction force. 

 5.94. IDENTIFY: Apply m∑F = a
! ! to the ball, to 1m and to 2m  

SET UP: The free-body diagrams for the ball, 1m and 2m are given in Figures 5.94a-c. All three objects have the 
same magnitude of acceleration. In each case take the direction of a! to be a positive coordinate direction. 
EXECUTE: (a) y yF ma=∑ applied to the ball gives cosT mgθ = . x xF ma=∑ applied to the ball gives 

sinT maθ = . Combining these two equations to eliminate T gives tan /a gθ = . 

(b) x xF ma=∑ applied to 2m gives 2T m a= . y yF ma=∑ applied to 1m gives 1 1m g T m a− = . Combining these 

two equations gives 1

1 2

ma g
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. Then 1

1 2

250 kgtan
1500 kg

m
m m

θ = =
+

and 9.46θ = ° . 

(c) As 1m becomes much larger than 2m , a g→ and tan 1θ → , so 45θ → ° . 
EVALUATE: The device requires that the ball is at rest relative to the platform; any motion swinging back and 
forth must be damped out. When 1 2m m<< the system still accelerates, but with small a and 0θ → ° . 

 
Figure 5.94a�c 
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 5.95. IDENTIFY: Apply m=∑F a
! ! to the automobile. 

SET UP: The "correct" banking angle is for zero friction and is given by 
2
0tan v

gR
β = , as derived in Example 5.23. 

Use coordinates that are vertical and horizontal, since the acceleration is horizontal. 
EXECUTE: For speeds larger than 0v , a frictional force is needed to keep the car from skidding. In this case, the 
inward force will consist of a part due to the normal force n and the friction force rad;   sin cos .f n f maβ β+ =  The 
normal and friction forces both have vertical components; since there is no vertical acceleration, 

 cos  sin .n f mgβ β− =  Using sf nμ=  and 
22

0
rad

(1.5 ) 2.25 tan ,vva gR R β= = =  these two relations become 

ssin cos 2.25 tann n mgβ μ β β+ =  and scos sinn n mgβ μ β− = . Dividing to cancel n gives 

s

s

sin cos 2.25 tan .
cos sin

β μ β β
β μ β
+

=
−

 Solving for sμ  and simplifying yields s 2

1.25 sin  cos
1 1.25sin

β βμ
β

=
+

. Using 

2

2

(20 m s)arctan 18.79
(9.80 m s )(120 m)

β
⎛ ⎞

= = °⎜ ⎟
⎝ ⎠

 gives s 0.34.μ =  

EVALUATE: If sμ is insufficient, the car skids away from the center of curvature of the roadway, so the friction in 
inward. 

 5.96. IDENTIFY: Apply m=∑F a
! !  to the car. The car moves in the arc of a horizontal circle, so rad,=a a! !  directed 

toward the center of curvature of the roadway. The target variable is the speed of the car. rada  will be calculated 

from the forces and then v will be calculated from 2
rad / .a v R=  

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At maximum 
speed the static friction force has its maximum value s s .f nμ=  
SET UP: The free-body diagram for the car is sketched in Figure 5.96a. 

 

EXECUTE:  
y yF ma=∑  

scos sin 0n f mgβ β− − =  
But s s ,f nμ=  so 

scos sin 0n n mgβ μ β− − =  

scos sin
mgn

β μ β
=

−
 

Figure 5.96a  

x xF ma=∑  

s radsin cosn n maβ μ β+ =  

s rad(sin cos )n maβ μ β+ =  

Use the yF∑  equation to replace n: 

s rad
s

(sin cos )
cos sin

mg maβ μ β
β μ β

⎛ ⎞
+ =⎜ ⎟−⎝ ⎠

 

2 2s
rad

s

sin cos sin 25 (0.30)cos25 (9.80 m/s ) 8.73 m/s
cos sin cos25 (0.30)sin 25

a gβ μ β
β μ β

⎛ ⎞ ⎛ ⎞+ ° + °
= = =⎜ ⎟ ⎜ ⎟− ° − °⎝ ⎠⎝ ⎠

 

rad /a v R2=  implies 2
rad (8.73 m/s )(50 m) 21 m/s.v a R= = =  

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the incline. 
At the minimum speed the static friction force has its maximum value s s .f nμ=  
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SET UP: The free-body diagram for the car is sketched in Figure 5.96b. 

 

The free-body diagram is identical to that 
in part (a) except that now the components 
of sf  have opposite directions. The force 
equations are all the same except for the 
opposite sign for terms containing s.μ  

Figure 5.96b  

EXECUTE: 2 2s
rad

s

sin cos sin 25 (0.30)cos25 (9.80 m/s ) 1.43 m/s
cos sin cos25 (0.30)sin 25

a gβ μ β
β μ β

⎛ ⎞ ⎛ ⎞− ° − °
= = =⎜ ⎟ ⎜ ⎟+ ° + °⎝ ⎠⎝ ⎠

 

2
rad (1.43 m/s )(50 m) 8.5 m/s.v a R= = =  

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant height 
by a static friction force that is less than s .nμ  When s 0,μ →  rad tan .a g β=  Our analysis agrees with the result of 
Example 5.23 in this special case. 

 5.97. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: 1 mi/h 0.447 m/s= . The acceleration of the car is 2
rad /a v r= , directed toward the center of curvature 

of the roadway. 
EXECUTE: (a) 80 mi h 35.7 m s= . The centripetal force needed to keep the car on the road is provided by 

friction; thus 
2

s
mvmg

r
μ = and 

2 2

2
s

(35.7 m s) 171 m
(0.76)(9.8 m s )

vr
gμ

= = = . 

(b) If s 0.20μ = , 

2
s (171 m) (0.20) (9.8 m/s ) 18.3 m s  or about 41 mi hv r gμ= = = . 

(c) If s 0.37μ = , 

2(171 m) (0.37) (9.8 m/s ) 24.9 m s  or about 56 mi hv = =  

The speed limit is evidently designed for these conditions. 
EVALUATE: The maximum safe speed is proportional to sμ . 0.20/ 0.76 0.51= , so the maximum safe speed 
for wet-ice conditions is about half what it is for a dry road. 

 5.98. IDENTIFY: The analysis of this problem is the same as that of Example 5.21. 

SET UP: From Example 5.21, 
2

radtan a v
g rg

β = = . 

EXECUTE: Solving for v in terms of β and R, 2tan (9.80 m s ) (50.0) tan 30.0 16.8 m sv gR β= = ° = , about 
60.6 km h.  
EVALUATE: The greater the speed of the bus the larger will be the angle β , so T will have a larger horizontal, 
inward component. 

 5.99. IDENTIFY and SET UP: The monkey and bananas have the same mass and the tension in the rope has the same 
upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the same net force 
and hence the same acceleration, in both magnitude and direction. 
EXECUTE: (a) For the monkey to move up, T mg> . The bananas also move up. 
(b) The bananas and monkey move with the same acceleration and the distance between them remains constant. 
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the distance 
between them doesn�t change. 
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the 
bananas. 
EVALUATE: None of these actions bring the monkey any closer to the bananas. 
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5.100. IDENTIFY: Apply m=∑F a
! ! , with f kv= . 

SET UP: Follow the analysis that leads to Eq.(5.10), except now the initial speed is 0 t3 / 3yv mg k v= = rather than 
zero. 
EXECUTE: The separated equation of motion has a lower limit of t3v  instead of 0; specifically, 

t

( )t
t

t t t3

1 1ln ln ,   or 2  .
2 2 2 2

v
k m t

v

dv v v v k t v v e
v v v v m

−⎛ ⎞− ⎡ ⎤= = − = − = +⎜ ⎟ ⎢ ⎥− − ⎣ ⎦⎝ ⎠
∫  

EVALUATE: As t →∞  the speed approaches tv . The speed is always greater than tv and this limit is approached 
from above. 

5.101. IDENTIFY: Apply m=∑F a
! ! to the rock. 

SET UP: Equations 5.9 through 5.13 apply, but with 0a rather than g as the initial acceleration. 
EXECUTE: (a) The rock is released from rest, and so there is initially no resistive force and 

2
0 (18.0 N) (3.00 kg) 6.00 m s .a = =  

(b) 2(18.0 N (2.20 N s m) (3.00 m s)) (3.00 kg) 3.80 m s .− ⋅ =  
(c) The net force must be 1.80 N, so 16.2  Nkv =  and (16.2  N) (2.20 N s m) 7.36 m s.v = ⋅ =  
(d) When the net force is equal to zero, and hence the acceleration is zero, t 18.0 Nkv =  and 

t (18.0 N) (2.20 N s m) 8.18 m s.v = ⋅ =  
(e) From Eq.(5.12), 

( )((2.20 N s m) (3.00 kg))(2.00 s)3.00 kg(8.18 m s) (2.00 s) 1 7.78 m.
2.20 N s m

y e− ⋅⎡ ⎤
= − − = +⎢ ⎥⋅⎣ ⎦

 

From Eq. (5.10), ((2.20 N s m) (3.00 kg))(2.00 s)(8.18 m s)[1 ] 6.29 m s.v e− ⋅= − =  

From Eq.(5.11), but with 0a  instead of g, 2 ((2.20 N s m) (3.00 kg))(2.00 s) 2(6.00 m s ) 1.38 m s .a e− ⋅= =  

(f) ( )

t

1 0.1 k m tv e
v

−− = = and ln  (10) 3.14 s.mt
k

= =  

EVALUATE: The acceleration decreases with time until it becomes zero when tv v= . The speed increases with 
time and approaches tv as t →∞ . 

5.102. IDENTIFY: Apply m=∑F a
! ! to the rock. dva

dt
= and dxv

dt
= yield differential equations that can be integrated to 

give ( )v t and ( )x t . 
SET UP: The retarding force of the surface is the only horizontal force acting. 

EXECUTE: (a) Thus 
1 2

net RF F kv dva
m m m dt

−
= = = = and 1 2

dv k dt
v m

= − . Integrating gives 
0

1 2 0

v t

v

dv k dt
v m

= −∫ ∫ and 

0

1 22 v
v

ktv
m

= − . This gives 
1 2 2 2
0

0 24
v kt k tv v

m m
= − + . 

For the rock�s position: 
1 2 2 2
0

0 24
dx v kt k tv
dt m m

= − + and 
1 2 2 2
0

0 24
v ktdt k t dtdx v dt

m m
= − + . 

Integrating gives
1 2 2 2 3
0

0 22 12
v kt k tx v t

m m
= − + . 

(b) 
1 2 2 2
0

0 20
2

v kt k tv v
m m

= = − + . This is a quadratic equation in t; from the quadratic formula we can find the single 

solution 
1 2
02mvt

k
= . 

(c) Substituting the expression for t into the equation for x: 
1 2 1 2 2 2 3 3 2 3 2
0 0 0 0 0

0 2 2 3

2 4 8 2
2 12 3

mv v k m v k m v mvx v
k m k m k k

= ⋅ − ⋅ + ⋅ =  

EVALUATE: The magnitude of the average acceleration is 
1/ 2

0 0
av 1/ 2

0

1
(2 / ) 2

v v kva
t mv k m

Δ
= − =
Δ

. The average force is 

1/ 21
av av 02F ma kv= = , which is 1

2 times the initial value of the force. 
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5.103. IDENTIFY: Apply m=∑F a
! ! to the object, with and without including the buoyancy force. 

SET UP: At the terminal speed tv , 0a = . 

EXECUTE: Without buoyancy, t
t

,  so .
0.36 s

mg mgkv mg k
v

= = =  With buoyancy included there is the additional 

upward buoyancy force B, so tB kv mg+ = . t
0.24 m s1 3
0.36 m s

B mg kv mg mg
⎛ ⎞

= − = − =⎜ ⎟
⎝ ⎠

. 

EVALUATE: At the terminal speed, B and f kv=  together equal mg. The presence of B reduces the value of f 
required, so the presence of B reduces the terminal speed. 

5.104. IDENTIFY: The block has acceleration 2
rad /a v r= , directed to the left in the figure in the problem. Apply 

m=∑F a
! ! to the block. 

SET UP: The block moves in a horizontal circle of radius 2 2(1.25 m) (1.00 m) 0.75 mr = − = . Each string 

makes an angle θ  with the vertical. 1.00 mcos
1.25 m

θ = , so 36.9θ = ° . The free-body diagram for the block is given in 

Figure 5.104. Let x+  be to the left and let y+  be upward. 

EXECUTE: (a) y yF ma=∑  gives u lcos cos 0T T mgθ θ− − = . 
2

l u
(4.00 kg)(9.80 m/s )80.0 N 31.0 N

cos cos36.9
mgT T
θ

= − = − =
°

. 

(b) x xF ma=∑  gives 
2

u l( )sin vT T m
r

θ+ = . 

u l( )sin (0.75 m)(80.0 N 31.0 N)sin36.9 3.53 m/s
4.00 kg

r T Tv
m

θ+ +
= = =

° . The number of revolutions per second is 

3.53 m/s 0.749 rev/s 44.9 rev/min
2 2 (0.75 m)

v
rπ π
= = = . 

(c) If l 0T → , u cosT mgθ = and 
2

u
(4.00 kg)(9.80 m/s ) 49.0 N

cos cos36.9
mgT
θ

= = =
°

. 
2

u sin vT m
r

θ = . 

u sin (0.75 m)(49.0 N)sin36.9 2.35 m/s
4.00 kg

rTv
m

θ
= = =

° . The number of revolutions per minute is 

2.35 m/s(44.9 rev/min) 29.9 rev/min
3.53 m/s
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that together 
they produce an upward component of force that balances the weight of the block. 

 
Figure 5.104 

5.105. IDENTIFY: Apply m=∑F a
! ! to the falling object. 

SET UP: Follow the steps that lead to Eq.(5.10), except now 0 0yv v= and is not zero. 
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EXECUTE: (a) Newton�s 2nd law gives ,y
y

dv
m mg kv

dt
= −  where t

mg v
k

= .
0 t 0

yv t
y

yv

dv k dt
v v m

= −
−∫ ∫ . This is the same 

expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is the initial speed 0v  

instead of zero. Evaluating the integrals and rearranging gives 0 t (1 )kt m kt mv v e v e− −= + − . Note that at 0t =  this 
expression says 0yv v=  and at t α→  it says t .yv v→  
(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is downward, 
until the fluid resistance force equals gravity when the terminal speed is reached. The object speeds up 
until tyv v= . Take y+  to be downward. The graph is sketched in Figure 5.105a. 
(c) The upward resistance force is larger than the downward gravity force so the acceleration is upward and the 
object slows down, until the fluid resistance force equals gravity when the terminal speed is reached. Take y+  to 
be downward. The graph is sketched in Figure 5.105b. 
(d) When 0 tv v= the acceleration at 0t = is zero and remains zero; the velocity is constant and equal to the 
terminal velocity. 
EVALUATE: In all cases the speed becomes tv as t →∞ . 

 
Figure 5.105a, b 

5.106. IDENTIFY: Apply m=∑F a
! ! to the rock. 

SET UP: At the maximum height, 0yv = . Let y+  be upward. Suppress the y subscripts on v and a. 

EXECUTE: (a) To find the maximum height and time to the top without fluid resistance: 2 2
0 02 ( )v v a y y= + −  and 

2 2 2
0

0 2

0 (6.0 m s) 1.84 m
2 2( 9.8 m s )

v vy y
a
− −

− = = =
−

. 0
2

0 6.0 m s 0.61 s
9.8 m s

v vt
a
− −

= = =
−

. 

(b) Starting from Newton�s Second Law for this situation dvm mg kv
dt

= − . We rearrange and integrate, taking 

downward as positive as in the text and noting that the velocity at the top of the rock�s flight is zero: 
0

t

 
v

dv k t
v v m

= −
−∫ . 0 t

t
t

2.0 m sln( ) ln ln ln(0.25) 1.386
6.0 m s 2.0 m sv

vv v
v v
− −

− = = = = −
− − −

 

From Eq.(5.9), 2 2
t (2.0 m s ) (9.8 m s ) 0.204 s,m k v g= = = and ( 1.386) (0.204 s) (1.386) 0.283 smt k= − − = =  

to the top. Equation 5.10 in the text gives us ( ) ( )
t t t(1 )k m t k m tdx v e v v e

dt
− −= − = − . 

( ) ( )t
t t t

0 0 0

( 1)
x t t

k m t k m tv mx dx v dt v e dt v t e
k

− −= = − = + −∫ ∫ ∫ . 

1.387(2.0 m s) (0.283 s) (2.0 m s) (0.204 s)(e 1) 0.26 mx −= + − = . 
EVALUATE: With fluid resistance present the maximum height is much less and the time to reach it is less. 

5.107. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: The forces on the car are the air drag force 2
Df Dv=  and the rolling friction force r .mgμ  Take the 

velocity to be in the x+ -direction. The forces are opposite in direction to the velocity. 
EXECUTE: (a) x xF ma∑ =  gives 2

rDv mg maμ− − = . We can write this equation twice, once with 32 m sv =  

and 2 0.42 m sa = −  and once with 24 m sv =  and 20.30 m/s .a = −  Solving these two simultaneous equations in 

the unknowns D and rμ  gives r 0.015μ =  and 2 20.36  N s m .D = ⋅  
(b) cosn mg β=  and the component of gravity parallel to the incline is sinmg β , where 2.2 .β = °  For constant 

speed, 2
rsin 2.2 cos2.2 0.mg mg Dvμ° − ° − =  Solving for v  gives 29 m s.v =  
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(c) For angle 2
r,  sin  cos 0mg mg Dvβ β μ β− − =  and r(sin  cos )mgv

D
β μ β−

= . The terminal speed for a falling 

object is derived from 2
t 0,Dv mg− =  so t .v mg D=  t rsin cosv v β μ β= − . And since 

r t0.015,  sin (0.015) cosv vμ β β= = − . 
EVALUATE: In part (c), tv v→ as 90β → ° , since in that limit the incline becomes vertical. 

5.108. IDENTIFY: Apply m=∑F a
! ! to the person and to the cart. 

SET UP: The apparent weight, appw , which is the same as the upward force on the person exerted by the car seat. 
EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed to keep 
him moving in its circular path: 

2 2
2

app
(12 m s)(70 kg) (9.8 m s ) 434  N

40 m
mvw mg
R

⎡ ⎤
= − = − =⎢ ⎥

⎣ ⎦
. 

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no longer has to 

exert any upward force on it: 
2

0mvmg
R

− = . 2(40 m) (9.8 m/s ) 19.8 m sv Rg= = = . The answer doesn�t 

depend on the cart�s mass, because the centripetal force needed to hold it on the road is proportional to its mass and 
so to its weight, which provides the centripetal force in this situation. 
EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is provided by 
gravity. For speeds greater than this more, downward force is needed and there is no source for it and the cart 
leaves the circular path. For speeds less than this, less downward force than gravity is needed, so the roadway must 
exert an upward vertical force. 

5.109. (a) IDENTIFY: Use the information given about Jena to find the time t for one revolution of the merry-go-round. 
Her acceleration is rad ,a  directed in toward the axis. Let 1F

!
 be the horizontal force that keeps her from sliding off. 

Let her speed be 1v  and let 1R  be her distance from the axis. Apply m=∑F a
! !  to Jena, who moves in uniform 

circular motion. 
SET UP: The free-body diagram for Jena is sketched in Figure 5.109a 

 

EXECUTE:  
x xF ma=∑  

1 radF ma=  
2
1

1
1

,vF m
R

=  1 1
1 1.90 m/sR Fv

m
= =  

Figure 5.109a  

The time for one revolution is 1
1

1 1 1

2 2 .R mt R
v R F
π π= =  Jackie goes around once in the same time but her speed 

2( )v  and the radius of her circular path 2( )R  are different. 

2 1 1 2 1 1
2 2

1 1

2 12 .
2

R R F R R Fv R
t R m R m
π π

π
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

IDENTIFY: Now apply m=∑F a
! !  to Jackie. She also moves in uniform circular motion. 

SET UP: The free-body diagram for Jackie is sketched in Figure 5.109b. 

 

EXECUTE:  
x xF ma=∑  

2 radF ma=  

Figure 5.109b  
2 2
2 2 1 1 2

2 12
2 2 1 1

3.60 m (60.0 N)
1.80 m

v m R R F RF m F
R R R m R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

120.0 N=  

(b) 
2
2

2
2

,vF m
R

=  so 2 2
2

(120.0 N)(3.60 m) 3.79 m/s
30.0 kg

F Rv
m

= = =  
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EVALUATE: Both girls rotate together so have the same period T. By Eq.(5.16), rada  is larger for Jackie so the 
force on her is larger. Eq.(5.15) says 1 1 2 2/ /R v R v=  so 2 1 2 1( / );v v R R=  this agrees with our result in (a). 

5.110. IDENTIFY: Apply m=∑F a
! ! to the passenger. The passenger has acceleration rada , directed inward toward the 

center of the circular path. 
SET UP: The passenger�s velocity is 2 8.80 m s.v π R t= =  The vertical component of the seat�s force must 
balance the passenger�s weight and the horizontal component must provide the centripetal force. 

EXECUTE: (a) seat sin 833 NF mgθ = =  and 
2

seat cos 188 NmvF
R

θ = = . Therefore 

tan (833 N) (188 N) 4.43;θ = =  77.3θ = °  above the horizontal. The magnitude of the net force exerted by the 
seat (note that this is not the net force on the passenger) is 

2 2
seat (833 N) (188 N) 854 NF = + =  

(b) The magnitude of the force is the same, but the horizontal component is reversed. 

EVALUATE: At the highest point in the motion, 
2

seat 645 NvF mg m
R

= − = . At the lowest point in the motion, 

2

seat 1021 NvF mg m
R

= + = . The result in parts (a) and (b) lies between these extreme values. 

5.111. IDENTIFY: Apply m=∑F a
! !  to the person. The person moves in a horizontal circle so his acceleration is 

2
rad / ,a v R=  directed toward the center of the circle. The target variable is the coefficient of static friction between 

the person and the surface of the cylinder. 2 2 (2.5 m)(0.60 rev/s) (0.60 rev/s) 9.425 m/s
1 rev 1 rev

Rv π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(a) SET UP: The problem situation is sketched in Figure 5.111a. 

 

 

Figure 5.111a  

 

The free-body diagram for the person is 
sketched in Figure 5.111b. 
The person is held up against gravity by 
the static friction force exerted on him 
by the wall. The acceleration of the person 
is rad ,a  directed in towards the axis of rotation. 

Figure 5.111b  
(b) EXECUTE: To calculate the minimum sμ  required, take sf  to have its maximum value, s s .f nμ=  

y yF ma=∑  

s 0f mg− =  

sn mgμ =  

x xF ma=∑  
2 /n mv R=  

Combine these two equations to eliminate n: 
2

s /mv R mgμ =  
2

s 2 2

(2.5 m)(9.80 m/s ) 0.28
(9.425 m/s)

Rg
v

μ = = =  
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(c) EVALUATE: No, the mass of the person divided out of the equation for s.μ  Also, the smaller sμ  is, the larger 
v must be to keep the person from sliding down. For smaller sμ  the cylinder must rotate faster to make n larger 
enough. 

5.112. IDENTIFY: Apply m=∑F a
! ! to the combined object of motorcycle plus rider. 

SET UP: The object has acceleration 2
rad /a v r= , directed toward the center of the circular path. 

EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the 

(downward) acceleration at the top of the sphere must exceed mg, so 
2

,vm mg
R
>  and 

2(9.80 m s ) (13.0 m) 11.3 m s.v gR> = =  
(b) The (upward) acceleration will then be 4g, so the upward normal force must be 

25 5(110 kg) (9.80 m s ) 5390  N.mg = =  
EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the object. 

5.113. IDENTIFY: Apply m=∑F a
! !  to your friend. Your friend moves in the arc of a circle as the car turns. 

(a) Turn to the right. The situation is sketched in Figure 5.113a. 

 

As viewed in an inertial frame, 
in the absence of sufficient friction 
your friend doesn�t make the turn 
completely and you move to the right 
toward your friend. 

Figure 5.113a  
(b) The maximum radius of the turn is the one that makes rada  just equal to the maximum acceleration that static 
friction can give to your friend, and for this situation sf  has its maximum value s s .f nμ=  
SET UP: The free-body diagram for your friend, as viewed by someone standing behind the car, is sketched in 
Figure 5.113b. 

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

Figure 5.113b  

x xF ma=∑  

s radf ma=  
2

s /n mv Rμ =  
2

s /mg mv Rμ =  
2 2

2
s

(20 m/s) 120 m
(0.35)(9.80 m/s )

vR
gμ

= = =  

EVALUATE: The larger sμ  is, the smaller the radius R must be. 
5.114. IDENTIFY: The tension F in the string must be the same as the weight of the hanging block, and must also 

provide the resultant force necessary to keep the block on the table in uniform circular motion. 
SET UP: The acceleration of the block is 2

rad /a v r= , directed toward the hole. 

EXECUTE: 
2

,vMg F m
r

= =  so .v gr M m=  

EVALUATE: The larger M is the greater must be the speed v, if r remains the same. 



Applying Newton�s Laws  5-51 

5.115. IDENTIFY: Apply m=∑F a
! !  to the circular motion of the bead. Also use Eq.(5.16) to relate rada  to the period of 

rotation T. 
SET UP: The bead and hoop are sketched in Figure 5.115a. 

 

The bead moves in a circle of radius 
sin .R r β=  

The normal force exerted on the bead by 
the hoop is radially inward. 

Figure 5.115a  
The free-body diagram for the bead is sketched in Figure 5.115b. 

 

EXECUTE:  
y yF ma=∑  

cos 0n mgβ − =  
/ cosn mg β=  

x xF ma=∑  

radsinn maβ =  

Figure 5.115b  
Combine these two equations to eliminate n: 

radsin
cos
mg maβ
β

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

radsin
cos

a
g

β
β
=  

2
rad /a v R=  and 2 / ,v R Tπ=  so 2 2

rad 4 / ,a R Tπ=  where T is the time for one revolution. 

sin ,R r β=  so 
2

rad 2

4 sinra
T

π β
=  

Use this in the above equation: 
2

2

sin 4 sin
cos

r
T g

β π β
β
=  

This equation is satisfied by sin 0,β =  so 0,β =  or by 
2

2

1 4 ,
cos

r
T g
π

β
=  which gives 

2

2cos
4
T g

r
β

π
=  

(a) 4.00 rev/s implies (1/ 4.00) s 0.250 sT = =  

Then 
2 2

2

(0.250 s) (9.80 m/s )cos
4 (0.100 m)

β
π

=  and 81.1 .β = °  

(b) This would mean 90 .β = °  But cos90 0,° =  so this requires 0.T →  So β  approaches 90°  as the hoop rotates 
very fast, but 90β = °  is not possible. 
(c) 1.00 rev/s implies 1.00 sT =  

The 
2

2cos
4
T g

r
β

π
=  equation then says 

2 2

2

(1.00 s) (9.80 m/s )cos 2.48,
4 (0.100 m)

β
π

= =  which is not possible. The only way to 

have the m=∑F a
! !  equations satisfied is for sin 0.β =  This means 0;β =  the bead sits at the bottom of the hoop. 
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EVALUATE: 90β → ° as 0T →  (hoop moves faster). The largest value T can have is given by 2 2/(4 ) 1T g rπ =  so 

2 / 0.635 s.T r gπ= =  This corresponds to a rotation rate of (1/ 0.635) rev/s 1.58 rev/s.=  For a rotation rate less 
than 1.58 rev/s, 0β =  is the only solution and the bead sits at the bottom of the hoop. Part (c) is an example of this. 

5.116. IDENTIFY: 
2

2x
d xa
dt

= and 
2

2y
d ya
dt

= . Then apply m=∑F a
! ! to calculate the components of the net force. 

SET UP: The components of F
!

determine its magnitude and direction. 
EXECUTE: (a) Differentiating twice, 6xa βt= −  and 2 ,ya δ= −  so 

(2.20 kg) ( 0.72 N s) (1.58 N/s)x xF ma t t= = − = −  and 2(2.20 kg) ( 2.00 m s ) 4.40 Ny yF ma= = − = − . 
(b) The graph is given in Figure 5.116. 
(c) At 3.00 s, 4.75 N and 4.40 N,x yt F F= = − = −  so 2 2( 4.75 N) ( 4.40  N) 6.48  NF = − + − =  at an angle of 

( )4.40arctan 223 .4.75
− = °
−

 

EVALUATE: yF is constant and negative. xF is zero at 0t = and becomes increasingly more negative as t 
increases. 

 
Figure 5.116 

5.117. IDENTIFY: The velocity is tangent to the path. The acceleration has a tangential component when the speed is 
changing and a radial component when the path is curving. 
SET UP: rada

! is toward the center of curvature of the path. tana
! is parallel to v! when the speed is increasing and 

antiparallel to v! when the speed is decreasing. The net force F
!

is proportional to a! . 
EXECUTE: The diagram is sketched in Figure 5.117. 
EVALUATE: v! , a! , and F

!
all change during the motion. 

 
Figure 5.117 

5.118. IDENTIFY: Apply m=∑F a
! ! to the car. It has acceleration rada

! , directed toward the center of the circular path. 
SET UP: The analysis is the same as in Example 5.24. 

EXECUTE: (a) 
2 2

2 (12.0 m/s)(1.60 kg) 9.80 m/s 61.8 N.
5.00 mA

vF m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) 
2 2

2 (12.0 m/s)(1.60 kg) 9.80 m/s 30.4 N.
5.00 mB

vF m g
R

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, where the minus sign indicates that the track 

pushes down on the car. The magnitude of this force is 30.4 N. 
EVALUATE: A BF F> . 2AF mg− . 
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5.119. IDENTIFY: The analysis is the same as for Problem 5.96. 
SET UP: The speed is related to the period by 2 2 (tan ) /v R T h Tπ π β= = , or 2 (tan ) /T h vπ β= . 
EXECUTE: The maximum and minimum speeds are the same as those found in Problem 5.96, 

s
max

s

cos sintan
sin cos

v gh β μ ββ
β μ β
+

=
−

 and s
min

s

cos sintan
sin cos

v gh β μ ββ
β μ β
−

=
+

. 

The minimum and maximum values of the period T are then 

s
min

s

tan sin cos2
cos sin

hT
g
β β μ βπ

β μ β
−

=
+

 and s
max

s

tan sin cos2
cos sin

hT
g
β β μ βπ

β μ β
+

=
−

. 

EVALUATE: For s 0μ = the results for the speeds reduce to min maxv v gh= = . 
tan

Rh
β

= . The result for v then 

agrees with the result in Example 5.23, if we take into account that in this problem β is measured from the vertical 
whereas in Example 5.23 it is measured relative to the horizontal. 

5.120. IDENTIFY: Apply m=∑F a
! ! to the block and to the wedge. 

SET UP: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction to be 
vertical and positive upward. The normal force between the block and the wedge is n; the normal force between the 
wedge and the horizontal surface will not enter, as the wedge is presumed to have zero vertical acceleration. The 
horizontal acceleration of the wedge is A, and the components of acceleration of the block are xa  and ya . 

EXECUTE: (a) The equations of motion are then sinMA n α= − , sinxma n α=  and cosyma n mgα= − . Note 
that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the left. These are 
three equations in four unknowns, A, ,  x ya a  and n. Solution is possible with the imposition of the relation between 

A, xa and ya . An observer on the wedge is not in an inertial frame, and should not apply Newton�s laws, but the 
kinematic relation between the components of acceleration are not so restricted. To such an observer, the vertical 
acceleration of the block is ,ya but the horizontal acceleration of the block is .xa A−  To this observer, the block 

descends at an angle ,α  so the relation needed is tan  .y

x

a
α

a A
= −

−
 At this point, algebra is unavoidable. A 

possible approach is to eliminate xa by noting that x
Ma A
m

= − , using this in the kinematic constraint to eliminate 

ya  and then eliminating n. The results are: 

( ) tan ( tan )
gmA

M m Mα α
−

=
+ +

 

( ) tan ( tan )x
gMa

M m Mα α
=

+ +
 

( m) tan
( ) tan ( tan )y

g Ma
M m M

α
α α

− +
=

+ +
 

(b) When , 0,M m A>> →  as expected (the large block won�t move). Also, 

2

tan  sin cos
tan  (1 tan ) tan 1x

ga g gα α α
α α α

→ = =
+ +

which is the acceleration of the block ( sing α  in this case), 

with the factor of cosα giving the horizontal component. Similarly, 2sinya g α→ − . 
(c) The trajectory is a spiral. 
EVALUATE: If m M>> , our general results give 0xa = and ya g= − . The massive block accelerates straight 
downward, as if it were in free-fall. 

5.121. IDENTIFY: Apply m=∑F a
! ! to the block and to the wedge. 

SET UP: From Problem 5.120, sinxma n α= and cosyma n mgα= − for the block. 0ya = gives tanxa g α= . 
EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal acceleration 
and the applied force must be ( ) ( ) tanF M m a M m g α= + = + . 
EVALUATE: 0F → as 0α → and F →∞ as α →∞ . 
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5.122. IDENTIFY: Apply m=∑F a
! ! . 

SET UP: Let x+  be directed up the ramp. 
EXECUTE: The normal force that the ramp exerts on the box will be cos sinn w Tα α= − . The rope provides a force of 

cosT θ  up the ramp, and the component of the weight down the ramp is sinw α . Thus, the net force up the ramp is 

k k kcos sin ( cos sin ) (cos sin ) (sin cos )F T w w T T wθ α μ α θ θ μ θ α μ α= − − − = + − +  

The acceleration will be the greatest when the first term in parentheses is greatest and this occurs when ktan .θ μ=  
EVALUATE: Small θ means F is more nearly in the direction of the motion. But 90θ → °means F is directed to 
reduce the normal force and thereby reduce friction. The optimum value of θ is somewhere in between and 
depends on kμ . When k 0μ = , the optimum value of θ is 0θ = ° . 

5.123. IDENTIFY: Use the results of Problem 5.44. 

SET UP: ( )f x  is a minimum when 0df
dx

= and 
2

2 0d f
dx

> . 

EXECUTE: (a) k k/(cos sin )F wμ θ μ θ= +  
(b) The graph of F versus θ is given in Figure 5.123. 
(c) F is minimized at ktan .θ μ=  For k 0.25μ = , 14.0θ = ° . 
EVALUATE: Small θ means F is more nearly in the direction of the motion. But 90θ → °means F is directed to 
reduce the normal force and thereby reduce friction. The optimum value of θ is somewhere in between and 
depends on kμ . 

 
Figure 5.123 

5.124. IDENTIFY: Apply m=∑F a
! ! to the ball. At the terminal speed, 0a = . 

SET UP: For convenience, take the positive direction to be down, so that for the baseball released from rest, the 
acceleration and velocity will be positive, and the speed of the baseball is the same as its positive component of 
velocity. Then the resisting force, directed against the velocity, is upward and hence negative. 
EXECUTE: (a) The free-body diagram for the falling ball is sketched in Figure 5.124. 
(b) Newton�s Second Law is then 2.ma mg Dv= −  Initially, when 0,v =  the acceleration is g, and the speed 
increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This continues 
as the speed approaches the terminal speed. 

(c) At terminal velocity, 0,a =  so t
mgv
D

=  in agreement with Eq. (5.13). 

(d) The equation of motion may be rewritten as 2 2
t2

t

( )dv g v v
dt v
= − . This is a separable equation and may be 

expressed as 2 2 2
t t

dv g dt
v v v

=
−∫ ∫ or 2

t t t

1  arctanh .v gt
v v v

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ( )t ttanh .v v gt v=  

EVALUATE: tanh
x x

x x

e ex
e e

−

−

−
=

+
. At 0t → , ttanh( / ) 0gt v →  and 0v → . At t →∞ , ttanh( / )gt v →∞  and tv v→ . 

 
Figure 5.124 



Applying Newton�s Laws  5-55 

5.125. IDENTIFY: Apply m=∑F a
! ! to each of the three masses and to the pulley B. 

SET UP: Take all accelerations to be positive downward. The equations of motion are straightforward, but the 
kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If the 
acceleration of pulley B is ,Ba  then 3,Ba a= −  and Ba  is the average of the accelerations of masses 1 and 2, 
or 1 2 32 2 .Ba a a a+ = = −  
EXECUTE: (a) There can be no net force on the massless pulley B, so 2 .C AT T=  The five equations to be solved 
are then 1 1 1Am g T m a− = , 2 2 2Am g T m a− = , 3 3 3Cm g T m a− = , 1 2 32 0a a a+ + = and 2 0A CT T− = . These are five 
equations in five unknowns, and may be solved by standard means. 
The accelerations 1a  and 2a  may be eliminated by using 3 1 2 1 22 ( ) (2 ((1 ) (1 ))).Aa a a g T m m= − + = − − +  
The tension AT  may be eliminated by using 3 3(1 2) (1 2) ( ).A CT T m g a= = −  

Combining and solving for 3a  gives 1 2 2 3 1 3
3

1 2 2 3 1 3

4 .
4

m m m m m ma g
m m m m m m

− + +
=

+ +
 

(b) The acceleration of the pulley B has the same magnitude as 3a  and is in the opposite direction. 

(c) 3
1 3

1 1 1

( ).
2 2

A CT T ma g g g g a
m m m

= − = − = − −  Substituting the above expression for 3a  gives 

1 2 2 3 1 3
1

1 2 2 3 1 3

4 3 .
4
m m m m m ma g
m m m m m m

− +
=

+ +
 

(d) A similar analysis (or, interchanging the labels 1 and 2) gives 1 2 1 3 2 3
2

1 2 2 3 1 3

4 3 .
4
m m m m m ma g
m m m m m m

− +
=

+ +
 

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate equation 

of motion, giving 1 2 3 1 2 3

1 2 2 3 1 3 1 2 2 3 1 3

4 8,  .
4 4A C

m m m m m mT g T g
m m m m m m m m m m m m

= =
+ + + +

 

(g) If 1 2m m m= = and 3 2 ,m m=  all of the accelerations are zero, 2CT mg=  and .AT mg=  All masses and pulleys 
are in equilibrium, and the tensions are equal to the weights they support, which is what is expected. 
EVALUATE: It is useful to consider special cases. For example, when 1 2 3m m m= >>  our general result gives 

1 2a a g= = + and 3a g= − . 

5.126. IDENTIFY: Apply m=∑F a
! ! to each block. The tension in the string is the same at both ends. If T w< for a 

block, that block remains at rest. 
SET UP: In all cases, the tension in the string will be half of F. 
EXECUTE: (a) 2 62 N,F =  which is insufficient to raise either block; 1 2 0.a a= =  
(b) 2 62 N.F =  The larger block (of weight 196 N) will not move, so 1 0,a =  but the smaller block, of weight 

98 N, has a net upward force of 49 N applied to it, and so will accelerate upwards with 2
2

49 N 4.9 m s .
10.0 kg

a = =  

(c) 2 212 N,F =  so the net upward force on block A is 16 N and that on block B is 114 N, so 

2
1

16 N 0.8 m s
20.0 kg

a = =  and 2
2

114 N 11.4 m s .
10.0 kg

a = =  

EVALUATE: The two blocks need not have accelerations with the same magnitudes. 
5.127. IDENTIFY: Apply m=∑F a

! ! to the ball at each position. 
SET UP: When the ball is at rest, 0a = . When the ball is swinging in an arc it has acceleration component 

2

rad
va
R

= , directed inward. 

EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the tension 
force must balance the weight, so cosAT wβ =  or cosAT w β= . At point B, the ball is not in equilibrium; its speed 
is instantaneously 0, so there is no radial acceleration, and the tension force must balance the radial component of 
the weight, so cosBT w β=  and the ratio 2( ) cosB AT T β= . 
EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration. 



 

 

 


