Essential University Physics

Richard Wolfson

PowerPoint® Lecture prepared by Richard Wolfson

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

In this lecture you'll learn

- To use Newton's second law to solve problems involving
 - Objects moving in two dimensions
 - Multiple objects
 - Circular motion
 - Frictional forces
 - And the nature of friction

x component:

Solve to get the answers:

 $mg\sin\theta = ma \implies a = g\sin\theta = (9.8 \text{m/s}^2)(\sin 32^\circ) = 5.2 \text{ m/s}^2$

y component:

$$n - mg\cos\theta = 0 \implies n = mg\cos\theta = 540$$
N

Clicker question

 A roofer's toolbox rests on an essentially frictionless metal roof with a 45° slope, secured by a horizontal rope as shown. Is the rope tension (A) greater than, (B) equal to, or (C) less than the box's weight?

Multiple Objects

- Solve problems involving multiple objects by first identifying each object and all the forces on it.
- Draw a freebody diagram for each.
- Write Newton's law for each.
- Identify connections between the objects, which give common terms in the Newton's law equations.
- Solve.

Newton's law:

climber: $\vec{T}_c + \vec{F}_{gc} = m_c \vec{a}_c$ rock: $\vec{T}_r + \vec{F}_{gr} + \vec{n} = m_r \vec{a}_r$

In components:

climber, y : $T - m_c g = -m_c a$

In components: rock,x: $T = m_r a$ rock,y: $n - m_r g = 0$

Solution:

$$a = \frac{m_c g}{m_c + m_r}$$

Rescuing a Climber:

Solution:

$$a = \frac{m_c g}{m_c + m_r}$$

$$a = \frac{(70 \text{kg})(9.8 \text{m/s}^2)}{(70 \text{kg} + 940 \text{kg})} = 0.679 \text{m/s}^2$$

How much time?

Circular Motion

- Problems involving circular motion are no different from other Newton's law problems.
- Identify the forces, draw a freebody diagram, write Newton's law.
- Here the acceleration has magnitude v^2/r and points toward the center of the circle.

Circular Motion: Find the ball's speed

A ball whirling on a string:

 $\vec{T} + \vec{F}_g = m\vec{a}$

Solve for the ball's speed:

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Loop-the-Loop!

- The two forces acting on the car are gravity and the normal force.
- Gravity is always downward, and the normal force is perpendicular to the track.
- Here the two are at right angles:
 - The normal force acts perpendicular to the car's path, keeping its direction of motion changing.
 - Gravity acts opposite the car's velocity, slowing the car.

Loop-the-Loop!

- Now both forces are downward:
 - For the car to stay in contact with the track, the normal force must be greater than zero.
 - So the minimum speed is the speed that lets the normal force get arbitrarily close to zero at the top of the loop.
 - Then gravity alone provides the force that keeps the car in circular motion.

Loop-the-Loop!

• Therefore Newton's law has a single component, with the gravitational force mg providing the acceleration v^2/r that holds the car in its circular path:

$$\vec{F} = m\vec{a} \longrightarrow mg = \frac{mv^2}{r}$$

• Solving for the minimum speed at the loop top gives $v = \sqrt{gr}$.

- Slower than this at the top, and the car will leave the track!
- Since this result is independent of mass, car and passengers will all remain on the track as long as $v \ge \sqrt{gr}$

Friction

• **Friction** is a force that opposes the relative motion of two contacting surfaces.

• Static friction occurs when the surfaces aren't in motion; its magnitude is $f_s \le \mu_s n$, where *n* is the normal force between the surfaces and μ_s is the coefficient of static friction.

• **Kinetic friction** occurs between surfaces in motion; its magnitude $f_k = \mu_k n$

Friction

Friction is important in walking, driving and a host of other applications:

Solving Problems with Friction

- Problems with friction are like all other Newton's law problems.
- Identify the forces, draw a freebody diagram, write Newton's law.

• You'll need to relate the force components in two perpendicular directions, corresponding to the normal force and the frictional force.

Solving Problems with Friction

A braking car: What's the acceleration?

Newton's law:

$$\vec{F}_g + \vec{n} + \vec{f}_f = m\vec{a}$$

In components:

$$x: -\mu \cdot n = m \cdot a_x$$
$$y: -m \cdot g + n = 0$$

Solve for *a*:

y equation gives $n = m \cdot g$,

so x equation gives
$$a_x = -\frac{\mu \cdot n}{m} = -\mu \cdot g$$

X

Clicker question

• The figure shows a logging vehicle pulling a redwood log. Is the frictional force in this case (A) greater than, (B) equal to, or (C) less than the weight multiplied by the coefficient of friction?

Summary

- All Newton's law problems are the same.
- They're handled by
 - Identifying all the forces acting on the object or objects of interest.
 - Drawing a freebody diagram.
 - Writing Newton's law in vector form:
 - Equating the net force to the mass times the acceleration.
 - Establishing a coordinate system.
 - Writing Newton's law in components.
 - Solving for the quantities of interest.