Essential University Physics

Richard Wolfson

PowerPoint[®] Lecture prepared by Richard Wolfson

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

In this lecture you'll learn

- The concept of work
- How to calculate work
 - Done by a constant force
 - Done by a force that varies with position
- The concept of kinetic energy
 - The work-energy theorem
- Power and its relation to energy

Work: A measure of force applied over distance

In one dimension: $W = F_x \Delta x$

More generally, work depends on the *component of force in the direction of motion*:

Work can be positive or negative

- Work is positive if the force has a component in the same direction as the motion.
- Work is negative if the force has a component opposite the direction of motion.
- Work is zero if the force is perpendicular to the motion.

A force acting with a component in the same direction as the object's motion does positive work. W > 0

A force acting at right angles to the motion does no work.

A force acting opposite the motion does negative work. W < 0

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

The Scalar Product

Work is conveniently characterized using the *scalar product*, a way of combining two vectors to produce a scalar that depends on the vectors' magnitudes and the angle between them.

The scalar product of any two vectors \vec{A} and \vec{B} is defined as

 $\vec{A} \cdot \vec{B} = AB\cos\theta$

where A and B are the magnitudes of the vectors and θ is the angle between them.

With vectors in component form, $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, the scalar product can be written

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

• Work is the scalar product of force with displacement:

$$W = \vec{F} \cdot \Delta \vec{r}$$

Work done by a varying force

When a force varies with position, it's necessary to integrate to calculate the work done.

Geometrically, the work is the area under the force-versusposition curve.

Integration

The *definite integral* is the result of the limiting process in which the area is divided into ever smaller regions.

Work as the integral of the force *F* over position *x* is written

$$W = \int_{x_1}^{x_2} F(x) \, dx$$

• Integration is the opposite of differentiation, so integrals of simple functions are readily evaluated. For powers of *x*, the integral becomes

$$\int_{x_1}^{x_2} x^n \, dx = \frac{x^{n+1}}{n+1} \bigg|_{x_1}^{x_2} = \frac{x_2^{n+1}}{n+1} - \frac{x_1^{n+1}}{n+1}$$

Work done in stretching a spring

A spring exerts a force $F_{\text{spring}} = -kx$.

Therefore the agent stretching a spring exerts a force F = +kx, and the work the agent does is

$$W = \int_0^x F(x) \, dx = \int_0^x kx \, dx = \frac{1}{2}kx^2 \Big|_0^x = \frac{1}{2}kx^2 - \frac{1}{2}k(0)^2 = \frac{1}{2}kx^2$$

• In this case the work is the area under the triangular forceversus-position curve:

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

A varying force in multiple dimensions

In the most general case, an object moves on an arbitrary path subject to a force whose magnitude and whose direction relative to the path may vary with position.

In that case the integral for the work becomes a **line integral**, the limit of the sum of scalar products of infinitesimally small displacements with the force at each point.

Work done against gravity

The work done by an agent lifting an object of mass *m* against gravity depends only on the vertical distance *h*:

W = mgh

• The work is positive if the object is raised and negative if it's lowered.

Clicker question

Three forces have magnitudes in newtons that are numerically equal to these quantities: (A) \sqrt{x} , (B) *x*, and (C) x^2 , where *x* is the position in meters. Each force acts on an object as it moves from x = 0 to x = 1 m. Notice that all three forces have the same values at the two endpoints namely, 0 N and 1 N. Which force does the most work?

Work and net work

The work *you* do in moving an object involves only the force *you* apply:

But there may be other forces acting on the object as well.

The **net work** is the work done by all the forces acting—that is, the work done by the net force.

Example:

Lift an object at constant speed, and you do work *mgh*. But gravity, acting downward, does work *-mgh*. So the net work in this case is zero.

The work-energy theorem

Applying Newton's second law to the net work done on an object results in the **work-energy theorem:**

$$W_{\text{net}} = \int F_{\text{net}} dx = \int ma \, dx = \int m \frac{dv}{dt} \, dx = \int m \frac{dx}{dt} \, dv = \int mv \, dv$$

 Evaluating the last integral between initial and final velocities v₁ and v₂ gives

$$W_{\text{net}} = \int_{v_1}^{v_2} mv \, dv = \frac{1}{2} mv^2 \Big|_{v_1}^{v_2} = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2$$

• So the quantity $\frac{1}{2}mv^2$ changes only when net work is done on an object, and the change in this quantity is equal to the net work.

Kinetic energy and the work-energy theorem

• The quantity $\frac{1}{2}mv^2$ is called **kinetic energy**, *K*. Kinetic energy is a kind of energy associated with motion:

The kinetic energy *K* of an object of mass *m* moving at speed *v* is $K = \frac{1}{2}mv^2$

• Then the work-energy theorem states that the change in an object's kinetic energy is equal to the net work done on the object:

$$\Delta K = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 = W_{\text{net}}$$

Power and energy

• **Power** is the *rate* at which work is done or at which energy is used or produced. If work ΔW is done in time Δt , then the **average power** over this time is

$$\overline{P} = \frac{\Delta W}{\Delta t}$$
 (average power)

• When the rate changes continuously, the **instantaneous power** is

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$$

- Power is measured in watts (W), with 1 W = 1 J/s.
- Total work or energy follows from power by multiplying (for constant power) or integrating (for varying power):

$$W = P \Delta t$$
 or $W = \int_{t_1}^{t_2} P dt$

SI Units: Work/Energy/Power

James Prescott Joule (1818-1889)

James Watt (1736-1819)

$$\mathbf{J} = \frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^2} = \mathbf{N} \cdot \mathbf{m} = \mathbf{Pa} \cdot \mathbf{m}^3 = \mathbf{W} \cdot \mathbf{s}$$